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ABSTRACT

Investigations into Flexible Operational Paradigms to Mitigate Variability

by

Damon Phillip Williams

Chair: Mark P. Van Oyen

The work of this dissertation is concerned with the study of the effectiveness of

paradigms of production flexibility to either improve system performance or mitigate

system risk. A brief introduction to the concept of operational flexibility is provided in

Chapter I. In Chapter II, we consider a cross-trained workforce on a serial production

line, and we introduce a new strategy of worker cross training called a “fixed task zone

chain” (FTZC) as a special type of zone based cross training. This new approach seeks

to maximize the performance of a production line, in the same fashion as standard two

skill chain, but with a significant reduction in the number of skills that must be cross

trained. This allows a firm to maintain nearly the same levels of throughput, but at

a fraction of the cross-training and implementation costs. Our approach shows that

less than complete multi-functionality is often times sufficient. Our model focuses on

a twelve station, four worker, and “constant work in process” (CONWIP) structure

to show the value of the proposed paradigm: fixed task zone chaining. We provide an

easily implemented and highly effective policy, the fixed first max shared (FFMS), for

worker coordination and demonstrate its superiority versus a number of reasonable

policies. With the FFMS policy, the FTZC achieved on average only 5% throughput

xii



loss when compared with a set of benchmark structures. For most systems, 5%

throughput loss is worth it to achieve the reduced skill cross-training the FTZC

requires.

Chapter III targets our study of operational flexibility on the field of supply chain

management. A flexible supply chain design is useful to mitigate the effect of stochas-

tic supplier disruptions on operations and, especially, financial cash flows. The work

of this chapter develops mitigation strategies for a firm to use in sourcing from flexible

suppliers and demonstrates the conditions under which flexibility in the firm’s supply

chain is necessary. Consider a firm sourcing from two flexible but unreliable suppliers

for a single product that is sold during a finite selling season. The firm is exposed

to supplier defaults that can adversely affect its revenue during the selling season in

two ways: 1) supply defaults that are idiosyncratic to each supplier, 2) a system-

wide default that simultaneously disrupts both suppliers. Our objective function is

to maximize total expected profit. That is, it must prevent finished goods inventory

depletion while optimizing inventory holding cost. In addition to identifying the value

of a supplier’s diversification strategy, we also find the firm’s optimal inventory order

quantities in both the single and dual source environments. Within the single source

case we analyzed that model and found that a single sourcing strategy for the firm

is best under high marginal profit per unit conditions where disruption risk, both

idiosyncratic and system wide, was low. Conversely, as disruption risk increases, the

need to source with a second supplier also increases. Also, we learned the importance

of the firm’s cost structure, particularly as it relates to inventory holding cost.

Finally, to assist with the understanding of the flexibility paradigms, we have

designed an instrument to promote the understanding of flexibility with respect to

cross-training as well as to assist in its implementation. That is, we develop a hands-

on, active learning experience placing participants “on the job” in a serial production

line of cross-trained workers where participants can: 1) learn basic concepts of oper-
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ations management, production control, and workforce agility; 2) understand system

responsiveness and what can be done to improve it; 3) generate creative thinking and

discussion on the value of flexibility; and 4) experience first-hand foundational fac-

tory physics concepts like cycle time, throughput, and Work In Process (WIP). In the

Worker Agility Game (WAG), participants form teams and work together as cross-

trained workers on a serial production line to create a product from raw materials to

a finished good. Each team participates in a different worker cross-training paradigm

for its production line, and simple time studies are completed of worker efficiency to

ascertain how the cross-training policies work in comparison to each other.
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CHAPTER I

Introduction

Operations managers must consistently deal with the inevitable consequences of

variability on their systems. Although all variability is not bad, this work is concerned

with the variability that harms system performance and threatens productivity. For

example, consider unexpected demand changes, machine breakdowns, employee ill-

ness, or order cancelations which if not identified and controlled, can render an op-

eration uncompetitive. In a global marketplace, characterized by incessant change,

managerial insight is needed to increase a firm’s responsiveness to change. Those

firms which can adapt the best to ever changing circumstances will find themselves

winners in global business competition. Moreover, for the business systems we study,

increased adaptability goes hand in hand with increased efficiency, although this is

not generally the case. Increased efficiency typically targets cost savings and an

improvement of the business’ profit margin.

The research interest that supports this work begins with the interaction between

variability, efficiency, and profit. By understanding those dependence relationships,

we have contributed to an approach that diminishes variability and increases profit.

This approach is often referred to as operational flexibility, which is concerned with

increasing capacity and responsiveness at the operations level of an organization.

Operational flexibility seeks to improve systems that are susceptible to variability

1



by enabling them to adapt to changes cost-effectively with minimal interruption to

system flow.

Hopp and Spearman [52] describe three basic elements operations manager’s must

design and control to respond to variability: (1) inventory, (2) capacity and (3) time.

The research of this dissertation is intended to show that the implementation of

operational flexibility, through the development of an agile workforce system and a

flexible supply chain system, will increase the effectiveness of capacity and potentially

inventory with respect to variability buffering, and these increases will provide a cost

effective buffer to variability.

To achieve the agile workforce system, worker cross-training is targeted as a source

for operational flexibility. A new cross-training paradigm is developed, the Fixed

Task Zone Chain (FTZC), to increase system capacity and greatly reduce the cost

of cross-training workers without a loss in system performance. To quantify the

robustness of this new zone chain design, a metric of variation in work content is

derived to measure variability in the process times of stations on a serial production

line. The performance of the FTZC is measured against commonly used benchmark

cross-training designs from the literature to demonstrate its efficiency across a wide

range of variable production lines. We also provide a novel teaching and training role-

play simulation that helps individuals and organizations to more deeply understand

the FTZC and other paradigms for workforce agility. This can greatly assist in the

adoption and effective deployment of workforce agility solutions.

The supply chain system compares and contrasts a firm’s operational flexibility

approach to mitigate the risk of supply disruptions. In our model, the firm can choose

to single or dual source and carry inventory. The goal is to understand what type of

operational flexibility best suits the firm’s needs for a given set of conditions. Each

flexibility decision of the firm provides increased inventory capacity and responsive-

ness, however it comes with a cost. Thus, our model maximizes profit to identify

2



which flexibility decision is best. Unique to this work is the model of unreliability

of both suppliers in the firm’s supply chain. These investigations into operational

flexibility provide managerial insights into variability mitigation. Moreover, they are

easily implementable making them sufficient for practice, and provide novel additions

to the current state of the art.
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CHAPTER II

Zone Training as an Effective Strategy for

Inexpensive Cross-training in Serial Lines

2.1 Introduction

The need for flexibility in systems has never been greater as firms are faced with

challenges such as increased demand uncertainty, process variability, supply network

defaults, financial fluctuations, and credit disruptions. To counteract the adverse

effects of demand uncertainty and process variability in manufacturing systems, labor

cross-training offers capacity flexibility as a powerful variability buffering mechanism.

The positive effects of a cross-trained workforce - including shortened cycle times,

reduced inventory, and increased throughput - are well documented for a wide variety

of systems (see, for example, Gurumurthi and Benjaafar [44] and Andradottir, Ayhan,

and Down [4], where the relationship between throughput and flexibility is quantified.

Research has also shown that lost productivity can be recaptured from reducing

worker idle time via cross-training (see Hopp and Van Oyen [53] for a survey).

However, in most systems, all workers can not be cost-effectively fully cross-trained

on all skills, even if cross-training is in use. When workers are cross-trained on

serial lines, workers are often taught additional skills needed directly upstream or

downstream of bottleneck stations. These skills enable workers to provide immediate

4



relief to problematic stations that are reducing the line’s throughput (see Hopp, Tekin,

and Van Oyen [54]). However, as systems have become more complex, high labor

training costs as well as skills that are very costly to cross-train, prevent a firm from

freely adding additional skills to its workers’ skill sets. Therefore, the cost of cross-

trained workers is one of the motivating factors of this work, and, as such, our goal is

to develop labor cross-training structures that require minimal use of cross-training

and are easily implementable for serial constant work-in-process (CONWIP) lines.

To accomplish this goal, the research described in this paper shows that zoned

cross-training is an inexpensive form of cross-training in serial lines. Zoned cross-

training, in our terminology, cross-trains the workers by assigning to each worker a

zone, a group of consecutive work stations, that may or may not overlap. First, in

overlapping zones, a worker’s skill set is classified as a zone and “neighboring workers

are cross-trained so that they can share responsibility for machines where the zones

overlap”(see McClain, Schultz, and Thomas [64]). Overlapping zones greatly increase

the efficiency of serial production lines by avoiding worker idle time. We extend this

concept of overlapping zones developed by McCain, Schultz, and Thomas by adding

the second labor cross-training advance: skill chaining. It must be acknowledged that

not all applications will permit the completion of the chain compared to a traditional

straight line. It is far more practical in a U-shaped or similar shape that places the

first and last stations in close proximity. We proceed under the assumption that

the same worker can attend the input and output stations without a long walk time

(as we ignore all walk times). Our application of their skill chaining, introduced in

Hopp, Tekin, and Van Oyen [54] based on the work of Jordan and Graves [60], adds

cross-trained skills to the edge (far upstream/downstream end) of a worker’s primary

zone to create overlapping zones, and to indirectly reduce bottlenecks by “completing

the chain”. We call this paradigm the Fixed Task Zone Chain (FTZC). The FTZC

zone training merges two advances in labor cross-training: overlapping zones and skill

5



chaining in a setting in which there are significantly more stations than workers. In

completing the chain the workers create a connected graph with two skills (arcs) for

all the stations (nodes) in the serial line. As shown in the work of Hopp, Tekin,

and Van Oyen [54] a two-skill chain design that connected the graph at two skills

to “complete the chain” performed extremely well across a variety of policies and

created the greatest throughput for a given WIP level. Whereas overlapping zones

eradicates idle times, skill chaining shifts capacity indirectly between stations, as

shown by Hopp, Tekin, and Van Oyen. Simultaneously, applying both these benefits,

low idle time and ability to indirectly shift capacity, leads to our expanded concept

of zoned cross-training. Going forward in this paper, we will refer to our expanded

concept of zoned cross-training as zone chaining to represent the merger of these two

advances, overlapping zones and skill chaining.

In this paper we leverage the existing cross-training paradigms to invent the FTZC.

We contribute a deeper understanding of how the chain structure in zone chaining

can achieve very high throughput with a limited amount of worker cross-training thus

minimizing training costs and benchmark the performance. Furthermore, this new

paradigm is applicable in a wider range of scenarios because each worker may have

multiple “fixed” tasks that only a single worker can perform. By maintaining rela-

tively high throughput and keeping labor training costs relatively low, zone chaining

offers a new, flexible design for sharing work on a serial line.

Our scope is limited to establishing the effectiveness of a canonical fixed task

zone chain. We leave it to further research to develop effective methods to tailor a

FTZC implementation to a particular environment. Our work provides insight into

the stability regions and dynamic line-balancing characteristics of our zone chain

structure. It also determines the optimal fraction of time that a worker should be

at a work station to balance the line for maximum throughput. In total, this paper

suggests that implementing zone chaining in serial CONWIP lines improves upon the
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current labor cross-training practices.

2.2 Literature Survey

Hopp and Van Oyen [53] and Treleven [86] both provide extensive surveys of

the literature that examines workforce agility. Specifically, Hopp and Van Oyen [53]

provide a framework for evaluating a flexible workforce. This framework describes key

mechanisms by which cross-training can support the strategy of a firm, but they also

identify the factors necessary to guide the selection of a worker coordination policy to

implement workforce agility. Worksharing, how task-types are allocated on a line, is

an important topic in literature on workforce agility. Askin and Chen [10] describe two

types of worksharing as dynamic assembly line balancing (DLB) and moving worker

modules (MWM). DLB generally has an equal number of machines and workers, where

workers remain at their respective machines and either complete the work of their

machine (i.e. fixed task-type), or complete the work of their upstream/downstream

adjacent worker (i.e. shared task-type). Although this paper does not wholly fit in

to general DLB models, we detail some of the relevant literature.

Downey and Leonard [32] studied fully cross-trained assembly lines and showed

that it’s best to assign workers to stations with the maximum workload. McClain,

Thomas, and Sox [63] considered such lines without buffers and demonstrated that,

even without buffers, DLB can increase efficiency. Van Oyen, Gel, and Hopp [89] also

investigated fully cross-trained lines. Van Oyen, Gel, and Hopp showed that workers

could collaborate on a single job and that throughput is maximized by an “expedite

policy” where workers are assigned to the same jobs from start to finish. Throughput

maximizing policies were also specified by Andradottir, Ayhan, and Down [3] and

Andradottir and Ayhan [2] for two stage systems with two and three collborative

servers, respectively. Askin and Chen [10] further considered a two-stage DLB model

under partial cross-training and defined the tradeoff between investing in WIP and
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investing in workers.

A typical MWM line has more machines than workers. Workers attend the line

within their zone and workers can be cross-trained when zones overlap and workers

share machines. MWM lines can include, but are not limited to: 1) Toyota sewn prod-

uct systems (TSS), for a review of TSS systems see Hopp, Tekin, and Van Oyen [54]

and 2) the bucket brigade system (BBS) of Bartholdi and Eisenstein [13]. Bartholdi

and Eisenstein show that when workers are sorted from slowest to fastest, with de-

terministic processing time, a BBS will always divide task-types optimally and the

line will balance itself. (Note that Bischack [20] and McClain, Schultz, and Thomas

[64] consider similar systems with random processing times.)

Gel, Hopp, and Van Oyen [38] developed the “fixed before shared” principle in

their analysis of WIP constrained flow lines staffed by partially cross-trained work-

ers. This principle prioritizes a flexible worker to a fixed task-type before a shared

task-type. Saghafian, Van Oyen, and Kolfal [75] showed the optimality of the same

principle in a “w” shaped parallel queueing structure under some conditions. Ele-

ments of optimal policies for more general cross-training patterns in serial lines were

derived by Ahn and Righter [1]. McClain, Schultz, and Thomas [64] focused on zoned

cross-training where the concept of “overlapping zones” is formally introduced. Mc-

Clain, Schultz, and Thomas show the characteristics that influence the size of the

overlap (i.e. the amount of cross-training). Building upon the work of McClain,

Schultz, and Thomas, our work uses overlapping zones; however our work prescribes

skill chaining a specific paradigm to develop greater insight into high-performance

implementations that are especially appropriate in U-shaped lines. Although our

paradigm is well suited to open lines, we emphasize closed (CONWIP) line to obtain

stronger and more insightful results.

The principle of chaining, cross-training workers in a line to link all task-types into

a chain, was introduced by Jordan and Graves [59] to achieve production flexibility
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for plants that manufacture a portfolio of products. Brusco and Johns [22] applied

chaining to cross-training by developing an integer linear programming model that

minimized staffing costs subject to labor requirements. In their work, they observed

cross-training that includes chaining structures that perform quite well. Jordan, In-

man, and Blumenfield [60] studied chained cross-trained workers who perform main-

tenance tasks in a manufacturing plant. Jordan, Inman, and Blumenfield also found

the robustness of chaining as a cross-training strategy in that “it performs well even

if there are major changes to or uncertainty in system parameters.”

In general, the papers described above used simulation models and analysis to

study the performance of their respective systems and to find the best worker coor-

dination policy. The work of McClain, et. al [64], Hopp, et al. [54], and Jordan et

al. [60], most closely relates to our work described here. To our knowledge, our work

is unique in the development of zone chain structures for serial CONWIP produc-

tion lines and provides managers of such lines with an easily implementable heuristic

policy that offers an inexpensive alternative to cross-training.

The remainder of this paper is organized as follows. Section 2.3 describes the

problem in detail and develops our basic zone chaining model. Section 2.4 presents

analytical insights into our fixed-task zone chain (FTZC) structure with a CONWIP

release policy. In Section 2.5 we apply our analytical insights to develop heuristic

policies for our FTZC structure, the best of which we call the “fixed first, max shared

policy” (FFMS). Our method of investigation is also detailed in this section. Sec-

tion 2.6 compares the FTZC structure, under the FFMS policy, to three benchmark

structures: full cross training, a new structure called a two-skill zone chain, and a

new approximating model that we call the classic CONWIP approximation. Finally,

in Section 4.6, we offer preliminary ideas about extensions of this work.
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2.3 Problem Description

Our base model consists of twelve stations and four workers in a U-shaped serial

production line. Raw materials begin at station one and proceed sequentially through

to station twelve where they exit the line as finished goods. In this base model, a

Worker 1 Worker 2

Worker 4 Worker 3

Raw  
Materials

Finished
Goods
Inventory

1

12 11 10 9

8

7

6

5

432

Figure 2.1: Base Model

“typical serial worksharing system” as described by McClain, Schultz, and Thomas

[64], there are fewer workers than stations, and each worker is assigned to a zone

which may overlap the zone of one or more other workers.

Each station of our base model accomplishes a unique task-type, that requires one

worker to be available to complete a task. The model assumes workers are constantly

available with no cost or changeover time needed to switch between stations. In

addition, only one worker at a time can complete a specific job, but n workers can

work at a station provided at least n jobs are available and the workers possess the

skill for that station. Once a worker starts a task-type it cannot be preempted. The

processing times of a task-type i at each station are exponentially distributed with

mean Ti, while all four workers work at identical speeds (i.e., the standard worker

model). A CONstant Work-In-Process (CONWIP) release policy is used to release
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raw materials to the line. This release policy constrains the arrival of a new job to

the line by the departure of an old one and allows us to mitigate variability in the line

and to quantify the tradeoff between WIP and zone chaining. Our base model is large

enough to be realistic, and to make our point, yet small enough to be computationally

tractable.

A useful best benchmark for labor cross-training is full cross-training, where each

worker is trained on every station. Applying full cross-training to the base model

yields the structure shown in Figure 2.2 (left), which would provide maximum flex-

Worker 1 Worker 2

Worker 4

Worker 3

S1 S2 S3 S4 S5 S6

S7S8S9S10S11S12

Raw  
Materials

Finished
Goods
Inventory

Worker 1 Worker 2

Worker 4 Worker 3

F1 F2 F4

F5

F7

F8

F10F11

Raw  
Materials

Finished
Goods
Inventory

S3

S12 S9

S6

Denotes Shared Station Denotes Fixed Station

Figure 2.2: (left)Full Cross-training Structure; (right) Fixed Task Zone Chain
(FTZC)

ibility (i.e., maximum throughput at any level of WIP) at maximum training cost.

However, too much cross-training can be counterproductive as shown by Nembhard

and Prichanont [67]. They showed that increasing the number of cross-trained skills

eventually impedes performance, as well as diminishing returns, as workers forget how

to perform task-types they’ve previously learned. To drastically reduce labor train-

ing costs while retaining high flexibility, we introduce our zone chaining structure of

Figure 2.2 (right), the Fixed Task Zone Chain (FTZC).
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FTZCs reduce the number of skills to be cross-trained while maintaining enough

robustness and efficiency to achieve high levels of throughput. Stations within the

FTZC are classified as being either fixed or shared. A fixed station is run by one

worker who is the only one possessing the skill(s) to complete work at that station.

A shared station is one that can be run by two workers with the skill to complete

work at that station. This paper focuses on an instance of the FTZC paradigm for

which each of four workers is responsible for two fixed stations (one upstream and

one downstream) and two shared stations (one upstream and one downstream) called

their zone. If we let Zj denote the set of stations in the zone of worker j, then letting

F and S denote fixed or shared for a given station, Z1 = {S12, F1, F2, S3}, Z2 =

{S3, F4, F5, S6}, Z3 = {S6, F7, F8, S9}, and Z4 = {S9, F10, F11, S12}. Notice that

the FTZC consists of only 4 zones, {S3, S6, S9, S12}, where the zones overlap and

cross-training is needed. This dramatically reduces the number of cross trained skills

from full cross-training (Full XT) as evidenced by Table 2.1.

Total No. of Skills No. of Cross-Trained Skills
Full XT 48 36
FTZC 16 4

Table 2.1: FTZC Skill Reduction

Table 2.1 shows that our FTZC reduces the number of cross-trained skills by 80%

from full cross-training. This significant reduction in cross-training can significantly

reduce labor training cost savings for a firm, provided the efficiency loss is manageable.

Similar to Hopp, Tekin, and Van Oyen [54] we have “completed the chain” via the

shared stations at the boundary of each zone, subsequently connecting all workers

to all stations. With these connections in the FTZC, all workers can directly or

indirectly assist with bottleneck stations. Because FTZC is designed to reduce labor

cross training, in Section 2.6 we will analyze the efficiency of FTZC and determine

its flexibility.

Primary Zones: To analyze the FTZC, (and to specify our test suite), we intro-
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duce the term primary zone to further categorize the stations. The primary zone

is a subset of a worker’s four stations and consists of three stations: the two fixed

stations (upstream and downstream) and the third station is the downstream shared

station at the end of the worker’s zone. For example, for the zone of worker 1,

Z1 = {S12, F1, F2, S3}. The corresponding primary zone, PZ1, for worker 1 would

be PZ1 = {F1, F2, S3}. The dotted lines of Figure 2.3 show that the most upstream
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Figure 2.3: FTZC Primary Zones

shared station of a worker is excluded from that worker’s primary zone to avoid hav-

ing the same station in multiple primary zones (i.e., we have formed a partition of

the set of stations).

2.4 Analytical Insights

We analyzed our FTZC model with a CONWIP release policy. As an additional

benefit, we gained insights into the server scheduling problem and used them to

develop our heuristics. Specifically, we examined the FTZC structure, (See Figure

2.2(right)), to analyze stability, the optimal control/scheduling problem, and critical

WIP.
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The following notation, which is more general than the stylized FTZC model

emphasized, will be used throughout this section:

1. N - total number of stations in a line

2. N - the set of stations in the line, N = {1, ..., N}

3. ⊕ - mod N addition defined as: For i, j ∈ N

i⊕ j = i + j if i + j ≤ N ; otherwise i⊕ j = i + j −N

4. 	 - mod N subtraction defined as: For i, j ∈ N

i	 j = i− j if i− j ≥ 1; otherwise i	 j = i− j + N

5. W - total number of workers in a line

6. W - the set of workers in the line, W = {1, ...,W}

7. C - set of worker capacities where C = {Ck, k ∈ W}. Our model is general for

the sake of stability analysis, but for the rest of the paper Ck = 1 for all k.

8. Cs - set of worker capacities (or speeds) in units of work content per unit time

worked for just shared task-types where Cs = {Cs
k, k ∈ W}

9. Fk - set of fixed stations that worker k is trained for where k ∈ W

10. Sk - set of shared stations that worker k is trained for where k ∈ W . Note that

Fk

⋃
Sk is the skill set of worker k.

11. Z - total number of zones in a line

12. Z - the set of zones in the line, Z = {1, ..., Z}
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13. S - set of shared stations for the FTZC where S = {3, 6, 9, 12}

14. M - the number of fixed task-types per worker

15. Tn - mean processing time of the nth station where n ∈ N

16. T0 - raw process time, the sum of the long term average process times of all

stations. For the FTZC T0 =
∑

i∈N Ti

17. T
′
s - mean processing time of the sth shared station where s ∈ S; T

′
s = T3s for

s ∈ S

18. rb - bottleneck rate, the rate of the station(s) having the longest mean processing

time and the highest utilization (jobs/unit time)

19. D - the minimum number of cross-trained skills necessary in a symmetric D-skill

chain to balance the line (as defined in Hopp, Tekin, and Van Oyen [54])

2.4.1 Stability

Similar to Hopp, Tekin, and Van Oyen [54] we define a line’s capacity, λ̂, as

the maximum throughput rate it can achieve given full cross-training and infinite

WIP. For the FTZC, since each worker is a standard worker then, λ̂ = W/T0. Our

zone chain is then a balanced line if the line has sufficient cross-training to achieve

throughput of λ̂ as WIP tends to infinity. The following Theorem defines the stability

parameters of our model. Our emphasis in this paper is FTZC with one shared task

on each end of the zone, but we analyze a more general model in which the first D-1

stations of the downstream primary zones are cross-trained, where D ≥ 2.(So D ≤ 4

in our 12 station line).

Theorem 2.4.1. The minimum value of D needed to balance the FTZC with standard
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workers is D = ∆+1 where

∆ = max
i,j

δij, and

δij = min
δ=0,1,2,3

{
δ :

i⊕(j−1)∑
n=i

(λ̂T3n − Cs
n⊕1)−

i	1∑
n=i	δ

Cs
n⊕1 ≤ 0

}
Proof. See Appendix 2.8.1.1.

One important stability factor of our FTZC is that without fixed task-types, our

FTZC reduces to the strongly connected network of shared task-types called a 2-skill

chain by Hopp, et al. [54] and Iravani, Van Oyen, and Sims [56]. This network

creates a pattern of cross-trained skills that offer two benefits: each worker can either

directly or indirectly shift capacity to shared stations if bottlenecks occur at those

shared stations or workers are freed from their shared stations. This added flexibility

is quite attractive given the minimal amount of cross-training needed to achieve it.

2.4.2 Heuristic Policy Insight

In this section, we examine characteristics of optimal policies and identify prop-

erties to exploit in developing new heuristic policies that will be presented in Section

2.5. Our approach is based on sample path coupling methodology.

For any realization ω, fixing the sequence of job arrival and service times, we

denote by Dπ
t (ω) the number of completed jobs by time t under a worker allocation

strategy π. Theorems 2.4.3 - 2.4.5 determine policy properties that maximize job

completion along any sample path; that is, these theorems characterize a policy π∗

such that

Dπ∗

t (ω) ≥ Dπ
t (ω) ∀ t, π, ω.

This pathwise, finite-horizon is a highly demanding type of throughput metric. Of

course, such a policy π∗ also maximizes long-run throughput permit time. The results
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of Theorems 2.4.3 and 2.4.4 hold for arbitrary service times and worker speeds, while

Theorem 2.4.5 holds only for standard workers. Theorem 2.4.3 applies to workers

2 through 4 in our four-worker FTZC, while Theorems 2.4.4 and 2.4.5 apply to all

workers. Theorems 2.4.3 and 2.4.4 generalize Lemma 3.1 of Ahn and Righter [1],

which holds for domestic processing times.

One important outcome from these Theorems is the significance of the Last Buffer

First Served (LBFS) rule, which we will define next, to determine the priority of a

worker’s task-type. Note that for worker 1, station 12 is prioritized over station 3,

due to the closed network structure.

Definition 2.4.2. Last Buffer First Served (LBFS) rule - the priority order of job

completion within a worker’s set of stations is to first check for an available job at

the most downstream station in their zone, which is the downstream shared station.

Any job at that station always has first priority. If no job is present in the most

downstream station, the worker moves upstream in the reverse order the stations are

entered into by jobs and completes the task-type at the first station where a job is

present. After completing the task-type the worker returns to the most downstream

shared station and repeats the process.

Theorem 2.4.3. Consider worker i, i ∈ {2, 3, 4}. When no jobs are waiting at the

worker’s downstream shared station, the job completion process is maximized along

every sample path by a policy that (i) does not idle worker i when fixed task-types

are present, and (ii) follows the LBFS rule among the worker’s set of task-types.

Proof. See Appendix 2.8.1.2.

The above result reveals the effectiveness of the LBFS rule for a given worker’s

zone following our heuristic policies. Intuition indicates that to maximize throughput

within the line, priority should be given to jobs that are closer to finished goods

(downstream) than raw materials (upstream). The result confirms the intuition.
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However, with our FTZC, a worker has both fixed task-type stations and shared

task-type stations. To find the best policy, we analyzed policies that either prioritize

jobs independent of the station type or policies that prioritize jobs dependent on the

station type. The following Theorem helps to address this issue.

Theorem 2.4.4. A policy that follows the LBFS rule maximizes the job completion

process along every sample path within the class of policies that give priority to each

worker’s fixed task-types versus its shared tasks.

Proof. See Appendix 2.8.1.3.

Having shown that workers maximize FTZC throughput when they follow the

LBFS rule; it is important to observe that this rule is easy to implement.

Now we consider situations where two workers are competing for one task-type

at shared station S, at time t, because only one job is available in their neighboring

zones (but other jobs are present in other zones). Let {US , DS} denote the upstream

and downstream workers, respectively. We determine that the optimal policy gives

preference to the downstream worker.

Theorem 2.4.5. The downstream worker, DS , is preferred when two workers are com-

peting for a single task-type available to both of them.

Proof. See Appendix 2.8.1.4.

2.4.3 Critical WIP

As defined by Hopp and Spearman [52], the critical WIP level, ω0, is defined as

the WIP level at which a line without congestion achieves maximum throughput with

minimum cycle time. Critical WIP is useful as a way of quantifying how lean a system

is operating via the ratio of WIP to ω0.
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Theorem 2.4.6. In the FTZC structure, assuming equal and deterministic processing

times at each station and a symmetric structure of skill chaining, the critical WIP is

equal to the number of zones, ω0 = Z.

Proof. See Appendix 2.8.1.5

The critical WIP value for the FTZC structure of Figure 2 (right) is four (as that

is the number of zones). In practice, however, (and in our analysis of the FTZC) the

line is not deterministic; it does experience congestion, and thus higher multiples of

critical WIP must be explored.

2.5 Design of Heuristic Policies for FTZC

To determine a heuristic that can be a recommended policy for the FTZC struc-

ture, we developed and compared many policies via simulation, and we present the

best (or most instructive) ones here. Determining a high-performance policy is nec-

essary to determine the efficiency and robustness of the FTZC structure, in addition

to providing a policy for practice.

2.5.1 Fixed First Max Shared (FFMS)

We now develop a novel policy, that combines four ideas, termed Fixed First Max

Shared (FFMS), which to our knowledge has not been suggested before. First, it gives

preference to the worker’s fixed stations before the shared stations. In other words,

the worker will only complete a job at shared stations if no jobs need to be completed

at either fixed station. The phenomenon is called fixed first. Second, within the

fixed stations, the LBFS rule is applied such that the downstream fixed station is

preferred to the upstream fixed station. Third, if no jobs are available at the fixed

stations, the worker applies a maximum queue policy at the shared stations. This

19



phenomenon is called max shared. Fourth, if two workers of the same shared station

are simultaneously available, preference is given to the most downstream worker.

The FFMS policy is effective in part because it is easy to implement; alhtough it

must also perform well to be useful. The basis for the FFMS policy came from the

following insights derived from our analytical results of Section 4.

Insight 2.5.1. A preference for fixed task-types will help to minimize worker starva-

tion.

As previously stated, one of the goals of the FTZC structure is to maximize

throughput and increase flexibility so that it will provide high throughput with low

WIP and a small investment in cross-training and staffing (i.e., run lean) under as

wide a range of operating conditions as possible. Throughput loss arises from worker

starvation. Downstream workers will be starved when there are upstream bottlenecks

(or long service time realizations) at fixed task-type stations, because these are the

stations where the system has no flexibility. In their study of zoned cross-training,

Koole and Righter [61], focused on systems with no shared tasks and showed that

the LBFS policy is optimal in many cases. Thus, their work and our Theorem 2.4.4

supports the implementation of an LBFS rule among the fixed task-type stations so

as to maximize the job completion process for the line.

Insight 2.5.2. Throughput is enhanced at a shared station when the downstream

worker of the shared station pulls work, as opposed to the upstream worker of the

same shared station pushing work.

Once a job is completed at a shared station it proceeds downstream through two

fixed task-type stations to the next shared station unless the job is at station twelve,

where it will immediately proceed to finished goods inventory. Given this, Theorem

2.4.5 supports our understanding that throughput is maximized when preference is

given to the downstream worker of a shared station. We believe this insight has

greater impact in open models, especially in light traffic, than is demonstrated in this
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CONWIP model.

2.5.2 Fixed First Threshold Shared (FFTS)

We now build upon the FFMS policy to develop a more analytically-based heuris-

tic, termed the Fixed First Threshold Shared (FFTS) policy. The FFTS policy is

similar to FFMS in that FFTS gives preference to fixed stations over shared stations,

and, within the fixed stations, FFTS applies the LBFS rule. However, the priority of

the two shared stations attended by a worker is determined by comparing two thresh-

old indices, each of which is computed from the observed queue length, Qn(t). The

threshold index for each station incorporates queue length indicators such as optimal

worker service time and average WIP level at that station. To describe the threshold

index we define the following:

• {i′, i′⊕ 3} - the set of shared stations for any worker j where i′ is the upstream

shared station of worker j and i′ ⊕ 3 is the downstream shared station

• Qij - the observed queue length of worker j’s station i

• yij - the proportion of time worker j should spend at station i. In addition to

the notation of Section 2.4, we define the following:

– Θ: line throughput

– Tj: skill set worker j is trained for

– Wi: set of workers trained for shared station i

– Ij: total idle time of worker j

To avoid the problem of infinitely many solutions that are generated by the

linear program at the heart of this procedure, we implement the following
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quadratic program with “throughput penalty” α and “sharing freedom restric-

tion” β (where α is a small positive number and β is slightly larger than 1):

max Θ− α
∑
j∈W

(yi′j − yi′
⊕

3j)
2 (2.5.1)

s.t.

(Fixed Stations) Θ ≤ yij

Ti

≤ βΘ ∀ j ∈ W , i ∈ Fj (2.5.2)

(Shared Stations) Θ ≤
∑
j∈Wi

yij

Ti

≤ βΘ ∀ i ∈ Sj (2.5.3)

(Idle Times) Ij +
∑
i∈Tj

yij = 1 j ∈ W (2.5.4)

Θ ≥ 0, yij ≥ 0, Ij ≥ 0.

This quadratic program approximates the optimal proportion of time a worker

should spend at each station within the zone. The objective function (2.5.1),

seeks to maximize throughput; however, to ensure the uniqueness of the solu-

tions, the function includes a small throughput penalty, α = .001, to slightly

penalize throughput if the allocations of workers attending a shared station

differ. This penalty drives the workers’ effort allocation at the shared stations

to be as close to equal as possible, thus yielding unique solutions that are in-

tuitively desirable and perform well. The linear program at its heart can be

seen by setting α = 0 and removing the ≤ βΘ constraints in (5.2) and (5.3).

The fixed and shared station constraints, (2.5.2) and (2.5.3) respectively, are

bounded below by the near-optimal throughput and bounded above by a 102%

freedom restriction, β. The ≤ βΘ constraint shifts a worker’s excess capacity

into the idle time decision variables to provide a clear and near-optimal picture

of the worker’s utilization. This shift occurs because the idle time constraint

introduced in equation 2.5.4 allows yij to approximate the minimal fraction of
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time that worker j should spend on station i, so that these quantities can be

used in our FFTS heuristic.

To derive the average WIP level, we introduce a new model called the Classic

CONWIP Approximation (CCA) to serve as a lower bound on the performance

to be expected of the FTZC paradigm. We first consider the serial line of our

base model with 12 stations each with unique exponential processing times.

However, instead of 4 workers with zones, our classic CONWIP approximation

has 12 dedicated workers, 1 worker per station, where each worker only attends

one station. Thus, it is a standard CONWIP model. In Section 2.6 we will

discuss the performance of this system as it relates to our FTZC structure, but

here we need only solve for Vij(k) to be used in the FFTS heuristic. That is,

let Vij(k) denote the average WIP level at worker j’s station i for a given WIP

level k. We apply the mean value analysis algorithm of Hopp and Spearman

[52]. See Appendix 2.8.2.1 for specific details on the algorithm. We are now

ready to fully define that FFTS policy introduced above.

Lemma 2.5.3. For the FFTS policy, between worker j’s two shared stations, priority

is given to the downstream station, (i′
⊕

3), if

( Q(i′
⊕

3)j

V(i′
⊕

3)j(k)

)
y(i′

⊕
3)j ≥

( Qi′j

Vi′j(k)

)
yi′j ∀ j ∈ W , (2.5.5)

otherwise, priority is given to the upstream station.

The ratio of Qij to Vij(k) in (2.5.5) scales the queue lengths of a worker’s shared

stations to account for the fact that asymmetrical lines will have the average station

WIP level vary by station. To incorporate an estimate of the effort to be applied at

each station, the yij terms further scale the ratios for an apples-to-apples comparison.

We expect that the FFTS policy will outperform the other policies in our set, given
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the increased information that the threshold index provides the FFTS policy to help

the worker make a “better” decision when choosing between the shared stations. To

check this hypothesis, we next define our method of investigation and then provide

the heuristic policy benchmarking results.

2.5.3 Method of Investigation

To compare the set of policies, we developed a discrete event simulation in C++

code. We analyzed system throughput for various mean process times configurations

and eight CONWIP levels. Each test case utilized 50 simulation replications initial-

ized with an empty line; included a warm-up period of 3,000 jobs; and stopped after

8,000 jobs of finished goods inventory had exited the line. To reduce the variance

in estimating the performance differences across policies we employed the technique

known as “common random numbers” (see Law and Kelton [62]).

2.5.3.1 Heuristic Policies

In addition to FFMS and FFTS, we report on three additional policies for priori-

tizing jobs from the literature on serial production lines: Random, Last Buffer First

Served, and Maximum Queue (also known as Longest Queue).

• Random (RND) - This policy allows each worker to choose, at random but with

equal probability, any station with an unfinished job. The queue lengths of the

stations are not compared and preference is not given to any particular station.

This policy in no way exploits the structure of the FTZC paradigm; thus, it can

be considered as a lower bound upon which a good heuristic should improve.

• Last Buffer First Served (LBFS) - As stated in definition 2.4.2, the order in

which a worker schedules jobs in his/her zone is: 1) check for an available job

at the downstream shared station; 2) then check upstream stations in reverse
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order and select the first nonempty station. This policy is derived from the

craft mode of production termed “Pick and Run” in Van Oyen, et al. 2001 [89].

• Maximum Queue (MaxQ) - This policy assigns worker w to station n such that

n = max
n∈{Fw∪Sw:Qn(t)>0}

Qn(t),

where Qn(t) is the observed queue length at workstation n at time t.

2.5.3.2 Test Suite

To compare the FTZC heuristic policies we study a wide variety of problem in-

stances and check for robustness, by developing a test suite of 768 unique problem

instances each having a unique mean processing time vector.

In each of the 768 problem instances the location, frequency, and magnitude of the

bottleneck(s) are varied. The test suite is based on two multipliers, an across primary

zone (APZ) multiplier and a within primary zone (WPZ) multiplier. To construct

each instance, we begin with the standard, uniform line, all mean processing times for

each of the 12 stations are 1
3
. Then, each station’s mean processing time is multiplied

by both the APZ and WPZ multipliers of Tables 2.2 and 2.3. These multipliers are

carefully chosen to ensure that although the means per station vary, the total raw

processing time of the line stays equal to the number of workers, thus providing a

maximum possible throughput of 1 in every instance.

APZ PZ1 PZ2 PZ3 PZ4
A 1 1 1 1
B 1.42 0.86 0.86 0.86
C 1.42 0.58 1.42 0.58

Table 2.2: Across Primary Zone (APZ) Multipliers

Each problem in the test suite is denoted by a five character code (e.g. B2134 )

that identifies the multipliers used to create that problem instance. The first character

25



WPZ U. Fixed D. Fixed D. Shared
1 1 0.9 1.1
2 1 1 1
3 1.1 0.9 1
4 1 1.1 0.9

Table 2.3: Within Primary Zone (WPZ) Multipliers

- either A, B, or C - represents the APZ multiplier used for that problem instance.

For example, the problem instance B2134, the “B” APZ multiplier is used. The APZ

multipliers alter the line processing times across the primary zones (PZ1 − PZ4).

Specifically, the A group of APZ multipliers serves as the standard line, the B group

has one bottleneck in Z1, and the C group has two bottlenecks in Z1 and Z3 with

two fast zones in Z2 and Z4. As shown in Table 2.2, the multipliers corresponding

to a given letter (A, B, or C) apply to each station within a primary zone.

The second through fifth characters of the code are the WPZ cases ranging from 1

to 4. (These identifiers generate the 768 codes in the test suite that range sequentially

from A1111 to C4444 ). Each of the four numbers in the code, reading from left to

right, represents the multiplier for the stations within that primary zones (see Figure

2.3). That is to say, the first number (second character in the code, which is a 2

in our B2134 example) corresponds to PZ1, the second number (third character)

corresponds to PZ2, and so forth. See Appendix 2.8.3.1 for a detailed example of how

the multipliers are used.

Primary zone j consists of worker j′s upstream fixed station (U. Fixed), down-

stream fixed station (D. Fixed), and downstream shared station (D. Shared).

We test each problem instance for eight CONWIP levels of {4, 6, 8, 10, 12, 24, 36, 48}.

These CONWIP levels were chosen because they range from ω0 to 12ω0 and represent

a realistic and instructive range to study for our system with a critical WIP, ω0 = 4.

The performance for the extremely low CONWIP levels of 4 and 6 reveal the variabil-

ity buffering power of the FTZC. We also identify the asymptotic behavior for high
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levels, 36 and 48. Between these extremes, we are most interested in the “practical”

CONWIP levels of 2ω0 to 6ω0.

2.5.4 Comparison of Policies

Given the sophistication of the FFTS policy, and the amount of effort required

to develop it, we expected it to perform the best; however, after comparing the

performance of the heuristics in our FTZC policy set across our test suite, we were

pleasantly surprised by what we learned.

Observation 1. The FFMS policy is the best policy of our policy set; i.e., it results

in the highest average throughput across the entire test suite, it achieves the highest

throughput for each tested CONWIP level.

CONWIP LEVEL: 4 6 8 10 12 24 36 48
Random 67.3% 76.5% 80.8% 83.3% 84.9% 88.4% 89.4% 89.8%
LBFS 71.6% 80.4% 83.2% 84.4% 85.0% 86.5% 86.9% 87.1%
MaxQueue 70.6% 79.8% 84.8% 87.4% 89.4% 94.6% 96.5% 97.5%
FFTS 72.0% 83.3% 88.6% 91.6% 93.5% 97.5% 98.5% 99.0%
FFMS 72.0% 84.3% 90.1% 93.1% 94.9% 98.2% 98.9% 99.3%

Average Throughput By CONWIP Level Across Entire Test Suite
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Figure 2.4: FTZC Heuristic Policy Performance for Entire Test Suite
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Figure 2.4 shows that when throughput is averaged across the test suite for each

policy, the FFMS consistently provides the highest throughput, particularly for “prac-

tical” CONWIP levels of 2ω0 to 6ω0. We call this excellent performance of FFMS a

pleasant surprise because having a policy that is both simple to implement and highly

effective makes it very powerful. As expected, the random and max queue policies

provided significantly lower throughput.

For extreme cases of high and low WIP levels, some policies perform as good

or better than the FFMS policy. For example, the LBFS policy, for some problem

instances, outperforms the FFMS at a CONWIP level equal to the critical WIP value.

Intuitively, with a low WIP level, the throughput is low and the CONWIP system

becomes closer to an open problem instance, for which LBFS is optimal for all but

worker 1. Given that these alternative policies sometimes outperform FFMS, we

also studied policy performance at a micro level rather than only at a grand average

over the entire suite. Specifically, we divide the whole suite (768 problem instances)

into three “sub-suites” of equal size (256 problem instances), denoted by the APZ

multiplier groups (A, B, or C). We then develop and apply a system classification

metric, Degree Of Imbalance, to study how the FFMS policy performs under specific

conditions of work content imbalance that would make it relatively easy or difficult

for the FTZC structure.

2.5.4.1 Degree of Imbalance

To gain deeper insight into the effectiveness of the FTZC and also the other

zone chain structures of Section 2.6, we develop an index called degree of imbal-

ance(DOI(m)), that denotes the magnitude of imbalance in a given problem instance,

m ∈ {1...768}. We do not want the DOI(m) metric to be tuned specifically to our

test suite. Rather, in the interest of generality, we define an intuitively justified metric

and show that it is useful for our test suite.
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We calculate our DOI(m) index for each problem instance as the sum of two

components: (1) the degree of imbalance across the primary zone (DOIAPZ(m))

and (2) within the primary zone (DOIWPZ(m)). For example, each multiplier in

Table 2.2 corresponds to a specific group, x ∈ {A, B, C}, and a specific primary zone,

z ∈ {1, 2, 3, 4}. To calculate DOIAPZ(m), we compute the sample standard deviation,

σx(m), of the four APZ multipliers that correspond to problem instance m.

DOIAPZ(m) = σx(m) ∀ m ∈ {1...768}. (2.5.6)

To calculate DOIWPZ(m) we first compute the standard deviation, σT
z (m), of the

processing times for each of the four zones, z, within a particular problem instance,

m. We then find the mean, µT
z (m), for the same set of processing times. Then we

can define,

DOIWPZ(m) =
4∑

z=1

(σT
z (m)

µT
z (m)

)
∀ m ∈ {1...768}. (2.5.7)

Thus the degree of imbalance index is given by,

DOI(m) = DOIAPZ(m) + DOIWPZ(m). (2.5.8)

A higher DOI index corresponds to greater system imbalance, which we expect will

result in lower throughput. (The DOI index is 0 for the standard problem instance

(A2222) in our test suite, which is the problem instance where all station processing

times are identical, a perfectly balanced line.) Dividing the test suite into three

smaller suites, groups x ∈ {A, B, C}, results in the following average DOI for the

set of problem instances in the sub-suites shown in Table 2.4. Because the FTZC

structure is parsimonious in its use of cross-training, it is interesting to investigate

how it performs as a function of line imbalance and the sensitivity of FFMS. Due to
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Sub-suite Average DOI
A .300
B .580
C .785

Table 2.4: Average DOI for Test Sub-Suites

the fact that the test suite is formed from the product of APZ and WPZ factors, it

is useful to analyze the operating environments of low (suite A), moderate (suite B),

and high (suite C) line imbalance in Figures 2.5, 2.6, and 2.7, respectively.

CONWIP LEVEL: 4 6 8 10 12 24 36 48
Random 69.7% 80.3% 85.4% 88.4% 90.4% 95.4% 97.0% 97.8%
LBFS 74.3% 85.9% 90.6% 93.0% 94.4% 97.5% 98.4% 98.8%
MaxQueue 73.4% 84.6% 90.1% 92.9% 94.6% 98.7% 99.7% 99.9%
FFTS 74.0% 86.3% 91.9% 95.0% 96.9% 99.7% 99.9% 100.0%
FFMS 74.0% 87.3% 93.6% 96.5% 98.1% 99.9% 100.0% 100.0%

Average Throughput By CONWIP Level Across "A" Suite where Average DOI = .300
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Figure 2.5: FTZC Heuristic Policy Performance under Low Line Imbalance (A Suite)

In Figure 2.5 (and the figures to follow) the bolded throughput values in the table

below the graph represent the best performing policy for that CONWIP level. Under

low line imbalance, LBFS at a CONWIP level of 4 performs the best by .3%, and

FFTS and FFMS at CONWIP levels of 24 or higher perform about the same. Overall,
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however, FFMS still performs the best in this environment, particularly across the

“practical” CONWIP levels. For both suite B (see Figure 2.6) and suite C (see Figure

CONWIP LEVEL: 4 6 8 10 12 24 36 48
Random 67.4% 76.0% 79.8% 81.8% 82.9% 84.5% 84.8% 84.8%
LBFS 71.5% 78.7% 79.9% 80.0% 80.0% 80.0% 80.0% 80.0%
MaxQueue 70.5% 79.1% 83.6% 85.8% 87.8% 93.2% 95.3% 96.5%
FFTS 72.0% 83.0% 88.2% 91.0% 92.8% 97.0% 98.2% 98.7%
FFMS 72.1% 83.9% 89.3% 92.1% 93.8% 97.4% 98.4% 98.8%

Average Throughput By CONWIP Level Across "B" Suite where Average DOI = .580
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Figure 2.6: FTZC Heuristic Policy Performance under Moderate Line Imbalance (B
Suite)

2.7) the FFMS policy dominates as well; therefore, we observe the following

Observation 2. In operating environments of low, moderate or high DOI line imbal-

ance, the FFMS policy is the best policy of our policy set.

In general, at low DOI values, which represent relatively stable lines, other policies

may be as good or a little better than FFMS; however, FFMS is the most effective

policy over a wide range of operating conditions. The effectiveness of the FFMS

policy is further confirmed in Figure 2.8, which shows the percent of cases where the

FFMS policy is the best. In the entire test suite, in all 768 problem instances tested

for the “practical” CONWIP levels of {6, 8, 10, 12, 24}, FFMS performed the best in
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CONWIP LEVEL: 4 6 8 10 12 24 36 48
Random 64.9% 73.2% 77.4% 79.9% 81.5% 85.3% 86.3% 86.8%
LBFS 69.1% 76.6% 79.0% 80.0% 80.6% 81.9% 82.3% 82.4%
MaxQueue 67.8% 75.9% 80.7% 83.5% 85.7% 91.8% 94.5% 96.0%
FFTS 70.0% 80.5% 85.7% 88.8% 90.9% 95.9% 97.5% 98.2%
FFMS 70.1% 81.7% 87.5% 90.7% 92.8% 97.3% 98.5% 99.0%

Average Throughput By CONWIP Level Across "C" Suite where Average DOI = .785
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Figure 2.7: FTZC Heuristic Policy Performance under High Line Imbalance (C Suite)

our policy set. Given the magnitude of the FFMS policy superiority, we can make

the following observation.

Observation 3. For “practical CONWIP levels” of 2ω0 to 6ω0 in our FTZC structure,

the FFMS policy is superior for our policy set.

It is reassuring, to confirm that the FFMS policy dominates despite the consider-

ably more sophisticated analysis needed to define its nearest competitor, the FFTS

policy. The FFMS is also a simple policy, which makes this a very significant finding:

a very simple and practical policy dominates the best alternatives we have been able

to devise. Since the FFMS policy is the best policy for our FTZC structure next we

examine the resulting performance of FTZC as a structure.
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4 6 8 10 12 24 36 48
Random 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LBFS 33.33% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MaxQueue 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.17%
FFTS 10.42% 0.00% 0.00% 0.00% 0.00% 0.00% 13.28% 19.27%
FFMS 56.25% 100.00% 100.00% 100.00% 100.00% 100.00% 86.72% 79.56%
Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Percent of Cases by CONWIP Level where the Policy  Has the Max Throughput
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Figure 2.8: Percent of Cases of Maximum Throughput by Policy

2.6 Analysis of Zone Chain Structures

To demonstrate the effectiveness of zone training as an inexpensive alternative to

full cross-training, we will test our FTZC structure, using the FFMS heuristic policy

against three benchmark structures.

2.6.1 Benchmark Structures

The three structures used to benchmark the performance of our FTZC struc-

ture are: Classic CONWIP Approximation, Full Cross Training, and Two-Skill Zone

Chain.

• Classic CONWIP Approximation (CCA) - This “classic” CONWIP model serves

as the lower bound performance benchmark (see Figure 2.9 for an illustration).

Its setup consists of one worker per station with no shared stations (i.e., no
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flexibility). The workers are identical and observe the standard FCFS service

discipline.

Raw  
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Figure 2.9: Classic CONWIP Model

• Full Cross-Training (Full XT) - This structure serves as the upper bound per-

formance benchmark. Applying this structure in our base model of 12 stations

and 4 standard workers each of the 4 workers is fully trained on all 12 stations.

Every worker follows a job from station 1 through to completion (a craft or

“pick and run” policy) to complete the job, then the worker returns to station

1 and repeats the process.

• Two-Skill Zone Chain (2SZC) - Following the spirit of the two-skill chain as

described by Hopp, Tekin, and Van Oyen [54], the 2SZC structure cross-trains

each of the four workers such that two workers cover each station in our model

(see Figure 2.10). The 2SZC becomes a zone chaining adaptation of the two-

skill chain model to a setting in which there are more stations than workers. All

workers use the “maximum queue policy”, which Hopp, Tekin, and Van Oyen
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[54] showed to be the best policy for the two-skill chain model. In this policy,

two adjacent workers share the work at each station, meaning that each of the

four workers is trained on six total stations so that a worker’s zone (skill-set) is

overlapped by both the adjacent worker upstream as well as downstream. These

overlapping zones offer the 2SZC structure extensive flexibility. Intuitively, this

structure serves as an upper bound benchmark for the FTZC; however, this

cannot be rigorously established, because the policies employed are not truly

optimal.

2SZC Structure
S1

Worker 1 Worker 2

Worker 4

Worker 3

S2 S3 S4 S5 S6

S7S8S9S10S11S12

Raw  
Materials

Finished
Goods
Inventory

Figure 2.10: Two-Skill Zone Chain Structure

For the above four structures, along with our FTZC structure, Table 2.5 shows

the relative skill requirements from full cross-training down to FTZC. It shows that

the FTZC structure reduces cross-trained skills 67% from the 2SZC. This reduction

in skills can result in significant labor training savings, provided the loss in efficiency

is acceptable to a firm.
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Total No. of Skills No. of Cross-Trained Skills
Full XT 48 36
2SZC 24 12
FTZC 16 4
CCA 12 0

Table 2.5: Cross-Training Skill Reduction

The 2SZC structure still requires a large total number of skills resulting in high

labor training costs relative to FTZC. Another downside of the 2SZC is that real

systems often have specialized task-types for which cross-training is impractical. In

contrast, the FTZC was designed to minimize costs and maximize throughput for a

wide range of applications.

To test for efficiency loss and compare these four structures - FullXT, 2SZC, FTZC,

and CCA - we continue to analyze throughput using the method of investigation

described in Section 2.5.3.

2.6.2 Structure Comparison Results

Using FFMS as the best policy for the FTZC structure, we compare the FTZC

structure with 1) full cross-training (FullXT), 2) 2-skill zone chaining (2SZC), and 3)

the new classic CONWIP approximation (CCA). The flexibility of the 2SZC structure

enables it to serve as a zone chaining upper bound on the FTZC, and the FTZC is not

expected to perform well below the 2SZC, given that the FTZC reduces the number

of skills cross-trained by 67%. We want to determine relative efficiency by using the

Percent of Throughput Loss (PTL or %TL) of performance measure. %TL(2SZC vs.

FTZC), represents the percent of throughput lost by implementing the FTZC instead

of the 2SZC.

We begin by averaging throughput, as a function of CONWIP level, over the entire

test suite and present the results in Figure 2.11. The classic CONWIP structure is

a conservative lower bound and its performance reveals the dramatic performance
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CONWIP LEVEL: 4 6 8 10 12 24 36 48
Full XT 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
2SZC(MaxQueue) 86.4% 96.0% 97.5% 97.8% 98.7% 99.9% 100.0% 100.0%
FTZC (FFMS) 72.0% 84.3% 90.1% 93.1% 94.9% 98.2% 98.9% 99.3%
Classic Conwip 26.2% 34.2% 40.4% 45.2% 49.1% 61.4% 66.2% 68.6%
%TL(2SZC vs. FTZC) 16.6% 12.2% 7.6% 4.8% 3.8% 1.8% 1.1% 0.7%

Average Throughput By CONWIP Level Across Entire Test Suite
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Figure 2.11: Structure Performance Comparison - Entire Suite

benefit that results from the flexibility of the FTZC. FTZC rapidly approaches the

system capacity for WIP levels above 8. We interpret the results as strong evidence

that when operated under the FFMS policy, the FTZC structure is a very effective

paradigm. Because the (1) FTZC requires only four cross-trained skills, instead of

12 (2SZC) and 36 (FullXT) and (2) 50% of the FTZC’s available skills are dedicated

to fixed task-types, the evidence strongly supports the claim that FTZC is a “high

value” paradigm: good performance at low cost.

Observation 4. Across the entire test suite, for CONWIP levels of 10 or greater,

the FTZC averages at least 95% of the throughput of the 2SZC. For the “practical”

CONWIP levels of 2ω0 to 6ω0 the average %TL(2SZC vs. FTZC) is 4.5% .

To further study the effect of line imbalance on the FTZC, we again examine the
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A, B, C sub-suites. Table 2.6 shows the adverse effect of line imbalance on the %TL.

CONWIP Level: 4 6 8 10 12 24 36 48
Entire Suite 16.6% 12.2% 7.6% 4.8% 3.8% 1.8% 1.1% 0.7%

A Suite 14.9% 10.0% 4.9% 2.2% 1.3% 0.1% 0.0% 0.0%
B Suite 16.5% 12.3% 8.3% 5.9% 5.0% 2.6% 1.6% 1.2%
C Suite 18.4% 14.3% 9.6% 6.4% 5.2% 2.6% 1.5% 1.0%

Table 2.6: %TL(2SZC vs. FTZC) By CONWIP Level

Table 2.6 shows that the %TL(2SZC vs. FTZC) generally increases as the DOI

increases (from A suite to C suite) with minor anomalies at very high WIP. Low

CONWIP levels allows the 2SZC to benefit from its flexibility advantage over the

FTZC, as can be seen in Figure 2.12 for the C suite. The graphs for the A suite and

B suite have been omitted to avoid redundancy with Figure 2.12 (see Appendix 2.8.4

for the details).

The FTZC structure, even when demonstrating double-digit throughput loss ver-

sus 2SZC, is still quite flexible. The above information, particularly Table 2.6, shows

that throughput, CONWIP level and DOI for the FTZC performance interact. As our

DOI index increases, so does %TL, which is intuitive as increased variability (in the

sense of imbalance here) typically degrades performance. Table 2.6 shows that high

imbalance exaggerates this relative dominance at low WIP levels, especially in the

practical WIP range of 2ω0 to 6ω0. Similarly, WIP is a form of buffering of variability

and as CONWIP level increases, %TL decreases as shown in Figure 2.13.

While it is impossible to set a universally acceptable or unacceptable level of

throughput loss we conservatively select 5% throughput loss as a target and use

Figure 2.13 to make the following assertion:

Observation 5. The FTZC structure operated under the FFMS policy incurs a through-

put loss of at most 5% when the CONWIP levels are at least approximately: (1) 2ω0

for the low line imbalance (A Suite); (2) 3ω0 for moderate line imbalance (B Suite);

and (3) 6ω0 for high line imbalance (C Suite).
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CONWIP LEVEL: 4 6 8 10 12 24 36 48
Full XT 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
2SZC(MaxQueue) 85.9% 95.4% 96.8% 96.9% 97.9% 99.9% 100.0% 100.0%
FTZC (FFMS) 70.1% 81.7% 87.5% 90.7% 92.8% 97.3% 98.5% 99.0%
Classic Conwip 25.6% 33.1% 38.6% 42.8% 46.1% 56.1% 59.8% 61.6%
%TL(2SZC vs. FTZC) 18.4% 14.3% 9.6% 6.4% 5.2% 2.6% 1.5% 1.0%

Average Throughput By CONWIP Level Across "C" Suite where Average DOI = .785
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Figure 2.12: Performance Comparison across Paradigms - C Suite

Observation 5 helps clarify the robustness of the FTZC structure in various oper-

ating environments. Further, Figure 2.13 revealed that for CONWIP levels of 2.5ω0

or higher, the FTZC can maintain an average of at least 95% of the efficiency of the

2SZC. Because Observation 5 shows that only a WIP level of 2ω0 or more is required

for 95% efficiency, we see that FTZC is very effective with low imbalance such as

Sub-suite A, with an average DOI of 0.3. Figure 2.13 does also show that the WIP

level drives efficiency more than the DOI; however, to keep cycle times short, low

WIP is needed. Thus, the DOI can be used as a metric to support line-balancing

effort in implementation to achieve a target performance.
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Average Percent Throughput Loss with FTZC (FFMS) vs. 2SZC(MaxQueue)
 as a function of DOI for each CONWIP Level
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Figure 2.13: Average %TL as a function of DOI for each CONWIP level

2.7 Conclusions & Future Work

In conclusion, this paper identified a low cost, easily implementable labor cross-

training structure for serial CONWIP lines that uses a little flexibility to great effect:

Fixed Task Zone Chaining (FTZC). The FTZC structure needs only four cross-trained

skills, for example, in a line of 12 stations and 4 workers. Zone chaining is used as

the underlying structure from which FTZC is derived benefitting from past research

that has shown the broad effectiveness of two-skill chains as well as the practicality

of zoned structures of cross-training. In addition we also developed a zone-chaining

version of the two-skill chain, themed the 2-Skill Zone Chain (2SZC), as an even

more flexible chaining based paradigm at the cost of additional cross-training. As

shown in this paper, the superiority of the FFMS policy for our FTZC structure is
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important because the FFMS policy is easy to implement and it is superior to even

the best complex alternative we could devise- FFTS policy. With the FFMS policy,

the FTZC achieved on average only 5% throughput loss when compared with the

2SZC for CONWIP levels between 2 times and 6 times “critical WIP”. For most

systems, 5% throughput loss is worth it to achieve the reduced skill cross-training

required and the benefit that 2
3

of the tasks need not be cross trained at all.

Insight into the effectiveness and appropriate application of the FTZC paradigm

and the FFMS policy was gained via (1) stability analysis (Section 2.4.1), (2) devel-

opment of a Degree of Imbalance (DOI) line metric, and its use in benchmarking,

and (3) analytical structural results of optimal policies in Section 2.4.2. These results

demonstrate the broad effectiveness of zone training when integrated with skill chain-

ing and provide insight into the value of implementing a FTZC as an inexpensive

cross-training alternative. Looking towards the future, one could extend this work

by investigating optimal zone designs. Further work could consider how throughput

can be increased even more if the overlap of the zones is constructed optimally (as

opposed to all zones being the same size). This would yield a manager’s decision

support tool to identify the best policy to implement with their line, and the best

zone design.
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2.8 Appendix

2.8.1 Proofs of Section 2.4 Theorems

2.8.1.1 Proof of Theorem 2.4.1

The minimum value of D needed to balance the FTZC with standard workers is D

= ∆+1 where

∆ = max
i,j

δij

and

δij = min
δ=0,1,2,3

{
δ :

i⊕(j−1)∑
n=i

(λ̂T3n − Cs
n⊕1)−

i	1∑
n=i	δ

Cs
n⊕1 ≤ 0

}

Proof. In the FTZC model, each worker has the same number of fixed task-types

and the workers are identical standard workers, which results in a symmetrical cross-

training structure. Given this symmetrical cross-training, we can define each worker’s

residual flex capacity for shared task-types as

Cs
k = (Ck − λ̂

∑
i∈Fk

Ti) ∀ k ∈ W . (2.8.1)

For each worker we subtract the capacity required for that worker to perform fixed

task-types from the worker’s total capacity to determine the set of effective shared

task-type capacities for the workers. We then observe that without fixed task-types,

the workers are no longer identical, standard workers but rather workers who vary

in speed, because they now have different capacities. Without the fixed task of the

FTZC model, the problem is reduced to a skill chain as defined by Hopp, Tekin, and

Van Oyen [54] because the fixed tasks (to which workers are dedicated) are completely

eliminated by the computation in Eqn. 2.8.1 of the residual flex capacity. We then

can directly follow the proof of their Theorem 2 with Cs
k from equation 2.8.1 serving
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as the worker speed factors, denoted by v in that paper, and N = 4. This reduction

of our FTZC and the loss of standardized workers is possible because fixed task-types

are unique to each worker (i.e. they are not shared).

2.8.1.2 Proof of Theorem 2.4.3

Consider worker i, i ∈ {2, 3, 4}. When no jobs are waiting at the worker’s down-

stream shared station, the job completion process is maximized along every sample

path by a policy that (i) does not idle worker i when fixed task-types are present, and

(ii) follows the LBFS rule among the worker’s set of task-types.

Proof. We prove part (ii) first. Let τ be a time instant when worker i becomes

available with at least two stations in her zone having waiting jobs, and k be the

most downstream such non-empty station. For any policy π that assigns worker i in

some other station l, where l < k, we construct an alternative policy π̃ that assigns

worker i in station k and is such that

Dπ̃
t (ω) = Dπ

t (ω)

along every sample path ω, which proves the statement of the Theorem.

Because service times are task-type and worker dependent, sample path ω is de-

fined by sequences Sw
j (L, ω), L = 1, 2, ..., where Sw

j (L, ω) is the time duration of

the L − th service performed by worker w in station j. We construct policy π̃ to

be identical to π except that at time τ worker i is assigned in station k and then

follows the sequence of actions taken under π after time τ ; the first action in that

sequence is a service in station l, and the rest (that may include idle periods) are

determined from the realization of the arrival and service processes. Policy π̃ is well

defined as it can always mimic π with respect to actions taken by workers other than

i because at any time all stations where these workers can be assigned (the ones not
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fixed to worker i) have at least as many jobs under π̃ as under π. The two policies are

coupled at the time of the first service completion under π in station k. Time periods

[τ + Si
l (1, ω), τc(ω) − Si

k(1, ω)] under π and [τ + Si
k(1, ω) + Si

l (1, ω), τc(ω)] under π̃

include the same sequence of actions by worker i. Comparing the two policies, we see

that we have the same number of job completions.

The proof of part (i) is based on a similar construction of the alternative policy

π̃. After the service completion in station k worker i idles for the same amount of

time she would have idled under π , say I(ω), which can be calculated by observing

the sample path realization. Then she replicates her actions under π until the two

policies are coupled the first time she completes a service in station k. The evolution

of policies π and π̃ along some sample path ω is depicted in Figure 2.14, where I(ω)

plays the role of Si
l (1, ω).
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Figure 2.14: Worker Actions Under Policies π and π̃ for part (i)

2.8.1.3 Proof of Theorem 2.4.4

A policy that follows the LBFS rule maximizes the job completion process along

every sample path within the class of policies that give priority to each worker’s fixed

task-types versus its shared tasks.

Proof. Follows directly by the exchange argument used in the proof of Theorem

2.4.3.
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2.8.1.4 Proof of Theorem 2.4.5

The downstream worker, DS , is preferred when two workers are competing for a

single task-type available to both of them.

Proof. Let π be a policy that assigns US to S. We define an alternative policy π̃

that assigns DS to S, keeps US idle until job S is served at the shared task-type, and

is identical to π afterwards. Because the two workers have equal speeds, the service

time of task-type S is equal under policies π and π̃ along any sample path. Along any

sample path it is not possible for π to assign DS to some task-type during the service

of S. First, no job can arrive at station S from upstream because US is busy at S,

and second, no jobs can become available for DS downstream of S because DS has

only one shared station with his downstream neighbor (this station is either empty or

occupied by that other worker). The two policies are coupled at the time of service

completion at S implying that they have the same performance. This shows that we

can give the single job to DS and not lose anything.

2.8.1.5 Proof of Theorem 2.4.6

In the FTZC structure, assuming equal and deterministic processing times at each

station and a symmetric structure of skill chaining, the critical WIP is equal to the

number of zones, ω0 = Z.

Proof. Our FTZC includes N stations and W workers where all workers have two

shared task-types, and an LBFS policy is followed at every queue in the zone. Given

that each worker is attending a task-type with the same probability, each worker

covers N
Z

stations. This station allocation yields a total work content of (N
Z

)(T0

N
) = T0

Z

for every worker. We have the ideal (no congestion) scenario because each station

has a deterministic process time of (T0

N
). There is no wait, so the cycle time is T0;
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further each worker achieves a throughput of rb = Z
T0

. By Little’s law, the critical

WIP, ω0 = rbT0 = ( Z
T0

)T0 = Z.

2.8.2 Classic CONWIP Approximation

2.8.2.1 Mean Value Analysis Algorithm

For our classic CONWIP approximation the mean value analysis algorithm cal-

culates three performance measures given WIP level k and station i: (1) the cycle

time (CTi(k)), (2) the throughput (Θ(k)), (3) and the per station i WIP level (Vij(k)).

The algorithm is initialized by setting Vij(0) = 0 and Θ(0) = 0. Then, in an it-

erative fashion, the following equations are applied, as described in detail in Hopp

and Spearman [52], for every desired WIP level:

CTi(k) = [1 + Vij(k − 1)]Ti

CT (k) =
∑
i∈N

CTi(k)

Θ(k) =
k

CT (k)

Vij(k) = Θ(k)CTi(k).

The Vij(k) are derived iteratively as a function of the above recursion. This

algorithm is exact in the case of exponential process times. Moreover, the reliability

of this algorithm has been demonstrated in Buzacott and Shanthikumar [23], which

tested these equations against simulation results for an extensive suite of their model

parameters and found this approximation to be accurate for lines with a squared

coefficient of variation on all process times between 0.5 and 2.0.
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2.8.3 Test Suite

2.8.3.1 Example of Test Code B4321 Mean Process Times Calculations

The following is a step-by-step example of how the mean processing times are

calculated for the B4321 problem instance in our test suite. Recall the multipliers:

APZ Z1 Z2 Z3 Z4

A 1 1 1 1

B 1.42 0.86 0.86 0.86

C 1.42 0.56 1.42 0.56

WPZ D. Fixed U. Fixed D. Shared

1 1 0.9 1.1

2 1 1 1

3 1.1 0.9 1

4 1 1.1 0.9

First, we begin with a standard line where all of the station processing times are

the same and assumed to be equal 1
3

unit of time. This is done because there are

three stations for every zone, and every zone has one standard worker who has one

unit of time to complete the work in his/her zone.

Then we apply the APZ multiplier for each station of a zone. For this example,

we choose the B Sub-suite multiplier. For each balanced station processing time of

.333 we multiply by 1.42 for each station in Z1, 0.86 for each station in Z2, 0.86 for

each station in Z3, and 0.86 for each station in Z4. The new process time results

become:

Zone 1 Zone 2

Station 1 2 3 4 5 6

Proc. Time*APZ .333*1.42 .333*1.42 .333*1.42 .333*0.86 .333*0.86 .333*0.86

New Proc. Time .473 .473 .473 .286 .286 .286

47



Zone 3 Zone 4

Station 7 8 9 10 11 12

Proc. Time*APZ .333*0.86 .333*0.86 .333*0.86 .333*0.86 .333*0.86 .333*0.86

New Proc. Time .286 .286 .286 .286 .286 .286

The test case B4321 must be scaled by the WPZ multipliers, 4,3,2, and 1 in that

order for the 4 primary zones. Z1 is assigned the type 4 WPZ multipliers, Z2 is

assigned the type 3 WPZ multipliers, Z3 is assigned the type 2 WPZ multipliers, and

Z4 is assigned the type1 WPZ multipliers. For each station within a line, we multiply

the WPZ value with the intermediate process time we have from first multiplying the

APZ. Thus, for the B4321 line the twelve station process times become:

Zone 1 Zone 2

Station 1 2 3 4 5 6

New Proc. Time*WPZ .473*1 .473*1.1 .473*0.9 .286*1.1 .286*0.9 .286*1

B4321 Proc. Time .473 .520 .426 .315 .257 .286

Zone 3 Zone 4

Station 7 8 9 10 11 12

New Proc. Time*WPZ .286*1 .286*1 .286*1 .286*1 .286*0.9 .286*1.1

B4321 Proc. Time .286 .286 .286 .286 .257 .315

For each APZ multiplier (A,B, or C), the test sub-suite includes all four digit

combinations of 1111 to 4444.

48



2.8.4 Additional Structure Comparison Results

2.8.4.1 Structure Comparison by CONWIP Level for A Suite

CONWIP LEVEL: 4 6 8 10 12 24 36 48
Full XT 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
2SZC(MaxQueue) 87.0% 97.0% 98.4% 98.7% 99.4% 100.0% 100.0% 100.0%
FTZC (FFMS) 74.0% 87.3% 93.6% 96.5% 98.1% 99.9% 100.0% 100.0%
Classic Conwip 26.6% 35.2% 42.0% 47.5% 52.0% 68.0% 75.6% 80.0%
PTL(FTZC vs. 2SZC) 14.9% 10.0% 4.9% 2.2% 1.3% 0.1% 0.0% 0.0%

Average Throughput By CONWIP Level Across "A" Suite where Average DOI = ..300
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Figure 2.15: Structure Performance Comparison - A Suite
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2.8.4.2 Structure Comparison by CONWIP Level for B Suite

CONWIP LEVEL: 4 6 8 10 12 24 36 48
Full XT 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
2SZC(MaxQueue) 86.3% 95.7% 97.4% 97.9% 98.8% 100.0% 100.0% 100.0%
FTZC (FFMS) 72.1% 83.9% 89.3% 92.1% 93.8% 97.4% 98.4% 98.8%
Classic Conwip 26.3% 34.4% 40.6% 45.4% 49.1% 60.2% 63.3% 64.4%
PTL(FTZC vs. 2SZC) 16.5% 12.3% 8.3% 5.9% 5.0% 2.6% 1.6% 1.2%

Average Throughput By CONWIP Level Across "B" Suite where Average DOI = .580
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Figure 2.16: Structure Performance Comparison - B Suite
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CHAPTER III

Modeling the Operational and Financial Impact of

Supply Disruption with Correlated Defaults

3.1 Introduction

The importance of supply chain management has been quite visible due to the

recent spate of newsworthy supply disruptions and global supply chain developments

(see Tomlin [84]). From the vast field of supply chain management, various sub-

fields of study have arisen including supplier reliability. Supplier reliability focuses on

the operational and financial decision making processes within a firm’s supply chain.

This decision making is a result of the positive probability that the suppliers the firm

has contracted with will be unable to deliver a portion or all of a given service or

product. The ramifications of supplier unreliability have been well documented and

caused suppliers and firms alike hundreds of millions of dollars in lost revenue. The

introductions of Babich, Burnetas and Ritchken [11] and Saghafian and Van Oyen [74]

provide detailed examples of these losses and their negative financial implications to

firms. In light of these recent examples and the potential financial benefits of proactive

responses to these risks, research in this area is well motivated. Sufficient impetus for

the study of supplier reliability, particularly as it relates to this work, is motivated by

the need to determine what can be done to help firms prepare for these costly risks.
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In practice, most firms are currently more focused on lowering costs throughout the

supply chain with little emphasis on mitigating the risks of disruption. There is little

proactive push within most companies to address and adapt to the dangers inherent

in supply chain disruption risk [80]. This work seeks to change that lack of emphasis

and highlight its importance by developing models that link the disruption risk of a

firm directly to their income statement.

This problem of supplier unreliability speaks to a larger issue of supply chain

design in a global marketplace. For example, given our new business world “without

borders”, a more expensive and more reliable supplier on a different continent may

provide a better contract to a firm than a less expensive and less reliable supplier in the

firm’s own country (or vice versa). The decision of who to purchase supply from, and

how much supply to purchase, is a requirement to achieving good macro supply chain

performance. Sourcing decisions at the operational level provide necessary insight at

the managerial level to answer supply chain design questions. Knowing how much to

order and whom to order it from, is important information to a firm. Moreover this

knowledge provides firms with the tools to understand and accurately quantify the

effects of supplier reliability on their supply chains.

This proposed research quantifies the financial impact of flexibility in a firm’s

sourcing decision. With regard to flexibility we are referring to the sourcing options a

firm has when ordering supply. In the face of supplier disruption where a supplier may

disappear for the rest of the planning horizon, we seek to show that it is cost effective

to have flexibility in sourcing decisions. This work examines a model of supplier

reliability with a single firm contracting with two unreliable suppliers who provide

substitutable products in a duopoly framework during a continuous, finite selling

season. The duopoly framework resolves the lack of flexibility in a firm having a single

supplier, yet its results are often times generalizable to a multiple (greater than two)

supplier frameworks. Our model contains several attractive and interesting features
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that when combined, to the author’s knowledge, have not been studied simultaneously

before:

• The models allow inventory build up during the selling season to serves as

disruption mitigation strategy for the firm (in addition to dual-sourcing).

• Two types of supplier default exist, idiosyncratic and system wide, to allow the

study of correlated disruptions using a salient driver of disruption correlation.

• The use of exponentials for the distribution time to default fits the unpre-

dictability of disruption

A flexible supply chain design is needed to mitigate the effect of stochastic supplier

disruptions on operations and especially financial cash flows. This work develops mit-

igation strategies for a firm to use in sourcing from unreliable suppliers and demon-

strates the conditions under which flexibility in the firm’s supply chain is necessary.

Our objective is to emphasize how supply decisions are impacted by parameters such

as per unit profit, holding cost, and two unique types of default risk.

3.2 Literature Survey

Consider a firm contracting with n suppliers (n ≥ 2) where one or both of the

suppliers is unreliable. The firm is operating in a newsvendor framework (see Dada,

Petruzzi, and Schwarz [30]) in the sense that all of their suppliers provide substitutable

products and the firm must first decide who to contract with and secondly how much

to contract for. This basic framework is the basis for much of the supplier unreliability

literature. Within the supplier unreliability sub-field, of literature, lines of distinction

have been drawn in the current literature that specify exactly what type of supplier

unreliability an author is speaking of. These types of unreliability include: yield

uncertainty, random capacity, and supply disruption. Toiling [84] provides a concise,
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yet thorough, review of the literature along these three distinctions. This current work

fits into the literature within the supply disruption group, however for completeness

all three types of work will briefly be described here.

In yield uncertainly models, the firm experiences randomness when their order is

placed, as to how much of that order will be delivered by the supplier. Yano and Lee

[91] provide a superb review of the yield uncertainty literature.

The literature on random capacity fits into the supplier unreliability sub-field in

that the upper-bound on the supplier’s production capacity is random in each period

of the production horizon. The works of Henig and Gerchak [47] and Ciarallo, Akella,

and Morton [27] provide a strong foundation in random capacity. Henig and Gerchak

study a single period model where they find the surprising result that the existence

of a reorder point is independent of the yield being random. Ciarallo, Akella, and

Morton extend their work to show that in a multi-period setting order-up-to policies

are optimal and dependent on the random yield.

The work of supply disruption consists of models of suppliers with a binary state of

either up (active) or down (inactive). Generally, when the supplier is up, all of a given

order is delivered on time, and when the supplier is down, none of a given order is

supplied. By contrast to yield uncertainty and random capacity, in most of the supply

disruption literature the state of a supplier is most often known by the firm prior to

placing an order in a particular period. When the disruptions are going to occur

and the length of a disruption when it does occur generally serve as the sources of

randomness. Previous works that explore supply disruption in the duopoly framework

of this proposed research are by Parlar and Perry [69] and Gurler and Parlar [43].

In Parlar and Perry [69] the authors consider supply disruption for a class of EOQ

models where a single firm, facing deterministic demand, contracts with two infinite

capacity suppliers with equal cost structures. The reliability of the supplier’s is an

alternating poisson process. When the optimal reorder point inventory level of the
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firm is reached, and a supplier is active, the order is received. If both suppliers are

inactive the firm must wait until one (or both) becomes active. An ordering policy

for the firm is solved numerically, however the author’s found it to be suboptimal.

Gurler and Parlar [43] extend Parlar and Perry’s work with erlang inter-failure times

and general repair times. Again the ordering policy is solved numerically as well as

the optimal inventory in the special case of erlang-2 inter-failures and exponential

repair times.

Anupindi and Akella [6], in model one of their paper, examine a single delivery

contract where an order is guaranteed to be fulfilled either in the current period, with

probability β, or in the subsequent period with probability 1 − β. They are able

to analytically derive the optimal ordering policies that minimize total costs with

backlogging in both a single and multi-period setting. Their results provide a firm

with optimal solutions for a given set of model parameters, but little insight has been

provided into the effects, to the firm, of the interaction of those parameters when two

or more suppliers in the supply chain are unreliable. The models of this proposed

work seek to address that.

Now the attention is turned to the supply disruption literature on correlated de-

faults. Babich, Burnetas and Ritchken [11] study the effects of competition and

diversification on a supply chain with unreliable suppliers. They analyze the firms

tradeoff between diversification and price competition in the dual and multiple sup-

plier frameworks where the channel experiences correlated supply shocks. In their

model they note that it is feasible to estimate risk-neutral default probabilities of

supplier’s from financial default events. The reason for this, they reason, is that

pricing models for various types of defaultable claims contain information on the pa-

rameters of the default processes. Giesecke [40] has studied an easily implemented

intensity-based exponential model for correlated defaults. The intuition and analysis

of these papers provides the foundation of this correlated default study.
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3.3 The Model

Consider a firm using dual-sourcing with two unreliable suppliers for supply of

a substitutable product during a continuous, finite selling season of length T , with

a constant demand rate, ξ (see Figure 3.1). The fashion industry is one example

of a finite selling season. At the beginning of the selling season the firm contracts

with each supplier, referred to as supplier 1 and supplier 2, for a constant order rate,

(γ1, γ2). We assume the firm contracts with its suppliers via an order minimum for

at least the amount of demand such that, γi ≥ ξ where i ∈ {1, 2}. Each order is

purchased from the supplier’s at a fixed wholesale per unit order cost of c. There

is no supply lead time and during each time unit we assume instantaneous delivery

of the firm’s order. A per unit revenue of r is received during each time unit where

demand is met by the firm. The firm’s total order, γ1 + γ2, from their supplier’s may

exceed demand and any excess inventory is stored by the firm at a per unit holding

cost rate of h.

The necessity of inventory is a result of two different types of supply disruptions.

Both types of disruptions cause a supplier to become inactive, unable to supply the

firm’s order, and remain inactive for the rest of the finite selling season. The first

are idiosyncratic disruptions that are unique to each supplier. When an idiosyncratic

disruption occurs only one supplier is affected and the disruption is independent of

the other supplier. For example, consider a fire that shuts down operations at supplier

1. This event would disrupt the supply that the firm ordered from supplier 1, but

would have no affect on supplier 2. Both idiosyncratic disruptions are exponentially

distributed and occur with rate λi corresponding to supplier i where i ∈ {1, 2}. The

second type is a system-wide disruption that upon occurrence will cause both suppliers

to become inactive simultaneously. For example, consider two suppliers in the same

city where a natural disaster occurs causing their operations to be suspended. Also,

a large exchange rate can drive both suppliers out of business if they are in the same
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Figure 3.1: Dual Supplier Model

country. System wide disruptions are also exponentially distributed with rate λ3.

Our objective is to maximize total expected profit by the end of the selling season by

determining the optimal order rates from suppliers 1 and 2.

3.3.1 Notation

To accomplish this objective consider the following notation:

• r : firm’s per unit revenue for meeting demand

• c : firm’s per unit purchasing cost from the supplier

• h : firm’s per unit holding cost for carrying inventory from the supplier

• ξ : deterministic demand rate

• γ : firm’s order quantity rate from the supplier
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• I(t) : firm’s inventory level at time t. If t = 0, then I(0) = 0 is the firm’s initial

inventory at the beginning of the selling season

• τξ(I(t)) : r.v. denoting the time to inventory depletion at demand rate ξ given

inventoryI(t) and no further replenishment

=

{
I(t)
ξ

I(t) > 0

• τ(ξ−γi)(I(t)) : r.v. denoting the time to inventory depletion at demand rate

(ξ − γi) with inventory I(t) and no further replennishment

=

{
I(t)

(ξ−γi)

• T : time horizon length (i.e., selling season)

• Ti : time to disruption of type i ∈ {1, 2, 3}. ∼ Exp(λi)

i =


1 : Idiosyncratic to Supplier 1

2 : Idiosyncratic to Supplier 2

3 : System-wide to both Suppliers

• T ′
i : with one supplier i up, the minimum of the length of time to disruption

of the up supplier or the system-wide disruption: T ′
i = min{Ti, T3}, which is a

pair of competing exponential random variables.

• Tfirst : time of either the first disruption or the end of the horizon when both

supplier’s are up. (Note: In the single supplier model Tfirst = 0)

• Tlast : Given that an idiosyncratic disruption has left one supplier up, this is

the remaining time to either the last disruption or the end of the horizon

• T ′
last : This is the remaining time to inventory depletion when one supplier is

up, under the condition that the replenishment rate is less than ξ
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• Tmin : With both suppliers down, this is the absolute time until, the minimum

of the time to inventory depletion or the end of the time horizon

The flow chart of Figure 3.2 depicts the different sample paths of supplier dis-

ruption that must be considered to calculate the firm’s total expected profit. The
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Figure 3.2: Disruption Sample Paths
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importance of the sample paths is that the firm’s profit rate changes depending on

which arc of the flow chart is being considered. The total expected profit is the sum

of the expected values of these arcs and multiple profit rate functions are required for

this expectation.

3.3.2 Profit Rate Functions

These functions calculate the firm’s profit, per unit time, under two conditions: 1)

supplier availability (π̈ = both suppliers available or active, π̇ = one supplier available or active, π =

no supplier’s available or active) and 2) inventory level (+: inventory level is increas-

ing). It is important to be aware of the distinction we have made between Π, the

firm’s TOTAL profit function, and π, the firm’s profit RATE function.

The profit rate functions for the firm, by supplier availability are:

• No Supplier Available. Consider the case when both suppliers are inactive either

from two idiosyncratic disruptions or from a system wide disruption. Demand is

met and profit is generated at each time instant from the depletion of the firm’s

inventory. Suppose no suppliers are available, supplier i was the last supplier

to default (either by idiosyncratic or system wide disruption but in the latter

case, the choice of i is arbitrary), and inventory was increasing up to the time

of the last supplier going down, Tlast. The instantaneous profit rate at time z

after Tfirst + Tlast is:

π+
i (z) = rξ − h[(I(Tfirst) + (γi − ξ)Tlast)− ξz].

When no suppliers are active due to the system wide disruption occurring while

both suppliers were up:

π(z) = rξ − h[(γ1 + γ2− ξ)Tfirst − ξz].
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• Single Supplier Available - consider the case where one supplier is inactive due

to an idiosyncratic disruption and the other supplier is still active:

π̇+
i (z) = rξ − cγi − h[I(Tfirst) + (γi − ξ)z].

• Dual Suppliers Available - Consider the initial state of the system where both

supplier’s are active and no disruptions have occurred:

π̈+(z) = rξ − c(γ1 + γ2)− h
[(

[γ1 + γ2]− ξ
)
z
]
.

Each state of supplier availability, as the entire system is modeled, is a function of the

previous state. First we model the no supplier state, followed by the single and dual

supplier states. For each state of suppler availability we can use the above profit rate

functions to model the total expected profit. Each model is dependent on the random

length of time the system is in that particular state of supplier availability and the

state it transitions to once disruption occurs (see Figure 3.2 for state transitions). The

total expected profit is determined when each model is integrated over all possible

time lengths and their corresponding probability distributions.

3.3.3 No Supplier

The no supplier state of availability considers two cases. The cases are dependent

upon which state the system was in immediately prior to the transition of no supplier

active. Case N1 assumes the previous state was single supplier active and either

an idiosyncratic or system wide disruption occurred. Case N2 assumes the previous

state was both suppliers active and a system wide disruption occurred.
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3.3.3.1 Case N1

Case N1 assumes Tfirst = T3. The total profit of Case N1 is dependent on whether

the time until inventory depletes [τξ(I(T3))] is before or after the end of the selling

season T since both suppliers are down. This profit can be calculated directly without

expectation, thus let ΠN1(T3) be the total profit in the no supplier model under case

N1.

ΠN1(T3) =


∫ τξ(I(T3))

s=T3
π(s)ds if τξ(I(T3)) < T − T3

∫ T

s=T3
π(s)ds if τξ(I(T3)) ≥ T − T3

where τξ(I(T3)) =
I(T3)

ξ
=

[(γ1 + γ2 − ξ)T3]

ξ
.

3.3.3.2 Case N2

Case N2 assumes Tlast = T ′
i . The total profit of Case N2 is dependent on whether

the time until inventory depletes [τξ(I(T ′
i ))] is before or after the end of the selling

season T . This profit also can be calculated directly without expectation. Let ΠN2(T ′
i )

be the total profit in the no supplier model under case N2.

ΠN2(T ′
i ) =


∫ T ′

i+τξ(I(T ′
i ))

s=T ′
i

π+
i (s)ds if T ′

i + τξ(I(T ′
i )) < T − Tfirst − T ′

i

∫ T

s=Tfirst+T ′
i
π+

i (s)ds if T ′
i + τξ(I(T ′

i )) ≥ T − Tfirst − T ′
i

where τξ(I(T ′
i )) =

I(T ′
i )

ξ
=

[(γ1 + γ2 − ξ)Tfirst + (γi − ξ)(T ′
i − Tfirst)]

ξ
.
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Both no supplier cases are used strictly to help solve the single and dual supplier

cases. Independently they offer no insight in to sourcing and inventory mitigation

strategies for the firm.

3.3.4 Single Supplier

Let Π̇S(Tfirst) be the total expected profit of the single supplier case. When

the single supplier case is embedded within the model of the dual supplier case the

resulting profit function is dependent on Tfirst, the time of the first disruption. When

the single supplier case is considered as an independent model, the analysis stays the

same and Tfirst = 0.
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Lemma 3.3.1. The firm’s total expected profit for the single supplier case is IE[Π̇S(Tfirst)] =

1

2
 −Æ−T Hλ1+λ3L T H2 c γ1 + h T Hγ1 − ξL − 2 r ξL +

1

Hλ1 + λ3L2

I1 − Æ−T Hλ1+λ3LM I−h H2 γ1 − 2 ξL − 2 Hλ1 + λ3L Hc γ1 − r ξL +

Æ−T Hλ1+λ3L H2 Hλ1 + λ3L H1 + T Hλ1 + λ3LL Hc γ1 − r ξL + h Hγ1 H2 + T Hλ1 + λ3L
H2 + T Hλ1 + λ3LLL − 2 ξ − T Hλ1 + λ3L H2 + T Hλ1 + λ3LL ξLLM +

1

Hλ1 + λ3L2
 I1 − Æ−T Hλ1+λ3LM Æ−T Hλ1+λ3L H2 r Hλ1 + λ3L H2 + T Hλ1 + λ3LL ξ −

h H2 γ1 H4 + T Hλ1 + λ3L H3 + T Hλ1 + λ3LLL − 8 ξ −

T Hλ1 + λ3L H8 + 3 T Hλ1 + λ3LL ξLL +
1

Hγ1 + ξL2
 Æ− T Hλ1+λ3L ξ

γ1+ξ

I−2 r Hλ1 + λ3L ξ Hγ1 + ξL Hγ1 H2 − T Hλ1 + λ3LL + 2 ξ + T Hλ1 + λ3L ξL +

h I2 γ13 H4 − T Hλ1 + λ3LL − H8 + T Hλ1 + λ3L H8 + 3 T Hλ1 + λ3LLL ξ3 −

2 γ1 ξ H4 ξ + T Hλ1 + λ3L H1 − 2 T Hλ1 + λ3LL ξL −

γ12 H−8 ξ + T Hλ1 + λ3L H−4 + T Hλ1 + λ3LL ξLMM −

1

Hλ1 + λ3L2 ξ
 I1 − Æ−T Hλ1+λ3LM −2 r Hλ1 + λ3L Hγ1 − ξL ξ +

h I2 γ12 − 8 γ1 ξ + 6 ξ2M +
1

Hγ1 + ξL2
 Æ− T Hλ1+λ3L ξ

γ1+ξ

I2 r Hλ1 + λ3L ξ Hγ1 + ξL Iγ12 + T γ1 Hλ1 + λ3L ξ − H1 + T Hλ1 + λ3LL ξ2M −

h I2 γ14 + 2 γ13 H−2 + T Hλ1 + λ3LL ξ + 3 H2 + T Hλ1 + λ3L H2 + T Hλ1 +

λ3LLL ξ4 + γ12 ξ H−8 ξ + T Hλ1 + λ3L H−6 + T Hλ1 + λ3LL ξL +

2 γ1 ξ2 H2 ξ − T Hλ1 + λ3L H1 + 2 T Hλ1 + λ3LL ξLMM

. (3.3.1)
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Proof. In the single supplier case the total expected profit of the firm can be cal-

culated by conditioning on the time of the last disruption before, either idiosyncratic

or system wide, before the system enters the no supplier state.

IE[Π̇S(Tfirst)] = IE[IE[Π̇S(Tfirst)|Tlast]] (3.3.2)

= IE[Π̇S(Tfirst)|Tlast = T ′
i ] IP(Tlast = T ′

i )

+ [Π̇S(Tfirst)|Tlast = (T − Tfirst)] IP(Tlast = T − Tfirst) (3.3.3)

= IE
(
[

T ′
i+Tfirst∫

s=Tfirst

π̇+(s)ds] + ΠN1(T ′
i )

)
IP(T ′

i < T − Tfirst)

+
( T∫

s=Tfirst

π̇+(s)ds
)

IP(T ′
i ≥ T − Tfirst) (3.3.4)

=
([ T∫

t′i=0

( t′i+Tfirst∫
s=Tfirst

π̇+(s)ds
)

+ ΠN1(t′i)
]
fT ′

i
(t′i)dt′i

)

+

∞∫
t′i=T

( T∫
s=Tfirst

π̇+(s)ds
)
fT ′

i
(t′i)dt′i), (3.3.5)

where fT ′
i
(t′i) = (λi + λ3)e

−(λi+λ3)t′i is the distribution on the competing exponentials

that remain by the idiosyncratic disruption of the active supplier and the system wide

disruption. The rest is algebra and calculus.

The following result confirms our intuition on the behavior of the single supplier

profit function. We expect that in the absence of supplier disruption the firm would

simply order the demand rate quantity. This expectation is confirmed in Proposition

3.3.2.

Proposition 3.3.2. As the idiosyncratic disruption rate and the system disruption

rate vanish (i.e., λ1 → 0 and λ3 → 0), for the single supplier expected profit function,

IE[Π̇S(Tfirst)], the firm’s optimal order quantity is γ1 = ξ.
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Proof. Consider Equation 3.3.1 for the single supplier case with Tfirst = 0; taking

the limit yields:

lim
(λ1,λ3)→0

IE[Π̇S(0)] = (r − c)T max[γ1, ξ]− hI0T −
hT 2(γ1 − ξ)

2
(3.3.6)

Recall that based upon the firm’s ordering restrictions of this model the firm’s order

rate must be at least the demand rate,γ1 ≥ ξ, and therefore γ1 = ξ maximizes the

above. This is because, in the limit, the firm’s profit is linear in their order rate,

γ1 and the profit peaks at ξ. The peak is caused by the two holding cost terms of

Equation 3.3.6. The first term, hI0T is constant in γ1 and the second term hT 2(γ1−ξ)
2

is decreasing in γ1 as γ1 > ξ. However, when γ1 = ξ this term is zero and thus

maximizes the function.

3.3.5 Dual Supplier

Let IE[Π̈D] be the total expected profit of the dual supplier case. Many months of

effort on the dual supplier case has revealed that this case is analytically intractable.

Thus, we employ numerical analysis to obtain insights. The key is to embed the

solution of the single supplier problem into the dual supplier case. The details of

deriving the dual supplier profit function consist of conditioning on Tfirst and are

provided below.

IE[Π̈D] = IE[IE[Π̈D|Tfirst]] (3.3.7)

= IE[Π̈D|Tfirst = T1] IP(Tfirst = T1) (3.3.8)

+ IE[Π̈D|Tfirst = T2] IP(Tfirst = T2) (3.3.9)

+ IE[Π̈D|Tfirst = T3] IP(Tfirst = T3) (3.3.10)

+ IE[Π̈D|Tfirst = T ] IP(Tfirst = T ) (3.3.11)
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= IE
( T1∫

s=0

π̈+(s)ds + IE[Π̇S(T1)]
)

IP(T1 < min{T2, T3, T}) (3.3.12)

+ IE
( T2∫

s=0

π̈+(s)ds + IE[Π̇S(T2)]
)

IP(T2 < min{T1, T3, T}) (3.3.13)

+ IE
( T3∫

s=0

π̈+(s)ds + IE[Π̇N2(T3)]
)

IP(T3 < min{T1, T2, T}) (3.3.14)

+
( T∫

s=0

π̈+(s)ds
)

IP(T < min{T1, T2, T3}) (3.3.15)

=

T∫
t1=0

( t1∫
s=0

π̈+(s)ds + IE[Π̇S(t1)]
)
f[T1|T1<min{T2,T3}](t1)dt1 (3.3.16)

+

T∫
t2=0

( t2∫
s=0

π̈+(s)ds + IE[Π̇S(t2)]
)
f[T2|T2<min{T1,T3}](t2)dt2 (3.3.17)

+

T∫
t3=0

( t3∫
s=0

π̈+(s)ds + IE[Π̇N2(t3)]
)
f[T3|T3<min{T1,T2}](t3)dt3 (3.3.18)

+

T∫
t=0

( t∫
s=0

π̈+(s)ds
)
f̄Tall

(t)dt (3.3.19)

A numerical study of models for both the single and dual supplier case was completed

for parametric analysis of the models and to understand how inventory was used as

a default risk mitigation strategy. Specifically, as it relates to the value of flexibility

among the firm’s suppliers, we seek to learn how the ability to hold inventory impacts

the firms ordering decision.

3.4 Single Supplier Results

3.4.1 Numerical Study

The single and dual supplier models were programmed using Mathematica to

study the results of optimal ordering decisions by the firm and maximum profit
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achieved across a test suite of parameter values. Test parameters were then com-

pared two at a time across high and low values, while the non-test parameters were

held constant at their low values, to gain insight on the effect the parameters had

on the model. The following parameters were held constant throughout the study:

horizon length (T = 10), demand rate (ξ = 5), and wholesale order cost (c = 1). The

test parameters our study investigated included: idiosyncratic default rates (λ1, λ2),

system wide default rate (λ3), marginal profit per unit (r − c), and holding cost h.

Each of the test parameters were tested over a series of values out of which specific

values were chosen for insight.

The idiosyncratic default rate values were (λ1, λ2) ∈ { 1
10

, 1
5
, 1

2
}. Since the time

horizon was set constant at 10, we tested infrequent idiosyncratic disruptions aver-

aging from one per time horizon to frequent disruptions of 5 per time horizon. In

the single supplier case only λ1 is considered as a degenerate case of the two supplier

model. The values for the system wide default rate were (λ3) ∈ { 1
20

, 1
7
, 1

5
, 1

3
, 1

1
}. Order

cost was held constant at c = 1, so the revenue r was tested over several values,

r ∈ {1.1, 1.5, 5, 20}, to change the marginal profit per unit, (r− c). Lastly, the values

for the holding cost were h ∈ {0, 0.1, 0.2, 0.5}. For ease of explanation we consider

marginal profit per unit to be (r− c) without factoring in holding cost because r and

c are per product bought and sold, whereas holding cost is per item, per unit time.

Thus, we compare the holding cost against the profit for its effect. The values for the

single supplier case yield a 240 case test suite.

We began with a base case of [λ1 = 1
10

, λ3 = 1
20

, r = 1.5, h = 0.2, c = 1, ξ = 5, T =

10].

Then perturbing the parameters two at a time, we tested the interactions according

to the high, medium, and low values of Table 3.1. Since we are highly interested in

the effect of correlated defaults, the system wide disruption is considered for a high-

med-low value, whereas λ1 has two levels.
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Low Med. High
λ1

1
10

N/A 1
2

λ3
1
20

1
5

1
r 1.5 N/A 20
h 0.1 N/A 0.5

Table 3.1: Test Parameter Values

3.4.2 Parameter Analysis

Holding Cost

We begin our parameter analysis by considering the holding cost of the single

supplier as it relates to the maximum profit. As the holding cost rate increases, we

expect to see the firm’s total expected profit decrease. We are interested to learn

what effect this phenomenon will have on the firm’s order quantities.
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Figure 3.3: Order Qty and Max Profit vs. Holding Cost with Low Marginal Profit
Per Unit(left) and High Marginal Profit Per Unit(right)

Observation 6. When marginal profit per unit (r-c) is less than or equal to two times

holding cost, inventory mitigation for non-zero default rates, is not desirable.
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This is surprising given that one would expect the firm to use inventory mitigation

as a strategy anytime per unit revenue is greater than per unit order and holding cost.

However, what we find from Figure 3.3(left) that there is a consistent minimum order

by the firm even as the holding cost increases. Even in the absence of holding cost the

firm still orders the minimum. This can be attributed to the relative reliability of the

supplier since both the idiosyncratic and system wide default rates are at their low

level. At the high level of marginal profit per unit (see Figure 3.3(right)) we see the

ordering increase from the lower level, however the ordering is still independent of the

holding cost. The inventory mitigation at the high level is higher than the low level

due to the default rates being at their low levels. As expected, once inventory miti-

gation is employed the maximum profit of the system becomes inversely proportional

to the holding cost.

Figure 3.4 demonstrates the use of inventory mitigation as the idiosyncratic de-

fault rate increases. However, we learn that the use of inventory mitigation becomes

dependent on the holding cost.
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Figure 3.4: Order Qty and Max Profit vs. Holding Cost with Low Idiosyncratic De-
fault Rate(left) and High Idiosyncratic Default Rate (right)
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Observation 7. The firm’s use of inventory mitigation is independent of the holding

cost when the idiosyncratic disruption rate is low and becomes inversely proportional

to the holding cost when the disruption rate is high.

At the low levels of idiosyncratic and system wide disruption, the firm treats

the supplier as a reliable supplier (expecting 100% yield on orders). However as

the probability of disruption increases the firm begins to accumulate inventory as a

strategy to help mitigate the risk of a default. From Figure 3.4 (right) we see that

the degree of use of this strategy decreases as the holding cost increases, which is

intuitive. At the low level of holding cost, under high idiosyncratic disruption risk

the firm orders the total demand that can be sold prior to the end of horizon since

there is no penalty for excess inventory. However, at the high level of holding cost, the

firm reverts back to ordering the minimum needed to serve demand even though the

idiosyncratic disruption rate risk is high. When the holding cost was considered with

low, medium, and high system wide default rates the results for the idiosyncratic

disruption were the same. Since there is only one supplier in this model the we

expect the system wide and idiosyncratic default rates to be symmetrical. Therefore,

Observation 7 holds for not only the idiosyncratic disruptions, but the system wide

disruptions as well and leads us to the following conclusion on the holding cost.

Observation 8. Holding cost bounds the firm’s ordering between carrying inventory

and not carrying inventory for high levels of disruption rate risk. For low levels of

disruption rate risk the firm’s ordering is independent of the holding cost.

Marginal Profit Per Unit

Next we consider the revenue parameter which perturbs the firm’s marginal profit

per unit(r− c). As the values for (r− c) increase we expect the effects of holding cost

to vanish as increased marginal profit per unit will insulate the firm from the adverse

effects of holding cost. Given this, we can hold the holding cost static at its low level

and look at how the firm orders when marginal profit per unit changes over low and
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high levels of default risk.
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Figure 3.5: Order Qty and Max Profit vs. Marginal Profit Per Unit (r-c) with Low Id-
iosyncratic Default Rate(left) and High Idiosyncratic Default Rate (right)

Observation 9. For the low values of marginal profit per unit, the ordering quantity

stays nearly identical for low and high values of idiosyncratic disruption; very close

to the demand rate ξ. For the high values of marginal profit per unit, however the

ordering quantity is much more sensitive to the idiosyncratic disruption rate and is

quite high.

Observation 9 is also applicable to system wide disruptions (see Figure 3.6). It

appears that carrying inventory is not advantageous to the firm until certain thresh-

olds of marginal profit per unit are reached. In the case of high disruption risk one

would expect the firm simply to carry more inventory. Observation 9 shows us that

even in the face of high disruption risk, a firm’s decision to order more than demand
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is dependent on more factors that just the desire to be able to meet future demand,

it also depends on the profit paradigms.
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Figure 3.6: Order Qty and Max Profit vs. Marginal Profit Per Unit (r-c) with Low
system wide Default Rate(left) and High system wide Default Rate (right)

Disruption Risk

Our model consists of two disruption risk parameters. For the single supplier

model the idiosyncratic and system wide disruptions rates serve as exponentials com-

peting for which one will disrupt first and cause the firm to meet the demand rate via

available inventory and the remaining supplier. Consider Figure 3.7 which compares

the firm’s optimal ordering across different system wide default rates under both low

and high idiosyncratic default conditions.

Observation 10. Under low idiosyncratic default conditions, the firm’s order quantities

are independent of the system wide default rate, because the likelihood of supply

disruption has not yet increased enough to make it profitable to hold inventory.

74



0

1

2

3

4

5

6

0.05 0.143 0.2 0.333 1

Systemwide Default Rate

O
rd

er
 Q

ua
nt

ity

$0.00

$2.00

$4.00

$6.00

$8.00

$10.00

$12.00

$14.00

Pr
of

it

Opt. Order
Opt. Profit

0

2

4

6

8

10

12

14

0.05 0.143 0.2 0.333 1

Systemwide Default Rate

O
rd

er
 Q

ua
nt

ity

$0.00

$0.50

$1.00

$1.50

$2.00

$2.50

$3.00

$3.50

$4.00

$4.50

$5.00

Pr
of

it

Opt. Order
Opt. Profit

Figure 3.7: Order Qty and Max Profit vs. System wide Default Rate with Low Id-
iosyncratic Default Rate(left) and High Idiosyncratic Default Rate (right)

As the system wide default increases, the firm’s total expected profit decreases,

as expected. However, the independence of the firm’s ordering from the system wide

default rate increase, as shown in Figure 3.7 (left) is unexpected. However, if the

firm wishes to order less then the order minimum then one can understand why the

insensitivity occurs. Moreover, when the same parameters are tested under high

idiosyncratic default rate conditions there is a modest increase in the ordering quan-

tity to provide inventory mitigation. In contract with Figure 3.6 the impact of the

marginal profit per unit is clearly seen. When tested at its high level under high

system wide default rate, the marginal profit per unit yields a high order quantity

to fill inventory and sustain the firm throughout the horizon after the firm disrupts.

This leads us to the following conclusion:

Observation 11. Order quantity is increasing in marginal profit per unit under high
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disruption rate conditions.

This shows that for inventory to be used as a mitigation strategy against supplier

disruption, there exists a minimum marginal profit per unit that is necessary for it to

be effective. This holds true, for Figure 3.8, when the idiosyncratic disruption rate is

tested under low and high marginal profit per unit conditions.
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Figure 3.8: Order Qty and Max Profit vs. Idiosyncratic Default Rate with Low
Marginal Profit Per Unit(left) and High Marginal Profit Per Unit (right)

Figure 3.8 (right) confirms our observations and demonstrates that inventory can

be an effective strategy against default risk. What we find is that an important pa-

rameter to justify using inventory as a mitigation strategy is marginal profit per unit.

Notice that, the firm is able to turn a decreasing profit, as a function of disruption

rate, into an increasing profit by increased ordering and decreased total holding cost.

The single supplier case can only use inventory as a mitigation strategy against

correlated default risk. We found that strategy to be effective only in high marginal

profit per unit conditions. As we transition to the dual supplier case, both inventory

76



and sourcing from a second supplier can be used as mitigation strategies with the

tradeoff being holding cost verses wholesale order cost. Interestingly, we seek to find

the conditions which guide the firm to a dual sourcing strategy over single souring

with inventory.

3.5 Dual Supplier Results

The same numerical study of Section 3.4.1 was used for the dual supplier case.

For the dual supplier cases we seek to understand the value of dual sourcing as a

strategy to mitigate disruption risk. Specifically, we are looking for insight into what

range of disruption values lead to a dual sourcing strategy over single sourcing.

Embedded within the dual supplier case is the single supplier case with a nonzero

value for Tfirst. In calculation, the dual supplier case simplifies to the single sup-

plier case, with initial inventory, after the first disruption. The ordering restrictions,

γ1, γ2 ≥ ξ, allow for both inventory accumulation and dual sourcing; providing the

firm with greater flexibility.

3.5.1 Flexible Sourcing

First we consider the effect holding cost has on dual supplier ordering under the

low and high values of both disruptions risks. Dual sourcing, particularly under low

disruption risk, will lead to an increase in the accumulation of inventory over single

sourcing. Figure 3.9 shows dual supplier ordering to be independent of holding cost.

This lack of effect can be attributed to the low value of the profit per unit for the

given order minimum constraint. The single supplier case demonstrated that the

positive effect of holding inventory only occurs under high profit per unit as single

supplier ordering was insensitive to holding cost under low values as well. To confirm

this intuition, we consider Figures 3.10 (left) and 3.11 (left) under the low and high

values of the system wide disruption, and we find that this relationship continues:
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Figure 3.9: Dual Supplier Order Qty vs. Holding Cost vs. Max Profit with
Low Idisyncratic Default Rate(left) and High Idiosyncratic Default Rate
(right)

Observation 12. To consider dual sourcing as a disruption risk mitigation strategy

the system must have a high profit per unit.

Under low profit per unit, holding cost has too much of an effect on profit and thus

drives ordering to the minimum quantities. This observation directs our attention to

cases of the test suite, under the high profit per unit condition. A review of those

cases, comparing the single supplier to the dual supplier, finds that flexible sourcing

with a second supplier becomes quite important to the firm when contracting with a

nearly reliable supplier (low idiosyncratic disruption) and an unreliable supplier (high

idiosyncratic disruption).
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Figure 3.10: Order Qty vs. Holding Cost vs. Max Profit with Low system wide
Default Rate(left) and Medium system wide Default Rate (right)
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Figure 3.11: Order Qty vs. Holding Cost vs. Max Profit with Low system wide
Default Rate(left) and High system wide Default Rate (right)

Figure 3.12 considers the average profit of cases under the high profit per unit

condition where (λ1 = 0.5, λ2 = 0.1, λ3 ∈ {0.2, 0.5}). We find that dual sourcing is
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advantageous to single sourcing for all tested values of holding cost.
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Figure 3.12: Average Profit vs. Holding Cost for both cases

To learn more about the effects under the system wide disruption we consider cases

under the medium to high system wide disruption condition to see if dual sourcing is

still advantageous to the firm.

Although not as clear a difference as seen in Figure 3.12, there does exist a differ-

ence between the average profit of the dual supplier cases, and the average profit of the

single supplier cases under the high profit per unit and low holding cost conditions.

(Note: The values above(below) the data point represent the dual supplier(single sup-

plier) average profit and the values underneath represent the single supplier average

profit.) Figures 3.12 and 3.13 yield the following conclusion:

Observation 13. Dual sourcing is a better disruption risk mitigation strategy than

single sourcing with inventory under high profit per unit, high system wide disruption,

and with one nearly reliable supplier and one unreliable supplier.
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Figure 3.13: Average Profit vs. system wide Disruption for both cases

Intuitively the high profit and high disruption conditions of Observation 13 are

reasonable when one would expect that as the risk of correlated defaults decreases

the need for a second supplier decreases.

3.6 Conclusions and Future Work

Previous research has demonstrated the need for disruption risk mitigation strate-

gies that go beyond the standard approach of using one supplier and not building

up inventory to anticipate disruption. Two important strategies can include single

sourcing with inventory or dual sourcing. In this paper we have sought to charac-

terize observations about a firm’s decision to single source or dual source when all

of their available sourcing options are unreliable. Within the single source case we

analyzed that model and found that a single sourcing strategy for the firm is best

under high marginal profit per unit conditions where disruption risk, both idiosyn-
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cratic and system wide, was low. Conversely, as disruption risk increases, the need

to source with a second supplier also increases. Also, we learned the importance of

the firm’s cost structure, particularly as it relates to inventory holding cost. These

insights provide managers with a foundation from which to consider the structure of

their supply chains.

As it relates to extensions of this work, relaxing the assumption on the firm’s

ordering quantities yields one additional model for the single supplier case (γ1 < ξ)

and three additional models for the dual supplier case {(γ1 < ξ, γ2 ≥ ξ), (γ1 ≥ ξ, γ2 <

ξ), (γ1 < ξ, γ2 < ξ)}. Moreover, using real world financial data, (e.g. supplier credit

ratings), to determine the idiosyncratic disruption risk would make the distributions

on the time to disruption more consistent with real world experience. Given the

great amount of future work that can be done in this area this work serves as a

strong foundation in understanding a firm’s sourcing decision when its suppliers are

unreliable and there exists both idiosyncratic and system wide defaults. This work

will help to strengthen supply chains as they combat the daily risk of supply default.
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3.7 Appendix

3.7.1 Dual Supplier Profit Function

The subsequent pages represent the total expected profit, IE[Π̈D] , for the dual

supplier case.

83



ÆT H−λ1−λ2−λ3L K−c T γ1 −
1

2
h T2 γ1 − c T γ2 −

1

2
h T2 γ2 + r T ξ +

1

2
h T2 ξO −

1

2 Hλ1 + λ2L λ3
 

Æ−T λ3 I1 − Æ−T λ3M Ih I−2 + 2 ÆT λ3 − 2 T λ3 − T2 λ32M Hγ1 + γ2 − ξL −

2 λ3 I1 − ÆT λ3 + T λ3M Hc Hγ1 + γ2L − r ξLM −

1

2 Hλ1 + λ2L λ3 ξ
 I1 − Æ−T λ3M Hγ1 + γ2 − ξL

2 h Hγ1 + γ2 − 3 ξL − 2 r λ3 ξ + Æ− T λ3 ξ
γ1+γ2 2 r λ3 ξ 1 +

T λ3 ξ

γ1 + γ2
−

h Hγ1 + γ2 − 3 ξL 2 +
2 T λ3 ξ

γ1 + γ2
+

T2 λ32 ξ2

Hγ1 + γ2L2
+

1

2 Hλ1 + λ2L λ3
 I1 − Æ−T λ3M −2 Æ−T λ3 H−r λ3 ξ +

h H2 γ2 + T γ2 λ3 + γ1 H2 + T λ3L − 3 ξ − 2 T λ3 ξLL +
1

Hγ1 + γ2L2
 

Æ− T λ3 ξ
γ1+γ2 I2 r Hγ1 + γ2L λ3 ξ Hγ1 H−1 + T λ3L + γ2 H−1 + T λ3L −

T λ3 ξL − h I2 γ13 H−2 + T λ3L + 2 γ23 H−2 + T λ3L +

γ22 I6 − 6 T λ3 + T2 λ32M ξ + 2 T γ2 λ3 H3 − 2 T λ3L ξ2 + 3 T2

λ32 ξ3 + γ12 I6 γ2 H−2 + T λ3L + I6 − 6 T λ3 + T2 λ32M ξM +

2 γ1 I3 γ22 H−2 + T λ3L + γ2 I6 − 6 T λ3 + T2 λ32M

ξ + T λ3 H3 − 2 T λ3L ξ2MMM +

1

λ1 + λ3
 I1 − Æ−T λ2M λ22 1

2 H−2 λ1 + λ2 − 2 λ3L3 Hλ1 + λ3L2
 

I24 Æ−2 T Hλ1+λ3L h γ1 λ12 − 16 c Æ−2 T Hλ1+λ3L γ1 λ13 +

16 Æ−2 T Hλ1+λ3L h T γ1 λ13 − 8 c Æ−2 T Hλ1+λ3L T γ1 λ14 +

4 Æ−2 T Hλ1+λ3L h T2 γ1 λ14 − 24 Æ−2 T Hλ1+λ3L h γ1 λ1 λ2 +

2 Æ−2 T Hλ1+λ3L h γ2 λ1 λ2 + 12 c Æ−2 T Hλ1+λ3L γ1 λ12 λ2 −

16 Æ−2 T Hλ1+λ3L h T γ1 λ12 λ2 + 8 c Æ−2 T Hλ1+λ3L T γ1 λ13 λ2 −

4 Æ−2 T Hλ1+λ3L h T2 γ1 λ13 λ2 + 6 Æ−2 T Hλ1+λ3L h γ1 λ22 −

84



2 c Æ−2 T Hλ1+λ3L γ1 λ1 λ22 + 4 Æ−2 T Hλ1+λ3L h T γ1 λ1 λ22 −

2 c Æ−2 T Hλ1+λ3L T γ1 λ12 λ22 + Æ−2 T Hλ1+λ3L h T2 γ1 λ12 λ22 +

48 Æ−2 T Hλ1+λ3L h γ1 λ1 λ3 − 48 c Æ−2 T Hλ1+λ3L γ1 λ12 λ3 +

48 Æ−2 T Hλ1+λ3L h T γ1 λ12 λ3 − 32 c Æ−2 T Hλ1+λ3L T γ1 λ13 λ3 +

16 Æ−2 T Hλ1+λ3L h T2 γ1 λ13 λ3 − 24 Æ−2 T Hλ1+λ3L h γ1 λ2 λ3 +

2 Æ−2 T Hλ1+λ3L h γ2 λ2 λ3 + 24 c Æ−2 T Hλ1+λ3L γ1 λ1 λ2 λ3 −

32 Æ−2 T Hλ1+λ3L h T γ1 λ1 λ2 λ3 + 24 c Æ−2 T Hλ1+λ3L T γ1 λ12 λ2 λ3 −

12 Æ−2 T Hλ1+λ3L h T2 γ1 λ12 λ2 λ3 − 2 c Æ−2 T Hλ1+λ3L γ1 λ22 λ3 +

4 Æ−2 T Hλ1+λ3L h T γ1 λ22 λ3 − 4 c Æ−2 T Hλ1+λ3L T γ1 λ1 λ22 λ3 +

2 Æ−2 T Hλ1+λ3L h T2 γ1 λ1 λ22 λ3 + 24 Æ−2 T Hλ1+λ3L h γ1 λ32 −

48 c Æ−2 T Hλ1+λ3L γ1 λ1 λ32 + 48 Æ−2 T Hλ1+λ3L h T γ1 λ1 λ32 −

48 c Æ−2 T Hλ1+λ3L T γ1 λ12 λ32 + 24 Æ−2 T Hλ1+λ3L h T2 γ1 λ12 λ32 +

12 c Æ−2 T Hλ1+λ3L γ1 λ2 λ32 − 16 Æ−2 T Hλ1+λ3L h T γ1 λ2 λ32 +

24 c Æ−2 T Hλ1+λ3L T γ1 λ1 λ2 λ32 − 12 Æ−2 T Hλ1+λ3L h T2 γ1 λ1 λ2 λ32 −

2 c Æ−2 T Hλ1+λ3L T γ1 λ22 λ32 + Æ−2 T Hλ1+λ3L h T2 γ1 λ22 λ32 −

16 c Æ−2 T Hλ1+λ3L γ1 λ33 + 16 Æ−2 T Hλ1+λ3L h T γ1 λ33 −

32 c Æ−2 T Hλ1+λ3L T γ1 λ1 λ33 + 16 Æ−2 T Hλ1+λ3L h T2 γ1 λ1 λ33 +

8 c Æ−2 T Hλ1+λ3L T γ1 λ2 λ33 − 4 Æ−2 T Hλ1+λ3L h T2 γ1 λ2 λ33 −

8 c Æ−2 T Hλ1+λ3L T γ1 λ34 + 4 Æ−2 T Hλ1+λ3L h T2 γ1 λ34 −

30 Æ−2 T Hλ1+λ3L h λ12 ξ − 4 Æ−2 T Hλ1+λ3L r λ13 ξ −

28 Æ−2 T Hλ1+λ3L h T λ13 ξ − 8 Æ−2 T Hλ1+λ3L h T2 λ14 ξ +

26 Æ−2 T Hλ1+λ3L h λ1 λ2 ξ + 6 Æ−2 T Hλ1+λ3L r λ12 λ2 ξ +

26 Æ−2 T Hλ1+λ3L h T λ12 λ2 ξ + 8 Æ−2 T Hλ1+λ3L h T2 λ13 λ2 ξ −

6 Æ−2 T Hλ1+λ3L h λ22 ξ − 2 Æ−2 T Hλ1+λ3L r λ1 λ22 ξ −

6 Æ−2 T Hλ1+λ3L h T λ1 λ22 ξ − 2 Æ−2 T Hλ1+λ3L h T2 λ12 λ22 ξ −

60 Æ−2 T Hλ1+λ3L h λ1 λ3 ξ − 12 Æ−2 T Hλ1+λ3L r λ12 λ3 ξ −

84 Æ−2 T Hλ1+λ3L h T λ12 λ3 ξ − 32 Æ−2 T Hλ1+λ3L h T2 λ13 λ3 ξ +

26 Æ−2 T Hλ1+λ3L h λ2 λ3 ξ + 12 Æ−2 T Hλ1+λ3L r λ1 λ2 λ3 ξ +

52 Æ−2 T Hλ1+λ3L h T λ1 λ2 λ3 ξ + 24 Æ−2 T Hλ1+λ3L h T2 λ12 λ2 λ3 ξ −

2 Æ−2 T Hλ1+λ3L r λ22 λ3 ξ − 6 Æ−2 T Hλ1+λ3L h T λ22 λ3 ξ −

4 Æ−2 T Hλ1+λ3L h T2 λ1 λ22 λ3 ξ − 30 Æ−2 T Hλ1+λ3L h λ32 ξ −

12 Æ−2 T Hλ1+λ3L r λ1 λ32 ξ − 84 Æ−2 T Hλ1+λ3L h T λ1 λ32 ξ −

48 Æ−2 T Hλ1+λ3L h T2 λ12 λ32 ξ + 6 Æ−2 T Hλ1+λ3L r λ2 λ32 ξ +

26 Æ−2 T Hλ1+λ3L h T λ2 λ32 ξ + 24 Æ−2 T Hλ1+λ3L h T2 λ1 λ2 λ32 ξ −

 

85



2 Æ−2 T Hλ1+λ3L h T2 λ22 λ32 ξ − 4 Æ−2 T Hλ1+λ3L r λ33 ξ −

28 Æ−2 T Hλ1+λ3L h T λ33 ξ − 32 Æ−2 T Hλ1+λ3L h T2 λ1 λ33 ξ +

8 Æ−2 T Hλ1+λ3L h T2 λ2 λ33 ξ − 8 Æ−2 T Hλ1+λ3L h T2 λ34 ξM +

1

λ23 Hλ1 + λ3L2 ξ
 I−h γ12 λ12 − 2 h γ1 γ2 λ12 − h γ22 λ12 −

h γ12 λ1 λ2 − h γ1 γ2 λ1 λ2 − h γ12 λ22 − 2 h γ12 λ1 λ3 −

4 h γ1 γ2 λ1 λ3 − 2 h γ22 λ1 λ3 − h γ12 λ2 λ3 − h γ1 γ2 λ2 λ3 −

h γ12 λ32 − 2 h γ1 γ2 λ32 − h γ22 λ32 + 2 h γ1 λ12 ξ + 3 h γ2 λ12 ξ +

3 h γ1 λ1 λ2 ξ + h γ2 λ1 λ2 ξ + r γ1 λ12 λ2 ξ − c γ2 λ12 λ2 ξ +

r γ2 λ12 λ2 ξ + 3 h γ1 λ22 ξ − c γ1 λ1 λ22 ξ + r γ1 λ1 λ22 ξ +

4 h γ1 λ1 λ3 ξ + 6 h γ2 λ1 λ3 ξ + 3 h γ1 λ2 λ3 ξ + h γ2 λ2 λ3 ξ +

2 r γ1 λ1 λ2 λ3 ξ − 2 c γ2 λ1 λ2 λ3 ξ + 2 r γ2 λ1 λ2 λ3 ξ −

c γ1 λ22 λ3 ξ + r γ1 λ22 λ3 ξ + 2 h γ1 λ32 ξ + 3 h γ2 λ32 ξ +

r γ1 λ2 λ32 ξ − c γ2 λ2 λ32 ξ + r γ2 λ2 λ32 ξ − h λ12 ξ2 −

2 h λ1 λ2 ξ2 − r λ12 λ2 ξ2 − 2 h λ22 ξ2 − 2 h λ1 λ3 ξ2 −

2 h λ2 λ3 ξ2 − 2 r λ1 λ2 λ3 ξ2 − h λ32 ξ2 − r λ2 λ32 ξ2M +

1

2 H−λ1 + λ2 − λ3L3 Hλ1 + λ3L2 ξ
 I2 Æ−T Hλ1+λ3L h γ12 λ12 +

2 Æ−T Hλ1+λ3L h γ1 γ2 λ12 + 2 Æ−T Hλ1+λ3L h γ22 λ12 −

2 Æ−T Hλ1+λ3L h γ12 λ1 λ2 + 2 Æ−T Hλ1+λ3L h γ1 γ2 λ1 λ2 +

2 Æ−T Hλ1+λ3L h γ12 λ22 + 4 Æ−T Hλ1+λ3L h γ12 λ1 λ3 +

4 Æ−T Hλ1+λ3L h γ1 γ2 λ1 λ3 + 4 Æ−T Hλ1+λ3L h γ22 λ1 λ3 −

2 Æ−T Hλ1+λ3L h γ12 λ2 λ3 + 2 Æ−T Hλ1+λ3L h γ1 γ2 λ2 λ3 +

2 Æ−T Hλ1+λ3L h γ12 λ32 + 2 Æ−T Hλ1+λ3L h γ1 γ2 λ32 +

2 Æ−T Hλ1+λ3L h γ22 λ32 − 6 Æ−T Hλ1+λ3L h γ1 λ12 ξ −

4 Æ−T Hλ1+λ3L h γ2 λ12 ξ + 8 c Æ−T Hλ1+λ3L γ1 λ13 ξ −

2 Æ−T Hλ1+λ3L h T γ1 λ13 ξ + 2 Æ−T Hλ1+λ3L r γ2 λ13 ξ +

2 Æ−T Hλ1+λ3L h T γ2 λ13 ξ − 2 Æ−T Hλ1+λ3L h T2 γ1 λ14 ξ +

18 Æ−T Hλ1+λ3L h γ1 λ1 λ2 ξ − 4 Æ−T Hλ1+λ3L h γ2 λ1 λ2 ξ −

12 c Æ−T Hλ1+λ3L γ1 λ12 λ2 ξ + 2 Æ−T Hλ1+λ3L r γ1 λ12 λ2 ξ +

6 Æ−T Hλ1+λ3L h T γ1 λ12 λ2 ξ − 2 Æ−T Hλ1+λ3L r γ2 λ12 λ2 ξ −

2 Æ−T Hλ1+λ3L h T γ2 λ12 λ2 ξ + 4 Æ−T Hλ1+λ3L h T2 γ1 λ13 λ2 ξ −

12 Æ−T Hλ1+λ3L h γ1 λ22 ξ + 4 c Æ−T Hλ1+λ3L γ1 λ1 λ22 ξ −

86



2 Æ−T Hλ1+λ3L r γ1 λ1 λ22 ξ − 4 Æ−T Hλ1+λ3L h T γ1 λ1 λ22 ξ −

2 Æ−T Hλ1+λ3L h T2 γ1 λ12 λ22 ξ − 12 Æ−T Hλ1+λ3L h γ1 λ1 λ3 ξ −

8 Æ−T Hλ1+λ3L h γ2 λ1 λ3 ξ + 24 c Æ−T Hλ1+λ3L γ1 λ12 λ3 ξ −

6 Æ−T Hλ1+λ3L h T γ1 λ12 λ3 ξ + 6 Æ−T Hλ1+λ3L r γ2 λ12 λ3 ξ +

6 Æ−T Hλ1+λ3L h T γ2 λ12 λ3 ξ − 8 Æ−T Hλ1+λ3L h T2 γ1 λ13 λ3 ξ +

18 Æ−T Hλ1+λ3L h γ1 λ2 λ3 ξ − 4 Æ−T Hλ1+λ3L h γ2 λ2 λ3 ξ −

24 c Æ−T Hλ1+λ3L γ1 λ1 λ2 λ3 ξ + 4 Æ−T Hλ1+λ3L r γ1 λ1 λ2 λ3 ξ +

12 Æ−T Hλ1+λ3L h T γ1 λ1 λ2 λ3 ξ − 4 Æ−T Hλ1+λ3L r γ2 λ1 λ2 λ3 ξ −

4 Æ−T Hλ1+λ3L h T γ2 λ1 λ2 λ3 ξ + 12 Æ−T Hλ1+λ3L h T2 γ1 λ12 λ2 λ3 ξ +

4 c Æ−T Hλ1+λ3L γ1 λ22 λ3 ξ − 2 Æ−T Hλ1+λ3L r γ1 λ22 λ3 ξ −

4 Æ−T Hλ1+λ3L h T γ1 λ22 λ3 ξ − 4 Æ−T Hλ1+λ3L h T2 γ1 λ1 λ22 λ3 ξ −

6 Æ−T Hλ1+λ3L h γ1 λ32 ξ − 4 Æ−T Hλ1+λ3L h γ2 λ32 ξ +

24 c Æ−T Hλ1+λ3L γ1 λ1 λ32 ξ − 6 Æ−T Hλ1+λ3L h T γ1 λ1 λ32 ξ +

6 Æ−T Hλ1+λ3L r γ2 λ1 λ32 ξ + 6 Æ−T Hλ1+λ3L h T γ2 λ1 λ32 ξ −

12 Æ−T Hλ1+λ3L h T2 γ1 λ12 λ32 ξ − 12 c Æ−T Hλ1+λ3L γ1 λ2 λ32 ξ +

2 Æ−T Hλ1+λ3L r γ1 λ2 λ32 ξ + 6 Æ−T Hλ1+λ3L h T γ1 λ2 λ32 ξ −

2 Æ−T Hλ1+λ3L r γ2 λ2 λ32 ξ − 2 Æ−T Hλ1+λ3L h T γ2 λ2 λ32 ξ +

12 Æ−T Hλ1+λ3L h T2 γ1 λ1 λ2 λ32 ξ − 2 Æ−T Hλ1+λ3L h T2 γ1 λ22 λ32 ξ +

8 c Æ−T Hλ1+λ3L γ1 λ33 ξ − 2 Æ−T Hλ1+λ3L h T γ1 λ33 ξ +

2 Æ−T Hλ1+λ3L r γ2 λ33 ξ + 2 Æ−T Hλ1+λ3L h T γ2 λ33 ξ −

8 Æ−T Hλ1+λ3L h T2 γ1 λ1 λ33 ξ + 4 Æ−T Hλ1+λ3L h T2 γ1 λ2 λ33 ξ −

2 Æ−T Hλ1+λ3L h T2 γ1 λ34 ξ + 8 Æ−T Hλ1+λ3L h λ12 ξ2 −

2 Æ−T Hλ1+λ3L r λ13 ξ2 + 6 Æ−T Hλ1+λ3L h T λ13 ξ2 +

2 Æ−T Hλ1+λ3L r T λ14 ξ2 + 3 Æ−T Hλ1+λ3L h T2 λ14 ξ2 −

18 Æ−T Hλ1+λ3L h λ1 λ2 ξ2 − 12 Æ−T Hλ1+λ3L h T λ12 λ2 ξ2 −

4 Æ−T Hλ1+λ3L r T λ13 λ2 ξ2 − 6 Æ−T Hλ1+λ3L h T2 λ13 λ2 ξ2 +

10 Æ−T Hλ1+λ3L h λ22 ξ2 + 2 Æ−T Hλ1+λ3L r λ1 λ22 ξ2 +

6 Æ−T Hλ1+λ3L h T λ1 λ22 ξ2 + 2 Æ−T Hλ1+λ3L r T λ12 λ22 ξ2 +

3 Æ−T Hλ1+λ3L h T2 λ12 λ22 ξ2 + 16 Æ−T Hλ1+λ3L h λ1 λ3 ξ2 −

6 Æ−T Hλ1+λ3L r λ12 λ3 ξ2 + 18 Æ−T Hλ1+λ3L h T λ12 λ3 ξ2 +

8 Æ−T Hλ1+λ3L r T λ13 λ3 ξ2 + 12 Æ−T Hλ1+λ3L h T2 λ13 λ3 ξ2 −

18 Æ−T Hλ1+λ3L h λ2 λ3 ξ2 − 24 Æ−T Hλ1+λ3L h T λ1 λ2 λ3 ξ2 −

12 Æ−T Hλ1+λ3L r T λ12 λ2 λ3 ξ2 − 18 Æ−T Hλ1+λ3L h T2 λ12 λ2 λ3 ξ2 +

2 Æ−T Hλ1+λ3L r λ22 λ3 ξ2 + 6 Æ−T Hλ1+λ3L h T λ22 λ3 ξ2 +
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4 Æ−T Hλ1+λ3L r T λ1 λ22 λ3 ξ2 + 6 Æ−T Hλ1+λ3L h T2 λ1 λ22 λ3 ξ2 +

8 Æ−T Hλ1+λ3L h λ32 ξ2 − 6 Æ−T Hλ1+λ3L r λ1 λ32 ξ2 +

18 Æ−T Hλ1+λ3L h T λ1 λ32 ξ2 + 12 Æ−T Hλ1+λ3L r T λ12 λ32 ξ2 +

18 Æ−T Hλ1+λ3L h T2 λ12 λ32 ξ2 − 12 Æ−T Hλ1+λ3L h T λ2 λ32 ξ2 −

12 Æ−T Hλ1+λ3L r T λ1 λ2 λ32 ξ2 − 18 Æ−T Hλ1+λ3L h T2 λ1 λ2 λ32 ξ2 +

2 Æ−T Hλ1+λ3L r T λ22 λ32 ξ2 + 3 Æ−T Hλ1+λ3L h T2 λ22 λ32 ξ2 −

2 Æ−T Hλ1+λ3L r λ33 ξ2 + 6 Æ−T Hλ1+λ3L h T λ33 ξ2 +

8 Æ−T Hλ1+λ3L r T λ1 λ33 ξ2 + 12 Æ−T Hλ1+λ3L h T2 λ1 λ33 ξ2 −

4 Æ−T Hλ1+λ3L r T λ2 λ33 ξ2 − 6 Æ−T Hλ1+λ3L h T2 λ2 λ33 ξ2 +

2 Æ−T Hλ1+λ3L r T λ34 ξ2 + 3 Æ−T Hλ1+λ3L h T2 λ34 ξ2M +

KÆ
− T Hλ1+λ3L ξ

γ1+ξ h γ14 λ1 + Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ13 γ2 λ1 − Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ14 λ2 +

Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ14 λ3 + Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ13 γ2 λ3 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ12 ξ − Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 γ2 λ12 ξ −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ13 λ2 ξ + Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ1 λ2 ξ −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ1 λ3 ξ − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 γ2 λ1 λ3 ξ +

Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ2 λ3 ξ − Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ32 ξ −

Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 γ2 λ32 ξ − 3 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ12 λ1 ξ2 −

3 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ1 γ2 λ1 ξ2 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ12 ξ2 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ12 ξ2 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 γ2 λ12 ξ2 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 γ2 λ12 ξ2 + 3 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ1 λ2 ξ2 +

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ1 λ2 ξ2 − 3 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ12 λ3 ξ2 −

3 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ1 γ2 λ3 ξ2 − 4 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ1 λ3 ξ2 −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ1 λ3 ξ2 − 4 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 γ2 λ1 λ3 ξ2 −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 γ2 λ1 λ3 ξ2 + 3 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ2 λ3 ξ2 +

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ2 λ3 ξ2 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ32 ξ2 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ32 ξ2 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 γ2 λ32 ξ2 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 γ2 λ32 ξ2 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ1 λ1 ξ3 −
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2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ2 λ1 ξ3 − Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ12 ξ3 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ12 ξ3 − Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ2 λ12 ξ3 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ2 λ12 ξ3 + 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ1 λ2 ξ3 +

3 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ1 λ2 ξ3 + 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ1 λ2 ξ3 −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ1 λ3 ξ3 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ2 λ3 ξ3 −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ1 λ3 ξ3 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ1 λ3 ξ3 −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ2 λ1 λ3 ξ3 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ2 λ1 λ3 ξ3 +

3 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ2 λ3 ξ3 + 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ2 λ3 ξ3 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ32 ξ3 − Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ32 ξ3 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ2 λ32 ξ3 − Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ2 λ32 ξ3 +

Æ
− T Hλ1+λ3L ξ

γ1+ξ h λ2 ξ4 + Æ
− T Hλ1+λ3L ξ

γ1+ξ r λ1 λ2 ξ4 + Æ
− T Hλ1+λ3L ξ

γ1+ξ h T λ1 λ2 ξ4 +

Æ
− T Hλ1+λ3L ξ

γ1+ξ r λ2 λ3 ξ4 + Æ
− T Hλ1+λ3L ξ

γ1+ξ h T λ2 λ3 ξ4O ì

IHλ1 + λ3L2 ξ Hγ1 λ1 + γ2 λ1 − γ1 λ2 + γ1 λ3 + γ2 λ3 − λ2 ξL
H−γ1 λ1 − γ2 λ1 + γ1 λ2 − γ1 λ3 − γ2 λ3 + λ2 ξLM −

K−2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ14 λ1 − Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ13 γ2 λ1 +

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ14 λ2 − 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ14 λ3 −

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ13 γ2 λ3 − 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ13 λ1 ξ +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ12 ξ + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 γ2 λ12 ξ +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ13 λ2 ξ − Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ1 λ2 ξ −

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ13 λ3 ξ + 4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ1 λ3 ξ +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 γ2 λ1 λ3 ξ −

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ2 λ3 ξ + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ32 ξ +

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 γ2 λ32 ξ + 3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ12 λ1 ξ2 +

3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ1 γ2 λ1 ξ2 + 5 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ12

ξ2 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ12 ξ2 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ
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r γ1 γ2 λ12 ξ2 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ1 γ2 λ12 ξ2 −

3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ1 λ2 ξ2 − Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h T γ12 λ1 λ2 ξ2 + 3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ12 λ3 ξ2 +

3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ1 γ2 λ3 ξ2 + 10 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

r γ12 λ1 λ3 ξ2 + 4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ1 λ3 ξ2 +

4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 γ2 λ1 λ3 ξ2 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h T γ1 γ2 λ1 λ3 ξ2 − 3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ2 λ3 ξ2 −

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ2 λ3 ξ2 + 5 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

r γ12 λ32 ξ2 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ32 ξ2 +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 γ2 λ32 ξ2 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h T γ1 γ2 λ32 ξ2 + 4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ1 λ1 ξ3 +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ2 λ1 ξ3 + 4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ12 ξ3 +

3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ12 ξ3 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ2 λ12 ξ3 +

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ2 λ12 ξ3 − 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ1 λ2 ξ3 −

3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ1 λ2 ξ3 − 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h T γ1 λ1 λ2 ξ3 + 4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ1 λ3 ξ3 +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ2 λ3 ξ3 + 8 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ1 λ3 ξ3 +

6 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ1 λ3 ξ3 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

r γ2 λ1 λ3 ξ3 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ2 λ1 λ3 ξ3 −

3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ2 λ3 ξ3 − 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h T γ1 λ2 λ3 ξ3 + 4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ32 ξ3 +

3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ32 ξ3 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ2 λ32 ξ3 +

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ2 λ32 ξ3 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h λ1 ξ4 +

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r λ12 ξ4 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T λ12 ξ4 −

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h λ2 ξ4 − Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r λ1 λ2 ξ4 −
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Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T λ1 λ2 ξ4 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h λ3 ξ4 +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r λ1 λ3 ξ4 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T λ1 λ3 ξ4 −

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r λ2 λ3 ξ4 − Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T λ2 λ3 ξ4 +

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r λ32 ξ4 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T λ32 ξ4O ì

IHλ1 + λ3L2 ξ H−2 γ1 λ1 − γ2 λ1 + γ1 λ2 − 2 γ1 λ3 −

γ2 λ3 − λ1 ξ + λ2 ξ − λ3 ξL2M +

Æ−T λ2+2 T Hλ1+λ3L Æ−2 T Hλ1+λ3L h T2 H2 γ2 − ξL
2 H2 λ1 − λ2 + 2 λ3L +

IT I−4 c Æ−2 T Hλ1+λ3L γ1 λ12 + Æ−2 T Hλ1+λ3L h γ2 λ2 + 2 c Æ−2 T Hλ1+λ3L

γ1 λ1 λ2 − 8 c Æ−2 T Hλ1+λ3L γ1 λ1 λ3 + 2 c Æ−2 T Hλ1+λ3L γ1

λ2 λ3 − 4 c Æ−2 T Hλ1+λ3L γ1 λ32 − 3 Æ−2 T Hλ1+λ3L h λ1 ξ +

2 Æ−2 T Hλ1+λ3L r λ12 ξ − 2 Æ−2 T Hλ1+λ3L h T λ12 ξ + Æ−2 T Hλ1+λ3L

h λ2 ξ − Æ−2 T Hλ1+λ3L r λ1 λ2 ξ + Æ−2 T Hλ1+λ3L h T λ1 λ2 ξ −

3 Æ−2 T Hλ1+λ3L h λ3 ξ + 4 Æ−2 T Hλ1+λ3L r λ1 λ3 ξ − 4 Æ−2 T Hλ1+λ3L

h T λ1 λ3 ξ − Æ−2 T Hλ1+λ3L r λ2 λ3 ξ + Æ−2 T Hλ1+λ3L h T λ2

λ3 ξ + 2 Æ−2 T Hλ1+λ3L r λ32 ξ − 2 Æ−2 T Hλ1+λ3L h T λ32 ξMMë
HH−2 λ1 + λ2 − 2 λ3L Hλ1 + λ3L H2 λ1 − λ2 + 2 λ3LL −

1

2 H−2 λ1 + λ2 − 2 λ3L3 Hλ1 + λ3L2
 

I24 Æ−2 T Hλ1+λ3L h γ1 λ12 − 16 c Æ−2 T Hλ1+λ3L γ1 λ13 +

16 Æ−2 T Hλ1+λ3L h T γ1 λ13 − 8 c Æ−2 T Hλ1+λ3L T γ1 λ14 +

4 Æ−2 T Hλ1+λ3L h T2 γ1 λ14 − 24 Æ−2 T Hλ1+λ3L h γ1 λ1 λ2 +

2 Æ−2 T Hλ1+λ3L h γ2 λ1 λ2 + 12 c Æ−2 T Hλ1+λ3L γ1 λ12 λ2 −

16 Æ−2 T Hλ1+λ3L h T γ1 λ12 λ2 + 8 c Æ−2 T Hλ1+λ3L T γ1 λ13 λ2 −

4 Æ−2 T Hλ1+λ3L h T2 γ1 λ13 λ2 + 6 Æ−2 T Hλ1+λ3L h γ1 λ22 −

2 c Æ−2 T Hλ1+λ3L γ1 λ1 λ22 + 4 Æ−2 T Hλ1+λ3L h T γ1 λ1 λ22 −

2 c Æ−2 T Hλ1+λ3L T γ1 λ12 λ22 + Æ−2 T Hλ1+λ3L h T2 γ1 λ12 λ22 +

48 Æ−2 T Hλ1+λ3L h γ1 λ1 λ3 − 48 c Æ−2 T Hλ1+λ3L γ1 λ12 λ3 +

48 Æ−2 T Hλ1+λ3L h T γ1 λ12 λ3 − 32 c Æ−2 T Hλ1+λ3L T γ1 λ13 λ3 +

16 Æ−2 T Hλ1+λ3L h T2 γ1 λ13 λ3 − 24 Æ−2 T Hλ1+λ3L h γ1 λ2 λ3 +

2 Æ−2 T Hλ1+λ3L h γ2 λ2 λ3 + 24 c Æ−2 T Hλ1+λ3L γ1 λ1 λ2 λ3 − 32
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Æ−2 T Hλ1+λ3L h T γ1 λ1 λ2 λ3 + 24 c Æ−2 T Hλ1+λ3L T γ1 λ12 λ2 λ3 −

12 Æ−2 T Hλ1+λ3L h T2 γ1 λ12 λ2 λ3 − 2 c Æ−2 T Hλ1+λ3L γ1 λ22 λ3 +

4 Æ−2 T Hλ1+λ3L h T γ1 λ22 λ3 − 4 c Æ−2 T Hλ1+λ3L T γ1 λ1 λ22 λ3 +

2 Æ−2 T Hλ1+λ3L h T2 γ1 λ1 λ22 λ3 + 24 Æ−2 T Hλ1+λ3L h γ1 λ32 −

48 c Æ−2 T Hλ1+λ3L γ1 λ1 λ32 + 48 Æ−2 T Hλ1+λ3L h T γ1 λ1 λ32 −

48 c Æ−2 T Hλ1+λ3L T γ1 λ12 λ32 + 24 Æ−2 T Hλ1+λ3L h T2 γ1 λ12 λ32 +

12 c Æ−2 T Hλ1+λ3L γ1 λ2 λ32 − 16 Æ−2 T Hλ1+λ3L h T γ1 λ2 λ32 + 24 c

Æ−2 T Hλ1+λ3L T γ1 λ1 λ2 λ32 − 12 Æ−2 T Hλ1+λ3L h T2 γ1 λ1 λ2 λ32 −

2 c Æ−2 T Hλ1+λ3L T γ1 λ22 λ32 + Æ−2 T Hλ1+λ3L h T2 γ1 λ22 λ32 −

16 c Æ−2 T Hλ1+λ3L γ1 λ33 + 16 Æ−2 T Hλ1+λ3L h T γ1 λ33 −

32 c Æ−2 T Hλ1+λ3L T γ1 λ1 λ33 + 16 Æ−2 T Hλ1+λ3L h T2 γ1 λ1 λ33 +

8 c Æ−2 T Hλ1+λ3L T γ1 λ2 λ33 − 4 Æ−2 T Hλ1+λ3L h T2 γ1 λ2 λ33 −

8 c Æ−2 T Hλ1+λ3L T γ1 λ34 + 4 Æ−2 T Hλ1+λ3L h T2 γ1 λ34 −

30 Æ−2 T Hλ1+λ3L h λ12 ξ − 4 Æ−2 T Hλ1+λ3L r λ13 ξ −

28 Æ−2 T Hλ1+λ3L h T λ13 ξ − 8 Æ−2 T Hλ1+λ3L h T2 λ14 ξ +

26 Æ−2 T Hλ1+λ3L h λ1 λ2 ξ + 6 Æ−2 T Hλ1+λ3L r λ12 λ2 ξ +

26 Æ−2 T Hλ1+λ3L h T λ12 λ2 ξ + 8 Æ−2 T Hλ1+λ3L h T2 λ13 λ2 ξ −

6 Æ−2 T Hλ1+λ3L h λ22 ξ − 2 Æ−2 T Hλ1+λ3L r λ1 λ22 ξ −

6 Æ−2 T Hλ1+λ3L h T λ1 λ22 ξ − 2 Æ−2 T Hλ1+λ3L h T2 λ12 λ22 ξ −

60 Æ−2 T Hλ1+λ3L h λ1 λ3 ξ − 12 Æ−2 T Hλ1+λ3L r λ12 λ3 ξ −

84 Æ−2 T Hλ1+λ3L h T λ12 λ3 ξ − 32 Æ−2 T Hλ1+λ3L h T2 λ13 λ3 ξ +

26 Æ−2 T Hλ1+λ3L h λ2 λ3 ξ + 12 Æ−2 T Hλ1+λ3L r λ1 λ2 λ3 ξ +

52 Æ−2 T Hλ1+λ3L h T λ1 λ2 λ3 ξ + 24 Æ−2 T Hλ1+λ3L h T2 λ12 λ2 λ3 ξ −

2 Æ−2 T Hλ1+λ3L r λ22 λ3 ξ − 6 Æ−2 T Hλ1+λ3L h T λ22 λ3 ξ −

4 Æ−2 T Hλ1+λ3L h T2 λ1 λ22 λ3 ξ − 30 Æ−2 T Hλ1+λ3L h λ32 ξ −

12 Æ−2 T Hλ1+λ3L r λ1 λ32 ξ − 84 Æ−2 T Hλ1+λ3L h T λ1 λ32 ξ −

48 Æ−2 T Hλ1+λ3L h T2 λ12 λ32 ξ + 6 Æ−2 T Hλ1+λ3L r λ2 λ32 ξ +

26 Æ−2 T Hλ1+λ3L h T λ2 λ32 ξ + 24 Æ−2 T Hλ1+λ3L h T2 λ1 λ2 λ32 ξ −

2 Æ−2 T Hλ1+λ3L h T2 λ22 λ32 ξ − 4 Æ−2 T Hλ1+λ3L r λ33 ξ −

28 Æ−2 T Hλ1+λ3L h T λ33 ξ − 32 Æ−2 T Hλ1+λ3L h T2 λ1 λ33 ξ +

8 Æ−2 T Hλ1+λ3L h T2 λ2 λ33 ξ − 8 Æ−2 T Hλ1+λ3L h T2 λ34 ξM +
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Æ−T λ2
h T2 Iγ12 + 2 γ1 γ2 + γ22 − 2 γ1 ξ − 3 γ2 ξ + ξ2M

2 λ2 ξ
−

1

λ22 Hλ1 + λ3L ξ
 T I−h γ12 λ1 − 2 h γ1 γ2 λ1 − h γ22 λ1 −

h γ12 λ2 − h γ1 γ2 λ2 − h γ12 λ3 − 2 h γ1 γ2 λ3 − h γ22 λ3 +

2 h γ1 λ1 ξ + 3 h γ2 λ1 ξ + 3 h γ1 λ2 ξ + h γ2 λ2 ξ +

r γ1 λ1 λ2 ξ − c γ2 λ1 λ2 ξ + r γ2 λ1 λ2 ξ + 2 h γ1 λ3 ξ +

3 h γ2 λ3 ξ + r γ1 λ2 λ3 ξ − c γ2 λ2 λ3 ξ + r γ2 λ2 λ3 ξ −

h λ1 ξ2 − 2 h λ2 ξ2 − r λ1 λ2 ξ2 − h λ3 ξ2 − r λ2 λ3 ξ2M −

1

λ23 Hλ1 + λ3L2 ξ
 I−h γ12 λ12 − 2 h γ1 γ2 λ12 − h γ22 λ12 −

h γ12 λ1 λ2 − h γ1 γ2 λ1 λ2 − h γ12 λ22 − 2 h γ12 λ1 λ3 − 4 h γ1

γ2 λ1 λ3 − 2 h γ22 λ1 λ3 − h γ12 λ2 λ3 − h γ1 γ2 λ2 λ3 − h γ12

λ32 − 2 h γ1 γ2 λ32 − h γ22 λ32 + 2 h γ1 λ12 ξ + 3 h γ2 λ12 ξ +

3 h γ1 λ1 λ2 ξ + h γ2 λ1 λ2 ξ + r γ1 λ12 λ2 ξ − c γ2 λ12 λ2 ξ +

r γ2 λ12 λ2 ξ + 3 h γ1 λ22 ξ − c γ1 λ1 λ22 ξ + r γ1 λ1 λ22 ξ +

4 h γ1 λ1 λ3 ξ + 6 h γ2 λ1 λ3 ξ + 3 h γ1 λ2 λ3 ξ + h γ2 λ2 λ3 ξ +

2 r γ1 λ1 λ2 λ3 ξ − 2 c γ2 λ1 λ2 λ3 ξ + 2 r γ2 λ1 λ2 λ3 ξ −

c γ1 λ22 λ3 ξ + r γ1 λ22 λ3 ξ + 2 h γ1 λ32 ξ + 3 h γ2 λ32 ξ +

r γ1 λ2 λ32 ξ − c γ2 λ2 λ32 ξ + r γ2 λ2 λ32 ξ − h λ12 ξ2 −

2 h λ1 λ2 ξ2 − r λ12 λ2 ξ2 − 2 h λ22 ξ2 − 2 h λ1 λ3 ξ2 −

2 h λ2 λ3 ξ2 − 2 r λ1 λ2 λ3 ξ2 − h λ32 ξ2 − r λ2 λ32 ξ2M +

Æ−T λ2+T Hλ1+λ3L −
Æ−T Hλ1+λ3L h T2 I−γ12 − 2 γ1 γ2 − γ22 + 4 γ2 ξM

2 Hλ1 − λ2 + λ3L ξ
+

IT IÆ−T Hλ1+λ3L h γ1 γ2 λ1 + Æ−T Hλ1+λ3L h γ22 λ1 + Æ−T Hλ1+λ3L h

γ12 λ2 + Æ−T Hλ1+λ3L h γ1 γ2 λ2 + Æ−T Hλ1+λ3L h γ1 γ2 λ3 +

Æ−T Hλ1+λ3L h γ22 λ3 + 3 Æ−T Hλ1+λ3L h γ1 λ1 ξ − 2 Æ−T Hλ1+λ3L

h γ2 λ1 ξ + 2 c Æ−T Hλ1+λ3L γ1 λ12 ξ + Æ−T Hλ1+λ3L r γ1 λ12 ξ +

Æ−T Hλ1+λ3L h T γ1 λ12 ξ + Æ−T Hλ1+λ3L r γ2 λ12 ξ + Æ−T Hλ1+λ3L h

T γ2 λ12 ξ − 3 Æ−T Hλ1+λ3L h γ1 λ2 ξ − 2 Æ−T Hλ1+λ3L h γ2 λ2 ξ −

2 c Æ−T Hλ1+λ3L γ1 λ1 λ2 ξ − Æ−T Hλ1+λ3L r γ1 λ1 λ2 ξ −
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Æ−T Hλ1+λ3L h T γ1 λ1 λ2 ξ − Æ−T Hλ1+λ3L r γ2 λ1 λ2 ξ −

Æ−T Hλ1+λ3L h T γ2 λ1 λ2 ξ + 3 Æ−T Hλ1+λ3L h γ1 λ3 ξ −

2 Æ−T Hλ1+λ3L h γ2 λ3 ξ + 4 c Æ−T Hλ1+λ3L γ1 λ1 λ3 ξ +

2 Æ−T Hλ1+λ3L r γ1 λ1 λ3 ξ + 2 Æ−T Hλ1+λ3L h T γ1 λ1 λ3 ξ +

2 Æ−T Hλ1+λ3L r γ2 λ1 λ3 ξ + 2 Æ−T Hλ1+λ3L h T γ2 λ1 λ3 ξ −

2 c Æ−T Hλ1+λ3L γ1 λ2 λ3 ξ − Æ−T Hλ1+λ3L r γ1 λ2 λ3 ξ −

Æ−T Hλ1+λ3L h T γ1 λ2 λ3 ξ − Æ−T Hλ1+λ3L r γ2 λ2 λ3 ξ −

Æ−T Hλ1+λ3L h T γ2 λ2 λ3 ξ + 2 c Æ−T Hλ1+λ3L γ1 λ32 ξ +

Æ−T Hλ1+λ3L r γ1 λ32 ξ + Æ−T Hλ1+λ3L h T γ1 λ32 ξ + Æ−T Hλ1+λ3L

r γ2 λ32 ξ + Æ−T Hλ1+λ3L h T γ2 λ32 ξ − Æ−T Hλ1+λ3L h λ1 ξ2 −

2 Æ−T Hλ1+λ3L r λ12 ξ2 + Æ−T Hλ1+λ3L h λ2 ξ2 + 2 Æ−T Hλ1+λ3L

r λ1 λ2 ξ2 − Æ−T Hλ1+λ3L h λ3 ξ2 − 4 Æ−T Hλ1+λ3L r λ1 λ3 ξ2 +

2 Æ−T Hλ1+λ3L r λ2 λ3 ξ2 − 2 Æ−T Hλ1+λ3L r λ32 ξ2MMë
HH−λ1 + λ2 − λ3L Hλ1 + λ3L Hλ1 − λ2 + λ3L ξL −

1

2 H−λ1 + λ2 − λ3L3 Hλ1 + λ3L2 ξ
 I2 Æ−T Hλ1+λ3L h γ12 λ12 +

2 Æ−T Hλ1+λ3L h γ1 γ2 λ12 + 2 Æ−T Hλ1+λ3L h γ22 λ12 −

2 Æ−T Hλ1+λ3L h γ12 λ1 λ2 + 2 Æ−T Hλ1+λ3L h γ1 γ2 λ1 λ2 +

2 Æ−T Hλ1+λ3L h γ12 λ22 + 4 Æ−T Hλ1+λ3L h γ12 λ1 λ3 +

4 Æ−T Hλ1+λ3L h γ1 γ2 λ1 λ3 + 4 Æ−T Hλ1+λ3L h γ22 λ1 λ3 −

2 Æ−T Hλ1+λ3L h γ12 λ2 λ3 + 2 Æ−T Hλ1+λ3L h γ1 γ2 λ2 λ3 +

2 Æ−T Hλ1+λ3L h γ12 λ32 + 2 Æ−T Hλ1+λ3L h γ1 γ2 λ32 + 2 Æ−T Hλ1+λ3L

h γ22 λ32 − 6 Æ−T Hλ1+λ3L h γ1 λ12 ξ − 4 Æ−T Hλ1+λ3L h γ2 λ12 ξ +

8 c Æ−T Hλ1+λ3L γ1 λ13 ξ − 2 Æ−T Hλ1+λ3L h T γ1 λ13 ξ +

2 Æ−T Hλ1+λ3L r γ2 λ13 ξ + 2 Æ−T Hλ1+λ3L h T γ2 λ13 ξ −

2 Æ−T Hλ1+λ3L h T2 γ1 λ14 ξ + 18 Æ−T Hλ1+λ3L h γ1 λ1 λ2 ξ −

4 Æ−T Hλ1+λ3L h γ2 λ1 λ2 ξ − 12 c Æ−T Hλ1+λ3L γ1 λ12 λ2 ξ +

2 Æ−T Hλ1+λ3L r γ1 λ12 λ2 ξ + 6 Æ−T Hλ1+λ3L h T γ1 λ12 λ2 ξ −

2 Æ−T Hλ1+λ3L r γ2 λ12 λ2 ξ − 2 Æ−T Hλ1+λ3L h T γ2 λ12 λ2 ξ +

4 Æ−T Hλ1+λ3L h T2 γ1 λ13 λ2 ξ − 12 Æ−T Hλ1+λ3L h γ1 λ22 ξ +

4 c Æ−T Hλ1+λ3L γ1 λ1 λ22 ξ − 2 Æ−T Hλ1+λ3L r γ1 λ1 λ22 ξ −

4 Æ−T Hλ1+λ3L h T γ1 λ1 λ22 ξ − 2 Æ−T Hλ1+λ3L h T2 γ1 λ12 λ22 ξ −

12 Æ−T Hλ1+λ3L h γ1 λ1 λ3 ξ − 8 Æ−T Hλ1+λ3L h γ2 λ1 λ3 ξ +

24 c Æ−T Hλ1+λ3L γ1 λ12 λ3 ξ − 6 Æ−T Hλ1+λ3L h T γ1 λ12 λ3 ξ +
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6 Æ−T Hλ1+λ3L r γ2 λ12 λ3 ξ + 6 Æ−T Hλ1+λ3L h T γ2 λ12 λ3 ξ −

8 Æ−T Hλ1+λ3L h T2 γ1 λ13 λ3 ξ + 18 Æ−T Hλ1+λ3L h γ1 λ2 λ3 ξ −

4 Æ−T Hλ1+λ3L h γ2 λ2 λ3 ξ − 24 c Æ−T Hλ1+λ3L γ1 λ1 λ2 λ3 ξ +

4 Æ−T Hλ1+λ3L r γ1 λ1 λ2 λ3 ξ + 12 Æ−T Hλ1+λ3L h T γ1 λ1 λ2 λ3 ξ −

4 Æ−T Hλ1+λ3L r γ2 λ1 λ2 λ3 ξ − 4 Æ−T Hλ1+λ3L h T γ2 λ1 λ2 λ3 ξ +

12 Æ−T Hλ1+λ3L h T2 γ1 λ12 λ2 λ3 ξ + 4 c Æ−T Hλ1+λ3L γ1 λ22 λ3 ξ −

2 Æ−T Hλ1+λ3L r γ1 λ22 λ3 ξ − 4 Æ−T Hλ1+λ3L h T γ1 λ22 λ3 ξ −

4 Æ−T Hλ1+λ3L h T2 γ1 λ1 λ22 λ3 ξ − 6 Æ−T Hλ1+λ3L h γ1 λ32 ξ −

4 Æ−T Hλ1+λ3L h γ2 λ32 ξ + 24 c Æ−T Hλ1+λ3L γ1 λ1 λ32 ξ −

6 Æ−T Hλ1+λ3L h T γ1 λ1 λ32 ξ + 6 Æ−T Hλ1+λ3L r γ2 λ1 λ32 ξ +

6 Æ−T Hλ1+λ3L h T γ2 λ1 λ32 ξ − 12 Æ−T Hλ1+λ3L h T2 γ1 λ12 λ32 ξ −

12 c Æ−T Hλ1+λ3L γ1 λ2 λ32 ξ + 2 Æ−T Hλ1+λ3L r γ1 λ2 λ32 ξ +

6 Æ−T Hλ1+λ3L h T γ1 λ2 λ32 ξ − 2 Æ−T Hλ1+λ3L r γ2 λ2 λ32 ξ −

2 Æ−T Hλ1+λ3L h T γ2 λ2 λ32 ξ + 12 Æ−T Hλ1+λ3L h T2 γ1 λ1 λ2 λ32

ξ − 2 Æ−T Hλ1+λ3L h T2 γ1 λ22 λ32 ξ + 8 c Æ−T Hλ1+λ3L γ1 λ33 ξ −

2 Æ−T Hλ1+λ3L h T γ1 λ33 ξ + 2 Æ−T Hλ1+λ3L r γ2 λ33 ξ +

2 Æ−T Hλ1+λ3L h T γ2 λ33 ξ − 8 Æ−T Hλ1+λ3L h T2 γ1 λ1 λ33 ξ +

4 Æ−T Hλ1+λ3L h T2 γ1 λ2 λ33 ξ − 2 Æ−T Hλ1+λ3L h T2 γ1 λ34 ξ +

8 Æ−T Hλ1+λ3L h λ12 ξ2 − 2 Æ−T Hλ1+λ3L r λ13 ξ2 +

6 Æ−T Hλ1+λ3L h T λ13 ξ2 + 2 Æ−T Hλ1+λ3L r T λ14 ξ2 +

3 Æ−T Hλ1+λ3L h T2 λ14 ξ2 − 18 Æ−T Hλ1+λ3L h λ1 λ2 ξ2 −

12 Æ−T Hλ1+λ3L h T λ12 λ2 ξ2 − 4 Æ−T Hλ1+λ3L r T λ13 λ2 ξ2 −

6 Æ−T Hλ1+λ3L h T2 λ13 λ2 ξ2 + 10 Æ−T Hλ1+λ3L h λ22 ξ2 +

2 Æ−T Hλ1+λ3L r λ1 λ22 ξ2 + 6 Æ−T Hλ1+λ3L h T λ1 λ22 ξ2 +

2 Æ−T Hλ1+λ3L r T λ12 λ22 ξ2 + 3 Æ−T Hλ1+λ3L h T2 λ12 λ22 ξ2 +

16 Æ−T Hλ1+λ3L h λ1 λ3 ξ2 − 6 Æ−T Hλ1+λ3L r λ12 λ3 ξ2 +

18 Æ−T Hλ1+λ3L h T λ12 λ3 ξ2 + 8 Æ−T Hλ1+λ3L r T λ13 λ3 ξ2 +

12 Æ−T Hλ1+λ3L h T2 λ13 λ3 ξ2 − 18 Æ−T Hλ1+λ3L h λ2 λ3 ξ2 −

24 Æ−T Hλ1+λ3L h T λ1 λ2 λ3 ξ2 − 12 Æ−T Hλ1+λ3L r T λ12 λ2 λ3 ξ2 −

18 Æ−T Hλ1+λ3L h T2 λ12 λ2 λ3 ξ2 + 2 Æ−T Hλ1+λ3L r λ22 λ3 ξ2 +

6 Æ−T Hλ1+λ3L h T λ22 λ3 ξ2 + 4 Æ−T Hλ1+λ3L r T λ1 λ22 λ3 ξ2 +

6 Æ−T Hλ1+λ3L h T2 λ1 λ22 λ3 ξ2 + 8 Æ−T Hλ1+λ3L h λ32 ξ2 −

6 Æ−T Hλ1+λ3L r λ1 λ32 ξ2 + 18 Æ−T Hλ1+λ3L h T λ1 λ32 ξ2 +

12 Æ−T Hλ1+λ3L r T λ12 λ32 ξ2 + 18 Æ−T Hλ1+λ3L h T2 λ12 λ32 ξ2 −
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12 Æ−T Hλ1+λ3L h T λ2 λ32 ξ2 − 12 Æ−T Hλ1+λ3L r T λ1 λ2 λ32 ξ2 −

18 Æ−T Hλ1+λ3L h T2 λ1 λ2 λ32 ξ2 + 2 Æ−T Hλ1+λ3L r T λ22 λ32 ξ2 +

3 Æ−T Hλ1+λ3L h T2 λ22 λ32 ξ2 − 2 Æ−T Hλ1+λ3L r λ33 ξ2 +

6 Æ−T Hλ1+λ3L h T λ33 ξ2 + 8 Æ−T Hλ1+λ3L r T λ1 λ33 ξ2 +

12 Æ−T Hλ1+λ3L h T2 λ1 λ33 ξ2 − 4 Æ−T Hλ1+λ3L r T λ2 λ33 ξ2 −

6 Æ−T Hλ1+λ3L h T2 λ2 λ33 ξ2 + 2 Æ−T Hλ1+λ3L r T λ34 ξ2 +

3 Æ−T Hλ1+λ3L h T2 λ34 ξ2M + Æ
T Hγ1+γ2L Hλ1+λ3L

γ1+ξ

Æ−T λ2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T Hγ1 + γ2L Hγ1 + ξL
Hλ1 + λ3L Hγ1 λ1 + γ2 λ1 − γ1 λ2 + γ1 λ3 + γ2 λ3 − λ2 ξL −

KÆ
− T Hλ1+λ3L ξ

γ1+ξ h γ14 λ1 + Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ13 γ2 λ1 − Æ
− T Hλ1+λ3L ξ

γ1+ξ h

γ14 λ2 + Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ14 λ3 + Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ13 γ2 λ3 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ12 ξ − Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 γ2 λ12 ξ −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ13 λ2 ξ + Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ1 λ2 ξ −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ1 λ3 ξ − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 γ2 λ1 λ3 ξ +

Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ2 λ3 ξ − Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ32 ξ −

Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 γ2 λ32 ξ − 3 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ12 λ1 ξ2 −

3 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ1 γ2 λ1 ξ2 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ12 ξ2 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ12 ξ2 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 γ2 λ12 ξ2 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 γ2 λ12 ξ2 + 3 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ1 λ2 ξ2 +

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ1 λ2 ξ2 − 3 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ12 λ3 ξ2 −

3 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ1 γ2 λ3 ξ2 − 4 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ1 λ3 ξ2 −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ1 λ3 ξ2 − 4 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 γ2 λ1 λ3 ξ2 −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 γ2 λ1 λ3 ξ2 + 3 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ2 λ3 ξ2 +

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ2 λ3 ξ2 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ32 ξ2 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ32 ξ2 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 γ2 λ32 ξ2 −

96



Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 γ2 λ32 ξ2 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ1 λ1 ξ3 −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ2 λ1 ξ3 − Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ12 ξ3 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ12 ξ3 − Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ2 λ12 ξ3 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ2 λ12 ξ3 + 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ1 λ2 ξ3 +

3 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ1 λ2 ξ3 + 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ1 λ2 ξ3 −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ1 λ3 ξ3 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h γ2 λ3 ξ3 −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ1 λ3 ξ3 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ1 λ3 ξ3 −

2 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ2 λ1 λ3 ξ3 − 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ2 λ1 λ3 ξ3 +

3 Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ2 λ3 ξ3 + 2 Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ2 λ3 ξ3 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ32 ξ3 − Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ32 ξ3 −

Æ
− T Hλ1+λ3L ξ

γ1+ξ r γ2 λ32 ξ3 − Æ
− T Hλ1+λ3L ξ

γ1+ξ h T γ2 λ32 ξ3 +

Æ
− T Hλ1+λ3L ξ

γ1+ξ h λ2 ξ4 + Æ
− T Hλ1+λ3L ξ

γ1+ξ r λ1 λ2 ξ4 + Æ
− T Hλ1+λ3L ξ

γ1+ξ h T λ1

λ2 ξ4 + Æ
− T Hλ1+λ3L ξ

γ1+ξ r λ2 λ3 ξ4 + Æ
− T Hλ1+λ3L ξ

γ1+ξ h T λ2 λ3 ξ4O ì

IHλ1 + λ3L2 ξ Hγ1 λ1 + γ2 λ1 − γ1 λ2 + γ1 λ3 + γ2 λ3 − λ2 ξL

H−γ1 λ1 − γ2 λ1 + γ1 λ2 − γ1 λ3 − γ2 λ3 + λ2 ξLM +

Æ−T λ2+T Hλ1+λ3L K−KÆ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T Hγ1 + γ2L Hγ1 + ξLO ì
HHλ1 + λ3L H2 γ1 λ1 + γ2 λ1 − γ1 λ2 + 2 γ1 λ3 + γ2 λ3 +

λ1 ξ − λ2 ξ + λ3 ξLL + K−2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ14 λ1 −

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ13 γ2 λ1 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h

γ14 λ2 − 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ14 λ3 − Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h γ13 γ2 λ3 − 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ13 λ1 ξ +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ12 ξ + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

r γ12 γ2 λ12 ξ + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ13 λ2 ξ −

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ1 λ2 ξ − 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ
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h γ13 λ3 ξ + 4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ1 λ3 ξ +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 γ2 λ1 λ3 ξ − Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

r γ13 λ2 λ3 ξ + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ13 λ32 ξ +

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 γ2 λ32 ξ + 3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h γ12 λ1 ξ2 + 3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ1 γ2 λ1 ξ2 +

5 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ12 ξ2 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h T γ12 λ12 ξ2 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 γ2 λ12 ξ2 +

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ1 γ2 λ12 ξ2 − 3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

r γ12 λ1 λ2 ξ2 − Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ1 λ2 ξ2 +

3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ12 λ3 ξ2 + 3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h γ1 γ2 λ3 ξ2 + 10 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ1 λ3 ξ2 +

4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ1 λ3 ξ2 + 4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

r γ1 γ2 λ1 λ3 ξ2 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ1 γ2 λ1 λ3 ξ2 −

3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ2 λ3 ξ2 − Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h T γ12 λ2 λ3 ξ2 + 5 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ12 λ32 ξ2 +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ12 λ32 ξ2 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

r γ1 γ2 λ32 ξ2 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ1 γ2 λ32 ξ2 + 4

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ1 λ1 ξ3 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ2 λ1

ξ3 + 4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ12 ξ3 + 3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h T γ1 λ12 ξ3 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ2 λ12 ξ3 +

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ2 λ12 ξ3 − 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h γ1 λ2 ξ3 − 3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ1 λ2 ξ3 −

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ1 λ2 ξ3 + 4 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h γ1 λ3 ξ3 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h γ2 λ3 ξ3 +

8 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ1 λ3 ξ3 + 6 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ
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h T γ1 λ1 λ3 ξ3 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ2 λ1 λ3 ξ3 +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ2 λ1 λ3 ξ3 − 3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

r γ1 λ2 λ3 ξ3 − 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ1 λ2 λ3 ξ3 + 4

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ1 λ32 ξ3 + 3 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T γ1

λ32 ξ3 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r γ2 λ32 ξ3 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h T γ2 λ32 ξ3 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h λ1 ξ4 +

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r λ12 ξ4 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T λ12 ξ4 −

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h λ2 ξ4 − Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r λ1 λ2 ξ4 −

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T λ1 λ2 ξ4 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h λ3 ξ4 +

2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r λ1 λ3 ξ4 + 2 Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

h T λ1 λ3 ξ4 − Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ r λ2 λ3 ξ4 −

Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T λ2 λ3 ξ4 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ

r λ32 ξ4 + Æ
−T Hλ1+λ3L− T Hλ1+λ3L ξ

γ1+ξ h T λ32 ξ4O ì

IHλ1 + λ3L2 ξ H−2 γ1 λ1 − γ2 λ1 + γ1 λ2 − 2 γ1 λ3 −

γ2 λ3 − λ1 ξ + λ2 ξ − λ3 ξL2MO +

1

λ2 + λ3
 I1 − Æ−T λ1M λ12 1

2 Hλ1 − 2 λ2 − 2 λ3L3 Hλ2 + λ3L2
 

I6 Æ−2 T Hλ2+λ3L h γ2 λ12 +

2 Æ−2 T Hλ2+λ3L h γ1 λ1 λ2 −

24 Æ−2 T Hλ2+λ3L h γ2 λ1 λ2 −

2 c Æ−2 T Hλ2+λ3L γ2 λ12 λ2 +

4 Æ−2 T Hλ2+λ3L h T γ2 λ12 λ2 +

24 Æ−2 T Hλ2+λ3L h γ2 λ22 +

12 c Æ−2 T Hλ2+λ3L γ2 λ1 λ22 −

16 Æ−2 T Hλ2+λ3L h T γ2 λ1 λ22 −

2 c Æ−2 T Hλ2+λ3L T γ2 λ12 λ22 +
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Æ−2 T Hλ2+λ3L h T2 γ2 λ12 λ22 −

16 c Æ−2 T Hλ2+λ3L γ2 λ23 +

16 Æ−2 T Hλ2+λ3L h T γ2 λ23 +

8 c Æ−2 T Hλ2+λ3L T γ2 λ1 λ23 −

4 Æ−2 T Hλ2+λ3L h T2 γ2 λ1 λ23 −

8 c Æ−2 T Hλ2+λ3L T γ2 λ24 +

4 Æ−2 T Hλ2+λ3L h T2 γ2 λ24 +

2 Æ−2 T Hλ2+λ3L h γ1 λ1 λ3 −

24 Æ−2 T Hλ2+λ3L h γ2 λ1 λ3 −

2 c Æ−2 T Hλ2+λ3L γ2 λ12 λ3 +

4 Æ−2 T Hλ2+λ3L h T γ2 λ12 λ3 +

48 Æ−2 T Hλ2+λ3L h γ2 λ2 λ3 +

24 c Æ−2 T Hλ2+λ3L γ2 λ1 λ2 λ3 −

32 Æ−2 T Hλ2+λ3L h T γ2 λ1 λ2 λ3 −

4 c Æ−2 T Hλ2+λ3L T γ2 λ12 λ2 λ3 +

2 Æ−2 T Hλ2+λ3L h T2 γ2 λ12 λ2 λ3 −

48 c Æ−2 T Hλ2+λ3L γ2 λ22 λ3 +

48 Æ−2 T Hλ2+λ3L h T γ2 λ22 λ3 +

24 c Æ−2 T Hλ2+λ3L T γ2 λ1 λ22 λ3 −

12 Æ−2 T Hλ2+λ3L h T2 γ2 λ1 λ22 λ3 −

32 c Æ−2 T Hλ2+λ3L T γ2 λ23 λ3 +

16 Æ−2 T Hλ2+λ3L h T2 γ2 λ23 λ3 +

24 Æ−2 T Hλ2+λ3L h γ2 λ32 +

12 c Æ−2 T Hλ2+λ3L γ2 λ1 λ32 −

16 Æ−2 T Hλ2+λ3L h T γ2 λ1 λ32 −

2 c Æ−2 T Hλ2+λ3L T γ2 λ12 λ32 +

Æ−2 T Hλ2+λ3L h T2 γ2 λ12 λ32 −

48 c Æ−2 T Hλ2+λ3L γ2 λ2 λ32 +

48 Æ−2 T Hλ2+λ3L h T γ2 λ2 λ32 +

24 c Æ−2 T Hλ2+λ3L T γ2 λ1 λ2 λ32 −

12 Æ−2 T Hλ2+λ3L h T2 γ2 λ1 λ2 λ32 −

48 c Æ−2 T Hλ2+λ3L T γ2 λ22 λ32 +

24 Æ−2 T Hλ2+λ3L h T2 γ2 λ22 λ32 −

16 c Æ−2 T Hλ2+λ3L γ2 λ33 +
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16 Æ−2 T Hλ2+λ3L h T γ2 λ33 +

8 c Æ−2 T Hλ2+λ3L T γ2 λ1 λ33 −

4 Æ−2 T Hλ2+λ3L h T2 γ2 λ1 λ33 −

32 c Æ−2 T Hλ2+λ3L T γ2 λ2 λ33 +

16 Æ−2 T Hλ2+λ3L h T2 γ2 λ2 λ33 −

8 c Æ−2 T Hλ2+λ3L T γ2 λ34 +

4 Æ−2 T Hλ2+λ3L h T2 γ2 λ34 −

6 Æ−2 T Hλ2+λ3L h λ12 ξ + 26 Æ−2 T Hλ2+λ3L h λ1 λ2 ξ −

2 Æ−2 T Hλ2+λ3L r λ12 λ2 ξ −

6 Æ−2 T Hλ2+λ3L h T λ12 λ2 ξ −

30 Æ−2 T Hλ2+λ3L h λ22 ξ + 6 Æ−2 T Hλ2+λ3L r λ1 λ22 ξ +

26 Æ−2 T Hλ2+λ3L h T λ1 λ22 ξ −

2 Æ−2 T Hλ2+λ3L h T2 λ12 λ22 ξ −

4 Æ−2 T Hλ2+λ3L r λ23 ξ − 28 Æ−2 T Hλ2+λ3L h T λ23 ξ +

8 Æ−2 T Hλ2+λ3L h T2 λ1 λ23 ξ −

8 Æ−2 T Hλ2+λ3L h T2 λ24 ξ +

26 Æ−2 T Hλ2+λ3L h λ1 λ3 ξ −

2 Æ−2 T Hλ2+λ3L r λ12 λ3 ξ −

6 Æ−2 T Hλ2+λ3L h T λ12 λ3 ξ −

60 Æ−2 T Hλ2+λ3L h λ2 λ3 ξ +

12 Æ−2 T Hλ2+λ3L r λ1 λ2 λ3 ξ +

52 Æ−2 T Hλ2+λ3L h T λ1 λ2 λ3 ξ −

4 Æ−2 T Hλ2+λ3L h T2 λ12 λ2 λ3 ξ −

12 Æ−2 T Hλ2+λ3L r λ22 λ3 ξ −

84 Æ−2 T Hλ2+λ3L h T λ22 λ3 ξ +

24 Æ−2 T Hλ2+λ3L h T2 λ1 λ22 λ3 ξ −

32 Æ−2 T Hλ2+λ3L h T2 λ23 λ3 ξ −

30 Æ−2 T Hλ2+λ3L h λ32 ξ + 6 Æ−2 T Hλ2+λ3L r λ1 λ32 ξ +

26 Æ−2 T Hλ2+λ3L h T λ1 λ32 ξ −

2 Æ−2 T Hλ2+λ3L h T2 λ12 λ32 ξ −

12 Æ−2 T Hλ2+λ3L r λ2 λ32 ξ −

84 Æ−2 T Hλ2+λ3L h T λ2 λ32 ξ +

24 Æ−2 T Hλ2+λ3L h T2 λ1 λ2 λ32 ξ −

48 Æ−2 T Hλ2+λ3L h T2 λ22 λ32 ξ −

101



4 Æ−2 T Hλ2+λ3L r λ33 ξ − 28 Æ−2 T Hλ2+λ3L h T λ33 ξ +

8 Æ−2 T Hλ2+λ3L h T2 λ1 λ33 ξ −

32 Æ−2 T Hλ2+λ3L h T2 λ2 λ33 ξ −

8 Æ−2 T Hλ2+λ3L h T2 λ34 ξM +

1

λ13 Hλ2 + λ3L2 ξ
 I−h γ22 λ12 − h γ1 γ2 λ1 λ2 −

h γ22 λ1 λ2 − h γ12 λ22 − 2 h γ1 γ2 λ22 −

h γ22 λ22 − h γ1 γ2 λ1 λ3 − h γ22 λ1 λ3 −

2 h γ12 λ2 λ3 − 4 h γ1 γ2 λ2 λ3 −

2 h γ22 λ2 λ3 − h γ12 λ32 − 2 h γ1 γ2 λ32 −

h γ22 λ32 + 3 h γ2 λ12 ξ + h γ1 λ1 λ2 ξ +

3 h γ2 λ1 λ2 ξ − c γ2 λ12 λ2 ξ +

r γ2 λ12 λ2 ξ + 3 h γ1 λ22 ξ + 2 h γ2 λ22 ξ −

c γ1 λ1 λ22 ξ + r γ1 λ1 λ22 ξ +

r γ2 λ1 λ22 ξ + h γ1 λ1 λ3 ξ +

3 h γ2 λ1 λ3 ξ − c γ2 λ12 λ3 ξ +

r γ2 λ12 λ3 ξ + 6 h γ1 λ2 λ3 ξ +

4 h γ2 λ2 λ3 ξ − 2 c γ1 λ1 λ2 λ3 ξ +

2 r γ1 λ1 λ2 λ3 ξ + 2 r γ2 λ1 λ2 λ3 ξ +

3 h γ1 λ32 ξ + 2 h γ2 λ32 ξ − c γ1 λ1 λ32 ξ +

r γ1 λ1 λ32 ξ + r γ2 λ1 λ32 ξ −

2 h λ12 ξ2 − 2 h λ1 λ2 ξ2 − h λ22 ξ2 −

r λ1 λ22 ξ2 − 2 h λ1 λ3 ξ2 − 2 h λ2 λ3 ξ2 −

2 r λ1 λ2 λ3 ξ2 − h λ32 ξ2 − r λ1 λ32 ξ2M +

1

2 Hλ1 − λ2 − λ3L3 Hλ2 + λ3L2 ξ
 

I2 Æ−T Hλ2+λ3L h γ22 λ12 + 2 Æ−T Hλ2+λ3L h γ1 γ2 λ1 λ2 −

2 Æ−T Hλ2+λ3L h γ22 λ1 λ2 + 2 Æ−T Hλ2+λ3L h γ12 λ22 +

2 Æ−T Hλ2+λ3L h γ1 γ2 λ22 + 2 Æ−T Hλ2+λ3L h γ22 λ22 +

2 Æ−T Hλ2+λ3L h γ1 γ2 λ1 λ3 −

2 Æ−T Hλ2+λ3L h γ22 λ1 λ3 + 4 Æ−T Hλ2+λ3L h γ12 λ2 λ3 +

4 Æ−T Hλ2+λ3L h γ1 γ2 λ2 λ3 +

4 Æ−T Hλ2+λ3L h γ22 λ2 λ3 + 2 Æ−T Hλ2+λ3L h γ12 λ32 +
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2 Æ−T Hλ2+λ3L h γ1 γ2 λ32 + 2 Æ−T Hλ2+λ3L h γ22 λ32 −

12 Æ−T Hλ2+λ3L h γ2 λ12 ξ − 4 Æ−T Hλ2+λ3L h γ1 λ1 λ2 ξ +

18 Æ−T Hλ2+λ3L h γ2 λ1 λ2 ξ +

4 c Æ−T Hλ2+λ3L γ2 λ12 λ2 ξ −

2 Æ−T Hλ2+λ3L r γ2 λ12 λ2 ξ −

4 Æ−T Hλ2+λ3L h T γ2 λ12 λ2 ξ −

4 Æ−T Hλ2+λ3L h γ1 λ22 ξ − 6 Æ−T Hλ2+λ3L h γ2 λ22 ξ −

2 Æ−T Hλ2+λ3L r γ1 λ1 λ22 ξ −

2 Æ−T Hλ2+λ3L h T γ1 λ1 λ22 ξ −

12 c Æ−T Hλ2+λ3L γ2 λ1 λ22 ξ +

2 Æ−T Hλ2+λ3L r γ2 λ1 λ22 ξ +

6 Æ−T Hλ2+λ3L h T γ2 λ1 λ22 ξ −

2 Æ−T Hλ2+λ3L h T2 γ2 λ12 λ22 ξ +

2 Æ−T Hλ2+λ3L r γ1 λ23 ξ + 2 Æ−T Hλ2+λ3L h T γ1 λ23 ξ +

8 c Æ−T Hλ2+λ3L γ2 λ23 ξ − 2 Æ−T Hλ2+λ3L h T γ2 λ23 ξ +

4 Æ−T Hλ2+λ3L h T2 γ2 λ1 λ23 ξ −

2 Æ−T Hλ2+λ3L h T2 γ2 λ24 ξ − 4 Æ−T Hλ2+λ3L h γ1 λ1 λ3 ξ +

18 Æ−T Hλ2+λ3L h γ2 λ1 λ3 ξ +

4 c Æ−T Hλ2+λ3L γ2 λ12 λ3 ξ −

2 Æ−T Hλ2+λ3L r γ2 λ12 λ3 ξ −

4 Æ−T Hλ2+λ3L h T γ2 λ12 λ3 ξ −

8 Æ−T Hλ2+λ3L h γ1 λ2 λ3 ξ − 12 Æ−T Hλ2+λ3L h γ2 λ2 λ3 ξ −

4 Æ−T Hλ2+λ3L r γ1 λ1 λ2 λ3 ξ −

4 Æ−T Hλ2+λ3L h T γ1 λ1 λ2 λ3 ξ −

24 c Æ−T Hλ2+λ3L γ2 λ1 λ2 λ3 ξ +

4 Æ−T Hλ2+λ3L r γ2 λ1 λ2 λ3 ξ +

12 Æ−T Hλ2+λ3L h T γ2 λ1 λ2 λ3 ξ −

4 Æ−T Hλ2+λ3L h T2 γ2 λ12 λ2 λ3 ξ +

6 Æ−T Hλ2+λ3L r γ1 λ22 λ3 ξ +

6 Æ−T Hλ2+λ3L h T γ1 λ22 λ3 ξ +

24 c Æ−T Hλ2+λ3L γ2 λ22 λ3 ξ −

6 Æ−T Hλ2+λ3L h T γ2 λ22 λ3 ξ +

12 Æ−T Hλ2+λ3L h T2 γ2 λ1 λ22 λ3 ξ −

8 Æ−T Hλ2+λ3L h T2 γ2 λ23 λ3 ξ −
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4 Æ−T Hλ2+λ3L h γ1 λ32 ξ − 6 Æ−T Hλ2+λ3L h γ2 λ32 ξ −

2 Æ−T Hλ2+λ3L r γ1 λ1 λ32 ξ −

2 Æ−T Hλ2+λ3L h T γ1 λ1 λ32 ξ −

12 c Æ−T Hλ2+λ3L γ2 λ1 λ32 ξ +

2 Æ−T Hλ2+λ3L r γ2 λ1 λ32 ξ +

6 Æ−T Hλ2+λ3L h T γ2 λ1 λ32 ξ −

2 Æ−T Hλ2+λ3L h T2 γ2 λ12 λ32 ξ +

6 Æ−T Hλ2+λ3L r γ1 λ2 λ32 ξ +

6 Æ−T Hλ2+λ3L h T γ1 λ2 λ32 ξ +

24 c Æ−T Hλ2+λ3L γ2 λ2 λ32 ξ −

6 Æ−T Hλ2+λ3L h T γ2 λ2 λ32 ξ +

12 Æ−T Hλ2+λ3L h T2 γ2 λ1 λ2 λ32 ξ −

12 Æ−T Hλ2+λ3L h T2 γ2 λ22 λ32 ξ +

2 Æ−T Hλ2+λ3L r γ1 λ33 ξ + 2 Æ−T Hλ2+λ3L h T γ1 λ33 ξ +

8 c Æ−T Hλ2+λ3L γ2 λ33 ξ − 2 Æ−T Hλ2+λ3L h T γ2 λ33 ξ +

4 Æ−T Hλ2+λ3L h T2 γ2 λ1 λ33 ξ −

8 Æ−T Hλ2+λ3L h T2 γ2 λ2 λ33 ξ −

2 Æ−T Hλ2+λ3L h T2 γ2 λ34 ξ + 10 Æ−T Hλ2+λ3L h λ12 ξ2 −

18 Æ−T Hλ2+λ3L h λ1 λ2 ξ2 + 2 Æ−T Hλ2+λ3L r λ12 λ2 ξ2 +

6 Æ−T Hλ2+λ3L h T λ12 λ2 ξ2 + 8 Æ−T Hλ2+λ3L h λ22 ξ2 −

12 Æ−T Hλ2+λ3L h T λ1 λ22 ξ2 +

2 Æ−T Hλ2+λ3L r T λ12 λ22 ξ2 +

3 Æ−T Hλ2+λ3L h T2 λ12 λ22 ξ2 −

2 Æ−T Hλ2+λ3L r λ23 ξ2 + 6 Æ−T Hλ2+λ3L h T λ23 ξ2 −

4 Æ−T Hλ2+λ3L r T λ1 λ23 ξ2 − 6 Æ−T Hλ2+λ3L h T2 λ1 λ23 ξ2 +

2 Æ−T Hλ2+λ3L r T λ24 ξ2 + 3 Æ−T Hλ2+λ3L h T2 λ24 ξ2 −

18 Æ−T Hλ2+λ3L h λ1 λ3 ξ2 + 2 Æ−T Hλ2+λ3L r λ12 λ3 ξ2 +

6 Æ−T Hλ2+λ3L h T λ12 λ3 ξ2 + 16 Æ−T Hλ2+λ3L h λ2 λ3 ξ2 −

24 Æ−T Hλ2+λ3L h T λ1 λ2 λ3 ξ2 +

4 Æ−T Hλ2+λ3L r T λ12 λ2 λ3 ξ2 +

6 Æ−T Hλ2+λ3L h T2 λ12 λ2 λ3 ξ2 −

6 Æ−T Hλ2+λ3L r λ22 λ3 ξ2 + 18 Æ−T Hλ2+λ3L h T λ22 λ3 ξ2 −

12 Æ−T Hλ2+λ3L r T λ1 λ22 λ3 ξ2 −
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18 Æ−T Hλ2+λ3L h T2 λ1 λ22 λ3 ξ2 +

8 Æ−T Hλ2+λ3L r T λ23 λ3 ξ2 +

12 Æ−T Hλ2+λ3L h T2 λ23 λ3 ξ2 +

8 Æ−T Hλ2+λ3L h λ32 ξ2 − 12 Æ−T Hλ2+λ3L h T λ1 λ32 ξ2 +

2 Æ−T Hλ2+λ3L r T λ12 λ32 ξ2 +

3 Æ−T Hλ2+λ3L h T2 λ12 λ32 ξ2 −

6 Æ−T Hλ2+λ3L r λ2 λ32 ξ2 + 18 Æ−T Hλ2+λ3L h T λ2 λ32 ξ2 −

12 Æ−T Hλ2+λ3L r T λ1 λ2 λ32 ξ2 −

18 Æ−T Hλ2+λ3L h T2 λ1 λ2 λ32 ξ2 +

12 Æ−T Hλ2+λ3L r T λ22 λ32 ξ2 +

18 Æ−T Hλ2+λ3L h T2 λ22 λ32 ξ2 − 2 Æ−T Hλ2+λ3L r λ33 ξ2 +

6 Æ−T Hλ2+λ3L h T λ33 ξ2 − 4 Æ−T Hλ2+λ3L r T λ1 λ33 ξ2 −

6 Æ−T Hλ2+λ3L h T2 λ1 λ33 ξ2 + 8 Æ−T Hλ2+λ3L r T λ2 λ33 ξ2 +

12 Æ−T Hλ2+λ3L h T2 λ2 λ33 ξ2 +

2 Æ−T Hλ2+λ3L r T λ34 ξ2 + 3 Æ−T Hλ2+λ3L h T2 λ34 ξ2M +

K−Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ24 λ1 + Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ23 λ2 +

Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ24 λ2 + Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ23 λ3 +

Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ24 λ3 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ23 λ1 ξ +

Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ1 λ2 ξ − Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ22 λ22 ξ −

Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ22 ξ + Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ1 λ3 ξ −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ22 λ2 λ3 ξ −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ2 λ3 ξ − Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ22 λ32 ξ −

Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ32 ξ − 3 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ2 λ2 ξ2 −

3 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ22 λ2 ξ2 + 3 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ1 λ2 ξ2 +

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ1 λ2 ξ2 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ2 λ22 ξ2 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 γ2 λ22 ξ2 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ22 ξ2 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ22 ξ2 − 3 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ2 λ3 ξ2 −

3 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ22 λ3 ξ2 + 3 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ1 λ3 ξ2 +

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ1 λ3 ξ2 −
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4 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ2 λ2 λ3 ξ2 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 γ2 λ2 λ3 ξ2 −

4 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ2 λ3 ξ2 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ2 λ3 ξ2 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ2 λ32 ξ2 − Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 γ2 λ32 ξ2 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ32 ξ2 − Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ32 ξ2 +

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ2 λ1 ξ3 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 λ2 ξ3 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ2 λ2 ξ3 + 3 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ1 λ2 ξ3 +

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ1 λ2 ξ3 − Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 λ22 ξ3 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 λ22 ξ3 − Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ22 ξ3 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ22 ξ3 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 λ3 ξ3 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ2 λ3 ξ3 + 3 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ1 λ3 ξ3 +

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ1 λ3 ξ3 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 λ2 λ3 ξ3 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 λ2 λ3 ξ3 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ2 λ3 ξ3 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ2 λ3 ξ3 − Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 λ32 ξ3 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 λ32 ξ3 − Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ32 ξ3 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ32 ξ3 + Æ
− T Hλ2+λ3L ξ

γ2+ξ h λ1 ξ4 +

Æ
− T Hλ2+λ3L ξ

γ2+ξ r λ1 λ2 ξ4 + Æ
− T Hλ2+λ3L ξ

γ2+ξ h T λ1 λ2 ξ4 +

Æ
− T Hλ2+λ3L ξ

γ2+ξ r λ1 λ3 ξ4 + Æ
− T Hλ2+λ3L ξ

γ2+ξ h T λ1 λ3 ξ4O ì

IHλ2 + λ3L2 ξ H−γ2 λ1 + γ1 λ2 + γ2 λ2 + γ1 λ3 + γ2 λ3 − λ1 ξL
Hγ2 λ1 − γ1 λ2 − γ2 λ2 − γ1 λ3 − γ2 λ3 + λ1 ξLM −

KÆ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ24 λ1 − Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ23 λ2 −

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ24 λ2 −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ23 λ3 −

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ24 λ3 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ23 λ1 ξ −
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2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ23 λ2 ξ −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ1 λ2 ξ +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ22 λ22 ξ +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ22 ξ −

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ23 λ3 ξ −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ1 λ3 ξ +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ22 λ2 λ3 ξ +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ2 λ3 ξ +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ22 λ32 ξ +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ32 ξ +

3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ2 λ2 ξ2 +

3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ22 λ2 ξ2 −

3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ1 λ2 ξ2 −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ1 λ2 ξ2 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ2 λ22 ξ2 +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ1 γ2 λ22 ξ2 +

5 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ22 ξ2 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ22 ξ2 +

3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ2 λ3 ξ2 +

3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ22 λ3 ξ2 −

3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ1 λ3 ξ2 −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ1 λ3 ξ2 +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ2 λ2 λ3 ξ2 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ1 γ2 λ2 λ3 ξ2 +

10 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ2 λ3 ξ2 +
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4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ2 λ3 ξ2 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ2 λ32 ξ2 +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ1 γ2 λ32 ξ2 +

5 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ32 ξ2 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ32 ξ2 −

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ2 λ1 ξ3 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 λ2 ξ3 +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ2 λ2 ξ3 −

3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ1 λ2 ξ3 −

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ1 λ2 ξ3 +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 λ22 ξ3 +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ1 λ22 ξ3 +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ22 ξ3 +

3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ22 ξ3 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 λ3 ξ3 +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ2 λ3 ξ3 −

3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ1 λ3 ξ3 −

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ1 λ3 ξ3 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 λ2 λ3 ξ3 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ1 λ2 λ3 ξ3 +

8 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ2 λ3 ξ3 +

6 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ2 λ3 ξ3 +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 λ32 ξ3 +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ1 λ32 ξ3 +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ32 ξ3 +
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3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ32 ξ3 −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h λ1 ξ4 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h λ2 ξ4 −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r λ1 λ2 ξ4 −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T λ1 λ2 ξ4 +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r λ22 ξ4 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T λ22 ξ4 +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h λ3 ξ4 − Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r λ1 λ3 ξ4 −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T λ1 λ3 ξ4 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r λ2 λ3 ξ4 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T λ2 λ3 ξ4 +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r λ32 ξ4 +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T λ32 ξ4O ì IHλ2 + λ3L2 ξ

Hγ2 λ1 − γ1 λ2 − 2 γ2 λ2 − γ1 λ3 − 2 γ2 λ3 + λ1 ξ − λ2 ξ − λ3 ξL2M +

Æ−T λ1+2 T Hλ2+λ3L Æ−2 T Hλ2+λ3L h T2 H2 γ1 − ξL
2 H−λ1 + 2 λ2 + 2 λ3L +

IT IÆ−2 T Hλ2+λ3L h γ1 λ1 + 2 c Æ−2 T Hλ2+λ3L γ2 λ1 λ2 −

4 c Æ−2 T Hλ2+λ3L γ2 λ22 + 2 c Æ−2 T Hλ2+λ3L γ2 λ1 λ3 −

8 c Æ−2 T Hλ2+λ3L γ2 λ2 λ3 − 4 c Æ−2 T Hλ2+λ3L γ2 λ32 +

Æ−2 T Hλ2+λ3L h λ1 ξ − 3 Æ−2 T Hλ2+λ3L h λ2 ξ − Æ−2 T Hλ2+λ3L r

λ1 λ2 ξ + Æ−2 T Hλ2+λ3L h T λ1 λ2 ξ + 2 Æ−2 T Hλ2+λ3L r λ22 ξ −

2 Æ−2 T Hλ2+λ3L h T λ22 ξ − 3 Æ−2 T Hλ2+λ3L h λ3 ξ −

Æ−2 T Hλ2+λ3L r λ1 λ3 ξ + Æ−2 T Hλ2+λ3L h T λ1 λ3 ξ +

4 Æ−2 T Hλ2+λ3L r λ2 λ3 ξ − 4 Æ−2 T Hλ2+λ3L h T λ2 λ3 ξ +

2 Æ−2 T Hλ2+λ3L r λ32 ξ − 2 Æ−2 T Hλ2+λ3L h T λ32 ξMMë
HHλ1 − 2 λ2 − 2 λ3L Hλ2 + λ3L H−λ1 + 2 λ2 + 2 λ3LL −

1

2 Hλ1 − 2 λ2 − 2 λ3L3 Hλ2 + λ3L2
 

I6 Æ−2 T Hλ2+λ3L h γ2 λ12 + 2 Æ−2 T Hλ2+λ3L h γ1 λ1 λ2 −

24 Æ−2 T Hλ2+λ3L h γ2 λ1 λ2 − 2 c Æ−2 T Hλ2+λ3L γ2 λ12 λ2 +

4 Æ−2 T Hλ2+λ3L h T γ2 λ12 λ2 + 24 Æ−2 T Hλ2+λ3L h γ2 λ22 +
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12 c Æ−2 T Hλ2+λ3L γ2 λ1 λ22 − 16 Æ−2 T Hλ2+λ3L h T γ2 λ1 λ22 −

2 c Æ−2 T Hλ2+λ3L T γ2 λ12 λ22 + Æ−2 T Hλ2+λ3L h T2 γ2 λ12 λ22 −

16 c Æ−2 T Hλ2+λ3L γ2 λ23 + 16 Æ−2 T Hλ2+λ3L h T γ2 λ23 +

8 c Æ−2 T Hλ2+λ3L T γ2 λ1 λ23 − 4 Æ−2 T Hλ2+λ3L h T2 γ2 λ1 λ23 −

8 c Æ−2 T Hλ2+λ3L T γ2 λ24 + 4 Æ−2 T Hλ2+λ3L h T2 γ2 λ24 +

2 Æ−2 T Hλ2+λ3L h γ1 λ1 λ3 − 24 Æ−2 T Hλ2+λ3L h γ2 λ1 λ3 −

2 c Æ−2 T Hλ2+λ3L γ2 λ12 λ3 + 4 Æ−2 T Hλ2+λ3L h T γ2 λ12 λ3 +

48 Æ−2 T Hλ2+λ3L h γ2 λ2 λ3 + 24 c Æ−2 T Hλ2+λ3L γ2 λ1 λ2 λ3 − 32

Æ−2 T Hλ2+λ3L h T γ2 λ1 λ2 λ3 − 4 c Æ−2 T Hλ2+λ3L T γ2 λ12 λ2 λ3 +

2 Æ−2 T Hλ2+λ3L h T2 γ2 λ12 λ2 λ3 − 48 c Æ−2 T Hλ2+λ3L γ2 λ22 λ3 +

48 Æ−2 T Hλ2+λ3L h T γ2 λ22 λ3 + 24 c Æ−2 T Hλ2+λ3L T γ2 λ1 λ22 λ3 −

12 Æ−2 T Hλ2+λ3L h T2 γ2 λ1 λ22 λ3 − 32 c Æ−2 T Hλ2+λ3L T γ2 λ23

λ3 + 16 Æ−2 T Hλ2+λ3L h T2 γ2 λ23 λ3 + 24 Æ−2 T Hλ2+λ3L h γ2 λ32 +

12 c Æ−2 T Hλ2+λ3L γ2 λ1 λ32 − 16 Æ−2 T Hλ2+λ3L h T γ2 λ1 λ32 −

2 c Æ−2 T Hλ2+λ3L T γ2 λ12 λ32 + Æ−2 T Hλ2+λ3L h T2 γ2 λ12 λ32 −

48 c Æ−2 T Hλ2+λ3L γ2 λ2 λ32 + 48 Æ−2 T Hλ2+λ3L h T γ2 λ2 λ32 + 24 c

Æ−2 T Hλ2+λ3L T γ2 λ1 λ2 λ32 − 12 Æ−2 T Hλ2+λ3L h T2 γ2 λ1 λ2 λ32 −

48 c Æ−2 T Hλ2+λ3L T γ2 λ22 λ32 + 24 Æ−2 T Hλ2+λ3L h T2 γ2 λ22 λ32 −

16 c Æ−2 T Hλ2+λ3L γ2 λ33 + 16 Æ−2 T Hλ2+λ3L h T γ2 λ33 +

8 c Æ−2 T Hλ2+λ3L T γ2 λ1 λ33 − 4 Æ−2 T Hλ2+λ3L h T2 γ2 λ1 λ33 −

32 c Æ−2 T Hλ2+λ3L T γ2 λ2 λ33 + 16 Æ−2 T Hλ2+λ3L h T2 γ2 λ2 λ33 −

8 c Æ−2 T Hλ2+λ3L T γ2 λ34 + 4 Æ−2 T Hλ2+λ3L h T2 γ2 λ34 −

6 Æ−2 T Hλ2+λ3L h λ12 ξ + 26 Æ−2 T Hλ2+λ3L h λ1 λ2 ξ −

2 Æ−2 T Hλ2+λ3L r λ12 λ2 ξ − 6 Æ−2 T Hλ2+λ3L h T λ12 λ2 ξ −

30 Æ−2 T Hλ2+λ3L h λ22 ξ + 6 Æ−2 T Hλ2+λ3L r λ1 λ22 ξ +

26 Æ−2 T Hλ2+λ3L h T λ1 λ22 ξ − 2 Æ−2 T Hλ2+λ3L h T2 λ12 λ22 ξ −

4 Æ−2 T Hλ2+λ3L r λ23 ξ − 28 Æ−2 T Hλ2+λ3L h T λ23 ξ +

8 Æ−2 T Hλ2+λ3L h T2 λ1 λ23 ξ − 8 Æ−2 T Hλ2+λ3L h T2 λ24 ξ +

26 Æ−2 T Hλ2+λ3L h λ1 λ3 ξ − 2 Æ−2 T Hλ2+λ3L r λ12 λ3 ξ −

6 Æ−2 T Hλ2+λ3L h T λ12 λ3 ξ − 60 Æ−2 T Hλ2+λ3L h λ2 λ3 ξ +

12 Æ−2 T Hλ2+λ3L r λ1 λ2 λ3 ξ + 52 Æ−2 T Hλ2+λ3L h T λ1 λ2 λ3 ξ −

4 Æ−2 T Hλ2+λ3L h T2 λ12 λ2 λ3 ξ − 12 Æ−2 T Hλ2+λ3L r λ22 λ3 ξ −

84 Æ−2 T Hλ2+λ3L h T λ22 λ3 ξ + 24 Æ−2 T Hλ2+λ3L h T2 λ1 λ22 λ3 ξ −

32 Æ−2 T Hλ2+λ3L h T2 λ23 λ3 ξ − 30 Æ−2 T Hλ2+λ3L h λ32 ξ +
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6 Æ−2 T Hλ2+λ3L r λ1 λ32 ξ + 26 Æ−2 T Hλ2+λ3L h T λ1 λ32 ξ −

2 Æ−2 T Hλ2+λ3L h T2 λ12 λ32 ξ − 12 Æ−2 T Hλ2+λ3L r λ2 λ32 ξ −

84 Æ−2 T Hλ2+λ3L h T λ2 λ32 ξ + 24 Æ−2 T Hλ2+λ3L h T2 λ1 λ2 λ32 ξ −

48 Æ−2 T Hλ2+λ3L h T2 λ22 λ32 ξ − 4 Æ−2 T Hλ2+λ3L r λ33 ξ −

28 Æ−2 T Hλ2+λ3L h T λ33 ξ + 8 Æ−2 T Hλ2+λ3L h T2 λ1 λ33 ξ −

32 Æ−2 T Hλ2+λ3L h T2 λ2 λ33 ξ − 8 Æ−2 T Hλ2+λ3L h T2 λ34 ξM +

Æ−T λ1
h T2 Iγ12 + 2 γ1 γ2 + γ22 − 3 γ1 ξ − 2 γ2 ξ + ξ2M

2 λ1 ξ
−

1

λ12 Hλ2 + λ3L ξ
 T I−h γ1 γ2 λ1 − h γ22 λ1 − h γ12 λ2 −

2 h γ1 γ2 λ2 − h γ22 λ2 − h γ12 λ3 − 2 h γ1 γ2 λ3 − h γ22 λ3 +

h γ1 λ1 ξ + 3 h γ2 λ1 ξ + 3 h γ1 λ2 ξ + 2 h γ2 λ2 ξ −

c γ1 λ1 λ2 ξ + r γ1 λ1 λ2 ξ + r γ2 λ1 λ2 ξ + 3 h γ1 λ3 ξ +

2 h γ2 λ3 ξ − c γ1 λ1 λ3 ξ + r γ1 λ1 λ3 ξ + r γ2 λ1 λ3 ξ −

2 h λ1 ξ2 − h λ2 ξ2 − r λ1 λ2 ξ2 − h λ3 ξ2 − r λ1 λ3 ξ2M −

1

λ13 Hλ2 + λ3L2 ξ
 I−h γ22 λ12 − h γ1 γ2 λ1 λ2 − h γ22 λ1 λ2 −

h γ12 λ22 − 2 h γ1 γ2 λ22 − h γ22 λ22 − h γ1 γ2 λ1 λ3 −

h γ22 λ1 λ3 − 2 h γ12 λ2 λ3 − 4 h γ1 γ2 λ2 λ3 −

2 h γ22 λ2 λ3 − h γ12 λ32 − 2 h γ1 γ2 λ32 − h γ22 λ32 +

3 h γ2 λ12 ξ + h γ1 λ1 λ2 ξ + 3 h γ2 λ1 λ2 ξ − c γ2 λ12 λ2 ξ +

r γ2 λ12 λ2 ξ + 3 h γ1 λ22 ξ + 2 h γ2 λ22 ξ − c γ1 λ1 λ22 ξ +

r γ1 λ1 λ22 ξ + r γ2 λ1 λ22 ξ + h γ1 λ1 λ3 ξ + 3 h γ2 λ1 λ3 ξ −

c γ2 λ12 λ3 ξ + r γ2 λ12 λ3 ξ + 6 h γ1 λ2 λ3 ξ +

4 h γ2 λ2 λ3 ξ − 2 c γ1 λ1 λ2 λ3 ξ + 2 r γ1 λ1 λ2 λ3 ξ +

2 r γ2 λ1 λ2 λ3 ξ + 3 h γ1 λ32 ξ + 2 h γ2 λ32 ξ −

c γ1 λ1 λ32 ξ + r γ1 λ1 λ32 ξ + r γ2 λ1 λ32 ξ − 2 h λ12 ξ2 −

2 h λ1 λ2 ξ2 − h λ22 ξ2 − r λ1 λ22 ξ2 − 2 h λ1 λ3 ξ2 −

2 h λ2 λ3 ξ2 − 2 r λ1 λ2 λ3 ξ2 − h λ32 ξ2 − r λ1 λ32 ξ2M +
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Æ−T λ1+T Hλ2+λ3L −
Æ−T Hλ2+λ3L h T2 I−γ12 − 2 γ1 γ2 − γ22 + 4 γ1 ξM

2 H−λ1 + λ2 + λ3L ξ
+

IT IÆ−T Hλ2+λ3L h γ1 γ2 λ1 + Æ−T Hλ2+λ3L h γ22 λ1 + Æ−T Hλ2+λ3L h

γ12 λ2 + Æ−T Hλ2+λ3L h γ1 γ2 λ2 + Æ−T Hλ2+λ3L h γ12 λ3 +

Æ−T Hλ2+λ3L h γ1 γ2 λ3 − 2 Æ−T Hλ2+λ3L h γ1 λ1 ξ − 3 Æ−T Hλ2+λ3L

h γ2 λ1 ξ − 2 Æ−T Hλ2+λ3L h γ1 λ2 ξ + 3 Æ−T Hλ2+λ3L h γ2 λ2 ξ −

Æ−T Hλ2+λ3L r γ1 λ1 λ2 ξ − Æ−T Hλ2+λ3L h T γ1 λ1 λ2 ξ −

2 c Æ−T Hλ2+λ3L γ2 λ1 λ2 ξ − Æ−T Hλ2+λ3L r γ2 λ1 λ2 ξ −

Æ−T Hλ2+λ3L h T γ2 λ1 λ2 ξ + Æ−T Hλ2+λ3L r γ1 λ22 ξ +

Æ−T Hλ2+λ3L h T γ1 λ22 ξ + 2 c Æ−T Hλ2+λ3L γ2 λ22 ξ +

Æ−T Hλ2+λ3L r γ2 λ22 ξ + Æ−T Hλ2+λ3L h T γ2 λ22 ξ − 2 Æ−T Hλ2+λ3L

h γ1 λ3 ξ + 3 Æ−T Hλ2+λ3L h γ2 λ3 ξ − Æ−T Hλ2+λ3L r γ1 λ1 λ3 ξ −

Æ−T Hλ2+λ3L h T γ1 λ1 λ3 ξ − 2 c Æ−T Hλ2+λ3L γ2 λ1 λ3 ξ −

Æ−T Hλ2+λ3L r γ2 λ1 λ3 ξ − Æ−T Hλ2+λ3L h T γ2 λ1 λ3 ξ +

2 Æ−T Hλ2+λ3L r γ1 λ2 λ3 ξ + 2 Æ−T Hλ2+λ3L h T γ1 λ2 λ3 ξ +

4 c Æ−T Hλ2+λ3L γ2 λ2 λ3 ξ + 2 Æ−T Hλ2+λ3L r γ2 λ2 λ3 ξ +

2 Æ−T Hλ2+λ3L h T γ2 λ2 λ3 ξ + Æ−T Hλ2+λ3L r γ1 λ32 ξ +

Æ−T Hλ2+λ3L h T γ1 λ32 ξ + 2 c Æ−T Hλ2+λ3L γ2 λ32 ξ + Æ−T Hλ2+λ3L

r γ2 λ32 ξ + Æ−T Hλ2+λ3L h T γ2 λ32 ξ + Æ−T Hλ2+λ3L h λ1 ξ2 −

Æ−T Hλ2+λ3L h λ2 ξ2 + 2 Æ−T Hλ2+λ3L r λ1 λ2 ξ2 − 2 Æ−T Hλ2+λ3L

r λ22 ξ2 − Æ−T Hλ2+λ3L h λ3 ξ2 + 2 Æ−T Hλ2+λ3L r λ1 λ3 ξ2 −

4 Æ−T Hλ2+λ3L r λ2 λ3 ξ2 − 2 Æ−T Hλ2+λ3L r λ32 ξ2MMë
HHλ1 − λ2 − λ3L Hλ2 + λ3L H−λ1 + λ2 + λ3L ξL −

1

2 Hλ1 − λ2 − λ3L3 Hλ2 + λ3L2 ξ
 

I2 Æ−T Hλ2+λ3L h γ22 λ12 + 2 Æ−T Hλ2+λ3L h γ1 γ2 λ1 λ2 −

2 Æ−T Hλ2+λ3L h γ22 λ1 λ2 + 2 Æ−T Hλ2+λ3L h γ12 λ22 +

2 Æ−T Hλ2+λ3L h γ1 γ2 λ22 + 2 Æ−T Hλ2+λ3L h γ22 λ22 +

2 Æ−T Hλ2+λ3L h γ1 γ2 λ1 λ3 − 2 Æ−T Hλ2+λ3L h γ22 λ1 λ3 +

4 Æ−T Hλ2+λ3L h γ12 λ2 λ3 + 4 Æ−T Hλ2+λ3L h γ1 γ2 λ2 λ3 +

4 Æ−T Hλ2+λ3L h γ22 λ2 λ3 + 2 Æ−T Hλ2+λ3L h γ12 λ32 +

2 Æ−T Hλ2+λ3L h γ1 γ2 λ32 + 2 Æ−T Hλ2+λ3L h γ22 λ32 −

12 Æ−T Hλ2+λ3L h γ2 λ12 ξ − 4 Æ−T Hλ2+λ3L h γ1 λ1 λ2 ξ +
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18 Æ−T Hλ2+λ3L h γ2 λ1 λ2 ξ + 4 c Æ−T Hλ2+λ3L γ2 λ12 λ2 ξ −

2 Æ−T Hλ2+λ3L r γ2 λ12 λ2 ξ − 4 Æ−T Hλ2+λ3L h T γ2 λ12 λ2 ξ −

4 Æ−T Hλ2+λ3L h γ1 λ22 ξ − 6 Æ−T Hλ2+λ3L h γ2 λ22 ξ −

2 Æ−T Hλ2+λ3L r γ1 λ1 λ22 ξ − 2 Æ−T Hλ2+λ3L h T γ1 λ1 λ22 ξ −

12 c Æ−T Hλ2+λ3L γ2 λ1 λ22 ξ + 2 Æ−T Hλ2+λ3L r γ2 λ1 λ22 ξ +

6 Æ−T Hλ2+λ3L h T γ2 λ1 λ22 ξ − 2 Æ−T Hλ2+λ3L h T2 γ2 λ12 λ22 ξ +

2 Æ−T Hλ2+λ3L r γ1 λ23 ξ + 2 Æ−T Hλ2+λ3L h T γ1 λ23 ξ +

8 c Æ−T Hλ2+λ3L γ2 λ23 ξ − 2 Æ−T Hλ2+λ3L h T γ2 λ23 ξ +

4 Æ−T Hλ2+λ3L h T2 γ2 λ1 λ23 ξ − 2 Æ−T Hλ2+λ3L h T2 γ2 λ24 ξ −

4 Æ−T Hλ2+λ3L h γ1 λ1 λ3 ξ + 18 Æ−T Hλ2+λ3L h γ2 λ1 λ3 ξ +

4 c Æ−T Hλ2+λ3L γ2 λ12 λ3 ξ − 2 Æ−T Hλ2+λ3L r γ2 λ12 λ3 ξ −

4 Æ−T Hλ2+λ3L h T γ2 λ12 λ3 ξ − 8 Æ−T Hλ2+λ3L h γ1 λ2 λ3 ξ −

12 Æ−T Hλ2+λ3L h γ2 λ2 λ3 ξ − 4 Æ−T Hλ2+λ3L r γ1 λ1 λ2 λ3 ξ −

4 Æ−T Hλ2+λ3L h T γ1 λ1 λ2 λ3 ξ − 24 c Æ−T Hλ2+λ3L γ2 λ1 λ2 λ3 ξ +

4 Æ−T Hλ2+λ3L r γ2 λ1 λ2 λ3 ξ + 12 Æ−T Hλ2+λ3L h T γ2 λ1 λ2 λ3 ξ −

4 Æ−T Hλ2+λ3L h T2 γ2 λ12 λ2 λ3 ξ + 6 Æ−T Hλ2+λ3L r γ1 λ22 λ3 ξ +

6 Æ−T Hλ2+λ3L h T γ1 λ22 λ3 ξ + 24 c Æ−T Hλ2+λ3L γ2 λ22 λ3 ξ −

6 Æ−T Hλ2+λ3L h T γ2 λ22 λ3 ξ + 12 Æ−T Hλ2+λ3L h T2 γ2 λ1 λ22 λ3

ξ − 8 Æ−T Hλ2+λ3L h T2 γ2 λ23 λ3 ξ − 4 Æ−T Hλ2+λ3L h γ1 λ32 ξ −

6 Æ−T Hλ2+λ3L h γ2 λ32 ξ − 2 Æ−T Hλ2+λ3L r γ1 λ1 λ32 ξ −

2 Æ−T Hλ2+λ3L h T γ1 λ1 λ32 ξ − 12 c Æ−T Hλ2+λ3L γ2 λ1 λ32 ξ +

2 Æ−T Hλ2+λ3L r γ2 λ1 λ32 ξ + 6 Æ−T Hλ2+λ3L h T γ2 λ1 λ32 ξ −

2 Æ−T Hλ2+λ3L h T2 γ2 λ12 λ32 ξ + 6 Æ−T Hλ2+λ3L r γ1 λ2 λ32 ξ +

6 Æ−T Hλ2+λ3L h T γ1 λ2 λ32 ξ + 24 c Æ−T Hλ2+λ3L γ2 λ2 λ32 ξ −

6 Æ−T Hλ2+λ3L h T γ2 λ2 λ32 ξ + 12 Æ−T Hλ2+λ3L h T2 γ2 λ1 λ2 λ32

ξ − 12 Æ−T Hλ2+λ3L h T2 γ2 λ22 λ32 ξ + 2 Æ−T Hλ2+λ3L r γ1 λ33 ξ +

2 Æ−T Hλ2+λ3L h T γ1 λ33 ξ + 8 c Æ−T Hλ2+λ3L γ2 λ33 ξ −

2 Æ−T Hλ2+λ3L h T γ2 λ33 ξ + 4 Æ−T Hλ2+λ3L h T2 γ2 λ1 λ33 ξ −

8 Æ−T Hλ2+λ3L h T2 γ2 λ2 λ33 ξ − 2 Æ−T Hλ2+λ3L h T2 γ2 λ34 ξ +

10 Æ−T Hλ2+λ3L h λ12 ξ2 − 18 Æ−T Hλ2+λ3L h λ1 λ2 ξ2 +

2 Æ−T Hλ2+λ3L r λ12 λ2 ξ2 + 6 Æ−T Hλ2+λ3L h T λ12 λ2 ξ2 +

8 Æ−T Hλ2+λ3L h λ22 ξ2 − 12 Æ−T Hλ2+λ3L h T λ1 λ22 ξ2 +

2 Æ−T Hλ2+λ3L r T λ12 λ22 ξ2 + 3 Æ−T Hλ2+λ3L h T2 λ12 λ22 ξ2 −

2 Æ−T Hλ2+λ3L r λ23 ξ2 + 6 Æ−T Hλ2+λ3L h T λ23 ξ2 −
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4 Æ−T Hλ2+λ3L r T λ1 λ23 ξ2 − 6 Æ−T Hλ2+λ3L h T2 λ1 λ23 ξ2 +

2 Æ−T Hλ2+λ3L r T λ24 ξ2 + 3 Æ−T Hλ2+λ3L h T2 λ24 ξ2 −

18 Æ−T Hλ2+λ3L h λ1 λ3 ξ2 + 2 Æ−T Hλ2+λ3L r λ12 λ3 ξ2 +

6 Æ−T Hλ2+λ3L h T λ12 λ3 ξ2 + 16 Æ−T Hλ2+λ3L h λ2 λ3 ξ2 −

24 Æ−T Hλ2+λ3L h T λ1 λ2 λ3 ξ2 + 4 Æ−T Hλ2+λ3L r T λ12 λ2 λ3 ξ2 +

6 Æ−T Hλ2+λ3L h T2 λ12 λ2 λ3 ξ2 − 6 Æ−T Hλ2+λ3L r λ22 λ3 ξ2 +

18 Æ−T Hλ2+λ3L h T λ22 λ3 ξ2 − 12 Æ−T Hλ2+λ3L r T λ1 λ22 λ3 ξ2 −

18 Æ−T Hλ2+λ3L h T2 λ1 λ22 λ3 ξ2 + 8 Æ−T Hλ2+λ3L r T λ23 λ3 ξ2 +

12 Æ−T Hλ2+λ3L h T2 λ23 λ3 ξ2 + 8 Æ−T Hλ2+λ3L h λ32 ξ2 −

12 Æ−T Hλ2+λ3L h T λ1 λ32 ξ2 + 2 Æ−T Hλ2+λ3L r T λ12 λ32 ξ2 +

3 Æ−T Hλ2+λ3L h T2 λ12 λ32 ξ2 − 6 Æ−T Hλ2+λ3L r λ2 λ32 ξ2 +

18 Æ−T Hλ2+λ3L h T λ2 λ32 ξ2 − 12 Æ−T Hλ2+λ3L r T λ1 λ2 λ32 ξ2 −

18 Æ−T Hλ2+λ3L h T2 λ1 λ2 λ32 ξ2 + 12 Æ−T Hλ2+λ3L r T λ22 λ32 ξ2 +

18 Æ−T Hλ2+λ3L h T2 λ22 λ32 ξ2 − 2 Æ−T Hλ2+λ3L r λ33 ξ2 +

6 Æ−T Hλ2+λ3L h T λ33 ξ2 − 4 Æ−T Hλ2+λ3L r T λ1 λ33 ξ2 −

6 Æ−T Hλ2+λ3L h T2 λ1 λ33 ξ2 + 8 Æ−T Hλ2+λ3L r T λ2 λ33 ξ2 +

12 Æ−T Hλ2+λ3L h T2 λ2 λ33 ξ2 + 2 Æ−T Hλ2+λ3L r T λ34 ξ2 +

3 Æ−T Hλ2+λ3L h T2 λ34 ξ2M + Æ
T Hγ1+γ2L Hλ2+λ3L

γ2+ξ

Æ−T λ1 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T Hγ1 + γ2L Hγ2 + ξL
Hλ2 + λ3L H−γ2 λ1 + γ1 λ2 + γ2 λ2 + γ1 λ3 + γ2 λ3 − λ1 ξL −

K−Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ24 λ1 + Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ23 λ2 + Æ
− T Hλ2+λ3L ξ

γ2+ξ h

γ24 λ2 + Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ23 λ3 + Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ24 λ3 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ23 λ1 ξ + Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ1 λ2 ξ −

Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ22 λ22 ξ − Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ22 ξ +

Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ1 λ3 ξ − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ22 λ2 λ3 ξ −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ2 λ3 ξ − Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ22 λ32 ξ −

Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ32 ξ − 3 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ2 λ2 ξ2 −

3 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ22 λ2 ξ2 + 3 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ1 λ2 ξ2 +
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Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ1 λ2 ξ2 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ2 λ22 ξ2 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 γ2 λ22 ξ2 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ22 ξ2 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ22 ξ2 − 3 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ2 λ3 ξ2 −

3 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ22 λ3 ξ2 + 3 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ1 λ3 ξ2 +

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ1 λ3 ξ2 − 4 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ2 λ2 λ3 ξ2 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 γ2 λ2 λ3 ξ2 − 4 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ2 λ3 ξ2 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ2 λ3 ξ2 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ2 λ32 ξ2 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 γ2 λ32 ξ2 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ32 ξ2 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ32 ξ2 + 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ2 λ1 ξ3 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 λ2 ξ3 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ2 λ2 ξ3 +

3 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ1 λ2 ξ3 + 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ1 λ2 ξ3 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 λ22 ξ3 − Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 λ22 ξ3 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ22 ξ3 − Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ22 ξ3 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ1 λ3 ξ3 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h γ2 λ3 ξ3 +

3 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ1 λ3 ξ3 + 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ1 λ3 ξ3 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 λ2 λ3 ξ3 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 λ2 λ3 ξ3 −

2 Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ2 λ3 ξ3 − 2 Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ2 λ3 ξ3 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ1 λ32 ξ3 − Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ1 λ32 ξ3 −

Æ
− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ32 ξ3 − Æ
− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ32 ξ3 +

Æ
− T Hλ2+λ3L ξ

γ2+ξ h λ1 ξ4 + Æ
− T Hλ2+λ3L ξ

γ2+ξ r λ1 λ2 ξ4 + Æ
− T Hλ2+λ3L ξ

γ2+ξ h T λ1

λ2 ξ4 + Æ
− T Hλ2+λ3L ξ

γ2+ξ r λ1 λ3 ξ4 + Æ
− T Hλ2+λ3L ξ

γ2+ξ h T λ1 λ3 ξ4O ì

IHλ2 + λ3L2 ξ H−γ2 λ1 + γ1 λ2 + γ2 λ2 + γ1 λ3 + γ2 λ3 −

λ1 ξL Hγ2 λ1 − γ1 λ2 − γ2 λ2 − γ1 λ3 − γ2 λ3 + λ1 ξLM +

Æ−T λ1+T Hλ2+λ3L K−KÆ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T Hγ1 + γ2L Hγ2 + ξLO ì
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HHλ2 + λ3L H−γ2 λ1 + γ1 λ2 + 2 γ2 λ2 +

γ1 λ3 + 2 γ2 λ3 − λ1 ξ + λ2 ξ + λ3 ξLL +

KÆ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ24 λ1 − Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ23 λ2 −

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ24 λ2 − Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ23

λ3 − 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ24 λ3 + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

h γ23 λ1 ξ − 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ23 λ2 ξ −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ1 λ2 ξ + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

r γ1 γ22 λ22 ξ + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ22 ξ −

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ23 λ3 ξ − Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

r γ23 λ1 λ3 ξ + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ22 λ2 λ3 ξ +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ2 λ3 ξ + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

r γ1 γ22 λ32 ξ + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ23 λ32 ξ +

3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ2 λ2 ξ2 + 3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

h γ22 λ2 ξ2 − 3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ1 λ2 ξ2 −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ1 λ2 ξ2 + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

r γ1 γ2 λ22 ξ2 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ1 γ2 λ22 ξ2 +

5 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ22 ξ2 + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

h T γ22 λ22 ξ2 + 3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 γ2 λ3 ξ2 +

3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ22 λ3 ξ2 − 3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

r γ22 λ1 λ3 ξ2 − Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ1 λ3 ξ2 +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 γ2 λ2 λ3 ξ2 + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

h T γ1 γ2 λ2 λ3 ξ2 + 10 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ2 λ3 ξ2 +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ22 λ2 λ3 ξ2 + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

r γ1 γ2 λ32 ξ2 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ1 γ2 λ32 ξ2 +

5 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ22 λ32 ξ2 + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

h T γ22 λ32 ξ2 − 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ2 λ1 ξ3 +
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2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 λ2 ξ3 + 4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

h γ2 λ2 ξ3 − 3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ1 λ2 ξ3 −

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ1 λ2 ξ3 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

r γ1 λ22 ξ3 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ1 λ22 ξ3 +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ22 ξ3 + 3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

h T γ2 λ22 ξ3 + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ1 λ3 ξ3 +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h γ2 λ3 ξ3 − 3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

r γ2 λ1 λ3 ξ3 − 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ1 λ3 ξ3 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ1 λ2 λ3 ξ3 + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

h T γ1 λ2 λ3 ξ3 + 8 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ2 λ3 ξ3 +

6 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ2 λ2 λ3 ξ3 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

r γ1 λ32 ξ3 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T γ1 λ32 ξ3 +

4 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r γ2 λ32 ξ3 + 3 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

h T γ2 λ32 ξ3 − Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h λ1 ξ4 +

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h λ2 ξ4 − Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r λ1 λ2 ξ4 −

Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T λ1 λ2 ξ4 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r λ22

ξ4 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T λ22 ξ4 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h

λ3 ξ4 − Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r λ1 λ3 ξ4 − Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

h T λ1 λ3 ξ4 + 2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ r λ2 λ3 ξ4 +

2 Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T λ2 λ3 ξ4 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ

r λ32 ξ4 + Æ
−T Hλ2+λ3L− T Hλ2+λ3L ξ

γ2+ξ h T λ32 ξ4O ì

IHλ2 + λ3L2 ξ Hγ2 λ1 − γ1 λ2 − 2 γ2 λ2 − γ1 λ3 −

2 γ2 λ3 + λ1 ξ − λ2 ξ − λ3 ξL2MO
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CHAPTER IV

Contrasting paradigms for production control,

cross-training, and compensation

4.1 Introduction

Competition on a global scale over the last half of a century has caused a shift in

our American economy away from production where we make products, towards the

service sector. The conventional wisdom at one time was that this shift was necessary

as it defined American growth, ingenuity, and power. In fact, as late as 1985 in a

report to Congress our country’s leader President Ronald Reagan stated that, “The

move from an industrial society toward a post-industrial service economy has been one

of the greatest changes to affect the developed world since the Industrial Revolution.

The progression of an economy such as America’s from agriculture to manufacturing

to services is a natural change.” Unfortunately, the negative side effects of this “nat-

ural change” have had broad effects throughout various aspects of our economy. A

few of these side effects include: growing concern from the poor safety regulations

and port regulations of our imported food, domestic small businesses forced out of

business as they are unable to stay cost competitive against international competi-

tion, and the tragic loss of jobs for our skilled labor workforce as many companies are

outsourcing their jobs to the less expensive international workforce.
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If American companies continue to internationally outsource more jobs and pro-

duction, we will likely see the amount of our imports increase dramatically. There is

an inherent danger for any country as their imports increase, because they can be-

come severely dependent on other countries for their existence. For example, consider

America’s current dependence on other countries as it relates to petroleum imports.

Presently our dependence on foreign oil is often times referred to in the news media as

a “clear and present danger”. Moreover, in addition to the effects of increased import-

ing, many high paying service jobs, (e.g. engineers, consultants, etc.), are inextricably

tied to production jobs. Therefore as we see a loss of jobs among blue collar workers,

we will also see a loss of jobs among white collar workers. These occurrences high-

light, for American society, a need for a generational paradigm shift whereby we raise

and educate a new generation that not only understands the need for manufacturing

and production, but also develops a genuine interest in their core ideas and concepts.

Learning the core concepts of manufacturing and production helps to nurture interest

in those fields and provides a foundation from which a new generation can expand

the state of the art within those fields. To facilitate this education, at high school

levels and beyond, there exists a need for simple yet effective learning tools in the

classroom that support these interests. This work addresses this need through the

development of the worker agility game (WAG), which offers a creatively designed

tool that teaches the value of workforce flexibility in production systems.

In the literature, flexibility has been researched as it relates to manufacturing

[56], production [21], process [59], and the workforce [64]. Workforce flexibility is

one important concept within manufacturing and production; but in each of these

areas, flexibility relates to increasing a system’s capacity to efficiently improve re-

sponsiveness and the decision making of that system in the presence of uncertainty.

Workforce agility speaks to the increased capacity that a particular system can gain

from its workforce via cross-training (See Figure 4.1). The impact of an agile work-
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These workers are crossed trained.

Cross training improves performance and 
increases flexibility.

Figure 4.1: A Cross-trained Workforce

force and its positive effects have been thoroughly researched and documented for

various systems (see Hopp and VanOyen [54], Gurumurthi and Benjaafar [44], and

Andradottir, Ayhan, and Down [4]).

WAG is an example of a “simple game” for teaching described by Heineke and

Meile [46] where they stated that “many complex and important concepts (of oper-

ations management) could be demonstrated in a simple game”. This activity offers

a hands-on, active learning experience placing students “on the job” in a serial pro-

duction line of cross-trained workers where participants can: 1) learn basic concepts

of operations management, production control, and workforce agility; 2) understand

system responsiveness and what can be done to improve it; 3) generate creative think-

ing and discussion on the value of flexibility; and 4) see first hand foundational factory

physics concepts like cycle time, throughput, and Work In Process (WIP). In WAG,

participants form teams and work together as cross-trained workers on a serial pro-

duction line to create a product from raw materials to a finished good. Each team
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forms a different worker cross-training paradigm for its production line, and simple

time studies are completed of worker efficiency to ascertain how the cross-training

policies work in comparison to each other. From two live implementations of WAG,

one with tenth grade high school students and the other with senior level under-

graduate and master’s degree students at the authors’ institutions, its effectiveness

and impact on the students understanding was quite impressive. The students de-

scribed in post-activity discussions how their understanding of worker cross-training

had increased and the value of flexibility in production systems.

In this paper we will describe the WAG game, its relevance to the latest workforce

agility literature, and its usefulness for classroom instruction. The remainder of

this paper is organized as follows: Section 4.2 will explain the concepts behind the

WAG game as well as survey the literature which supports the game; Section 4.3

describes how the game was developed and the simplicity of the tools needed for

implementation; Sections 4.4 and 4.5 provide the necessary materials for instructors

and students respectively; and Section 4.6 concludes with suggestions for future work

and WAG expansion.

4.2 Concepts behind WAG

Comprehensive surveys that examine the workforce agility literature have been

supplied by Sethi and Sethi [79], Hopp and Van Oyen [54], and Treleven [86]. Each

considers both serial and parallel production lines. For the purposes of this work we

will confine our scope to workforce agility as it relates to serial production lines. More

to the point, specific to this work there are four agile workforce coordination policies

for serial lines which describe how workers on the production line are to complete

their work: pick and run, bucket brigade, two skill chain, and worksharing with

overlapping zones. These policies are used in WAG to highlight the basic concepts

of production control in workforce agility. First we will detail these agile workforce

121



policies and the corresponding literature that has studied them. Then we will outline

those basic concepts of operations management which are prevalent in each policy.

For each policy, as it relates to WAG, consider a four station serial production line

with four workers. An entity begins as raw materials at station one, and proceeds

sequentially through to station four where it is completed as a finished good.

4.2.1 The pick and run policy

The pick and run policy is implemented to illustrate the case wehre all the workers

on a line are fully cross-trained to complete all task-types at each station on the line.

Given this full cross-training a worker can “pick” up an entity as raw materials at

station one and process the entity through all stations until completion (“run”). Once

the entity has been completed the worker can return to station one to repeat the

process. Thus, fully cross-trained workers in this policy individually handle entities

from start to finish and interaction between workers is non-existent. An example of

this is the sandwich maker in a Subway restaurant during slow periods [54]. The

pick and run was studied by both Iyer and Askin [58] and Van Oyen, Gel, and

Hopp [89] who found it to be near optimal for demand constrained environments.

However, in environments where there is, at a minimum, always one job per worker

under constant WIP the pick and run was found to be optimal. Ahn and Righter [1]

generalized results on the optimality of the pick and run under certain conditions in

serial manufacturing systems.

4.2.2 The bucket brigade

The bucket brigade is similar to the pick and run in that a worker processes

an entity at each sequential station, but only until the worker is either bumped or

blocked. A worker is bumped when the entity they are processing is taken from them

by an idle downstream worker. This process is known as entity preemption, and it
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is enabled by full cross-training of the workers. Blocking occurs when a worker can-

not process an entity at a given station because that station is being occupied by

another worker. Varying worker speeds or station processing times where a down-

stream worker (or station) is slower than their adjacent upstream counterpart will

cause blocking. Interaction between workers is significant with bucket brigades which

is one of the main points of differentiation from the pick and run. The seminal work

on bucket brigades is Bartholdi and Eisenstein [13]. They demonstrated that when

workers are sequenced from slowest to fastest, with deterministic processing times,

a bucket brigade will always divides work optimally and the line will balance itself.

(Note that Bischack [20] and McClain, Schultz, and Thomas [63] consider similar

systems with random processing times.) Further analysis on bucket brigades was also

completed by Bartholdi and Eisenstein (see [14] and [15].)

4.2.3 The two skill chain

The two skill chain considers each station of the serial production line to be a skill

that a worker must learn to be able to process entities at that station. Each worker

is then cross-trained on two skills in such a way that they “complete the chain”.

This means that the skills of each worker are indirectly linked to provide worker skill

set coverage for all stations. For example, consider four skills (S1, S2, S3, S4) and

four workers (W1, W2, W3, W4). To complete the chain for a two skill chain, the

workers would be cross-trained on skills as follows: W1 - (S1, S2); W2 - (S2, S3);

W3 - (S3,S4); W4 - (S4, S1). In this configuration, the skills of the workers overlap

in such a way that each worker can either directly or indirectly provide assistance

to all other workers. Hopp, Tekin, and Van Oyen [54] introduced the concept of

two skill chaining in serial production lines based upon the capacity chaining ideas of

Jordan and Graves [59]. In their work they showed that the two skill chain was highly

effective when idle workers served the maximum queue of their two skills. Jordan,
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Inman, and Blumenfield [60] applied it to automotive production lines focused on

maintenance and repair and were able to show the robustness of chaining.

4.2.4 Worksharing with overlapping zones

Worksharing with overlapping zones classifies a workers skill set as a zone and

neighboring workers are cross-trained so that they can share responsibility for ma-

chines at stations where the zones overlap (see McClain, Schultz, and Thomas [64]).

The efficiency of serial production lines is greatly increased by using overlapping

zones, thereby avoiding worker idle time. The conditions of zone overlap generally

include systems with more stations than workers and cross-trained workers whose

skills connect adjacent tasks between two zones. The importance of worksharing

with overlapping zones is that it can limit inexpensive cross-training in serial lines.

This reduced expense for training is a result of the fact that the number of skills that

must be cross-trained with zones is much smaller than full cross-training of all workers

since skills are only cross-trained at the overlapping portions of the zones. Williams

et al. [90] introduced a new paradigm in worksharing with overlapping zones by

merging together the concepts of overlapping zones and completing the chain. Their

model for zone chaining is called the fixed task zone chain and it demonstrated the

cost benefits of overlapping zones by performing quite robustly against models with

more extensive cross-training.

In addition to these agile workforce policies there are also several basic operations

management concepts that WAG participants will become familiar with and learn

through participation in the activity. The details for all of these concepts can be

found in Hopp and Spearman [52], however for completeness we will detail their

connection to WAG.

The most fundamental operations management principle that WAG participants

124



will learn is the relationship between work in process (WIP), cycle time (CT), and

throughput (TH). This fundamental relationship, WIP = TH ∗ CT , is known as

Little’s Law. Interestingly enough, without ever studying queueing theory or learning

Little’s Law many of our WAG participants were able to understand the intuition

described by Little’s Law simply by participating in WAG. Upon completion of the

WAG activity participants are able to calculate the average CT of their production line

and then discuss issues of line efficiency in terms of worker utilization. This discussion

of line efficiency allows the participants to speak more analytically about how well

they believed their line performed, and what steps they would take to improve it. For

example, worker utilization varies by team depending on the cross-training paradigm

implemented for that specific team. For example, by being directly involved in the

production, participants can speak to whether they experienced idleness waiting for

their adjacent upstream worker to finish a task-type, or whether WIP accrued at

the buffer at their station based upon their high utilization. This discussion on high

utilization introduces the idea of unstable queues and other simple queueing theory

concepts.

As participants discuss utilization the conversation focuses on the type of system

a production line was: push versus pull. Pull systems involve adjacent downstream

workers pulling work from upstream workers. If the downstream worker is cross-

trained on the same skill set as the upstream worker then the downstream worker

can pull incomplete entities, and thus employ the concept of preemption discussed

with bucket brigades. Allowing participants to actually engage in preemption during

the activity gives them hands on experience with this concept. Push systems allow

workers to work as fast as they can on as much product as they can, and once they have

completed service on an entity they can then push it into the queue of the adjacent

downstream worker. When comparing and contrasting worker speeds, participants

are able to recall how faster workers in pull systems could use preemption to assist
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slower workers, however in push systems faster workers often times found themselves

idle and under-utilized.

The final operations management concept that WAG participants are able to re-

ceive is that of worker compensation. Although worker compensation is not directly

a part of the WAG activity, in the post-WAG discussion participants engage in lively

discussions on how peer pressure and perceptions impacted their beliefs about effec-

tive pay incentives. Participants are able to consider, based upon their production,

how they would want to be compensated and whether that compensation should be

independent of or dependent on team productivity and performance. As can be ex-

pected, the better performing teams are more inclined to want team productivity

based compensation and those teams are the ones with more flexibility. Participants

gain an understanding as to how increased flexibility yields increased throughput for

their production lines and thus with productivity based compensation they are able

to learn about a manager’s struggle to align the incentives of production with those

of the employees. WAG makes for a rich discussion on these concepts and allows

participants to gain a deeper understanding and interest into some components of an

agile workforce in production.

4.3 Game development

WAG was developed to fill the need for a workforce agility learning activity that

is simple, yet effective. The cutting edge cross-training paradigms introduced in [54]

and [90] can be communicated to senior level undergraduates and masters students

who needed practical understanding of workforce flexibility prior to entering the en-

gineering workforce. WAG closes the education gap that the authors found to exist.

WAG has generated the type of thought provoking discussion amongst the students

that leads to interest, competence, and innovation in the field.

WAG was designed to simulate a serial line production facility that used cross-
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trained workers to create fruit baskets. For the purposes of classroom instruction,

the simulated facility makes fruit baskets through stencil tracing on a piece of paper,

called a job sheet. Each piece of paper that moves through the line represents one

fruit basket and denotes on it the number of apples, pears, bananas, and cherries to

be traced. The number of each fruit to be traced is randomly assigned for each job

sheet making each fruit basket unique. The activity consists of multiple production

lines that each make these fruit baskets where the differences among the lines are

the cross-training policies (detailed in Section 4.2) to be used. Each production line

consists of six participants who each hold one of three positions: release agent, line

worker, or finished goods inventory supervisor.

At the beginning of each line the release agent holds all of the raw materials, which

are the job sheets, and distributes them to line according to the job release instructions

for that particular line. The release agent demonstrates to the participants how the

flow of raw materials introduced into a production line is controlled. Next to the

release agent, in sequential order, are four line workers, each with a unique skill set.

The skill set of a worker is determined by which fruit they are skilled (i.e. permitted)

to trace on the job sheet. Each of the fruits is traced with a different color, so a

worker’s skill set is identified by the set of colored markers they are given to trace

with. For example, a worker who is given a red and a green marker has the skill

set for two fruits, apples and pears, and can only trace apples and pears on a job

sheet. Once the workers understand their skill sets, based upon the markers given,

they are also told the type of system they are working in, including whether they

can push, pull, or preempt work from upstream workers on the line with the same

skill set. The final participant on the line is the finished goods inventory supervisor.

The finished goods inventory supervisor oversees the work of the line, ensuring that

workers are staying within their assigned skill set. Once a job sheet is completed, it

is given to the finished goods inventory supervisor to be checked off when completed.
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The finished goods inventory supervisor, at the end of the exercise, is responsible for

tallying the total amount of work completed, the start and stop time of production,

and the average WIP, TH, and CT.

The six participants of one production line make up a team. The activity consists

of five teams with the following cross-training policies: 1) Team 1 is specialized -

each worker only knows 1 skill. This is a traditional assembly line with a push work

system. 2) Team 2 is a two skill chain, push work system, where each worker knows 2

skills, and the skills are assigned to the workers to “complete the chain”; 3) Team 3 is

a pick and run pull system where all workers act independently (each worker knows

all four skills). 4) Team 4 is a specialized push system, exactly like Team 1, except

they are under an 8 job sheet CONWIP release policy; 5) Team 5 is a bucket brigade

pull system where each worker knows the skills up to and including the station where

they are assigned (e.g. W2 - (1,2), W4 - (1,2,3,4)); 6) Team 6 is a fixed task zone

chain where each worker is assigned a zone of 3 stations where the skill for 2 of the

stations is shared by an adjacent worker and 1 station is fixed meaning only that

worker has the skill for that station. For each team the release agent and the finished

goods inventory supervisor have the same job function.

Game play was devised to begin with a pre-game discussion over the basic in-

structions for each team. There is some vocabulary that may require explanation

to the participants (see Section 4.4). Once participants understand their role, the

pre-game discussion consists of student hypotheses about which team would be the

most accurate and efficient. The participants justification for their hypotheses begins

the process for them to learn the basic concepts of workforce agility. For example,

most participants can immediately identify where bottlenecks will form within the

specialized teams and how by knowing only one skill those teams are at a decided

efficiency disadvantage to the cross-trained teams. Upon conclusion of the pre-game

discussion the same number of randomly generated (to provide variability in job pro-
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cess times) sheets is given to each team. The objective for each team is to complete

their job sheets as accurately, quickly, and efficiently as possible.

The post game discussion has three main discussion topics: 1) calculations, 2)

results analysis, and 3) worker incentives. Upon completion of the exercise the fin-

ished goods inventory supervisor will calculate on an inventory sheet the average

WIP, TH, and CT for his/her team. These calculations allow the participants to

receive a first hand understanding of the relationship Little’s Law describes. The

participants ability to actually see Little’s Law at work during the simulated activity,

prior to completing (or even perhaps learning) the calculation gives them a deeper

understanding of the relationship once the calculation is done. Intuitively the par-

ticipants generally understand that one method of increasing their throughput, and

overall team performance, is to decrease their cycle time. As the discussion moves

towards results analysis, ideas on how to accomplish this goal clearly demonstrate

the participants comprehension of the value of flexibility.

Without knowledge of the performance of the other teams, participants are chal-

lenged to discuss why their team performed as well, or not so well, as they did. This

challenge requests that the students consider their production line configuration and

critically think about the pros and cons of their configuration and what they believe

can be done to improve it. Further, participants consider the factors of the line that

they cannot change such as worker speed (invariably one person will trace a stencil

more accurately and quickly than another). Given that not all workers were stan-

dard, i.e., possessing the same speed and skill set, the value of how flexibility allows

workers to directly or indirectly assist each other is shown. Finally, the participants

discuss worker incentives as it relates to compensation. Participants are asked to

consider three different compensation structures and which they would prefer for the

cross-training paradigm in which they participated. The first compensation structure

is a flat hourly wage that is independent of work completed and team performance.
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The second compensation structure reduces the flat hourly wage of the first level, but

then adds a group bonus based upon team productivity. Finally, the third compensa-

tion structure focuses solely on a commission that is based on team performance - the

number of jobs completed. This conversation about compensation level is intended to

drive the participants to think about improving the value of cross-training by aligning

the incentives of the worker with the production goals of the line.

WAG was designed to provide the members involved in the activity with broad

perspectives on cross-training. The activity itself provides the foundation upon which

the pre and post game discussions can build an introductory, yet solid foundation of

workforce agility as it relates to operations management. Moreover, the authors have

been able to use these discussions to guide interested participants into degree fields

(for high school students) and specific coursework (for undergraduate students) that

will broaden and deepen their understanding of the concepts they learned through the

activity. This learning tool does not replace standard classroom instruction, however

it has been shown to greatly motivate, enhance, and support it.

4.4 Materials for instructors

This section outlines the materials that were developed for instructors or WAG

facilitators and consists of three sub-sections including: 1) Game Instructions; 2)

Examples; and 3) Software Instructions to use the Excel VBA game application to

generate jobs for use in play.
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4.4.1 Game Instructions

Game Instructions

Table of Contents

I. Overview

A. Objectives and Expectations

B. Game Requirements

C. Timing Guidelines

II. How to Play

A. Task Description

B. Production Line Method Description

1. Push vs. Pull

2. Team Configuration Descriptions

C. Factory Design

1. How to generate random job sheets

2. How to complete a job

III. Executing the Game

A. Pre-Game Discussion

1. Student vocabulary

2. The Fruit Basket Story

3. Student Hypotheses

B. Set-up Guidelines

1. Team Creation

2. Instruction Review

C. Post Game Discussion

1. Calculations

2. Results Analysis

3. Worker Incentives
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I. Overview

A. Objectives and Expectations

The objective of the Worker Agility Game (WAG) is to involve participants as

cross-trained workers in an organized, simulated serial production line. Through this

hands-on experience we hope they will better understand basic concepts of operations

management, production control, workforce agility, and the importance of manufac-

turing finished goods from raw materials. Participants will be actively involved in

the transformation of raw materials into finished goods and will experience some el-

ements of queueing theory as well as the benefits of cross-training. By being directly

involved in how serial production lines can be organized, participants will explore

theories of efficiency, cycle time, throughput, and compensation. The simulation of a

production facility will help clarify concepts and help create educational connections

for the participants.

B. Game Requirements

To play a minimum of 36 participants is needed, broken into 6 teams (numbered

1 through 6) of 6 players each. If there are more than 36 participants, teams can be

repeated (i.e. there can be two Team 1’s or two Team 4’s, etc.) A set of job sheets

must be created for game play, and the number of job sheets determines the length

of play. Once a set of job sheets is created, that set can be copied with each team

receiving its own individual set. Lastly, 16 sets of colored markers are needed with

each set consisting of a red, green, yellow, and blue markers. The sets of markers are

distributed to the teams as follows: Teams 1 and 4 receive 1 set each, Team 2 receives

2 sets, and Teams 3,5, and 6 receive 4 sets each.

C. Timing Guidelines
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To plan the time for WAG, please consider the following four stages of the game:

setup, pre-game discussion, WAG activity, post-game discussion. Setup time is min-

imal and truly depends on the number of teams as setup only involves providing

the teams with their instructions, job sheets, and markers. The pre-game discus-

sion generally takes about 20 minutes to review the game assignments and provide

introductory information. We have found that allotting 1 minute per job sheet is

a good estimation to determine how many job sheets to create for game play. For

example, if you wish the actual activity to last 20 minutes then each team should

be provided a set of 20 job sheets. The post-game discussion takes a minimum of

approximately 30 minutes, however it can be shortened or lengthened according to

the instructor’s time constraints. In total, the average WAG experience was designed

to take approximately 90 minutes (one class period) to complete.

I. How to Play

A. Task Description

The 6 participants on a team include one: release agent (RA), one finished goods

inventory (FG), and four line workers (LW).

The RA holds the raw materials, which are the uncompleted job sheets, records

the start time of production, and distributes the jobs to the team according to the

job distribution rules of that team. A record of each job that is released is to be kept

by the RA on the WAG Inventory Record Sheet that is maintained by the RA.

The FG collects the completed jobs from the production line and places them in

inventory. Prior to placing the job sheet into inventory the FG completes a quality

control check of the job sheet to ensure accuracy and completeness. Any job sheet that

is found to fail quality control inspection is discarded. A record of each completed

job, as well as the end time of production, is to be maintained by the FG on the

WAG Inventory Sheet that is maintained by the FG, which is different from the sheet

maintained by the RA. At the conclusion of the activity the FG is responsible for the
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throughput (TH), cycle time (CT), and Work In Process (WIP) calculations for their

team.

The LW’s perform the actual production work of the production line. Each team

in the activity is responsible for producing fruit baskets by tracing the predetermined

number of pieces of fruit on the job sheet. On each job sheet there are four different

pieces of fruit that can be traced: apples, pears, bananas, and cherries. Each piece

of fruit must be traced in a different color. Each LW is given one or more marker

colors, each color represents one skill in the skill set of a particular LW. LW’s trace

the fruit according the skills they’ve been assigned, ensuring to do “quality at the

source” checks of their work as one element of quality control. Poorly traced pieces

of fruit, or an incorrect number of traced pieces of fruit will fail the quality control

inspection of the FG and thus cause that job sheet to be discarded. Each line worker

may vary in the number of skills that they have. The four possible skills are:

Skill 1 - Trace with a red marker the number of apple outlines as specified next to the

row of apples on the job sheet.

Skill 2 - Trace with a green marker the number of pear outlines as specified next to the

row of pears on the job sheet.

Skill 3 - Trace with a yellow marker the number of banana outlines as specified next to

the row of bananas on the job sheet.

Skill 5 - Trace with a blue marker the number of cherries outlined as specified next to

the row of cherries on the job sheet.

B. Production Line Method Description

1. Push vs. Pull
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Push or pull describes the way in which jobs move down the produc-

tion line between adjacent workers. Upstream and downstream describe the relative

positions of one work to another (See Figure 4.2). A worker i is considered to be

FG

LW 1 LW 2 LW 3 LW 4

RA
UPSTREAM

DOWNSTREAM

PRODUCT FLOW

Raw

Materials

Finished

Goods

Figure 4.2: Upstream vs. Downstream

upstream(downstream) of an adjacent worker i + 1 if they are closer to the begin-

ning(end)of the line (i.e. closer to the RA (FG)). For any given team the method of

job movement through the line is push if the upstream line worker with task n must

push the job down the line to the adjacent downstream worker with task n+1. If the

job is not pushed, then it does not move. Conversely, if the downstream worker can

take or pull the job from the upstream worker then the job movement through the

line is a pull system. Given these two descriptions of job flow movement, each team

must follow their unique set of instructions.

2. Team Configuration Descriptions

The cross training configuration of each team is unique and includes with

it instructions for how jobs are released to the line and how jobs flow through the
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line. Each team must follow their unique set of instructions.

Team 1 - Specialized production

Team 1, see Figure 4.13, is a specialized, traditional assembly line where each line

FG

LW 1 LW 2 LW 3 LW 4

RA

PRODUCT FLOW

RAW MATERIAL

FINISHED GOODS

LW SKILL

Figure 4.3: Team 1 - Specialized workers

worker is trained on one skill and jobs are pushed through the line from an upstream

worker to their adjacent downstream worker. In the event an upstream worker has

completed their task, is ready to push a job downstream, and the downstream worker

has not completed their task; then a queue of uncompleted work builds between those

two workers. The downstream worker removes jobs from the queue following a first

in, first out policy.

The RA releases jobs only to LW 1 and the skills of the LW’s are assigned as: LW

1 - Skill 1; LW 2 - Skill 2; LW 3 - Skill 3; LW 4 - Skill 4. The RA does not hold jobs if

queues between workers are building, therefore each time LW 1 is idle they are given

a new job sheet. The tasks for all jobs must be completed in sequential order with

skill 1 being completed first and skill 4 being completed last. When a job is complete
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LW 4 gives the job to the FG.

Team 2 - Two skill chaining

Team 2, see Figure 4.14, has a 2-skill chain configuration where each worker is cross-

trained in two skills. The skills are cross-trained to “complete the chain”, which

RA

FG

LW 1 LW 2

LW 3LW 4

Figure 4.4: Team 2 - Two skill chaining

means that all skills are either directly or indirectly linked by the workers. Each skill

has exactly two workers that are able to complete it. The skills are assigned to the

LW’s as follows: LW 1 - Skills 1 and 2; LW 2 - Skills 2 and 3; LW 3 - Skills 3 and

4; LW 4 - Skills 4 and 1. Given this configuration, it is advantageous to seat the

students in a U-shape so LW 1 and LW4 may assist each other as needed.

Each LW n, labeled n = 1, 2, 3 does the following: LW n - Do skill n, in sequential

order of skills 1 through 4, and then either do skill n+1 if the adjacent downstream

LW is busy or give the job, for skill n + 1, to the downstream LW if they are idle.

LW 4 is to prioritize skill 4 and the job sheets in their queue before assisting LW 1.

The RA releases new jobs to LW 1 or LW 4 only when they are idle. The FG can
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only receive completed jobs from LW 4.

Team 3 - Craft production with pick and run

Team 3, see Figure 4.15, is a “pick and run” system where all LW’s operate indepen-

dently because they each are cross-trained on all four skills. Each LW begins with

RA FG

LW 1

LW 2

LW 3

LW 4

Figure 4.5: Team 3 - Craft production with pick and run

a fresh job sheet and completes all four skills on the job sheet themselves without

interaction with the other LW’s on the production line. Once a job is complete the

LW’s hand their jobs off to the FG and return to the RA to get a fresh job. Thus,

the FG can receive a completed job from any LW and the RA can release a job to

any LW. At any given time there should always be 4 jobs in WIP since there is no

interaction between workers and workers do not have idle time.

Team 4 - Specialized production under a CONWIP release policy

The configuration of team 4 is exactly like the configuration of team 1. This is a

specialized team where all LW’s are trained on only 1 skill. The difference between

teams 1 and 4 is that team 4’s job release policy is governed by having a CONstant

Work In Process (CONWIP) of 8 jobs. Initially, at the beginning of the activity the
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RA releases 8 jobs to LW 1. The jobs proceed sequentially through the line until

LW 4 completes the fourth task and hands the completed job off to the FG. Each

completed job triggers the release of a new job to the queue in front of LW 1 such

that there is a maximum of 8 jobs in the system at any one time.

Team 5 - Bucket brigade

Team 5, see Figure 4.17, is configured in a standard “bucket brigade”, which is a

pull system based on the Toyota sewn production system, where each worker is cross-

trained in all skills up to and including their assigned skill. The skill assignments

RA FG

LW 1

LW 2

LW 3

LW 4

Figure 4.6: Team 5 - Bucket brigade

for the bucket brigade are: LW 1 - Skill 1; LW 2 - Skills 1 and 2; LW 3 - Skills

1,2, and 3; LW 4 - Skills 1,2,3,and 4. Workers complete their assigned task(s) on a

given job until preempted by a downstream LW. Preemption works as follows: Once

a downstream worker becomes idle, and there is no queue between them and their

immediate upstream worker, that downstream worker can preempt the work of their

adjacent upstream worker by taking an incomplete job from them and completing the

task the upstream worker was in the middle of. Once preempted the upstream worker
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immediately moves to the jobs in their queue or preempts their adjacent worker if

their queue is empty. The RA only releases new jobs to LW 1 and then the process

works as follows:

LW 1 begins work on skill 1 for a given job until preempted by LW 2. Once the

preempted job is given to LW 2, LW 1 receives a fresh job from the RA.

LW 2 completes the remainder of skills 1 and 2 until preempted by LW 3. Once

the preempted job is given to LW 3, LW 2 turns and again preempts LW 1 if there

are no jobs in the queue between LW 1 and LW 2. If there are jobs in the queue LW

2 completes those jobs before preempting LW 1.

LW 3 completes the remainder of skills 1,2, and 3 until preempted by LW 4. Once

the preempted job is given to LW 4, LW 3 turns and again preempts LW 2 if there

are no jobs in the queue between LW 2 and LW 3. If there are jobs in the queue LW

3 completes those jobs before preempting LW 1.

LW 4 completes the remainder of skills 1,2,3, and 4. Once the job is completed

LW 4 hands the job to the FG. Only worker 4 may hand jobs to the FG.

For maximum efficiency of the bucket brigade, if possible, sequence the workers

from slowest (LW 1) to fastest (LW 4). All jobs must be completed in order from 1

to 4 and jobs can only be pulled down the line by preemption and not pushed. At

any given time there should only be four jobs in the system.

Team 6 - Fixed task zone chain under a CONWIP release policy

Team 6, see Figure 4.18, is configured as a type of fixed task zone chain (FTZC)

which is a unique worksharing system, within the class of worksharing systems, with

overlapping zones. The FTZC of team 6 is broken into two serial lines operating

in parallel, as opposed to just one serial line as with the other teams. The reason

for this is to create lines with more stations than workers. Each serial line has two

LW’s where each LW is assigned a zone of three skills. The skill assignments for the

FTZC are: LW 1 - Skills 1,2, and 3; LW 2 - Skills 2,3, and 4; LW 4 - Skills 1,2 and
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LW 1

LW 2

LW 3

LW 4

Figure 4.7: Team 6 - Fixed task zone chain

3; LW 4 - Skills 2,3,and 4. Notice that within each LW’s zone there are two shared

tasks, stations where another worker possesses the same skill, and one fixed task,

station where only that worker possesses that skill. Workers on both lines complete

their work by following a fixed first maximum shared policy (FFMS). The FFMS

rule states that LW’s give priority to completing work to their fixed stations. Only

when the fixed stations are idle do workers complete work at their shared stations.

Priority amongst the shared stations is given to the station with the maximum queue

length. The RA only releases new jobs to LW 1 and LW 3 and the FG can only

receive completed jobs from LW 2 and LW 4.

C. Factor Design

1. How to generate random job sheets

Random job sheets are generated using Microsoft Excel. Each worksheet

within the Excel program is formatted with a random number generator so that the

jobs sheets will each be unique in terms of the number of fruit that is traced each

time. During the activity each team should have the exact same set of job sheets.
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Please see the ’Software Instructions’ as part of this instructor materials packet for

further details on job sheet creation.

2. How to complete a job

Job completion occurs when all four tasks (fruit) have been traced accu-

rately. Each fruit must have the correct number traced in their respective color as

denoted by the number in the right hand column on the job sheet.

III. Executing the Game

A. Pre-game Discussion

1. Student vocabulary

The below terms are suggested vocabulary to go over with the participants

prior to playing the game. Please keep in mind that WAG is designed that participants

will be able to participate even if they do not fully understand all of the concepts

below.

Specialist - a LW who is trained on one skill

Raw materials - material stocked at beginning of serial product line

Finished good - finished product held in inventory prior to shipping to the customer

WIP - inventory between the start and endpoints of a serial product line

Queue - a line of job sheets that accrues in front of a worker waiting to be processed

by that worker

Cross-training - the training of a LW to be proficient at more than one skill

Throughput - is the average quantity of good (non-defective) jobs produced per

unit time

Cycle time - time between release of the job at the beginning of the line until it

reaches an inventory point at the end of the line
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2. The Fruit Basket Story

It is imperative, for the purpose of making connections with the par-

ticipants understanding, to make it clear to the participants that the processes and

concepts the are being learned in the activity are “real world”, in that they are used in

operational production facilities. Consider using the following brief story to introduce

the activity:

Fruits, Inc. is a production facility that specializes in creating fruit baskets

for Mother’s Day. A fruit basket is comprised of a specific number of four types of

fruits: apples, bananas, pears, and cherries. As Mother’s Day approaches Fruits,

Inc. has orders to fill for fruit baskets and those orders are given to each of the

five production lines in their manufacturing facility. Each production line, or team,

is responsible for filling as many orders as possible within the allotted time. Only

baskets that have an accurate amount of fruit are considered good.

3. Student Hypotheses

Prior to beginning the activity a discussion can be facilitated with the stu-

dents with regard to what they expect to occur, as it relates to team efficiency, given

the team configurations. Consider posing the following questions to the participants:

• Which team do you expect to complete the most jobs during the game and

why?

• Would you expect the teams with more cross-training to perform better than

the teams without? Why?

• Which teams do you expect to have bottleneck problems and where do you

believe the bottlenecks will occur?

B. Setup Guidelines

1. Team Creation
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Each team has a total of 6 members: 4 LW’s, 1 RA, and 1 FG. The most

convenient way to seat each team, except Team 2, in a room is to have them seated

in a straight line with the RA at one end, followed by the 4 LW’s in order from LW

1 to LW 4, and then ended by the FG. This will help with the follow of job sheets,

particularly ensuring that jobs are done in order. Team 2 should for a U-shaped line

since LW 1 and LW 4 share a skill.

2. Instruction Review

Prior to playing the game it is important that the participants get familiar

with their roles in the production line. If time permits, doing a practice run with

several job sheets is quite helpful. This will alleviate work stoppages due to questions

during the activity. Furthermore, allowing the teams to do their practice runs one at

a time, will give the participants who are not on that team an opportunity to learn

about the other teams.

C. Post Game Discussion

1. Calculations

At the conclusion of the exercise the FG is responsible for the calculations

on the WAG Inventory Sheet. First the FG should total the number of jobs completed

by the production line and also total the number of jobs released by the RA. WIP

can be calculated by subtracting the total number of jobs released by the RA from

the total number of jobs completed by the production line. Throughput (TH) is

calculated by dividing the total number of jobs completed by the total time spent for

the activity (actual production time). Cycle Time (CT) can then be calculated from

the Little’s Law relationship of WIP = TH ∗CT . Each of the three calculations TH,

WIP, and CT should be shared with each member of the team.

2. Result Analysis

The calculations of TH, WIP, and CT for each team should be put on

display for all participants to view. Next, a discussion analyzing the results can be
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facilitated around the following questions:

• Did the teams perform as you expected in the pre-game discussion? If not,

why?

• How did worker’s speed affect the performance of the specialized teams?

• Was cross-training beneficial?

• What do you think can be done to improve upon the cross-training that was

done?

3. Worker Incentives

A discussion regarding worker incentives can be facilitated around the

following questions:

• Did you experience peer pressure with respect to your work rate? If so, from

whom?

• To the RA and FG: Could you tell which workers were faster on your line?

• Based upon your experience on the production line, how would you want to be

paid - Flat hourly wage? Reduced flat hourly wage with a bonus based upon

team performance? Solely based on team performance (e.g. Per number of jobs

completed)?
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4.4.2 Examples

Examples

Table of Contents

I. Job Sheet Tracing Example

II. WAG Inventory Sheet Example
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Figure 4.8: Job Sheet Tracing Example
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WAG Inventory Sheet 
 
Team Number:________ 
Time Production Started:  _____________ 
Time Production Stopped: _____________ 
 
Job # RELEASE AGENT:  

Check off each job 
after releasing in 
order  

FGI SUPERVISOR: 
Check off jobs as 
they are completed  

1 √ √ 
2 √  
3 √  
4 √  
5   
6   
7   
8   
9   
10   
11   
12   
13   
14   
15   
16   
17   
18   
19   
20   
21   
22   
23   
24   
25   
26   
27   
28   
29   
30   
31   
32   
33   
34   
35   
36   
37   
38   
39   
40   
41   
42   
43   

44   
45   
46   
47   
48   
49   
50   
51   
52   
53   
54   
55   
56   
57   
58   
59   
60   
61   
62   
63   
64   
65   
66   
67   
68   
69   
70   
71   
72   
73   
74   
75   
76   
77   
78   
79   
80   
   
   
   
   
 T = Minutes played  
 IN(T)  = # Jobs 

Released 
 

 OUT(T) = # Jobs 
Completed 
 

 

 WIP(T) = INV(T)  = 
(IN(T) – OUT(T)) at 
game end 
 

 

 TH(T) = OUT(T)  / T 
= 

 

 
 
 

Figure 4.9: Inventory Sheet Example
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4.4.3 Software Instructions

Software Instructions

Table of Contents

I. Job Sheet Generator Instructions

II. Example Data Worksheet Page

III. Blank Job Sheet

IV. Blank Inventory Sheet
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I. Job Sheet Generator Instructions

The set of job sheets to be used for the WAG activity are created via a random

number generator in Microsoft Excel. Follow these steps to create the job sheets:

STEP 1: This step will enable to the random number generator to create unique

job sheets. Upon opening the Excel file “job sheet generator TEMPLATE.xls”, a

dialogue box will appear asking whether to enable or disable Macros. Select Enable

Macros.

STEP 2: In this step you will save a separate file of the job sheet generator

instructions so as not to disturb the template file from the generated sheets file, once

the random number generator has been run. Click File on the top toolbar and choose

Save As. A Save As dialogue box will open. Select the location you wish to save the

file in and name it. Click Save.

There will be two worksheets at the bottom of the page, one labeled Data and the

other labeled Template.

STEP 3: Click on the Data worksheet.

STEP 4: In the Data worksheet enter the appropriate data in cells A3 to A8.

Cell A3 corresponds to the job number that will be generated at the top right hand

corner of every job sheet. In this cell, please enter the number that you would like the

sequence to begin with. Please note that most often this number will be 1. However,

if you’ve previously generated 20 job sheets, for example, and you want to generate

20 more for the same set, then you can change this number to 21. Cells A4 to A7

denote the maximum number of fruit stencils in each row that are available to trace.

Here you may enter any integer between 1 and 8. Cell A8 represents the total number

of job sheets you would like created in your set.

STEP 5: To generate the job sheets follow the instructions given in the Data

worksheet where it states ’Instructor Action Required’.
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STEP 7: Wait for the Macro to finish running and the job sheets to be created.

Each job sheet will create a new worksheet in the Excel file. The number on the tab

of each worksheet corresponds to the job created.

STEP 8: Print the entire set of job sheets. Click File on the top toolbar and

select Print. {File → Print}

STEP 9: In the ’Print’ dialog box go to the ’Print What’ section select the

’Entire Workbook’ option. The generated job sheets as well as the data sheet will

print. Copies can be made of the set of job sheets so that each team has one set.

STEP 10: SAVE the file before closing.
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II. Example Data Worksheet Page
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Figure 4.10: Data Worksheet Page
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III. Blank Job Sheet
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Figure 4.11: Blank Job Sheet
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IV. Blank Inventory Sheet

WAG Inventory Sheet 
 
Team Number:________ 
Time Production Started:  _____________ 
Time Production Stopped: _____________ 
 
Job # RELEASE AGENT:  

Check off each job 
after releasing in 
order  

FGI SUPERVISOR: 
Check off jobs as 
they are completed  

1   
2   
3   
4   
5   
6   
7   
8   
9   
10   
11   
12   
13   
14   
15   
16   
17   
18   
19   
20   
21   
22   
23   
24   
25   
26   
27   
28   
29   
30   
31   
32   
33   
34   
35   
36   
37   
38   
39   
40   
41   
42   
43   

44   
45   
46   
47   
48   
49   
50   
51   
52   
53   
54   
55   
56   
57   
58   
59   
60   
61   
62   
63   
64   
65   
66   
67   
68   
69   
70   
71   
72   
73   
74   
75   
76   
77   
78   
79   
80   
   
   
   
   
 T = Minutes played  
 IN(T)  = # Jobs 

Released 
 

 OUT(T) = # Jobs 
Completed 
 

 

 WIP(T) = INV(T)  = 
(IN(T) – OUT(T)) at 
game end 
 

 

 TH(T) = OUT(T)  / T 
= 

 

 
 
 

Figure 4.12: Blank Inventory Sheet

154



4.5 Materials for students

This section outlines the WAG instructions that were developed for students or

participants of the game. Since the instructions for each differ vary the team’s in-

structions are separated into their individual subsections.

4.5.1 Team 1 Instructions: Specialized production

Overview

Each team’s goal is to complete as many jobs as possible in the allotted time.

A job is completed when all the tasks are finished on a particular job sheet. The

tasks involve tracing each piece of fruit in a row the directed number of times as

specified next to the row. Every worker on each team has a different skill set of the

tasks that they can perform. Be sure to complete only your task as specified by your

team number. If the number traced does not match the number specified next to the

row, the job is no good and must be discarded. When time is called, STOP and put

everything down. Do not keep working to finish the current job.

General Instructions

All tasks must be done in order from line worker 1 (LW 1) to line worker 4 (LW

4)

Skill Description

• Skill 1 - Trace the apple outline in red the number of times specified next to

the row.

• Skill 2 - Trace the pear outline in green the number of times specified next to

the row.

• Skill 3 - Trace the banana outline in yellow the number of times specified next

to the row.
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• Skill 4 - Trace the cherries outline in blue the number of times specified next to

the row.

Team 1 Configuration

The 6 team members should be arranged in a straight line in the following order:

Release Agent (RA), LW 1, LW 2, LW 3, LW 4, Finished Goods Inventory Supervisor

(FG) (see Figure 4.13). The following color markers should be given to each LW: LW

1 - red; LW 2 - green; LW 3 - yellow; LW 4 - blue.

Team Member Roles

• RA: Give a new job sheet to LW 1, and only LW 1, when they are idle. Each

time a job sheet is given to LW 1 check the corresponding job sheet number on

the WAG inventory sheet.

• FG: Receive finished jobs from LW 4 and only LW 4. Inspect the job for

completeness and accuracy. A job is complete if all the fruits are traced in

the appropriate color, the appropriate number of times. A job is accurate if

the stencil is outlined neatly. Discard any job that is not both complete and

accurate. Upon receipt of good jobs, place a check next to the job sheet number

on the WAG inventory sheet.

• LW 1: Complete skill 1 and only skill 1 for each job. Upon completion of skill

1 push the job on to LW 2 if they are idle. If LW 2 is not idle place the job in

the inventory pile next to them. Receive a new job from the RA.

• LW 2: Complete skill 2 and only skill 2 for each job. Upon completion of skill

2 push the job on to LW 3 if they are idle. If LW 3 is not idle place the job

in the inventory pile next to them. Then either work on the next job in your

inventory pile or wait to receive a job from LW 1.
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• LW 3: Complete skill 3 and only skill 3 for each job. Upon completion of skill

3 push the job on to LW 4 if they are idle. If LW 4 is not idle place the job

in the inventory pile next to them. Then either work on the next job in your

inventory pile or wait to receive a job from LW 2.

• LW 4: Complete skill 4 and only skill 4 for each job. Upon completion of skill

4 give the job to the FG. Then either work on the next job in your inventory

pile or wait to receive a job from LW 3.

FG

LW 1 LW 2 LW 3 LW 4

RA

PRODUCT FLOW

RAW MATERIAL

FINISHED GOODS

LW SKILL

Figure 4.13: Team 1
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4.5.2 Team 2 Instructions: Two skill chaining

Overview

Each team’s goal is to complete as many jobs as possible in the allotted time.

A job is completed when all the tasks are finished on a particular job sheet. The

tasks involve tracing each piece of fruit in a row the directed number of times as

specified next to the row. Every worker on each team has a different skill set of the

tasks that they can perform. Be sure to complete only your task as specified by your

team number. If the number traced does not match the number specified next to the

row, the job is no good and must be discarded. When time is called, STOP and put

everything down. Do not keep working to finish the current job.

General Instructions

All tasks must be done in order from line worker 1 (LW 1) to line worker 4 (LW

4)

Skill Description

• Skill 1 - Trace the apple outline in red the number of times specified next to

the row.

• Skill 2 - Trace the pear outline in green the number of times specified next to

the row.

• Skill 3 - Trace the banana outline in yellow the number of times specified next

to the row.

• Skill 4 - Trace the cherries outline in blue the number of times specified next to

the row.

Team 2 Configuration

The 6 team members should be arranged in a U-Shaped line in the following order:

Release Agent (RA), LW 1, LW 2, LW 3, LW 4, Finished Goods Inventory Supervisor
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(FG) (see Figure ??). The U-Shape should put LW 1 and LW 4 in close proximity

since they share a common skill. The following color markers should be given to each

LW: LW 1 - red and green; LW 2 - green and yellow; LW 3 - yellow and blue; LW 4 -

blue and red.

Team Member Roles

• RA: Give a new job sheet to LW 1 or LW 4 when they are idle. Each time a job

sheet is given check the corresponding job sheet number on the WAG inventory

sheet.

• FG: Receive finished jobs from LW 4 and only LW 4. Inspect the job for

completeness and accuracy. A job is complete if all the fruits are traced in

the appropriate color, the appropriate number of times. A job is accurate if

the stencil is outlined neatly. Discard any job that is not both complete and

accurate. Upon receipt of good jobs, place a check next to the job sheet number

on the WAG inventory sheet.

• LW 1: Complete skill 1 for each job. Upon completion of skill 1 if LW 2 is busy

complete skill 2 on the job. If LW 2 is idle then push the job to LW 2. After

completing skill 2 or pushing the job to LW 2 receive a new job sheet from the

RA.

• LW 2: Check to see if skill 2 has been completed on the job and if not, complete

it. Upon the completion of skill 2 if LW 3 is busy complete skill 3 on the job.

If LW 3 is idle then push the job to LW 3. After completing skill 3 or pushing

the job to LW 3 complete the next job in your inventory pile.

• LW 3: Check to see if skill 3 has been completed on the job and if not, complete

it. Upon the completion of skill 3 if LW 4 is busy complete skill 4 on the job.

If LW 4 is idle then push the job to LW 4. After completing skill 4 or pushing

the job to LW 4 complete the next job in your inventory pile.
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• LW 4: Check to see if skill 4 has been completed on the job and if not, complete

it. Upon the completion of skill 4 give the job to the FG for inspection. After

turning in the completed job first complete work in your inventory pile. If

there is no work in your inventory pile, then receive a fresh job from the RA to

complete skill 1. After completing skill 1 place the job in the inventory pile of

LW 1.

RA

FG

LW 1 LW 2

LW 3LW 4

Figure 4.14: Team 2
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4.5.3 Team 3 Instructions: Craft production with pick and run

Overview

Each team’s goal is to complete as many jobs as possible in the allotted time.

A job is completed when all the tasks are finished on a particular job sheet. The

tasks involve tracing each piece of fruit in a row the directed number of times as

specified next to the row. Every worker on each team has a different skill set of the

tasks that they can perform. Be sure to complete only your task as specified by your

team number. If the number traced does not match the number specified next to the

row, the job is no good and must be discarded. When time is called, STOP and put

everything down. Do not keep working to finish the current job.

General Instructions

All tasks must be done in order from line worker 1 (LW 1) to line worker 4 (LW

4)

Skill Description

• Skill 1 - Trace the apple outline in red the number of times specified next to

the row.

• Skill 2 - Trace the pear outline in green the number of times specified next to

the row.

• Skill 3 - Trace the banana outline in yellow the number of times specified next

to the row.

• Skill 4 - Trace the cherries outline in blue the number of times specified next to

the row.

Team 3 Configuration

The team members do not need to be arranged in any particular order as all

team members operate independently (see Figure 4.15). Each LW should receive four
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colored markers: red, yellow, green, and blue.

Team Member Roles

• RA: Give a new job sheet any LW when they are idle. Each time a job sheet is

given check it off on the inventory sheet.

• FG: Receive finished jobs from any LW. Inspect the job for completeness and

accuracy. A job is complete if all the fruits are traced in the appropriate color,

the appropriate number of times. A job is accurate if the stencil is outlined

neatly. Discard any job that is not both complete and accurate. Upon receipt

of good jobs, place a check next to the job sheet number on the WAG inventory

sheet.

• ALL LW’s: Receive a new job sheet from the RA and complete all four skills.

When finished, give the completed job to the FG and take a new job from the

RA. We call this the pick and run policy.

RA FG

LW 1

LW 2

LW 3

LW 4

Figure 4.15: Team 3
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4.5.4 Team 4 Instructions: Specialized production under a CONWIP

release policy

Overview

Each team’s goal is to complete as many jobs as possible in the allotted time.

A job is completed when all the tasks are finished on a particular job sheet. The

tasks involve tracing each piece of fruit in a row the directed number of times as

specified next to the row. Every worker on each team has a different skill set of the

tasks that they can perform. Be sure to complete only your task as specified by your

team number. If the number traced does not match the number specified next to the

row, the job is no good and must be discarded. When time is called, STOP and put

everything down. Do not keep working to finish the current job.

General Instructions

All tasks must be done in order from line worker 1 (LW 1) to line worker 4 (LW

4)

Skill Description

• Skill 1 - Trace the apple outline in red the number of times specified next to

the row.

• Skill 2 - Trace the pear outline in green the number of times specified next to

the row.

• Skill 3 - Trace the banana outline in yellow the number of times specified next

to the row.

• Skill 4 - Trace the cherries outline in blue the number of times specified next to

the row.

Team 4 Configuration
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The 6 team members should be arranged in a straight line in the following order:

Release Agent (RA), LW 1, LW 2, LW 3, LW 4, Finished Goods Inventory Supervisor

(FG) (see Figure 4.16). The following color markers should be given to each LW: LW

1 - red; LW 2 - green; LW 3 - yellow; LW 4 - blue.

Team Member Roles

• RA: Begin by releasing 8 jobs to LW 1 and only LW 1. Check each of the 8

jobs off of the inventory sheet once released. Each time a job is completed and

given to the FG release a job to LW 1. At any given time there should only be

8 released jobs out on the line.

• FG: Receive finished jobs from LW 4 and only LW 4. Inspect the job for

completeness and accuracy. A job is complete if all the fruits are traced in

the appropriate color, the appropriate number of times. A job is accurate if

the stencil is outlined neatly. Discard any job that is not both complete and

accurate. Upon receipt of good jobs, place a check next to the job sheet number

on the WAG inventory sheet.

• LW 1: Complete skill 1 and only skill 1 for each job. Upon completion of skill

1 push the job on to LW 2 if they are idle. If LW 2 is not idle place the job in

the inventory pile next to them. Receive a new job from the RA.

• LW 2: Complete skill 2 and only skill 2 for each job. Upon completion of skill

2 push the job on to LW 3 if they are idle. If LW 3 is not idle place the job

in the inventory pile next to them. Then either work on the next job in your

inventory pile or wait to receive a job from LW 1.

• LW 3: Complete skill 3 and only skill 3 for each job. Upon completion of skill

3 push the job on to LW 4 if they are idle. If LW 4 is not idle place the job

in the inventory pile next to them. Then either work on the next job in your

inventory pile or wait to receive a job from LW 2.
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• LW 4: Complete skill 4 and only skill 4 for each job. Upon completion of skill

4 give the job to the FG. Then either work on the next job in your inventory

pile or wait to receive a job from LW 3.

FG

LW 1 LW 2 LW 3 LW 4

RA

PRODUCT FLOW

RAW MATERIAL

FINISHED GOODS

LW SKILL

Figure 4.16: Team 4

165



4.5.5 Team 5 Instructions: Bucket brigade

Overview

Each team’s goal is to complete as many jobs as possible in the allotted time.

A job is completed when all the tasks are finished on a particular job sheet. The

tasks involve tracing each piece of fruit in a row the directed number of times as

specified next to the row. Every worker on each team has a different skill set of the

tasks that they can perform. Be sure to complete only your task as specified by your

team number. If the number traced does not match the number specified next to the

row, the job is no good and must be discarded. When time is called, STOP and put

everything down. Do not keep working to finish the current job.

General Instructions

All tasks must be done in order from line worker 1 (LW 1) to line worker 4 (LW

4)

Skill Description

• Skill 1 - Trace the apple outline in red the number of times specified next to

the row.

• Skill 2 - Trace the pear outline in green the number of times specified next to

the row.

• Skill 3 - Trace the banana outline in yellow the number of times specified next

to the row.

• Skill 4 - Trace the cherries outline in blue the number of times specified next to

the row.

Team 5 Configuration

The 6 team members should be arranged in a straight line in the following order:

Release Agent (RA), LW 1, LW 2, LW 3, LW 4, Finished Goods Inventory Supervisor
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(FG) (see Figure 4.17). The following color markers should be given to each LW: LW

1 - red; LW 2 - red and green; LW 3 - red, green, and yellow; LW 4 - red, green,

yellow, and blue. If possible order the LW’s from slowest (LW 1) to fastest (LW 4).

Team Member Roles

• RA: Release a new job sheet to only LW 1 when they are idle. Each time a job

is released check it off on the inventory sheet.

• FG: Receive finished jobs from LW 4 and only LW 4. Inspect the job for

completeness and accuracy. A job is complete if all the fruits are traced in

the appropriate color, the appropriate number of times. A job is accurate if

the stencil is outlined neatly. Discard any job that is not both complete and

accurate. Upon receipt of good jobs, place a check next to the job sheet number

on the WAG inventory sheet.

• LW 1: Complete skill 1 and only skill 1 for each job. Work on skill 1 of your

current job until LW 2 preempts or takes the job from you. Once the job has

been preempted receive a new job from the RA.

• LW 2: Once idle preempt LW 1 by taking their current job from them. Do as

much as you can for skill 1 and skill 2 on the current job until the job is pre-

empted or taken from you by LW 3. After preemption from LW 3, immediately

preempt LW 1 and repeat the process.

• LW 3: Once idle preempt LW 2 by taking their current job from them. Do

as much as you can for skill 1, skill 2, and skill 3 on the current job until the

job is preempted or taken from you by LW 4. After preemption from LW 4,

immediately preempt LW 2 and repeat the process.

• LW 4: Once idle preempt LW 3 by taking their current job from them. Complete

all skills on the job that are incomplete and submit the job to the FG. After
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the job has been turned in, immediately preempt LW 3 and repeat the process.

RA FG

LW 1

LW 2

LW 3

LW 4

Figure 4.17: Team 5
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4.5.6 Team 6 Instructions: Fixed task zone chain under a CONWIP re-

lease policy

Overview

Each team’s goal is to complete as many jobs as possible in the allotted time.

A job is completed when all the tasks are finished on a particular job sheet. The

tasks involve tracing each piece of fruit in a row the directed number of times as

specified next to the row. Every worker on each team has a different skill set of the

tasks that they can perform. Be sure to complete only your task as specified by your

team number. If the number traced does not match the number specified next to the

row, the job is no good and must be discarded. When time is called, STOP and put

everything down. Do not keep working to finish the current job.

General Instructions

All tasks must be done in order from line worker 1 (LW 1) to line worker 2 (LW

2) on the first line and line worker 3 (LW 3) to line worker 4 (LW 4) on the second

line.

Skill Description

• Skill 1 - Trace the apple outline in red the number of times specified next to

the row.

• Skill 2 - Trace the pear outline in green the number of times specified next to

the row.

• Skill 3 - Trace the banana outline in yellow the number of times specified next

to the row.

• Skill 4 - Trace the cherries outline in blue the number of times specified next to

the row.

Team 6 Configuration
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The 6 team members should be arranged in two serial lines operating in parallel

(see Figure 4.18). The order of the first serial line should be: Release Agent (RA),

LW 1, LW 2, FG. The order of the second serial line should be: Release Agent (RA),

LW 3, LW 4, FG. (Note: The RA and FG are the same individuals for both lines as

they are shared between the two lines. The following color markers should be given

to each LW: LW 1 - red, green, yellow; LW 2 - green, yellow, blue; LW 3 - red, green,

yellow; LW 4 - green, yellow, blue

Team Member Roles

• RA: Release a new job sheet to only LW 1 and LW 3 when they are idle. Each

time a job is released check it off on the inventory sheet.

• FG: Receive finished jobs from LW 2 and LW 4. Inspect the job for completeness

and accuracy. A job is complete if all the fruits are traced in the appropriate

color, the appropriate number of times. A job is accurate if the stencil is outlined

neatly. Discard any job that is not both complete and accurate. Upon receipt

of good jobs, place a check next to the job sheet number on the WAG inventory

sheet.

• LW 1: Complete skill 1 for each job. If LW 2 is busy continue working on the

job to work on skill 2, and if LW 2 is still busy go on to do skill 3. As soon

as LW 2 becomes idle give them your job, if it is at station 2 or 3. Once your

job is given to LW 2 immediately receive a new job from the RA. Note: At the

beginning of play, LW 2 is initially idle, so after completing skill 1, immediately

give them the job and return to the RA for a new job.

• LW 2: Prioritize completing skill 4 of jobs. If there is a job awaiting skill 4,

always do it first. Otherwise, receive a new job from LW 1 after skill 1 has been

completed on that job.
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• LW 3 and LW 4 have their own line with LW 3 observing the rules for LW 1.

Similarly LW 4 matches LW 2.

RA FG

LW 1

LW 2

LW 3

LW 4

Figure 4.18: Team 6
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4.6 Conclusions and Future Work

The results of implementing WAG in classroom settings were quite astounding.

Students not only gained a deeper understanding of basic operations management

concepts, in particular the value of flexibility, but they also offered insightful and

innovative ideas on how to cross-train and configure production lines to increase

throughput. The authors found this to be quite useful when teaching workforce

agility in an undergraduate senior level operations management course. WAG gave

the students an opportunity to immediately apply concepts they had recently learned

and the students remarked how this helped them with retention of the material.

Another academic benefit to the students of WAG is that it draws on components

of introductory queueing theory that is taught during the junior year of the indus-

trial and operations engineering curriculum at the authors’ institution. This allows

students to gain clarity with respect to previously learned material. In addition to

academic benefits, WAG also provided the students with a hands on learning tool to

creatively think about and discuss production control and manufacturing techniques.

It is the author’s hope that such discussion will help drive interest in manufacturing

and production related fields.

Future expansions of WAG could include expounding on the quality control in-

spection done by the FG at the end of the line. This inspection could be expanded

to include results of accept, rework, or discard for each completed job. Accepted jobs

would immediately enter inventory, reworked jobs would be sent back into production,

and discarded jobs would be thrown away. The inclusion of rework and a penalty for

discarded jobs would add to the teams’ simulation of a real production line.

172



CHAPTER V

Conclusion

In conclusion, the importance and effectiveness of operational flexibility has been

demonstrated. This work provides operations managers with new and innovative

methods for their systems. The Fixed Task Zone Chain (FTZC) as a labor cross-

training structure is low cost and easy to implement. We have shown the minimal

productivity loss that occurs when it is implemented with a Fixed First Maximum

Shared (FFMS) policy against more expensive policies. Insight into the effectiveness

and appropriate application of the FTZC paradigm and the FFMS policy was gained

via (1) stability analysis (Section 2.4.1), (2) development of a Degree of Imbalance

(DOI) line metric, and its use in benchmarking, and (3) analytical structural results

of optimal policies in Section 2.4.2. Moreover, we developed a hands on learning tool

intended to support the teaching of operational flexibility as it relates to cross-training

workers. This tool enhances the foundation of understanding and interest in worker

agility that will sponsor further innovation in the field. Finally, within the supply

chain system, we modeled a single source and dual source unreliable supplier system

for the firm. We learned how important several parameters are to the single source

model, in particular, the per unit profit of the product. Then, in the dual source

model, we identified conditions upon which a firm should create a contract with a

second supplier, rather than simply rely on inventory mitigation. These investiga-
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tions have contributed to academic understanding, but are also suited to advancing

industrial practice in the mitigation of operational variability.
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