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CHAPTER I

Introduction

Many processes in nature exhibit a natural level of randomness due to various

sources. In some cases, the level of randomness is low and deterministic models give

quantitatively correct description of the problem. The purpose of this work is to

study processes in which the effect of noise is not obvious or even counterintuitive.

The core of the thesis is organized into three chapters, consisting of three different

applications of stochastic dynamic modelling. The unifying goal of Chapters II, III

and IV is to illustrate the counterintuitive roles and effects of noise on dynamics in

diametrically different scenarios in which the origin and magnitude of randomness

varies dramatically.

In Chapter II we study a system in which randomness comes from the finite

nature of the underlying mechanism at a very small scale compared to the size of the

system. Those systems are abundant in biological applications, ecological systems,

interacting particle and chemical kinetics and other areas. The particular example

studied in Chapter II is a model for a neuron whose basic biophysical function is to

propagate electrical information within the neural network. In the underlying process

the randomness arises from finiteness of the number of ion channels per unit area

(density) in a membrane of an axon. The finiteness of the ion charges is neglected since

it affects smaller time- and space- scales. The ion channel density varies for different

1



types of neurons and is one of the key factors that determines the functionality of the

neuron. The computational study of the effects of channel noise, contained in Chapter

II, consists of examination and comparison of two different stochastic approaches,

based on a classical mathematical description by Hodgkin and Huxley (1952).

In many applications it is customary to represent a stochastic process, based on

particle motion, by a deterministic and continuous description of the particle den-

sity. That reduces the complexity of the problem. The two approaches are different

in nature and do not necessarily yield the same results. One typical example is a

replacement of molecular diffusion by the diffusion equation. Chapter III contains a

study of the fluid properties, in which the molecular diffusion is enhanced by stirring

(advection) and at the same time constantly replenished and depleted by inhomoge-

neous sources and sinks. The mixing properties of the stirred fluid has been studied

by using both asymptotic methods in the continuous advection diffusion equation by

Shaw et al. (2007) (in the presence of sources and sinks) and underlying stochastic

processes by Majda and MacLaughlin (1993) and Fannjiang and Papanicolaou (1994)

(without sources and sinks). The two methods give two different predictions for the

mixing efficiency of stirring. A way to resolve the disagreement between these two

methods is to study the underlying stochastic processes and formulate a consistent

description of the problem.

Even when process arising from some physical application is deterministic by its

nature, some randomness is introduced during a numerical implementation of its

mathematical model. Round-off error is often of a very small magnitude and intu-

itively it should not play any major role in determining the simulation results. How-

ever, in Chapter IV we construct a system of ordinary differential equations in two

dimensions, that mimics the dynamical features of the Rayleigh-Bénard convection,

where arbitrarily small random perturbation may change the system properties dra-

matically. For almost all initial conditions, the solutions of the deterministic model
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diverge exponentially to infinity, while the solutions of the noise-perturbed system

exhibit statistical oscillations. The technique used to prove existence of an invariant

measure is based on a construction of auxiliary Lyapunov functions for stochastic sys-

tems, introduced by Khasminskii (1980). The properties of the constructed system

are studied numerically and analytically as the first exit time problem.
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CHAPTER II

Properties of a noise-induced firing and quiescence

in a Hodgkin-Huxley model

2.1 Introduction

Neurons are essential building blocks of extremely complex, and not yet fully

understood, systems of neural network. The complexity of a neural network is deter-

mined by the number and function of neurons and the number of synapses (connec-

tions) among them. For example, the human brain contains about 1011 individual

neurons, each one connecting to about 7000 other neurons. Neurons are highly non-

linear, basically uni-directional devices, designed to process and transport electrical

signals called action potentials (AP). Even though a signal can propagate in both

directions inside the neuron, the physiology of synapses allows propagation in only

one way. Received electrical signals enter a neuron through dendrites that form a

branching structure around the cell body (soma). The signal is then modified and

propagated in an axon. An axon is an excitable, cable-like device, covered by a mem-

brane with ion channels that determine its electrical behavior. An electrical signal

leaves axon through multiple axon terminals that synapse onto other neurons.

Neural electrical activity has been observed to contain a significant amount of

variability, which derives from several sources. Presynaptic variability, affecting the
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electrical signal before it enters a neuron, can arise from a variety of sources and

propagate through this network. However, even if the same presynaptic stimulus

is presented multiple times, the response of the neuron will still vary from trial to

trial (White et al., 2000; Verveen and Derksen, 1968). One reason for this is that

the mechanism of synaptic transmission is itself random (Aidley , 1978). The mecha-

nism of synaptic transmission is controlled by the stochastic opening and closing of

synaptic channels, triggered by neurotransmitters that carry electrical signals inside

the neuron. But even if the forementioned sources of randomness are eliminated, the

electrical behavior of an axon is constructed from the random opening and closing

of a finite number of ion channels. While other sources of variability merit study in

their own right, here we will study variability of electrical responses within the neuron

arising from the finite number of ion channels.

Ion channels are small electrically sensitive devices in the axonal membrane that

open or close based on the electrical potential difference across the membrane. Ions

can flow through a channel only if the channel is open. Channels are typically se-

lective, i.e., only permeable to certain types of ions. The width of each channel is

only slightly larger than an individual ion (Aidley , 1978), therefore, the ion transport

through the channel is discrete in its nature. Moreover, ions are subject to molecular

diffusion, which results in the random nature of opening and closing of each channel.

Even though the current passing through an individual channel is rather small and

the number of channels is very large, the fluctuations in the electrical output, due

to random channel mechanism, might not be negligible. The impact of channel vari-

ability on the neuronal dynamics may be explained by strong nonlinearities in the

channel mechanism, and signal propagation. Small fluctuations may cause a qualita-

tive difference in the whole dynamics. See chapter IV for a mathematical example of

a nonlinear system of ODE’s, where arbitrarily small noise may lead to a qualitative

difference in the dynamical properties of the system.
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After Neher and Sakmann (Neher and Sakmann, 1976) invented the Nobel prize

winning patch-clamp technique they found the first experimental evidence of a single

channel variability. They measured the electrical noise by extracting a small area

of the nerve’s membrane. This isolated a tiny patch of a membrane in which the

electrical current corresponding to a small number of channels could be measured.

Colquhoun and Sakmann (1985) later examined single channel currents in a frog

muscle and observed a random switching in the current corresponding to the random

opening and closing of individual channels, see Fig. 2.1.

Figure 2.1: Single-channel currents from acetylcholine receptors at the frog
muscle end-plate. Traces show the response to acetylcholine (ACh).
From Colquhoun and Sakmann (1985).

Over 50 years ago, Hodgkin and Huxley (1952) developed a mathematical descrip-

tion of the behavior of one of the largest known axons in nature – the squid giant

axon, based on the dynamics of ion channels. This model has been the basis of much

research in computational neuroscience. The model did not incorporate the random-

ness of ion channel dynamics, probably since the neurons they were studying did not

show much variability, due to the large numbers of channels. Nevertheless, some ran-

domness can be seen even in the response of the squid giant axon, see De Felice et al.

(1975). However, many neurons are small (< 10µM in diameter), and have relatively

low numbers of channels, see Waxman et al. (1989). Such neurons can show erratic

behavior and random effects must be incorporated in the model in order to accurately

describe experimental results.

There has been much work devoted to study stochastic versions of the Hodgkin-

Huxley model. Two main approaches for incorporating channel variations are widely
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used in the literature. In the first approach, random Gaussian noise terms are added

directly inside the continuous HH equations. In Fox (1997), Bazso et al. (2003),

Schmidt et al. (2006), Ozer and Ekmekci (2005) the noise is multiplied by a voltage

and state dependent function, that reflects the intuitive feature that relative level of

noise depends on the number of open channels. In Saarinen et al. (2006) the variance

of the Gaussian term is taken to be constant.

The second approach uses a continuous time, discrete state-space Markov formu-

lation where the state of the system is described by a number of open and closed

channels at each time as in Chow and White (1996), Rowat (2007), White et al.

(2000), Schneidman et al. (1998), Skaugen and Walloe (1979), Clay and DeFelice

(1983), Bruce (2006) and the process can be faithfully simulated numerically (Gille-

spie, 1977). The state changes as channels open or close. The differences between

multiple numerical algorithms for the Hodgkin-Huxley model are studied by Mino

et al. (2002).

In this work, we demonstrate that many known phenomena (noise-induced qui-

escence and oscillations) are present in both stochastic formulations of the model.

We perform exhaustive numerical simulations of each model for a wide range of noise

parameters and show that the two models give the same results. We analyze the dis-

tribution of inter-spike intervals (ISI) that naturally depends not only on noise values,

but also on the strength of the applied current. We perform a noise-sensitivity anal-

ysis based on the numerical results and show that certain types of channels are much

less sensitive to random effects than others.

2.1.1 Hodgkin-Huxley model (HH)

The propagation of an impulse is a consequence of an ion transport through the

ionic channels in the membrane. Channels are complicated protein structures of

a typical width of about 10 − 15Å that act as resistors. Each channel contains a
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selectivity mechanism, and may be selective to a particular ion. The majority of

channels in a brain are either Na+, K+ or Ca2+ permeable (mostly monovalent

cations of diameter < 6.5Å), and they are mainly permeable to this type of cation

(even though in some cases this is not true, see Dryer et al. (1989)).

The driving force behind impulse propagation in the neural axon is the potential

difference between the inside and outside of the axon. Once a channel opens, ions

of the corresponding type are free to flow through the membrane until the electrical

potential equilibrates. The flow lasts a very short time (less than 10ms) before the

channel closes again.

Modelling channel dynamics and the consequent impulse propagation almost al-

ways involves the following simplifying assumptions:

• Selectivity of channels: Probability that a specific ion passes through a

channel does not depend on the other ions.

• Independence of channels: Probability of channel opening and ion transport

in a channel does not depend on other channels.

• Stationarity of channels: Channel densities are constant in time. Channels

do not move and their number remains unchanged in time.

• No myelination: The axonal membrane is not myelinated.

• Spatial homogeneity: We consider a space-clamped axon.

Propagation of the signal inside the axon and influence of channel behavior on its
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dynamics is described by a 4–dimensional system of ordinary differential equations

Cm
dV

dt
= −gNam

3h(V − VNa)− gKn4(V − VK)− gL(V − VL) + IApp , (2.1)

dm

dt
= αm(1−m)− βmm , (2.2)

dn

dt
= αn(1− n)− βnn , (2.3)

dh

dt
= αh(1− h)− βhh , (2.4)

where V denotes a potential difference between the interior and the exterior of an

axon and time is measured in ms. The sodium channel consists of one m gate and

three h gates, whereas the potassium channel consists of four n gates. Dynamical

variables m and h thus denote probabilities that specific gate is in the open state. An

ion channel is permeable to a given kind of ion only if all of its gates are open (for

Na and K with probability m3h and n4 respectively). Action potential initiation is

driven by sodium channels and prevented by activation of potassium channels. Rates

for m, n and h in the HH dynamics are given by

αm = 0.1 25−V

e
25−V

10 −1
αn = 0.01 10−V

e
10−V

10 −1
αh = 0.07e

−V
20

βm = 4e−
V
18 βn = 0.125e−

V
80 βh = 1

e
30−V

10 +1

and parameter values for a squid axon (Hodgkin and Huxley , 1952) are

Constant VR VNa VK VL gNa gK gL Cm

Value 0 115 −12 −10.613 120 36 0.3 1
Units mV mV mV mV mS cm−2 mS cm−2 mS cm−2 µF cm−2

Table 2.1: Parameter values for the HH model.

2.2 Numerical modelling of stochastic channel dynamics

A simple view of a neuron as a unit that processes and modifies neuronal im-

pulses may be rather oversimplified, but it reveals the fundamental property that
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the processing inside the neuron is highly nonlinear in its nature and very rich to

mathematically interesting phenomena. The corresponding mathematical Hodgkin-

Huxley model contains this nonlinearity and exhibits various dynamical features,

among them: nonlinear oscillations, bistability, scale separation, and chaotic be-

havior (Peskin, 2000). However, many aspects of the model may be studied only

numerically, mainly due to the nonlinearity embedded in the underlying processes.

While the numerical implementation of the deterministic Hodgkin-Huxley model is

straightforward, there are multiple and principally different ways of implementing the

model with noise. Each of the methods has some advantages and some limitations.

Two computational methods, based on two different theoretical descriptions of the

underlying stochastic processes, have been examined in literature: the Langevin and

Markov descriptions.

Computational methods based on Langevin approach assume that the channel

densities are sufficiently large so that a master equation is accurately approximated

by a continuous model. The algorithm for the numerical simulation of the stochastic

HH model, with the incorporated spatial dependance, is explored by Fox (1997) with

the random terms being Gaussian with state-dependent second moments (multiplica-

tive noise). The state-dependent Gaussian noise affects the inter-spike interval (ISI)

distribution and the recovery period, see Ozer and Ekmekci (2005). The magnitude

of noise is here parametrized by the membrane area, since the channel densities are

assumed to be constant. In addition to the state-dependent channel noise, the capac-

itance fluctuations and their effect on the ISI properties are studied by Schmidt et al.

(2006).

If the Gaussian channel noise has a constant, rather than state-dependent mo-

ments, the dynamical properties of the random channels will change. These differences

in terms of spectrum and ISI distribution are discussed by Bazso et al. (2003). For

a granule cell model the dynamics is driven by calcium ions. In such case, Saarinen
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et al. (2006) observe that constant Gaussian noise with a small random extra-synaptic

input leads to bursts and occasional spontaneous firing.

The most direct approach to study channel noise in axon is to use a kinetic model,

based on Markov processes, that tracks opening and closing of individual channels.

This method is particularly useful if the channel densities are low, i.e. there is a lot of

variability. However, for large channel densities the method becomes computationally

expensive.

The first developments of Markov model based computational methods are at-

tributed to Clay and DeFelice (1983). The kinetic simulation shows that there are

three major effects of channel variability: induction of spontaneous spiking activity

(Chow and White, 1996), subthreshold oscillations and missing spikes for suprathresh-

old inputs (Schneidman et al., 1998; White et al., 2000). The properties of the spiking

pattern in the presence of the channel noise are typically studied via the spiking fre-

quency and its dependence on the applied current (Skaugen and Walloe, 1979) and

via the inter-spike interval properties (Chow and White, 1996). In the latter the expo-

nential decay of the ISI distribution is demonstrated and compared to the prediction

from the Langevin model. However, the ISI distribution may be bimodal in some

cases, see Rowat (2007). The author compares the ISI distribution obtained by the

Markov based model with ISI distribution obtained by the Langevin kind model. The

concentrations of Na and K are fixed throughout the article. With a suitable noise

magnitude parameters the two distributions are shown to be nearly identical. In the

case of variable input currents Schneidman et al. (1998) studies the reliability and

precision of spike timing.

The comparison of different Markov-type and Langevin-type methods can be

found in the work of Bruce (2006). The Langevin method is shown to be naturally

faster and this is pronounced for large channel densities. On the other hand, com-

paring the firing efficiency (fraction of trials when the action potential is generated)
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for different methods reveals that the Langevin method leads to some inaccuracies.

In this chapter, we aim to describe two implementations of the stochastic channel

dynamics (Langevin and Markov models). The detailed properties of the stochastic

dynamics for both models and their consistency are studied in the consequent chapter.

2.2.1 Langevin Stochastic Representation of the HH Model

The first and computationally simpler way to implement variability in the channel

dynamics into a HH model is to input a Gaussian random noise directly into channel

equations 2.2, 2.3 and 2.4. This approach will be referred to as a Langevin-type

stochastic HH model (LSHH). Consider an electric potential equation (2.1) plus a

random channel dynamics in the form

dm

dt
= αm(1−m)− βmm + gm(t)ξm , (2.5)

dn

dt
= αn(1− n)− βnn + gn(t)ξn , (2.6)

dh

dt
= αh(1− h)− βhh + gh(t)ξh . (2.7)

where ξm(t), ξn(t) and ξh(t) are independent white noises. The random perturbation

of HH is Gaussian with variances

g2
m(t) = σ2

M (αm(1−m) + βmm) (2.8)

g2
n(t) = σ2

N (αm(1−m) + βmm) (2.9)

g2
h(t) = σ2

H(αm(1−m) + βmm) (2.10)
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and the “noise magnitudes” that are (unlike in the existing literature) chosen to be

inversely proportional to the Na and K channel numbers, are

σ2
m =

1

3NNa
(2.11)

σ2
n =

1

NK
(2.12)

σ2
h =

1

NNa

(2.13)

where NNa and NK are the number of sodium and potassium channels, respectively.

Note that even though there are three gate variables, there are only two parameters

NNa and NK because the number of m gates is three-fold the number of h gates. The

independent parameters of LSHH are therefore noise magnitudes σH and σN and the

constant applied current level Iapp.

The channel dynamics is fully described by the m, n and h equations and therefore

no explicit noise is added to equation (2.1). Note that addition of a white noise to

the electric potential equation corresponds to a random perturbation of the applied

current. In this work we assume that applied current is constant in time.

The advantages of the direct model are that it is simple to implement numerically

with Euler method or higher order methods, and the running time only depends on

a time step and not on the number of channels. Unfortunately the noise structure

in the Langevin approach may be oversimplified (Gaussian form, independence) and

may therefore lead to skewed results.

2.2.2 Markov Chain Representation of the HH Model

The second approach assumes a more realistic structure of noise in the channel dy-

namics than the LSHH. In the Markov-type stochastic HH model (MSHH) stochastic

opening and closing of ion channels is represented as memoryless chemical reactions

occuring with transition rates that depend on αi(V ) and βi(V ). The channel density,
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determined by total number of gates of each type (M , N and H), is fixed and deter-

mines system’s natural level of randomness. Gates can open or close. We keep track

of the total number of open channels of each type (m ≤ M , n ≤ N and h ≤ H). At

p
{1,0,0}

p
{−1,0,0}

p
{0,1,0}

p
{0,0,1}

p
{0,0,−1}

p
{0,−1,0}

0
1

2
3

4
5

6

54321
1

2

3

4

5

n
m 

h

Figure 2.2: Transition mechanism in the Markov chain representation of the
Hodgkin-Huxley model. (a) Six possible transitions from the state
[m, n, h]. Exactly one of the gates can open or close at each moment.
The probability of each transition is proportional to the corresponding
nonlinear rate rescaled so that all possible transitions sum up to 1. (b)
One possible realization of the [m, n, h] process. Initial state is [m, n, h] =
[1, 3, 1], after 10 transitions the state changes to [m, n, h] = [3, 4, 4].

each point of time where a transition occurs there are exactly six possible outcomes.

Each of them has an assigned probability (that depends exclusively on the previous

state of the system), see Fig. 2.2. All transition probabilities sum up to one at each

transition point. The electric potential equation (2.1) is modified to

dV

dt
= −gNa

(m

M

)3
(

h

H

)

(V −VNa)−gK

( n

N

)4

(V −VK)−gL(V −VL)+IApp (2.14)

where probabilities that gates are open are substituted by a relative number of open

gates of each type, i.e. m
M

, n
N

, h
H

. The physical condition M = 3H is adopted.

The time interval ∆t until the next transition is a random number with distribution

∆t ∼ Exp(λ) where λ is the sum of all transition rates as specified in step 2 of

algorithm. The following numerical algorithm then describes opening and closing of
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ion channels and the signal propagation dynamically in time.

ALGORITHM:

1. Initialization: Specify initial values of V , number of open gates m, n, h and

number of closed gates M −m, N − n, H − h.

2. Transition rates: Calculate the effective total rate of transition

λ = (αm(M −m) + βmm) + (αn(N − n) + βnn) + (αh(H − h) + βhh) .

and individual transition probabilities p+
m = αm(M−m)

λ
, p−m = βmm

λ
and similarly

for n and h.

3. Time step: Generate two random numbers r1, r2 ∼ U [0, 1]. The time to the

next transition is:

∆t = −1

λ
log(r1) .

4. Integration: Integrate the electric potential equation between time t and t+∆t

using Euler method.

5. Transition: Choose one of six possible reactions with a decision based on a

randomly generated number r2 where the reaction rates are

m− 1
βM ·m←−−− m

αM ·(M−m)−−−−−−−→ m + 1

n− 1
βN ·n←−−− n

αN ·(N−n)−−−−−−→ n + 1

h− 1
βH ·h←−−− h

αH ·(H−h)−−−−−−→ h + 1

6. Loop: Repeat steps (2)-(5) until the time reaches the terminal time.

Note that every sodium channel consists of three m-type gates and one h-type

gates, therefore a restriction M = 3H is incorporated into the initial condition in the
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numerical scheme. The MSHH model, as opposed to LSHH model, contains random-

ness naturally. The level of variability is encoded in individual channel densities. If,

say, M >> 1 then the single change of state m produces a change in relative number

of open channels of size
∣

∣

∣

∣

m± 1

M
− m

M

∣

∣

∣

∣

=
1

M
.

Larger M leads to a smaller change in the above expression, i.e., smaller variability.

2.3 Numerical results

In this chapter we aim to explore dynamical properties of signal propagation in an

the axon using both, previously described, stochastic algorithms. In both approaches

we analyze the dependance of a spike propagation on (i) applied current (that is

constant and deterministic) and on (ii) channel densities/noise magnitudes. The goal

is to explore presence of spikes as well as statistical properties of the spiking sequence

based on a wide range of parameters of the model. Also the noise sensitivity arguments

are new as far as is known to us. The parameter values used in numerical simulations

are as follows.

Markov model:

• Applied current: IApp ∈ {0, 0.5, 1, 1.5, . . . , 12}

• Number of Na channels: H = M/3 ∈ {200, 500, 800, . . . , 3800}

• Number of K channels: N ∈ {200, 500, 800, . . . , 8000}

• Simulation length: T = 20s

Langevin model:

• Applied current: IApp ∈ {0, 0.5, 1, 1.5, . . . , 12}

• Na channel noise magnitude: σH =
√

3σM ∈ {0, 0.001, 0.01, 0.02, . . . , 0.25}

16



0 100 200 300
−50

0

50

100

0 100 200 300
−50

0

50

100

t
V

(t
)

t

Figure 2.3: Quiescence and oscillations in the deterministic HH model. For
IApp < I1 deterministic HH model is in the quiescent state whereas for
IApp > I2 it regularly fires APs. Trajectory of HH in the sub-threshold
interval IApp = 6 is on the first plot (no spiking, just an initial relaxation
to a rest state) whereas trajectory past the Hopf bifurcation IApp = 9 is
on the second plot. In the bistable region I1 < IApp < I2 trajectories
may behave similar to either plot depending on the value of the initial
condition.

• K channel noise magnitude: σN ∈ {0, 0.01, 0.02, . . . , 0.25}

• Simulation length: T = 200s

2.3.1 Stochastic Hopf Bifurcation

One of the ways to understand the effect of channel noise on the dynamics of the

HH model is to first understand the properties of the deterministic model and only

then include variability. Our interest is focused on the influence of applied current

on the HH dynamics, see Rowat (2007), Schmidt et al. (2006), White et al. (2000).

For low applied currents neuron is in the rest state and it does not propagate any

information, see Fig. 2.3 (a). We will call this state quiescent state. As the level of

applied current passes a lower threshold IApp = I1 ≈ 7.4 the system goes through

a saddle-node bifurcation of limit cycles where the stable and unstable branches are

born, corresponding to the stable and unstable limit cycle. This leads to a bistable

dynamics since both the rest state and the limit cycle are stable structures in the

model at the same time. After passing an upper threshold IApp = I2 ≈ 8.9 the system

undergoes a subcritical Hopf bifurcation (destabilization of the rest state by a collapse

of the unstable limit cycle into the rest state). For high applied currents (IApp > I2)

no matter how the initial condition is chosen the axon exhibits periodic firing of
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Figure 2.4: Schematic figure of the bifurcation in HH model. Stable fixed
point if IApp < I1, stable fixed point and two limit cycles (stable and
unstable) born through saddle-node bifurcation at I1 and destabilization
of the fixed point via the Hopf bifurcation at I2 (IApp > I2 > I1).

action potentials (AP), as on Fig. 2.3 (b). A schematic diagram of the saddle-node

and subcritical Hopf bifurcation can be found on Fig. 2.4.

The subcritical Hopf bifurcation is also present in stochastically perturbed HH

system but it is no longer possible to characterize it in the same way. The change of the

system from a quiescent state to a periodic firing with a finite nonzero amplitude can

be still observed but the transition is not localized in the parameter space anymore.

One way to visualize this stochastic bifurcation is to plot the probability density

function of the average trajectory location in the space. As the applied current grows

the corresponding histogram in the V, m plane changes from a single peak, located in

the neighborhood of a fixed point, to a smaller peak (around the fixed point) together

with high concentration around the limit cycle, see Fig. 2.6. The probability mass,

located in a neighborhood of the fixed point is redistributed to the region close to the

limit cycle as IApp increases. Note that the height of the probability density function

reflects also the trajectory speed, i.e. the trajectory always spends more time in

the neighborhood of the fixed point and therefore there will be a peak there for all

IApp values. The histogram is also plotted in different 2-dimensional subspaces of
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(a)

(b)

Figure 2.5: Trajectory location of a Langevin type stochastic version of a
HH model. A set of multiple trajectories was computed numerically
(using Langevin model) and 2-dimensional histogram of the trajectory
position was plotted in different planes using a colorplot option of Matlab
(initial condition is random). Values in the histogram are plotted on a
logarithmic scale from the minimal value (blue) to the maximal value
(dark-red). This experiment was performed for applied current where
the deterministic HH is bistable (both quiescence and spiking can occur).
(a) The figure in (n, h)-plane suggests approximately linear relationship
between n and h. (b) The plot shows a detail of a near rest state behavior
in the (m, h)-plane. Trajectories either oscillate around the limit cycle
or they rotate in a close neighborhood of the fixed point. The noise is
responsible for the switching between the two phases.
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the 4-dimensional space (V, m, n, h) on Fig. 2.5 reflecting the effect of noise on these

variables. The sodium gating variable m is known to be the fast variable whereas n

Figure 2.6: Stochastic bifurcation in the Langevin model. Probability density
function of the trajectory location in the (V, m)-space changes from a
single peak (concentrated around the rest state) to a peak plus a high
concentration around the “deterministic” limit cycle. One can see that as
IApp increases more mass is being redistributed from the rest state neigh-
borhood to the limit cycle neighborhood. The fraction of mass around
the fixed point thus decreases with IApp and the model of the neuron is
more prone to spiking. The histogram values are on a logarithmic scale
and therefore small differences in the density of trajectory location reflect
rapid redistribution of probability.

and h are the slow variables Peskin (2000). Moreover, if the timescale of n and h are

comparable and h∞(v) + n∞(v) = c then there is approximately a linear relationship

between h(t) and n(t). This relationship is observed on Fig. 2.5 where the (n, h) plane

plot reflects the fact that the limit cycle lies approximately on a line with slope −1.

Therefore most of the oscillatory dynamics should be hidden in the perpendicular

space to (n, h), and thus (V, m)-plane should contain most of the information about

the limit cycle properties.
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Figure 2.7: Noise-induced and noise-supressed firing pattern in the stochas-
tic HH model. Trajectories V (t) (in mV) against time (in ms) in
a Markov model as the applied current varies (N = 300, H = 300,
M = 3H). For small applied current IApp = 0, 4, the system oscillates,
although in the deterministic HH only the rest state is stable. For large
applied current IApp = 8, 12, spikes are occasionaly supressed.

2.3.2 Noise-Induced Oscillations and Quiescence

Stochastic numerical simulation of the HH model can exhibit spiking behavior

also in the case when the corresponding deterministic model does not spike (Rowat

(2007), Schneidman et al. (1998) for Markov chain models). Similarly, stochastic

simulation can show temporary quiescence in case when the deterministic model fires

regularly. On Fig. 2.7 we demonstrate that noise of relatively small magnitude can

induce firing even in the case when no external current is applied. The firing in this

case is rare and occurs in nonregular time intervals. On the other hand, even if the

neuron is stimulated by a relatively large applied current, spikes can be temporarily

suppressed in the spike train. Similar behavior is found in the LSHH model. There

are certain parameter regions where the two behaviors (firing and quiescence) can be

combined together in a state called coexistence. For moderate values of IApp (close

to bistability of the HH model) one can find sequences containing various numbers

of spikes alternating with small amplitude “oscillations” around the quiescent state

when a trajectory enters a close neighborhood around the fixed point. The role of

noise is to transition the trajectory from the neighborhood of the rest state to the
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neighborhood of the limit cycle and conversely. These regions may or may not be

attractive depending on whether the system is past the bifurcation. The region of

bistability of the deterministic HH model I1 < IApp < I2 naturally exhibits coexistence

in the stochastic Hodgkin-Huxley model (SHH). Both the fixed point and the limit

cycle are stable in this case and therefore it is natural for a neuron with small noise to

contain longer sequences of non-interrupted spikes and quiescence. However, even if

the system is outside of the bistability region (low current, high current) coexistence

in the stochastic model still occurs.

2.3.3 Distribution of Inter-Spike Intervals

Numerical results in the previous section suggest that the firing pattern of SHH

“smoothly” depends on the external applied current unlike in the deterministic model

where the transition from quiescent to spiking behavior is abrupt. The transition in

the stochastic model is not localized in the applied current space; for low applied cur-

rents spiking is rare, whereas for high applied currents, the neuron spikes frequently

with rare occurrence of quiescence. For small values of neuronal variability (low

noise amplitudes or high channel density) the coexistence region gets narrower as the

model transitions to the deterministic HH model. These spiking properties may be

studied via inter-spike interval (ISI) that measures time between consecutive spikes.

We observe that randomness in the potassium dynamics has a major influence on

the type of the ISI distribution. If the variation in potassium dynamics is small the

distribution of ISI consists of multiple peaks, as shown on Fig. 2.8 for LSHH model

and on Fig. 2.9 for MSHH model. The magnitude of these peaks seems to decay

exponentially (linear decay on the logarithmic plot). This is a natural consequence

of the alternation between two states: oscillations and quiescence. In particular, the

ISI distribution reflects the fact that transitions between oscillations and quiescence

occur at a small region in the phase space. Therefore the k-th peak of the distribution
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Figure 2.8: Distribution of inter-spike intervals in the stochastic HH model.
Histograms of the ISI distribution for IApp = 8, σH = 0.19 and σN = 0.05
multimodal distribution (in the first column), σN = 0.1 (in the second
column) and σN = 0.2 exponential tail distribution (in the third column).

corresponds to interval between two spikes if the trajectory enters the neighborhood

of the quiescent state after the first spike and does not leave it for next k − 1 small

amplitude “oscillations”. Naturally, the peaks decay as k grows since the probability

of not exiting the quiescent region k−1 times in a row decays with k. One may study

a very simple discrete model (reference) where the probability of spike equals ps and

the probability of quiescence equals pq = 1 − ps. The sequence of spikes and small

amplitude “oscillations” can be then studied as a sequence of tosses of an unfair coin

with constant (deterministic) time intervals between the tosses. The discrete distri-

bution of ISI will then decay exponentially and will have peaks located at all natural

numbers. By taking the time interval between tosses to be a random variable one may

arrive to a similarly shaped distribution functions. Our observation shows that the

continuous model behaves similarly to the coin model if the variation that controls

the length of each spike/small amplitude “oscillation” is small. If the variation in

the potassium dynamics is large then the variability in the duration of spikes/small

amplitude “oscillations” is large as well. This causes individual modes in the distri-
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Figure 2.9: Distribution of inter-spike intervals in the stochastic Langevin
HH model. Histograms of the ISI distribution (Markov model) for
IApp = 8, H = 2000 and N = 200 exponential tail distribution (first col-
umn), N = 2000 (second column) and N = 8000 multimodal distribution
(third column).

bution of the ISI to smear and the tail of the distribution decays exponentially. Both

in the Langevin model and in the Markov model there are two distribution types

observed: multi-peaked and single-peaked with exponential tail and the distribution

shape is controlled by the potassium dynamics.

2.3.4 Spiking Frequency, Monotonicity and Sensitivity to noise

Our experiments show that occurrence and frequency of spikes in the subthreshold

regime (IApp < I1) may be enhanced by noise whereas in the superthreshold regime

(IApp > I2) spiking frequency tends to be decreased by noise. The most natural

measure that reflects these observed properties is the average long-time spiking fre-

quency. This quantity is deterministic and depends on the value of the applied current

and channel densities (noise magnitudes). Numerical simulations for both LSHH and

MSHH are performed for a sufficiently long time (we simulate 20s for MSHH and 200s

for LSHH). The long term average spiking frequency then equals the fraction of total

number of spikes in the given time interval to the total simulation time (in seconds).

Numerical results depicted on Fig. 2.10 (with relative or with fixed color scale)

indicate some unexpected properties of the firing rate dependance on applied current

and level of variability. We will sketch these properties with references to further
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Figure 2.10: Firing frequency dependence on applied current and noise. Se-
quence of colorplots shows spiking frequency as a function of noise mag-
nitudes σH on the horizontal axis and σM on the vertical axis (or chan-
nel densities M and H respectively). The color ranges from low (blue)
to high (red). Plots is organized as follows (by column). First col-
umn: Langevin model, colorplots with scale adapted for each colorplot
separately; second column: Langevin model with uniform scale [0, 80]
spikes/s; third column: Markov model, colorplots with scale adapted
for each colorplot separately; last column: Markov model with uniform
scale [0, 80] spikes/s. Parameters from the range: σM , σH ∈ [0, 0.25],
M ∈ [200, 8000] and H ∈ [200, 3800]. Particular values of the spiking
frequency are further illustrated on Fig. 2.12 and Fig. 2.13.
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numerical simulations.

1. Bifurcations in the stochastic model: The deterministic saddle-node bifur-

cation of limit cycles is depicted on Fig. 2.10 for IApp = 8, where the destabilization

of the rest state forces HH to periodicaly fire action potentials with a high frequency

(lower left corner of each LSHH figure corresponds to the deterministic limit). This

spiking frequency is higher compared to the spiking frequency for SHH with any

nonzero noise. The reason is that noise may suppress firing (and lead to quiescence)

but it cannot enhance the firing above some level. Other way to understand this is

by looking back at Fig. 2.5. It suggests that even though the trajectory is sensitive

to noise everywhere in the 4 dimensional space, it can jump from the neighborhood

of the fixed point to a neighborhood of the limit cycle and conversely only in the

tiny region of the space (see the detailed plot) and the duration of the tour around

the limit cycle is not very sensitive to noise. To summarize, noise may both enhance

(IApp < I1) and suppress (IApp > I1) oscillations in different regimes. Also, the desta-

bilization of the rest state at IApp = I2 in the deterministic model introduces a high

firing rate behavior that spreads away from the deterministic scenario towards the

higher noise levels both in the Na and K channel dynamics as the applied current

increases.

2. Potassium noise for a fixed subthreshold current: Increasing the variability

of the potassium dynamics (an increase of σN or decrease of N) results in a higher

firing rate in the subthreshold applied current scenario (IApp < I1), see Fig. 2.10 and

Fig. 2.11. This monotone pattern is observed up to the point of the saddle-node

bifurcation of limit cycles, where the stable limit cycle of the deterministic system

is born, see the bifurcation diagram Fig. 2.4. This potassium noise is capable of

inducing action potentials by forcing the trajectory to enter some close neighborhood
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of the limit cycle (that may be both stable or unstable).

3. Potassium noise for a fixed superthreshold current: Noise in K channels has

an opposite role in the superthreshold and subthreshold regime. In the superthreshold

regime the spiking frequency tends to decrease rather than increase as the potassium

channel variability increases in the regime where the sodium variability is small, see

Fig. 2.10 and Fig. 2.11. This is due to the fact that firing rate of the deterministic

HH model past the Hopf bifurcation is higher than the noise-induced firing rate.

Naturally the SHH approaches HH as noise magnitudes go to zero (lower left corner

on Langevin colorplots and upper right corner on Markov colorplots). But since the

firing rate depends smoothly on the noise level, as the potassium variability increases

the firing rate must decrease from the deterministic firing rate to a noise-induced

firing rate that is smaller.

4. Sodium noise for a fixed subthreshold current: Unlike in the case of

potassium variability, the firing rate seems to be roughly independent of the sodium

variability for subthreshold currents. This is reflected in a horizontal pattern in the

colorplots Fig. 2.10 for the subthreshold current regime and in the low variation

between blue curves on Fig. 2.11.

5. Sodium noise for a fixed superthreshold current: Past the supercritical

Hopf bifurcation the independence of the firing rate on the sodium variability can be

no more observed. The sodium channel variability results in a decrease of the firing

rate. This effect is less dramatic than the effect of potassium noise.

6. Monotonicity due to applied current: As observed above, the firing rate

properties strongly depend on the value of the applied current. Enhancement of
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Figure 2.11: Sensitivity of the firing rate on different levels of noise, rescaled.
Langevin model simulation in the first and third row, Markov model
simulation in the second and last row. Each plot shows functional
dependance of the spiking frequency on the applied current when ei-
ther the noise (channel density) of sodium channels is fixed and func-
tions for all potassium noise levels (channel density) are plotted or
conversely. In all figures darker color corresponds to larger noise
magnitude. Parameters are chosen for Langevin model to be σN ∈
{0, 0.01, . . . , 0.25} and σH ∈ {0, 0.001, 0.01, 0.02, . . . , 0.25}. Channel
densities in the Markov model are N ∈ {800, 1100, 1400, . . . , 8000} and
H ∈ {800, 1100, 1400, . . . , 3800}. The first two rows show that variability
in the potassium dynamics influences the firing frequency considerably
(red curves on each figure do not overlap). However, variability in the
sodium dynamics does not produce almost any variation (blue curves in
last two rows are almost identical).
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firing in the case of subthreshold applied current transitions to suppression of firing

in the case of the superthreshold current. A rather unexpected property we find is

that firing rate depends monotonically on the applied current. No matter what noise

parameters we choose the average long term firing rate will never decrease as the

applied current increases. One way to visualize this is to plot spiking frequency
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Figure 2.12: Monotonicity of the firing frequency with respect to applied
current (Langevin model). Each value of applied current yields a
spiking frequency surface (function of σN and σH). These surfaces do
not overlap and they grow as the applied current grows. Values from
bottom to top IApp = 0, 0.5, 1, . . . , 12.

surfaces in the noise parameter plane each of which correspond to a different value

of applied current. We observe that these surfaces do not intersect but rather form

layers that divide the space, see Fig. 2.12 and Fig. 2.14. We hypothesize that if

one computes these surfaces for all reasonable values of applied current and noise

magnitudes (0 ≤ IApp ≤ Imax) infinitely accurately (infinite time of integration) they

will completely fill a portion of the three dimensional rectangular box, i.e., there is

an equivalence relation parametrized by applied current where each surface forms an

equivalence class.

Monotonicity and smoothness of the average firing rate with respect to applied

current yields to the following. If F (σN , σH) is the average firing rate at noise level
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Figure 2.13: Monotonicity of the firing frequency with respect to applied
current (Markov model). Each value of applied current yields a
spiking frequency surface (function of N and H). These surfaces do not
overlap (some overlap may be caused by large fluctuations) and they
grow as the applied current grows. Values from bottom to top IApp =
0, 0.5, 1, . . . , 12. Channel densities: N ∈ {800, 1100, 1400, . . . , 8000},
H ∈ {800, 1100, 1400, . . . , 3800}.
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Figure 2.14: Monotonicity of the firing frequency with respect to applied
current (Markov model) in scaled coordinates. Each value
of applied current yields a spiking frequency surface (function of N
and H). We plot the spiking frequency as a function of 1/

√
N and

1/
√

H that corresponds to the noise magnitudes σN and σH . These
surfaces do not overlap (some overlap may be caused by large fluctua-
tions) and they grow as the applied current grows. Moreover, the overall
dependance in the Markov model resembles the Langevin model case.
Values from bottom to top IApp = 0, 0.5, 1, . . . , 12. Channel densities:
N ∈ {800, 1100, 1400, . . . , 8000}, H ∈ {800, 1100, 1400, . . . , 3800}.
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(σN , σH), then

F (σN , σH) = g(IApp) (2.15)

where g is nondecreasing. On the one hand this implies that if one knows the channel

densities and applied current, average firing rate can be read off from Fig. 2.12 or

Fig. 2.13. On the other hand, given the average firing rate and applied current

(observables in experiments), this yields a functional relation between channel density

in sodium and potassium channels.

2.4 Conclusions

Perhaps the most important finding is that both stochastic numerical approaches

(MSHH, LSHH) lead to qualitatively the same results. This implies that Markov

model can be replaced by the computationally less expensive (particularly if chan-

nel densities are small) Langevin model. Regardless of the number of channels, we

find that the firing rate always increases as the applied current increases (Fig. 2.12,

Fig. 2.13 and Fig. 2.14). This suggests that some properties of the firing mechanism

remain independent of the channel numbers. For low applied currents, we find that

stochasticity induces neuronal firing (Fig. 2.11). The firing rate in the presence of

low amplitude currents increases as the channel density decreases (more variability).

Past a threshold applied current, the deterministic Hodgkin-Huxley equations show

repetitive firing. This firing behavior is also captured in our stochastic simulations.

However, unlike lower amplitude currents, lower channel numbers can cause slower

rather than faster spiking in this case (Fig. 2.10).

We also find that noise from sodium channels has a smaller effect on the firing

behavior of the neuron than noise from potassium channels. As the potassium channel

density decreases, we find that the shape of the ISI distribution changes from a multi-

modal to an exponential-tailed function with each peak roughly symmetrical (Fig. 2.9,
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Fig. 2.8). On the other hand as the sodium channel density changes both the shape

of the ISI distribution and the spiking frequency remain almost unchanged. As the

applied current decreases, the tail of the distribution gets heavier and spikes typically

occur only after a long waiting time.

Our numerical findings suggest that even if channel densities are not known, they

can be determined from the neuron’s response to an applied current by observing the

spiking activity. This may be done by comparing the experimental long term average

firing frequency for different choices of applied current with the numerical data. This

together with the distribution of inter-spike interval can be matched to Na and K

channel densities.

Our studies show that noise can play significant and counterintuitive roles in

determining the firing behavior of a neuron and lead to testable predictions of the

real channel density based on the spiking frequency and shape of the inter-spike

interval distribution.

We believe that the observed properties (suppression and enhancement of spikes,

distribution shape, monotonicity with respect to applied current) are present in many

other bistable systems that undergo a subcritical Hopf bifurcation and are subject to

noise. A way to verify presence of these properties mathematically is to analyze a

simpler canonical dynamical model and study the effect of random perturbation via

analytical tools. The key feature that the model should possess is the nonuniform

proximity of the fixed point to different parts of the limit cycle. The reason for this

is that the noise-induced transitions occur at the place where this distance is small

with large probability.
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CHAPTER III

Mathematical models and measures of mixing

3.1 Introduction

Simple characterization of transport and mixing properties of complex flows, as

on Fig. 3.1, is a great challenge. If important features could be quantified it would

provide a tremendous insight in many applications. Mixing processes naturally arise

in atmospheric and oceanic sciences and engineering applications (Csanady , 1973;

Dagan, 1987) where the underlying flows may be simple laminar flows but are often

as complicated as a fully developed turbulence. There has been continued interest in

the qualitative and quantitative understanding of mixing processes, see Fannjiang and

Papanicolaou (1994), Taylor (1922), Taylor (1953), Richardson (1926), and recently

also in quantifying an ideal stirrer that mixes the fluid “the best”.

One way to characterize the mixing properties of a fluid flow is to consider a motion

of a passive substance (scalar) that is carried by the flow without effecting it. This

advected substance may be thought of as temperature, salt, dye or other chemical

composition markers. Even though this concept is purely theoretical, in many cases

(typically if the concentration of the “passive tracer” is small) it is realistic and

accurate.

Mixing of the passive scalar in any system occurs on several scales, the smallest

being the molecular scale. The molecular diffusion (or thermal diffusion in case where
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Figure 3.1: River mixing. Passau is a town in Lower Bavaria, Germany, located
at the confluence of the Danube (North) and Inn (South) rivers on the
German-Austrian border. The two rivers have water of very different
color and at the point they meet they begin to mix together. Figure from
www.maps.google.com

the scalar is a temperature) acts as an effective small scale stirring mechanism that

may be enhanced by a large-scale stirrer due to the advection. The mixing effect of

the stirring may eventually dominate “weak” molecular mixing.

There are two basic setups for the problem. Given a velocity field ~u(~x, t) in two

spatial dimensions satisfying a divergence-free condition ∇ · ~u = 0, consider a system

of stochastic differential equations for the position of a particle X(t) moving with the

flow field

d ~X(t) = ~u( ~X, t)dt +
√

2κ d ~W (t) , ~X(0) = ~x0 . (3.1)

with ~W (t) being the Wiener process. Capital letters are used for the particle position

~X(t) to highlight its stochastic nature. Or, consider the homogenous advection-
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diffusion equation for the passive scalar concentration (or temperature)

∂tT + ~u · ∇T = κ∆T , T (~x, 0) = δ(~x− ~x0), (3.2)

where κ is a molecular (or thermal) diffusion coefficient. ~X(t) is the passive tracer

particle position and T (~x, t) is its probability distribution, i.e., the scalar concentra-

tion. The two setups are equivalent in the sense that the advection-diffusion equation

(3.2) is a Fokker-Planck PDE for the stochastic process given by (4.2).

In many relevant applications the system is supplied by sources and sinks that act

as a non-homogeneous additive term of the form s(~x, t) in the equation (3.2). The

inclusion of a source-sink distribution leads to additional complexity of the mixing

problem and to potential inconsistencies in the existing theories. For completeness

we will assume periodic boundary conditions for T (~x, t).

In applications for “real” turbulent mixing, the velocity u(~x, t) of the advective

fluid in (3.2) should be determined as a solution of Navier-Stokes equations

∂t~u + ~u · ∇~u = −∇p + κ∆~u + ~F , (3.3)

∇ · ~u = 0 , (3.4)

with appropriate boundary conditions. In this setting p(~x, t) is the pressure field

and F (~x, t) is an appropriate external force. In many applications like convection,

~F depends on T . But here we study scenarios where passive tracer particles do not

influence the flow and therefore the velocity of the advecting fluid does not depend

on the concentration of the tracer.

3.1.1 Mixing Measures and Modelling Approaches

The fundamental question is how to characterize mixing and what aspects of mix-

ing should be encoded in this choice. In reality, because of wide range of applications,
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very different approaches and measures have been used to quantify the quality of mix-

ing, sometimes giving answers that are inconsistent with each other. It is therefore

essential to understand the differences and limitations of these theories and measures

and to find a unifying mathematical model that may capture the different features.

Among some of the most mainstream approaches one may study the effectivity of

mixing via

• single particle or particle pair dispersion in the absence of sources and sinks,

• enhancement of the flux due to the flow when a constant scalar gradient is

imposed,

• the original advection-diffusion equation with arbitrary sources and sinks.

The particle dispersion approach and the flux-gradient approach are traditionally

used to specify properties of mixing when there is a large scale separation between the

flow and the scalar concentration, which sometimes occurs in long time limits, i.e., in

homogenization theory (HT), see Majda and MacLaughlin (1993), Majda and Kramer

(1999). Also, different measures have been established to characterize the effectivity

of stirring (the choice of mixing measure is often but not always predetermined by

the choice of method used), among them

• enhanced tracer particle dispersion,

• enhanced flux for a given gradient,

• enhanced scalar concentration variance suppression in the presence of sources

and sinks.

The origins of the particle dispersion approach for turbulent flows reach back to

Taylor (1922) and Richardson (1926). The most recent generalization to a multi-

particle dispersion is due to (Toschi and Bodenschatz , 2009). More references may

be found in the review article (Faber and Vassilicos, 2009).
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In the mathematically natural approach equation (4.2) serves as a tool for calcu-

lating characteristics of the flow that may be then used to simplify the problem (3.2)

in the absence of sources. In the simplified problem advection and diffusion terms are

replaced by an “effective” diffusion matrix Keff
ij satisfying

Keff
ij ∼

1

2t
E [(Xi(t)−Xi(0))(Xj(t)−Xj(0))] (3.5)

as t → ∞, where ~X(t) is a position of the passive particle at time t and E[·] is an

expectation taken over all possible realizations of W (t). The approximation ~u · ∇ −

κ∆ → −∂iK
eff
ij ∂j it then used to replace the advection-diffusion equation with the

effective diffusion equation

∂tT = ∂iK
eff
ij ∂jT . (3.6)

To quantify the effectivity of stirring the enhancement matrix Keff
ij /κ is computed. Its

dependance on the flow structure in the large flow scale and long time approximation

is a central theme of the homogenization theory. Note that the approach requires

absence of sources and sinks in the problem. Although this technique seems to be

transferable to a source-sink problem where (3.2) simplifies to

∂tT = ∂iK
eff
ij ∂jT + s . (3.7)

as we will discuss later, this may not give the correct answer to the problem. The

difficulty is that the recently entered material in the transient system does not in fact

diffuse at a rate given by long time effective diffusivity Keff
ij but is rather advected

by a short time velocity field (the fresh material has not spent enough time in the

system yet to see the long time diffusivity).

A variation of the homogenization approach used extensively in turbulence theory,
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considers the advection-diffusion problem (3.2) with an imposed background gradient,

T = −Gx + θ(~x, t) . (3.8)

The perturbation concentration θ satisfies a similar advection-diffusion equation to

(3.2) but with a source-like term:

∂tθ + ~u · ∇θ = κ∆θ + G(̂i · ~u) , (3.9)

where î is a unit vector in the x-direction. The imposed gradient scale as well as

the separation between the flow and scalar field scales are assumed to be large and

boundary conditions are periodic. This technique, see review articles Gollub et al.

(1991), Warhaft (2000), Falkovich and Sreenivasan (2006), has been extensively used

to specify properties of the single particle distribution tail in a single-scale random

velocity field in Holzer and Siggia (1995), Shraiman and Siggia (1994) and Bourlioux

and Majda (2002). In many cases the flow enhances the molecular diffusion in the

direction of the gradient forcing. The enhancement factor Keff
11/κ is a scalar that

depends on the concentration field through a flux-gradient relationship

Keff
11

κ
= 1 +

〈||~∇θ||2〉
G2

(3.10)

where 〈·〉 is a time-space average over the periodic cell.

To avoid problems with transience of the effective diffusion matrix and at the same

time to fully describe the mixing properties of the flow in the presence of sources and

sinks the advection-diffusion equation

∂tθ + ~u · ∇θ = κ∆θ + s , θ(~x, 0) = δ(~x− ~x0), (3.11)
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may be studied directly. In the recent advances the quality of stirring has been

represented by the amount of suppressed variance of the scalar concentration field due

to stirring, see Rehab et al. (2000), Constantin et al. (2008), Doering and Thiffeault

(2006), Plasting and Young (2006), Shaw et al. (2007), Thiffeault et al. (2004) and in

the past by Danckwerts (1952), Edwards et al. (1985). From the application’s point

of view this seems to be the most natural measure of mixing because the effect of

stirring is to move passive tracer from places with high to low concentration and thus

to smooth out the concentration field.

It is known that some flows (including turbulent flows) are mixing fluid differently

on different length scales. The variance reduction mixing measure may be defined in

terms of variance on different scales (Thiffeault et al., 2004; Schumacher et al., 2003;

Mathew et al., 2005; Doering and Thiffeault , 2006) by

Ep =
κeff

p

κ
=

< ||∇pθ0||2 >1/2

< ||∇pθ||2 >1/2
(3.12)

where θ0 = − 1
κ
∆−1s solves the PDE problem in the absence of stirring. The equivalent

diffusivity κeff, first introduced by Thiffeault et al. (2004) satisfies

κeff
p = κEp =

√

〈(∆p∆−1s)2〉
〈∆pθ2〉 , (3.13)

and parametrizes the flow-enhanced mixing with a simple diffusion constant that

achieves the same level of variance suppression.

Mixing efficiency E0 = κeff
0 /κ measures enhancement of mixing on intermediate

scales in terms of a scalar variance suppression whereas E1 and E−1 measure variance

suppression enhancement at small and large scales respectively. Without the loss of

generality the source-sink distribution and the initial concentration are assumed to

be spatially mean zero. The enhancement factor κeff/κ naturally depends not only on

how we stir the fluid but also on the non-homogenous “forcing” due to sources and
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sinks.

3.1.2 Péclet Number Dependance

There has been a lot of effort spent to analytically quantify the properties of

the mixing efficiency (enhancement factor) in the regime of strong flow for different

approaches and using different measures. The Péclet number is a nondimensional

quantity of the flow that measures the relative flow strength compared to the strength

of molecular diffusion. We define the Péclet number by

Pe =
U · Lu

κ
(3.14)

where U is a velocity scale of the flow and Lu is a length scale of the flow. The

two forementioned nondimensional mixing measures (enhancement matrix/number

and variance suppression) then capture flow properties and may be considered as a

function of also non-dimensional Péclet number.

κeff

κ
= f(Pe) (3.15)

It has been shown using a homogenization theory in the case of tracer particle disper-

sion measure or flux-gradient mixing measure without sources (Majda and MacLaugh-

lin, 1993; Fannjiang and Papanicolaou, 1994) that any steady, spatially periodic flow

satisfies an upper bound on the enhancement factor (its components) in the form

κeff

κ
≤ 1 + Pe2 . (3.16)

As will be shown later, this bound can be saturated for a monochromatic sine flow

in 2D (Majda and Kramer , 1999) This bound may be derived from the space-time
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averaged advection-diffusion equation (3.9) multiplied by θ, using integration by parts

0 = 〈θ(κ∆θ + G(̂i · ~u))〉 = −κ〈|∇θ|2〉+ G〈θ(̂i · ~u)〉 (3.17)

with the use of Cauchy-Schwartz inequality in

〈θ(̂i · ~u)〉 ≤ 〈|∇θ|2〉 12 〈|∇−1~u|2〉 12 = ULu〈|∇θ|2〉 12 (3.18)

where U is the rms velocity of the flow and Lu is a characteristic lengthscale of the

flow

U2 := 〈|~u|2〉, L2
u :=

〈|∇−1~u|2〉
〈|~u|2〉 . (3.19)

and ∇−1 corresponds to multiplication by ||~k||−2~k in Fourier space. On the other

hand, it has been showed by Thiffeault et al. (2004) that for any flow in the presence of

steady sources, that using the suppression variance mixing measure, the enhancement

factor cannot grow faster than Pe′

κeff

κ
≤ 1 + Pe′ (3.20)

where the source-depended Péclet number is defined by

Pe′ =
U · Ls

κ
. (3.21)

The two results clearly show a conflict between different mixing measures. This

conflict is partially caused by the inconsistency in the Péclet number definition. A

partial resolution to the conflict can be seen in the following

κeff

κ
≤ 1 + Pe′ = 1 +

Uls
κ

= 1 +
ls
lu
· Ulu

κ
= 1 + r · Pe (3.22)
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where r = Ls/Lu controls the separation between the source and flow scale. If the

scale separation r is large (Lu << Ls) the enhancement coefficient may be as large

as Pe2. This suggests that the homogenization theory may be valid but only in the

regime r ≥ O(Pe).

A main challenge of this work is to form and analyze a single model that reconciles

the particle dispersion modelling techniques with the multiscale mixing measures.

3.2 Dispersion-diffusion theory (DDT)

As we have noted above, the approximation of advection and diffusion by an

effective diffusion matrix in (3.6) cannot be generally combined with the inclusion

of the source-sink distribution due to the temporal inconsistency of the resulting

problem. However, the nature of the passive scalar, advected by the fluid suggests

that molecular equations (4.2) describe particle motion quite accurately. The main

challenge is therefore to accommodate both the particle dispersion and the source-

sink distribution in one theory in a temporarily consistent way. In order to do this

the effective diffusivity matrix must contain temporal information. Following the

same idea as sketched in review article by Salazar and Collins (2009) we define a

time-dependent effective diffusivity as

Kij( ~X(t0), t, t0) :=
1

2

d

dt
E [(Xi(t)−Xi(t0))(Xj(t)−Xj(t0))] . (3.23)

Effective diffusivity matrix contains information about the initial position of a particle

and the initial time when it was introduced to the system. Note that for steady or

statistically stationary flow K(t0, t, ~X(t0)) does not depend on time t itself but rather

on the time difference t−t0. Because every particle possesses its own time benchmark

t0 we cannot treat the particles generated by sources at different times collectively.

For each particle the time-dependent effective diffusivity (3.23) may be used to
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approximate the particle’s position probability density ρ(~x, t; ~x0, t0) via

∂

∂t
ρ(~x, t; ~x0, t0) =

∂

∂xi
Kij(~x0, t, t0)

∂

∂xj
ρ(~x, t; ~x0, t0) , (3.24)

where ~x(t0) = ~x0 and initially

ρ(~x, t; ~x0, t0) = δ(~x− ~x0). (3.25)

The fundamental solution, i.e., the Green function of this problem on the periodic

domain with period L in d spatial dimensions (d = 2 in our case) is

ρ(~x, t; ~x0, t0) =
1

Ld

∑

~k∈Zd

ei~k·(~x−~x0)− 1
2
~kT C(~x0,t,t0)~k (3.26)

where C(~x0, t, t0) is a correlation matrix defined by

Cij(~x0, t, t0) := E [(Xi(t)−Xi(t0))(Xj(t)−Xj(t0))] . (3.27)

In the nonhomogenous problem with sources and sinks we seek a solution of (3.11)

using a superposition principle to account for the different time and position where

each particle was introduced. After a long time, we approximate the solution of the

d-dimensional advection-diffusion equation by

θDDT(~x, t) =

t
∫

−∞

dt0

∫

[0,L]d

dx0ρ(~x, t; ~x0, t0)s(~x0, t0) . (3.28)

This is called the dispersion-diffusion approximation. Note that θDDT itself does

not satisfy an advection-diffusion equation even in the long-time limit because of

the underlying spatial dependence of the effective diffusivity matrix. It is worth to

mention that the dispersion-diffusion approximation captures the spatial and tempo-
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Figure 3.2: Sine shear flow with single-scale distribution of sources and
sinks. The flow, depicted by black lines, is parallel to the horizontal
axis, distribution of sources and sinks depend only on x.

ral information in the first two moments of the underlying stochastic tracer particle

process exactly. This makes this approximation “best” among all particle dispersion-

type methods based on matching the first two moments. In order to improve this

method, one would probably need to do something like matching higher moments of

the distribution.

3.2.1 Two scale problem: sine shear flow with sine sources

We will consider a two-scale problem (3.11) in R
2 with a single-scale, uni-directional

source

s(~x, t) =
√

2S sin(ksx) (3.29)

with the wavenumber ks = 2π/Ls and a single-scale stirring flow

u(~x, t) = î
√

2U sin(kuy) (3.30)

as depicted on Fig. 3.2. The non-dimensional control parameters are
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Pe =
U

kuκ
and r =

ku

ks
. (3.31)

This problem was studied by Shaw et al. (2007) in a regime of finite r and large Pe us-

ing asymptotic analysis of the internal layer theory (ILT). The nontrivial asymptotic

scaling laws for the multiscale enhancement factor were found to be

Ep ∼































r7/6Pe5/6 if p = 0

r1/2Pe1/2 if p = 1

rPe/ log Pe if p = −1

(3.32)

Note that this result contradicts the homogenization theory prediction (of Pe2 scaling

at all scales) and therefore HT and ILT approximations must have different regions

of validity. The homogenization theory and internal-layer theory results are derived

with the following assumptions made

• HT: r →∞ and Pe finite, and

• ILT: Pe→∞ and r finite.

As we will demonstrate, the transition between the two regimes occurs around r = Pe,

that may supported by the following kinetic argument. In the homogenization theory

regime, where the lengthscale separation between the passive tracer and flow is large,

the advection-diffusion problem is approximated by a diffusion process. The typical

passive tracer particle is pushed in one direction and travels along the streamline until

its direction changes due to the molecular diffusion. This will move the particle onto a

streamline of the opposite direction in a relatively long time L2
u/κ. In this timeframe

the effective diffusion covariance matrix is close to its long-time limit calculated by HT

so the HT gives an accurate estimate of the mixing enhancement. On the other hand,

when the source-sink distribution is nonzero, the scale separation may be violated and
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the HT fails. The dominant timescale in the problem is then the minimum between

the time to travel to a streamline of a different direction L2
u/κ, and the time to travel

from a source to a sink Ls/U , where the passive tracer particle exits the system. The

balance of the two timescales occurs when

L2
u

κ
=

Ls

U
⇐⇒ Pe = r . (3.33)

The homogenization scaling 1 + Pe2 seems to form a universal upper bound for both

regimes, but not necessarily a sharp bound for Pe > r. A dispersion-diffusion theory is

designed with a hope that it will be able to reconcile the particle dispersion modelling

techniques with the multiscale mixing measures and at the same time capture both

the HT as well as the ILT predictions.

In the case of no stirring the nonhomogeneous diffusion equation (3.11) has a

simple steady solution of form

θ0(x, y) =

√
2S

k2
sκ

sin(ksx) , (3.34)

whereas in the presence of stirring the steady solution solves the non-homogenous,

second order PDE

√
2U sin(kuy)∂xθ∞ = κ∆θ∞ +

√
2S sin(ksx) (3.35)

whose solution can be written in the form

θ∞(x, y) = f(y) sin(ksx) + g(y) cos(ksx) (3.36)

with 2π
ku

-periodic functions f and g. The functions f and g may be found using

numerical algorithms (spectral methods, finite differences) or asymptotical methods
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as in Shaw et al. (2007). The numerical calculation yields operationaly exact results.

3.2.2 Effective diffusivity matrix derivation

Stochastic differential equations governing the motion of a passive tracer particle

in the two-scale problem are described by the system

dX(t) =
√

2U sin(kuY (t))dt +
√

2κ dWX(t) , (3.37)

dY (t) =
√

2κ dWY (t) , (3.38)

where WX and WY are independent Wiener processes. Since the dynamics of Y (t) is

decoupled from the dynamics of X(t) the system may be written as

X(t) = x0 +
√

2U

t
∫

0

sin(kuY (t))dt +
√

2κWX(t) , (3.39)

Y (t) = y0 +
√

2κWY (t) . (3.40)

The effective diffusivity matrix may be derived in view of the calculation in Majda

and Kramer (1999). In the y-direction,using standard properties of a Wiener process,

one obtains

E[(Y (t)− y0)
2] = E[(

√
2κWY (t))2] = 2κt (3.41)

The calculation becomes more complicated but straighforward in the x-direction

E[(X(t)− x0)
2] = 2κt + 2U2

t
∫

0

t
∫

0

E[sin(kuY (s)) sin(kuY (s′))]dsds′ . (3.42)
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The integrand is written as

E[sin(kuY (s)) sin(kuY (s′))] =
1

2
E[cos(kuY (s)− kuY (s′))− cos(kuY (s) + kuY (s′))]

=
1

2
E[cos(ku

√
2κ (WY (s)−WY (s′)))]

− 1

2
E[cos(ku

√
2κ (2y0 + WY (s) + WY (s′)))]

=
1

2
R
{

E[eiku

√
2κ (WY (s)−WY (s′))]

}

− 1

2
R
{

cos(2kuy0)E[eiku

√
2κ (WY (s)+WY (s′))]

}

(3.43)

where R stands for the real part. The sum or difference of Gaussian random variables

is again Gaussian and in particular

WY (s)−WY (s′) = WY (|s− s′|) ∼ N (0, |s− s′|) (3.44)

WY (s) + WY (s′) ∼ N (0, τ) (3.45)

where the variance τ satisfies

τ = V ar(WY (s)) + V ar(WY (s′)) + 2Cov(WY (s), WY (s′)) = s + s′ + 2(s ∧ s′) (3.46)

where the notation s ∧ s′ = min{s, s′} is used. The following standard identity for

Gaussian random variable ξ may be used to simplify expression in (3.43)

E[eiξ] = eiE[ξ]e−
1
2

E[(ξ−E[ξ])2] . (3.47)

Further details may be found in Øksendal (1998). The mean in (3.43) simplifies to

E[sin(kuY (s)) sin(kuY (s′))] =
1

2
e−k2

uκ |s−s′| − 1

2
cos(2kuy0)e

−k2
uκ (s+s′+(s∧s′)) . (3.48)
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This expression can be easily integrated by using a symmetry of |s− s′| and s + s′ +

(s ∧ s′) with respect to a line s = s′. We find the variance in the x-direction to be

E[(X(t)− x0)
2] = (3.49)

= 2κt + U2

t
∫

0

t
∫

0

e−k2
uκ |s−s′| − cos(2kuy0)e

−k2
uκ (s+s′+(s∧s′))dsds′

= 2κt + 2U2

t
∫

0

1

k2
uκ
− e−k2

uκs′

k2
uκ

+ cos(2kuy0)

(

e−4k2
uκs′

3k2
uκ
− e−k2

uκs′

3k2
uκ

)

ds′

= 2κt + 2U2

(

k2
uκt + e−k2

uκt − 1

k4
uκ

2
− cos(2kuy0)

(

3− 4e−k2
uκt + e−4k2

uκt

12k4
uκ

2

))

(3.50)

Similar technique is used for finding the second mixed moment

E[(X(t)− x0)(Y (t)− y0)] =

= 2
√

κU

t
∫

0

E[sin(kuY (s)) ·WY (t)]ds + 2κ E[WX(t) ·WY (t)]

= 2
√

κU

t
∫

0

E[sin(kuY (s)) · (WY (s) + WY (t− s))]ds

= 2
√

κU

t
∫

0

E[sin(kuy0 + ku

√
2κWY (s)) ·WY (s)]ds (3.51)

In order to evaluate the average above we use the following trick, consisting of eval-

uating the integral of the average with respect to variable of our choice first, and

subsequently of differentiating it to obtain the desired result

E[sin(kuy0 + ku

√
2κWY (s))WY (s)] = − 1

ku

d

d
√

2κ
E[cos(kuy0 + ku

√
2κWY (s))]

= − 1

ku

d

d
√

2κ
R
{

eikuy0+iku

√
2κ WY (s)

}

= − 1

ku

d

d
√

2κ
cos(kuy0)e

− 1
2
k2

us
√

2κ
2

=
√

2κ kus cos(kuy0)e
−k2

uκs . (3.52)
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The time integration gives the final form of the second mixed moment

E[(X(t)− x0)(Y (t)− y0)] = 2
√

2kuκU cos(kuy0)

t
∫

0

se−k2
uκsds

= 2
√

2kuκU cos(kuy0)

[

−se−k2
uκs

k2
uκ

− e−k2
uκs

k4
uκ

2

]t

0

= 2
√

2kuκU cos(kuy0)
1− e−k2

uκt − k2
uκte−k2

uκt

k4
uκ

2

=
2
√

2Ut

ku
cos(kuy0)

(

1− e−k2
uκt

k2
uκt

− e−k2
uκt

)

. (3.53)

Collecting the second moment results we calculate the correlation matrix from (3.27)

as

C( ~x0, t) =







E[(X(t)− x0)
2] E[(X(t)− x0)(Y (t)− y0)]

E[(X(t)− x0)(Y (t)− y0)] E[(Y (t)− y0)
2]







but also the effective diffusivity matrix

K( ~x0, t) =
1

2

d

dt
C( ~x0, t) =







K11(~x0, t) K12(~x0, t)

K21(~x0, t) K22(~x0, t)







=







1− e−k2
uκtk2

uκ− cos(2kuy0)
(

4e−k2
uκt−4e−4k2

uκt

12k2
uκ

) √
2kuκtU cos(kuy0)e

−k2
uκt

√
2kuκtU cos(kuy0)e

−k2
uκt κ







where in the limit t→∞ the effective diffusivity matrix has a diagonal form

lim
t→∞

K( ~x0, t) = κ







1 + Pe2 0

0 1






(3.54)

with Pe = U
kuκ

. This is consistent with the homogenization theory result for the

given flow (even without using the usual lengthscale separation assumption). Fig. 3.3
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Figure 3.3: Temporal evolution of K11−κ
Pe2κ

and K12

Pe2κ
against k2

uκt for kuy0 =
0, π/2, π/4.

shows the temporal evolution of K11 and K12 for different initial values y0 where

the renormalization shows the asymptotic Pe2 scaling as a convergence to one. The

homogenization theory treats the case when the lengthscale separation between the

initial concentration field and stirring field is assumed to be large and the particles

may experience the long-time effective diffusivity, as in (3.54). The homogenization

theory prediction is simply

θHT =
s(x)

κk2
s(1 + Pe2)

. (3.55)

But at very high Péclet number in the temporal problem without a lengthscale sep-

aration between sources and the flow, many passive tracer particles experience only

the short-time effective diffusivity since they spend relatively less time in the system

before exiting through a sink. Therefore the full temporal dependance in the effective

diffusivity matrix affects the mixing properties of the given flow, as in (3.28).
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3.2.3 Multiscale mixing efficiencies in the dispersion-diffusion approxi-

mation

The DDT approximation of the solution to the two-scale problem satisfies (3.26)

and (3.28). The source term may be written as

s(x) =
√

2S sin(ksx) =

√
2

2i
S(eiksx − e−iksx) (3.56)

In the next calculation we express the DDT approximation in the same form as (3.36).

Given the wavevector ~k = (kx, kyku), θDDT (x, y) satisfies

θDDT (x, y) = lim
t→∞

t
∫

0

dt0

∫

[0,2π]2

d~x0ρ(~x, t; ~x0, t0)s(~x0)

=
ku

4π2

∑

~k∈R2

∫

[0, 2π
ku

]×[0,2π]

d~x0e
i~k(~x− ~x0)s(x0)

∞
∫

0

dte−
1
2
~kC( ~x0,t)~kT

that reduces to a difference

θDDT (x, y) =

√
2kuS

4πi
eiksx

∞
∑

ky=−∞
eikykuy

∞
∫

0

dt

2π
ku
∫

0

e−ikykuy0− 1
2
(ks,kyku)C(y0,t)(ks,kyku)T

dy0

−
√

2kuS

4πi
eiksx

∞
∑

ky=−∞
eikykuy

∞
∫

0

dt

2π
ku
∫

0

e−ikykuy0− 1
2
(−ks,kyku)C(y0,t)(−ks,kyku)T

dy0

Note that due to the fact that the summands in the above expression are complex

conjugates, the result is real. In particular,

θDDT (x, y) =

=

√
2kuS

2π
R











eiksx
∞
∑

ky=−∞
eikykuy

∞
∫

0

dt

2π
ku
∫

0

e−ikykuy0− 1
2
(ks,kyku)C(y0,t)(ks,kyku)T

dy0










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If we define

f̂(y) + iĝ(y) :=

√
2kuS

2π

∞
∑

ky=−∞
eikykuy

∞
∫

0

dt

2π
ku
∫

0

e−ikykuy0− 1
2
(ks,kyku)C(y0,t)(ks,kyku)T

dy0

(3.57)

then the DDT approximation may be written as

θDDT (x, y) = f̂(y) sin(ksx) + ĝ(y) cos(ksx) (3.58)

where

f̂(y) =

√
2kuS

2π

∞
∑

ky=−∞
cos(kykuy)

∞
∫

0

dt

2π
ku
∫

0

cos(kykuy0)e
− 1

2
(ks,kyku)C(y0,t)(ks,kyku)T

dy0

ĝ(y) =

√
2kuS

2π

∞
∑

ky=−∞
sin(kykuy)

∞
∫

0

dt

2π
ku
∫

0

cos(kykuy0)e
− 1

2
(ks,kyku)C(y0,t)(ks,kyku)T

dy0

Note that the correlation matrix is an even function of y0 since it has the form

C( ~x0, t) = C(cos(kuy0), cos(2kuy0), t). This property together with the symmetry of

sine function was used to simplify the above expressions for f̂ and ĝ. Next we write

f̂ and ĝ in the form

f̂(y) =

√
2S

Uks

∞
∑

ky=−∞
cos(kykuy)Iky , ĝ(y) =

√
2S

Uks

∞
∑

ky=−∞
sin(kykuy)Iky (3.59)

where the non-dimensional quantity Iky satisfies

Iky =
kuksU

2π

∞
∫

0

dt

2π
ku
∫

0

cos(kykuy0)e
− 1

2
(ks,kyku)C(y0,t)(ks,kyku)T

dy0 , ky ∈ Z .(3.60)

53



To compute the mixing measures Ep, p = 0,±1 for the DDT approximation θDDT of

the exact solution θ∞ we use (3.57)-(3.60) with the Parseval’s formula. The scalar

variance of the steady unstirred solution satisfies

〈θ0〉 =
S2

κ2k4
s

(3.61)

We calculate the scalar variance on different scales in the presence of stirring. On the

intermediate scale we have

〈θ2
DDT 〉 =

1

2
〈f 2 + g2〉

=
2S2

U2k2
s

ku

4π2

2π/ku
∫

0

dy

2π
∫

0

dx





∞
∑

ky=−∞
cos(kykuy)Iky





2

+





∞
∑

ky=−∞
sin(kykuy)Iky





2

=
S2

4U2k2
sπ

2

1

2



2I2
0 +

∞
∑

ky=1

(I(ky) + I(−ky))
2 +

∞
∑

ky=1

(I(ky)− I(−ky))
2



 (3.62)

=
S2

4π2U2k2
s

∞
∑

ky=−∞
I2(ky) (3.63)

On the small scale we use

||∇θDDT ||22 =

(

∂θDDT

∂x

)2

+

(

∂θDDT

∂y

)2

= k2
s (f(y) cos(ksx)− g(y) sin(ksx))2 + (f ′(y) sin(ksx) + g′(y) cos(ksx))

2

to obtain

〈

(

∂θDDT

∂x

)2

+

(

∂θDDT

∂y

)2
〉

=
k2

s

2
〈f 2 + g2〉+ 1

2
〈f ′2 + g′2〉 . (3.64)
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The symmetry of sine next results in

1

2
〈f ′2〉 =

S2k2
u

8U2k2
sπ

2

∞
∑

ky=1

k2
y[I(ky)− I(−ky)] , (3.65)

1

2
〈g′2〉 =

S2k2
u

8U2k2
sπ

2

∞
∑

ky=1

k2
y[I(ky) + I(−ky)] , (3.66)

1

2
〈f ′2 + g′2〉 =

S2k2
u

4U2k2
sπ

2

∞
∑

ky=−∞
k2

yI
2(ky) . (3.67)

Then the previously derived (3.63) together with (3.64) leads to

〈(∇θDDT )2〉 =
S2

4U2π2

∞
∑

ky=−∞
(1 + r2k2

y)
pI2(ky) (3.68)

This result applies on small scales in case p = +1, and by a similar calculation also

on large scales in case p = −1. The multiscale mixing efficiencies take the form

E0 =

√

〈θ2
0〉

〈θ2
DDT 〉

= rPe





∑

ky∈Z

I2
ky





− 1
2

(3.69)

E+1 =

√

〈∇θ2
0〉

〈∇θ2
DDT 〉

= rPe





∑

ky∈Z

(1 + r2k2
y)I

2
ky





− 1
2

(3.70)

E−1 =

√

〈∇−1θ2
0〉

〈∇−1θ2
DDT 〉

= rPe





∑

ky∈Z

I2
ky

1 + r2k2
y





− 1
2

(3.71)

Let us next explore the scaling of E0 in the homogenization regime. If r = ku/ks →∞,

linear transformation z = kuy0 and τ = U2k2
s t

κk2
u

in the nondimensional integral (3.60)

leads to asymptotic dependance

∞
∑

ky=−∞
Iky =

∞
∑

ky=−∞

r

2πPe

∞
∫

0

dτ

2π
ku
∫

0

cos(kyz)e−
1
2
(ks,ky)C(ks,ky)T

dz ∼ I0 =
r

Pe
(3.72)
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where similar calculation can be done for E−1. Then the following asymptotic estimate

holds

E0 ∼
rPe

r/Pe
= Pe2 , as r →∞ . (3.73)

This suggests that the mixing efficiencies for the DDT approximation are consistent

with HT in the regime of finite Pe and r → ∞. Moreover, it has been shown by

Thiffeault et al. (2004) that for any periodic flow with single-scale sources a universal

upper bound holds

E0 ≤
√

1 + 2r2Pe2 . (3.74)

This bound is independent of the flow properties as it does not depend on the flow

wave number. Its derivation as well as improvement to E0 ≤
√

1 + r2Pe2 for a sine

flow in one direction can be found in Appendix D. On the other hand, it has been

shown, using asymptotic methods Shaw et al. (2007), that finite r and Pe→∞ yields

yet another law

E0 ∼ r7/6Pe5/6 , as Pe→∞ . (3.75)

and at small and large scales

E+1 ∼ r1/2Pe1/2 , as Pe→∞

E−1 ∼ rPe log Pe , as Pe→∞

The three different asymptotic laws at intermediate scales cannot be valid at the same

time and the only possible explanation is that the limits r →∞ and Pe→∞ do not

commute and their order predetermines the asymptotic regime of the model. In the

next section we provide the computational results capturing the mixing enhancement

in the DDT model across the (r, Pe)-parameter space.
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Figure 3.4: E0 versus Pe and rPe.

3.2.4 Numerical performance of dispersion-diffusion approximation

In our numerical results we use five different approximations to compute and

compare the scalar field and the variance suppression mixing measure on various

scales:

• “Exact”: Numerically computed approximation of the exact solution (3.35) by

spectral methods (dashed blue curves)

• DDT: Computation of the scalar field using (3.58)-(3.60) (with modes |ky| <

30) and enhancement factors using (3.69)-(3.71) and (3.60) (solid black)

• HT: Computation of the enhancement factor scaling by (3.73) (dash-dotted

red)

• ILT: Computation of the enhancement factor scaling by (3.75) (dotted yellow)

• Bound: Universal upper bound in terms of r and Pe, according to (3.74) (solid

red)
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Figure 3.5: E−1 and E1 versus Pe.

Fig. 3.4 (left) illustrates accuracy of the different approaches (among them “ex-

act”, DDT, HT and ILT approximations) and their performance in capturing vari-

ance suppression on intermediate scale E0. The “exact” behavior shows that there

are two regimes with a distinct r and Pe dependance: {r > Pe, r → ∞} and

{r < Pe, Pe → ∞}. While the dispersion-diffusion theory captures the variance

suppression accurately in the whole (r, Pe)-space, the homogenization theory is only

valid in the first region and the internal-layer theory in the second region. This reflects

the noncomutativity of the large-r and large-Pe asymptotic regimes. The transition

between the regimes occurs at r = Pe. Fig. 3.4 (right) shows that dispersion-diffusion

theory respects the rigorous absolute bound (3.74) for the stationary monochromatic

distribution that is independent of the choice of flow. The performance of the DDT

method is contrasted with other methods on both the large scales (Fig. 3.5 on the left)

and small scales (Fig. 3.5 on the right). As seen on Fig. 3.5, the DDT still captures the

correct scaling of E−1 in both the HT regime (r > Pe) and in the ILT regime (Pe > r),

even though the exact values differ slightly. However, on small scales, neither the HT

nor the DDT predict the variance suppression correctly (ILT is accurate for Pe > r)
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as seen on Fig. 3.5. Surprisingly, the exact scaling does not even coincide with the

HT prediction in the regime Pe < r → ∞. In the asymptotic regime for large r

the numerical computation of Iky becomes very sensitive to numerical errors and the

calculation of E+1 may be disrupted by these errors. The approximated density of the

Pe=10 Pe=100 Pe=1000 Pe=10000 Pe=100000

Exact

DDT

HT

Figure 3.6: Steady-state scalar fields for x ∈ [0, 2π
ks

], y ∈ [0, 2π
ky

] when r = 1000.

passive scalar concentration can be compared and contrasted in the physical space

x ∈ [0, 2π
ks

], y ∈ [0, 2π
ky

] between the three approaches: dispersion-diffusion approach,

homogenization theory and “exact” solution. Fig. 3.6 shows the performance of DDT

and HT, compared to the exact field plot, in capturing the small-scale features of the

scalar concentration for Pe = 10, 100, 1000, 10000, 100000 and for fixed r = 1000.

Within each column the fields are renormalized to the maximum magnitude of the

exact solution and then plotted on the same grayscale (where −1 corresponds to black

and 1 to white). As the stirring intensity increases with Pe, the internal layers form

in places with the largest shear whereas the best mixing occurs at places with the

strongest flow. Both the width and the angle of internal layers are remarkably well
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captured by DDT on intermediate and large scales. However, HT does not contain

any detailed structure and always resembles the source-sink distribution. While the

DDT approximates the bulk properties of the concentration field very closely for all

parameter values, HT greatly overestimates the concentration variance for Pe > r.

3.3 Conclusions

Multiple theories and computational techniques in the literature serve to quantify

the flow enhancement of molecular diffusion. Their predictions are not always consis-

tent. One of the fundamental questions answered in the chapter was how similar and

different features of these theories can be reconciled into one model that produces the

correct result for one of the mixing measures (scalar concentration variance suppres-

sion). We introduced a model utilizing the essence of the particle dispersion technique

that respects the temporal structure of inhomogeneities introduced by sources and

sinks. Our findings for a simple sine flow can be summarized as follows:

• Effect of sources: In the transient problem (s = 0) the time asymptotic bulk

properties of the concentration field are dominated by the long-time dispersive

behavior of the scalar, which ignores much of the structure of stirring. The

approximation using the constant (in time) additive enhancement factor, as in

homogenization theory, is accurate in its prediction of the Pe2 scaling. However,

in the presence of sources and sinks, the dominant contribution to the bulk vari-

ance comes from scalar particles that have been most recently introduced into

the system. In such case, it is the balance between the lengthscales (flow and

source scale), that determines the mixing properties of the given flow. Therefore

the mixing properties naturally depend not only on Péclet number but also on

the scale separation r.
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r > Pe

Figure 3.7: Validity of mixing theories in the (r, Pe) phase space.

• Non-comutativity of asymptotic regimes: In the nonhomogeneous prob-

lem (s 6= 0) the mixing properties depend on two nondimensional parameters:

Pe and r. The two existing theories (HT and ILT) are both found to be valid

but in different asymptotic regimes, specified by the parameters of the problem

and illustrated on Fig. 4.4. This implies that there is no universal asymptotic

scaling for the variance reduction mixing measure in the simple two-parameter

model. It is therefore essential to know in which order the limits r → ∞ and

Pe→∞ are taken and the result itself depends on this choice.

• Validity of DDT approach: Unlike the HT and ILT theories, the dispersion-

diffusion approach captures aspects of both theories and at the same time shows

the non-commutativity of the limits. Its ability to capture the large-scale mixing

properties encourages us to further study problems in which several lengthscales

are present. The method would be even stronger if it allowed to correctly resolve

the small scales as well. However, the numerical computations at this scale are

highly sensitive to numerical errors.
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So far, we have illustrated the DDT performance for a shear-flow problem with

single-modal sources. This technique is potentially applicable to a wider class of

problems, including those with more complicated flow or source structure. In partic-

ular, once the explicit formula for the time- and position-dependent efficiency matrix

C(~x, t) is known, or at least its short-time properties, the problem with more general

source-sink distribution may be studied. Among such examples we can mention tur-

bulent flows like homogeneous and isotropic turbulence Faber and Vassilicos (2009),

Richardson (1926) where the time-dependent covariance matrix may be modelled by

E[(Xi(t)−Xi(0))(Yi(t)− Yi(0))] ∼ (2κt + U2t2 + CRεt3)δij (3.76)

for displacements in the inertial range (or smaller), i.e., L << U3/ǫ = Lu, where the

absolute constant CR ≈ 1 is called a Richardson constant and ε = U3/lu is the mean

energy dissipation rate. Prediction of the DDT using this covariance remains to be

tested in direct numerical simulations, and ultimately in experiments.
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CHAPTER IV

Noise–induced (statistical) stability in differential

equations

4.1 Introduction: Rayleigh-Bénard Convection

It is a common observation that noise added to a dynamical system may desta-

bilize it and produce large fluctuations. Clearly, this statement is true for many

important applied models in biology, chemistry, physics and finance. One such model

(Hodgkin-Huxley model) is studied in detail in Chapter II. However, an interesting

question is whether noise may act in the opposite way and stabilize the system. In

this chapter we endeavour to systematically construct and study an example relevant

to an applied model arising in fluid dynamics for which almost all solution trajecto-

ries in the deterministic model escape to infinity, but an arbitrarily small stochastic

perturbation of the system leads to stochastic oscillations and statistically “stable”

patterns.

One of the classical models in fluid dynamics and a fundamental paradigm of non-

linear science is Rayleigh-Bénard convection (RBC), see Kadanoff (2001). A fluid

confined between horizontal boundaries separated by height H is heated from be-

low and cooled from above as on Fig. 4.1. The temperature difference between the

top and bottom plates creates a buoyancy force that can cause the fluid to flow.
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The problem can be described by nonlinear partial differential Boussinesq equations

as in Landau and Lifshitz (1987), based on the approximation by Oberbeck (1879)

and Boussinesq (1879). Qualitative properties of the fluid and heat flow are deter-

x 

y 

z 

0 

H 

Figure 4.1: Rayleigh-Bénard convection.

mined to a great extent by two non-dimensional quantities (parameters in Boussinesq

equations): the Rayleigh number and the Prandtl number. The dimensionless temper-

ature difference ∆T between hot and cold boundary is conventionally indicated by a

Rayleigh number, Ra = αgH3∆T (νκ)−1, where κ, α, ν and g are the coefficients of

thermal diffusivity, thermal expansion, kinematic viscosity and the acceleration due

to gravity, respectively. Prandtl number is given by the ratio of kinematic viscosity

to thermal diffusion, Pr = ν
κ
.

A quantity of particular interest, that can be calculated from the fluid velocity

and temperature field aposteriori, is the heat flux enhancement caused by the flow.

It is usually measured by the dimensionless Nusselt number Nu given by the ratio of

the total physical heat flux (including both conductive and convective heat flux) to

the conductive heat flux in the absence of fluid motion, i.e. Nu = cκ∆T/H where c

is the specific heat.
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The problem of thermal convection has been studied extensively from both math-

ematical and experimental point of view. A linearized analysis of the Boussinesq

PDEs reveals that the conductive state is linearly stable for small values of the tem-

perature forcing, measured by Ra. As the value of Ra exceeds a critical value Rc

the first unstable mode of the linearized system emerges, leading to existence of an

exact exponentialy growing solution of the linearized problem, see Calzavarini et al.

(2006). In the weakly nonlinear regime close to this transition a convection cell pat-

tern becomes a stable structure of the model. By increasing Ra even more the range

of possible instabilities increases leading to chaotic behavior (qualitatively similar to

that in the Lorentz system, which is a reduced model of convection), and eventualy

to turbulence.

The conventional wisdom in fluid dynamics is that for large values of Ra the

functional dependence between Nu and Ra is a power law, see review article Ahlers

et al. (2009). In the ultimate regime, i.e. in the asymptotic limit Ra→∞, the scaling

has been conjectured to be Nu ∼ Ra1/2 (Kraichnan (1962), Spiegel (1971)). It has

been proven that such an ultimate regime forms a bound, i.e. Nu . c1 + c2Raα where

α = 1/2 by Busse (2003), Doering and Constantin (1996), Doering and Constantin

(1992), Plasting and Kerswell (2003). Much effort has been spent on laboratory

experiments and more recently, in direct numerical simulations of Rayleigh–Bérnard

convection in attempts to observe the ultimate regime. Rayleigh numbers up to 1017

have been enticed experimentally by Niemiela and Sreenivasan (2006) and up to 1014

have been resolved computationally by Amati et al. (2005), Verzicco and Sreenivasan

(2008) but the scaling was found to be at most Nu ∼ Ra0.37, see Stringano et al.

(2006). One difficulty arises from a fact that such a Rayleigh number might still be

far from the ultimate regime; there is no measure telling how large Ra needs to be

in order to be close to the ultimate regime – if it exists at all. Another difficulty

is that the flow has qualitatively different properties close to the physical boundary:
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thermal and viscous boundary layers get thinner (and thus more difficult to resolve

computationally) for larger Rayleigh numbers.

One proposed way to eliminate the numerical simulation problem with boundary

layers is to investigate the properties of a convective cell with periodic boundary

conditions on every side, so–called homogenous Rayleigh-Bénard convection (HRBC).

Two recent approaches were performed to study this problem, leading to different

conclusions.

In the theoretical approach a critical value Rac = (2π)4 was found such that

above this (fairly small) value a family of exact exponentially growing solutions of

the full nonlinear system exists, see Calzavarini et al. (2006). In the computational

approach Lohse and Toschi (2003) transient exponentially growing solutions were

observed by direct numerical simulation of the fully nonlinear problem sightly above

the threshold Ra > Rac for Pr = 1. When compared, the exponential growth factor

matched the growth factor found analytically. Numerical observations reproduced in

Fig. 4.2 show that after some seemingly random time these solutions are destabilized

and a sudden collapse occurs making values drop down. This process keeps repeating

in an unregular pattern and produces statistically steady turbulent heat transport.

The numerical simulators observed a Nu = Ra1/2 scaling in the HRBC model

and conjectured that the ultimate regime hypothesized by Kraichnan and Spiegel

indeed occurs for large Ra. The analysts, on the contrary, were hesitant to draw the

conclusion. In an effort to understand why the nonlinear model exhibits physically

unfeasible solutions up to a point of collapse, and what the mechanism behind the

collapse is, the authors of numerical work were asked to test their method. After

setting a different level of precision in the numerical scheme (from the single to the

double precision), both groups of researchers observe that result does not seem to

change “much” as shown in Fig. 4.3. At higher precision the solution still grows

exponentially up to a point of a sudden drop of values but the collapse is slightly

66



Figure 4.2: Velocity components in time. Linear-log plot of the spatial root mean
squared (rms) value of the three velocity components and the thermal fluc-
tuation in the direct numerical simulation at resolution 323, wrms (solid),
urms (dashed) and vrms (dotted), see Calzavarini et al. (2006).

delayed. They concluded that the quantitative observation, i.e. Nu ∼ Ra1/2, is

correct. The reason behind sudden collapses is not fully understood but it is likely

that noise in the simulation from either the numerical method or round-off error may

be triggering the collapse of the exponentially growing solution.

On the other hand, after observing the change between the simple and double

precision calculations, one may hypothesize that (i) with smaller computational error

one can track the exponential solution longer (note that one needs to do series of

experiments for more than just two values of numerical precision to see whether the

point of collapse converges), and more importantly, (ii) the numerical method is very

sensitive to noise of very small magnitude such as round-off error (the magnitude of

round-off error is usually too small to explain such a big change in the result). The

computational result at any finite precision might therefore be qualitatively different

from the prediction of the differential equations. It is thus reasonable to conjecture

that the collapse of the solution is not a property of the model, but rather a con-

sequence of a small artificial fluctuations that can play an important role when the

domain of attraction to an exponential solution is small.
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Figure 4.3: Effect of numerical precision. A comparison between floating point
(solid) and double precision (dashed) calculations for the root mean
squared velocity component w and < u2 + v2 >1/2 vs time, with spa-
tial resolution 323 and second order Adams-Bashford as time marching
algorithm. The exponentially growing variable < w2 > collapses around
time 0.19. This process is repeated as the simulation progresses, see
Calzavarini et al. (2006).

Although the role of noise in PDEs or systems of ODEs is not fully understood,

some particular questions have been answered already. For an ODE in one dimension,

Scheutzow showed that if a deterministic equation has solutions that explode (i.e.,

goes to infinity) in a finite time for some initial condition then it necessarily explodes

in a finite time with probability strictly greater than zero with an added white noise

Scheutzow (1993). In later work Scheutzow (1995) an example of a two-dimensional

system of ODEs was constructed where deterministic solutions explode in a finite time

uniformly for all initial conditions, but for any arbitrarily small level of an additive

white noise all solutions are nonexplosive with probability 1. We remark that the

construction of that example is extremely complicated and the mechanisms at work

are by no means clear. That is, it is not straightforward to identify the key properties

of the system that lead to these results.

The main question of this work is to investigate whether arbitrary small level of

an additive white noise can prevent trajectories from escaping to infinity. In this work
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we present two planar deterministic dynamical systems with the property that almost

every solution diverges to infinity exponentially in time. Both models are designed

to capture key features of the homogenous convection problem, although no claim is

made of a strict derivation. The models are then perturbed by a small magnitude

Gaussian noise. The first model, similar to a 3-dimensional simplification of thermo-

haline convection by Hughes and Proctor (1990), “vacillates” 1 instead of producing

statistical oscillations that do not diverge to infinity with probability one. The sec-

ond model exhibits statistical oscillations. By using a theory of stochastic Lyapunov

functions, see Khasminskii (1980), we show that adding arbitrary small white noise

will produce a statistically steady stochastic evolution with an invariant probabil-

ity measure. Next we develop an effective numerical method to find distribution of

collapse times/values. Finally by asymptotic analysis of the corresponding first exit

time problem we confirm that our numerical and analytical answers are consistent.

4.2 Topics from stochastic differential equations theory

This section is as a short digression to the topic of stochastic differential equations

theory. The focus is on existence and uniqueness of an invariant measure for SDE’s

and the use of the stochastic Lyapunov function (SLF). We make use of a material

by presented in spring of 2008 by Rafail Khasminskii at Wayne State University

Khasminskii (2008). Mathematical proofs are omitted; interested reader can find

them in the original book by Khasminskii (1980).

1vacillate = to swing indecisively from one course of action or opinion to another. In this context
vacillation stands for seemingly random oscillations that wander off to infinity almost surely.
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4.2.1 Regularity of solution

Consider a system of stochastic differential equations in R
n

dx(t) = b(t, x(t))dt + σ(t, x(t))dW (t) , x(t0) = x0 (4.1)

where W (t) is a Brownian motion; and satisfying the regularity conditions for every

x1, x2, x ∈ R
n

|b(t, x)|2 + ||σ(t, x)||2 ≤ K(1 + |x|2) , (4.2)

|b(t, x2)− b(t, x1)|2 + ||σ(t, x2)− σ(t, x1)||2 ≤ K|x2 − x1|2 . (4.3)

Then the solution exists at all times. Let

τn = inf{t : |x(t)| > n} (4.4)

The sequence τn is increasing and thus its limit τ = limn→∞ τn exists with probability

one (it may be ∞). We say that a solution to (4.1) is regular if

P{τ <∞} = 0 . (4.5)

Define the stochastic Lyapunov operator L for any V (t, x) ∈ C1(R+)∩C2(R
n) so that

LV (t, x) =
∂V

∂t
(t, x) +

n
∑

i=1

bi(t, x)
∂V

∂xi
(t, x) +

1

2

n
∑

i,j=1

ai,j(t, x)
∂2V

∂xi∂xj
(t, x) (4.6)

where A(t, x) = σ(t, x)σ(t, x)∗ is n× n covariance matrix with entries ai,j(t, x). The

sufficient conditions for regularity of a solution of (4.1) are as follows.

Theorem IV.1. Let b(t, x) and σ(t, x) be Lipschitz continuous and satisfy (4.2),

(4.3) in |x| < R for every R > 0. Assume there exists V (t, x) ∈ C1(R+) ∩ C2(R
n) so
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that

1. V (t, x) > 0,

2. LV (t, x) ≤ CV (t, x) for some C > 0, and

3. inft>0,|x|≥R V (t, x) = VR →∞ as R→∞ .

Then any solution of stochastic system (4.1) is regular.

The proof consists of applying an Itô formula to a function W (t, x) = V (t, x)e−C(t−t0)

but with t = τn. Taking expectation and the limit n → ∞ together with condition

3 implies regularity. This is an extension of a similar statement for deterministic

systems of ODE’s.

Example IV.2. We show regularity of















dx(t) = −x3dt + y2dt + dW1(t)

dy(t) = x2dt− y5dt + dW2(t)

(4.7)

Choose V (x, y) = x2 + y2 + 1. Then the inequality ab ≤ γa2

2
+ b2

2γ
for γ = 1 yields

LV (x, y) = 2x(−x3 + y2) + 2y(x2 − y5) + 1

= −2x4 − 2y6 − 2xy2 − 2x2y + 1

≤ −2x4 − 2y6 + x2 + y4 + x4 + y2 + 1

≤ C(x2 + y2 + 1)

for some C > 0. Therefore any solution is regular.
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4.2.2 Recurrency

Let D be a compact domain in R
n and assume that the solution of (4.1) is regular

and unique. Now define a time to reach domain Dc

τD = inf{t : x(t) ∈ Dc} (4.8)

There are two possible questions of interest: whether the time to reach ∂D is finite,

and what is a solution of a Dirichlet problem Lu = 0 on a domain D with a boundary

condition u|∂D = φ(x). Both of these problems are connected with a recurrency of

the stochastic dynamical system. The process x(t), starting at point t0 at x0 ∈ D

is recurrent with respect to Dc if P t0,x0{τD < ∞} = 1 for all x0 ∈ D. Also, we call

a process x(t) starting at value t0, x0 non-recurrent if P t0,x0{τD < ∞} < 1. The

next theorem gives an answer to the first question again with the use of a stochastic

Lyapunov function.

Theorem IV.3. Suppose there is a Lyapunov function V (t, x) ≥ 0 that satisfies

1. V (t, x) ∈ C1(R+) ∩ C2(R
n) (smoothness), and

2. for all x ∈ D we have LV (t, x) ≤ −C where C > 0 is a constant

then the process x(t) starting at (t0, x0) is recurrent with respect to Dc. And moreover

E
t0,x0τD − t0 ≤

V (t0, x0)

C
. (4.9)

The proof requires use of Itô’s lemma for V (τD(T ), X(τD(T ))) where τD(T ) =

min{τD, T}. One needs to take expectation and utilize property 2. To take the limit

T →∞ one uses a Fatou lemma.

Example IV.4. What is P{τR−{0}c <∞} for the one-dimensional Brownian motion

dx = dξ with initial condition x(0) = x0 > 0? In order to show that 1D Brownian
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motion reaches origin at a finite time one needs to construct a SLF V such that

LV (t, x) =
1

2

∂2V

∂x2
≤ −C

for all x > 0. V must be both positive and concave for all |x| > c ∈ R. Clearly, both

conditions cannot be satisfied at the same time.

4.2.3 Conditions for stationary distribution

A solution of a time-homogeneous process

dx(t) = b(x(t))dt + σ(x(t))dW (t) x(t0) = x0 , (4.10)

is a Markov process, and therefore is characterized by a transition function P (x, t, A) =

P{xt0,x0(t) ∈ A}. A Markov process is stationary if there exists a measure µ̂(A) such

that

(i) µ̂(A) =
∫

Rn µ̂(dx)P (x, t, A)

(ii)
∫

Rn µ̂(dx) = µ̂(Rn) = 1

If the condition (ii) is not satisfied but µ(Rn) =∞ then the distribution is called an

invariant measure but we omit the hat in that case. There exists a stationary density

function q(x) = dµ̂
dx

corresponding to the distribution µ̂(A) that satisfies a forward

Kolmogorov equation, also called Fokker-Planck equation (FPE)

L∗(x)q(x) = 0 ,

∫

Rn

q(x)dx = 1

where L∗(x) is the adjoint operator to the generator L(x)

L∗(x)q =
1

2

n
∑

i,j=1

∂2

∂xi∂xj
(ai,j(x), q(x))−

n
∑

i=1

∂

∂xi
(bi(x), q(x)) (4.11)
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The existence of the invariant measure and stationary initial distribution for a non-

degenerate elliptic operators may be verified using the following.

Theorem IV.5. Assume that

(i) the matrix A(x) = σ(x)σ∗(x) is positive definite (nondegenerate elliptic prob-

lem), and

(ii) the process x(t) is recurrent with respect to some bounded domain.

Then the process (4.10) has an invariant measure µ(A) (for arbitrary A). If in ad-

dition E
t0,x0(τA) <∞ for all x ∈ Ac then there exists a stationary distribution µ̂(A):

µ̂(Rn) = 1.

In the proof of the statement in one dimension the invariant measure is directly

constructed. Since any point on the line can be reached with probability 1 one can

construct cycles 0 → L → 0 so that trajectory starting at 0 reaches value L at time

τ1 and then again value 0 at time τ2 and so on. The value of µ(A) (A ∈ [0, L]) is then

the fraction of time τ = τ1 + τ2 that the trajectory spends in A. This measure can be

shown to be invariant and if E(τ) < ∞ then it is also stationary. The proof in two

dimensions requires a more elaborate construction of the cycles.

Remark IV.6. It is possible to show that positive recurrence of a non-degenerate

elliptic problem implies uniqueness of the stationary distribution µ̂.

Example IV.7. Let us find the stationary distribution density for the process xt0,x0(t)

described by the equation

dx(t) = (1− 2x(t))dt + 2dW (t) , x(0) = x0 .

The stochastic differential equation is a homogenous linear equation with a solution

x(t) = e−2t



x0 +
e2t − 1

2
+ 2

t
∫

0

e2sdW (s)




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Mean m(t) and standard deviation σ(t) satisfy

m(t) = x0e
−2t +

1

2
(1− e−2t)

σ2(t) = 4e−4t

t
∫

0

e4sds = 1− e−4t

Then the time-dependent probability density function is a gaussian x(t) ∼ N (m(t), σ(t)).

The stationary distribution density for the problem is also a gaussian with the mean

and standard deviation being the limits as t→∞ of m(t) and σ(t). Therefore

µ̂ : f̂(x) =
1√
2π

exp

[

−(x− 1/2)2

2

]

4.2.4 Stochastic Lyapunov function theorem

In case the problem (4.10) is degenerate (for example if there is a noise term only

in some of the equations) one needs to use a more general theorem. The following

statement from Khasminskii (1980) applies to this general case.

Theorem IV.8 (SLF theorem). Let (4.10) be a time-homogenous problem where

coefficients satisfy (4.2) and (4.3) in UR = {x ∈ R
n : |x| ≤ R} for every R. If there

exists a function V (x) ∈ C2(R
n) with the properties

(i) V (x) ≥ 0,

(ii) sup|x|>R LV (x) = −AR → −∞ as R→∞.

and if the solution of (4.10) is regular for at least one initial condition x0 ∈ R
n then

the solution of (4.10) is a stationary Markov process.

In the proof of this theorem the stopped process x(t) is considered only on UR

where the full statement is proved by taking a limit R→∞.

For a given SDE the existence of an invariant measure may be proved by finding

an appropriate SLF V (x). The function V (x) may be considered as a stochastic
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potential. In general, the search for a SLF is difficult especially if the underlying

system has complicated dynamics. There is no general direct way or algorithm for

finding a SLF but in some cases the system itself may hint on the form of the SLF.

We will apply this theorem for a two dimensional SDE system that is degenerate in

chapter 4.3.

4.3 Stochastic dynamical system approximations

4.3.1 Vaccilatory model – Model 1

Our aim is to construct a simple two-dimesional dynamical system that captures

key features of the dynamics of HRBC, and that for arbitrary small stochastic per-

turbation changes its dynamics in nature. More complicated models with similar

properties have been studied before. One of them is a three dimensional dynamical

system for a thermohaline convection by Hughes and Proctor (1990) derived directly

from fluid PDE’s in a regime of small Rayleigh number. As a first step we propose a

similar model but in two dimensions.

The key property to capture in the nonlinear model is the presence of exponentialy

growing solutions. In order to mimic the HRBC, the model should contain at least

one fixed point with one locally exponentialy growing and one locally exponentially

decaying solution. The natural form of the linear part of the dynamical system is a

saddle

ẋ = −x , ẏ = y . (4.12)

In order to decrease the stability region of the exponentialy growing solutions (all

of them approach y-axis) we add nonlinearity to the saddle model. The proposed
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nonlinear model is

ẋ = −x(1− xy) , (4.13)

ẏ = y − x3 . (4.14)

The system is symmetric (x, y) → (−x,−y) and has three equilibria: saddle (0, 0)

and spiral sources (±1,±1). The nullcline xy = 1 approaches the y-axis as y grows

−8 −4 0 4 8
−8

−4

0

4

8

x

y

y = x3

y = 1/x

Figure 4.4: Sample trajectories of the deterministic Model 1. Nullclines of the
map are xy = 1, y = x3 and x = 0. Note that in the nonlinear system
all solutions starting in quadrants I and III eventualy enter quadrants II
and IV respectively.

and restricts the domain of attraction to the exponentialy growing solution. In other

words, any exponentialy growing solution of this system is sensitive to a small per-

turbation in the x variable for y large. Therefore adding a white noise of a small

magnitude to the x dynamics

dx = −x(1− xy)dt + σdW , (4.15)

dy = (y − x3)dt . (4.16)
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should also result in destabilizing the exponentialy growing solution at some point.

This leads to a stochastic dynamical system with a behavior similar to the fluid

problem. To summarize, trajectories starting at almost any initial condition grow

exponentialy to∞ in the deterministic model. The only exceptions are when starting

either directly at fixed points or at connections from/to fixed points. After adding

a small noise in the x dynamics trajectories first climb up (or symmetricaly down)

along the y-axis and after some random time the noise kicks them beyond the xy = 1

nullcline and throws them out of the region of attraction. This produces a collapse

where y decreases and x temporarily increases but eventualy rapidly decreases. After

this noise insensitive phase the trajectory starts to grow exponentialy again and the

whole “cycle” repeats as on Fig. 4.5. There are two distinct parts of the trajectory:

(1) noise sensitive part when y grows exponentialy fast and |x| < min{1/|y|, c} and (2)

dominantly deterministic phase of trajectories |x| > min{1/|y|, c}. The two different

behaviors are separated by a jump – moment of exit from the atractive region. The

jump occurs when xy = 1.

The repetition of exponential growth and subsequent collapse that we found in

Model 1 is a feature that resembles the original RBC model. Our goal is to show that

trajectories of this SDE model do not blow up to∞ and that there exists an invariant

probability measure for trajectories in this system. Given the “oscillatory” structure

of the model this would show that statistical oscillations are a dominant feature in

the model.

In reality, Model 1 only partialy satisfies the forementioned properties. It is true

that starting from any given initial condition trajectory exits the noise-sensitive region

in a random finite time with a finite expected value. Unfortunately, there does not

exist any invariant measure for this problem and trajectories eventualy wander off to

infinity. Surprisingly, the blow up occurs due to the properties of the dynamics in the

noise insensitive region. Both claims will be justified in next two sections.
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Figure 4.5: Solutions of Model 1 with an added white noise of magnitude
σ = 1. Trajectories in a noisy region are climbing up/down the y axis.
In the noise insensitive region trajectories seem to follow circles. Note the
change of scale from the plot Fig. 4.4.

4.3.1.1 Noise sensitive region

As mentioned above trajectories can be in two regions, either noise sensitive region

or deterministic region and these two are alternating in time. The focus of this section

is to estimate the time it takes a trajectory to exit the first region. We show that

starting in a noise sensitive region the solution exits the region on average by reaching

some fixed time that depends on the noise magnitude σ. We prove the statement

by showing that the system is recurrent (using theorem IV.3) with respect to some

compact region around y-axis.

Theorem IV.9. System (4.15), (4.16) is recurrent with respect to a region Ωc =

R
2 − {(x, y) : |xy| ≤ 1 , |y| ≥ 1}.

Proof. Choose a Lyapunov function to be a quadratic function

V (x, y) = a + bx− cx2 , (4.17)
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on Ω = {(x, y) : |xy| ≤ 1 , |y| ≥ 1} where a, b and c are constants. Then for any

(x, y) ∈ Ω

LV (x, y) = ∂xV (x, y) (−x(1− xy)) +
σ2

2
∂x,xV (x, y) (4.18)

= −(b− 2cx)x(1− xy)− bσ2 (4.19)

≤ −bσ2 (4.20)

provided 0 < 2c < b. Value of constant a is set so that V (x, y) ≥ 0 on Ω and c > 0

is arbitrary. As an example one can take (a, b, c) = (5, 3, 1). The inequality (D.1)

implies that the average first exit time τΩ of a trajectory starting at (x0, y0) ∈ Ω is

E(τΩ) ≤ V (x0, y0)

bσ2
=

a + bx0 − cx2
0

bσ2
(4.21)

that does not depend on y0. This gives a rather loose upper bound for the average

exit time from Ω

E(τΩ) ≤ 2

σ2
. (4.22)

Although the upper bound does not use any information about the initial value

y0 it is consistent with our expectation that noise strength influences the time spent

in the noise sensitive region.

4.3.1.2 Noise insensitive region

Numerical simulations of the noise perturbed Model 1 suggest that trajectories in

the noise insensitive region move on a curve similar to a circle until they enter the

noise sensitive part again. We will show that for Model 1 this region determines the

properties of trajectories for large time. It is natural for us to keep track of the exit

value – the height |yout| at which trajectory leaves the noise-sensitive region (when
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it crosses the nullcline xy = 1) and the entering value – the height |yin| at which

trajetory enters the noise-insensitive region next time (when xy = −1).

Definition IV.10. If the deterministic version of Model 1 has the property that for

any (xout, yout) = (1/yout, yout) such that |(xout, yout)| > R for R >> 1 and

(i) |yout| > |yin|, then we call the map to be contracting in the noise insensitive

region, or

(ii) |yout| < |yin|, then we call the map to be expanding in the noise insensitive

region,

where (xin, yin) is the point of next entry of the slow region.

We will prove that Model 1 behaves as an expanding map in the deterministic

region and thus there is no hope that there exists an invariant measure.

Theorem IV.11. The deterministic system of ODE’s (4.13)-(4.14) is an expanding

map in the region defined by Ω+ = R
2
+x − {(x, y) : 0 < x ≤ 1 , |y| ≤ 1/x} and

symmetrically on Ω− = R
2
−x − {(x, y) : −1 ≤ x < 0 , |y| ≤ −1/x} where R

2
+x =

{(x, y) : x > 0} and R
2
−x = {(x, y) : x < 0}.

Based on the proof that may be found in Appendix A, the separation of time

scales is responsible for the positive net growth of the distance from origin on the

way from yout to yin. Note that by this argument the net growth is positive only if it

is far away from the origin. Therefore any numerically found trajectory that starts

close to the origin may “vaccilate” – statistically oscillate in some region around the

origin and after reaching some point it will start to “monotonically” approach infinity.

There are two destabilizing mechanisms in the model. On one hand the deterministic

version of the map is expanding in the noise insensitive region. On the other hand

the trajectory climbs away from the origin in the noisy region due to the direction of

the slope field. Therefore all trajectories will eventualy blow up in a well controlled

fashion yielding nonexistence of the invariant probability measure.
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4.3.2 Resetting model – Model 2

For a model to have an invariant probability measure both noise sensitive and

noise insensitive part of dynamics has to work in our favor. In the funnel-shaped

region where stochastics has a dominant role the problem can be reformulated as a

first exit time problem that can be analysed mathematically. On the other hand the

noise insensitive part of the dynamics may be studied directly and must have certain

contracting properties, i.e. trajectories that exit the noise dominant region at high

value of y must enter it again at a smaller value of y. We design our second model

so that trajectories revisit a small neighborhood of origin after every collapse (strong

contraction towards origin). This way the dynamics effectively reduces to a repeated

first exit value problem. The form of a modified model is

ẋ = −x(4− xy + x2) , (4.23)

ẏ =
y − x3

1 + x2
. (4.24)

Similarly to Model 1 this system has the symmetry (x, y)→ (−x,−y) and has three

equilibria: saddle (0, 0) and oscillatory sources

(

±
√

1
2

+
√

17
2

,±
√

1
2

+
√

17
2

3
)

. There

exist heteroclinic connections from both sources to the origin and separatrices from

∞ to the origin. All trajectories eventualy escape to infinity at an exponential rate

except when starting at fixed points, on the hetroclinic orbits or on the separatrices to

the origin. After adding a small noise to the x-variable the behavior of the dynamics

dx = −x(4− xy + x2)dt + σdW , (4.25)

dy =
y − x3

1 + x2
dt . (4.26)

consists of (1) slow phase in a noise sensitive region |y| < |x|+ 4/|x| and |x| < c; (2)

jump from the slow phase; and (3) collapse of trajectory to a neighborhood of origin.
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Figure 4.6: Sample trajectories of the deterministic Model 2. Nullclines are
4− xy + x2 = 0, x = 0 and y = x3.

4.3.2.1 Contraction of the map

To indicate the difference in the properties of Model 2 compared to Model 1, we

examine the contraction properties of the chosen deterministic map, given by (4.23),

(4.24), and show that any trajectory, starting outside of a narrow strip around the

y-axis, will eventualy enter a fixed neighborhood of origin. Even though the full

proof of statistical oscillations for this stochastic model (i.e. existence of an invari-

ant probability measure) is provided in the next section, the essential property of

the deterministic map is stated below. The dynamics of the noise-perturbed system

naturaly divides into a noise-sensitive and -insensitive part. Here, we study the prop-

erties of the deterministic model in the region corresponding to the noise-insensitive

region. In particular, we will decompose the state space into the following regions, as

depicted on Fig. 4.8:
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Figure 4.7: Solutions of Model 2 with an added white noise of magnitude
σ = 1. In the noisy region trajectory stays close to the y axis. After
crossing the approaching nullcline at a value yout trajectory returns back
to a neighborhood of the origin. Note the change of scale from Fig. 4.7.

• Growing x(t): A = {(x, y) : d|x|
dt

(x, y) > 0} ∩ {(x, y) : |x| ≥ 2},

• Decaying x(t): B = {(x, y) : d|x|
dt

(x, y) < 0} ∩ {(x, y) : x(y − x) > 0},

• Rectangular region around origin: R = max{|x|, |y|/2} ≤ 2,

• The rest.

Theorem IV.12 (Contraction of Model 2.). Let A = {(x, y) : d|x|
dt

(x, y) > 0} ∩

{(x, y) : |x| ≥ 2} be defined as in Fig. 4.8. The deterministic dynamical system (4.23)-

(4.24) has a property that if (x(0), y(0)) ∈ A then for some τ <∞ (x(τ), y(τ)) ∈ R.

The proof of the claim is split into two simpler parts. In the first part we show

that a trajectory, starting in region A will reach region B in finite time whereas in

the second part we show that a trajectory in region B will enter rectangle R in a

finite time. The proof is given in Appendix B.
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Figure 4.8: Regions of the phase space: A, B, R. Trajectory from A eventualy
enters B and after a finite time it enters the rectangle R.

4.3.3 Existence of invariant measure in Model 2

By construction, the deterministic version of Model 2 does not have any Lyapunov

function. This is because almost all its trajectories blow up exponentially fast. We

must design SLF for the noise-perturbed system in such a way that the diffusion term

in the generator dominates the rest. Clearly, trajectories are most sensitive to noise

in the noise-sensitive part of region B down the y-axis and the key is to construct

the SLF in this region. Moreover, we want to find SLF for arbitrarily small noise

magnitude σ. But since the diffusion term in the generator is proportional to the

magnitude of the noise itself, the form of the SLF needs to depend on σ as well. Note

that SLF may be defined arbitrarily on any given compact region without violating

the SLF theorem (since the key condition must be valid for |x| > R as R→∞).

Our goal is to find a simple SLF function that respects the structure of the problem

(symmetry, fast/slow phase). The construction consists of three steps.
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1. Fast region: V̂ (x, y) = (x − y)2 satisfies SLF condition on ΩF = {(x, y) ∈ R
2 :

|x| ≥ C , |y| ≥ 1} where C > 1.

2. Slow region: f(x, σ)V̂ (x, y) satisfies SLF condition on ΩS = {(x, y) ∈ R
2 : |x| ≤

C} where C > 1 is the same as above. In addition, it can be patched with

constant multiples of V̂ (x, y) on ΩF so that the result will be C2. SLF will be

defined separately for y > 1 and by parity for y < −1. It will depend on the

noise strength σ.

3. All the remaining “rough” parts of the function (|y| ≤ 1) will be patched to-

gether to produce an explicit C2 function V (x, y, σ) that satisfies SLF condition

on R
2 for arbitrarily small noise strength σ.

4.3.3.1 Fast region ΩF

In the fast region ΩF = {(x, y) ∈ R
2 : |x| ≥ C} where C > 1 is set, trajectories of

Model 2 are not very sensitive to noise. We choose V̂ (x, y) to be one of the simplest

positive definite functions – quadratic, that satisfies SLF condition in this region.

That is, V̂ (x, y) = (x− y)2. Then

LV̂ (x, y) =

(

2

1 + x2
− 2x2

)

y2 (4.27)

+

(

8x + 4x3 − 2x

1 + x2
− 2x3

1 + x2

)

y (4.28)

+ σ2 − 8x2 − 2x4 +
2x4

1 + x2
. (4.29)

This nonnegative quadratic functional is concave down in variable y for x ≥ C > 1.

For technical pirposes we analyse two cases: x ∈ [C, M ] (bounded interval), and

x ∈ [M,∞] for sufficiently large M . First observe that if x ∈ [C, M ] simple inequalities
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imply that

LV̂ (x, y) ≤
(

2

1 + M2
− 2

)

y2 + 16M3|y|+ σ2 − 10M2 (4.30)

and if y → ∞ indeed LV̂ (x, y) → −∞ and the SLF condition is satisfied. Next

we use concavity of LV̂ (x, y) with respect to variable y to find its maximum on the

remaining interval [M,∞) by setting ∂LV̂
∂y

(x, y∗) = 0 and solving for y∗.

y∗ =
2x5 + 5x3 + 3x

2x4 + 2x2 − 2
∼ x for x >> 1 (4.31)

The result y∗ can be furthemore substituted into LV̂ (x, y).

LV̂ (x, y∗) =
−4x12 + O(x8)

2x10 + O(x8)
(4.32)

∼ −2x2 for x >> 1 (4.33)

For x ∈ [M,∞) function LV̂ (x, y) is bounded from above by some negative polynomial

and therefore goes to −∞ anytime |x| → ∞. In fact LV̂ (x, y) → ∞ anytime when

|(x, y)| → ∞ since it is a polynomial in y as well. Therefore V̂ (x, y) satisfies SLF

condition on [C,∞). The SLF on the interval [C,∞) is a constant multiple of V̂ (x, y)

where the constant can be specified to satisfy smoothness properties.

4.3.3.2 Slow region ΩS

Sensitivity of the dynamics on the noise magnitude is a dominant feature of the

model in the slow phase. In the slow region |x| ≤ C > 1 the function V̂ (x, y) =

C(x − y)2 does not satisfy properties of a SLF mainly because it does not even

depend on the noise magnitude σ. In order to modify it we define SLF on a half-strip
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region |x| ≤ C, y > 1 (and by symmetry for y < −1) to have a form

V (x, y, σ) = f(x, σ)V̂ (x, y) = f(x, σ)(x− y)2 (4.34)

where a function f ∈ C2 is to be specified and we set C = 2. Note that the smoothness

property of a SLF requires us to impose boundary conditions on f(x, σ) for x = C = 2.

f ′′(−2, σ) = f ′′(2, σ) = 0 and f ′(−2, σ) = f ′(2, σ) = 0 , (4.35)

but also f(−2, σ), f(2, σ) > 0. After applying the generator of Model 1 to function

V (x, y, σ) we obtain

LV (x, y, σ) = A3(x, f, f ′, f ′′)y3 + A2(x, f, f ′, f ′′)y2 (4.36)

+ A1(x, f, f ′, f ′′)y + A0(x, f, f ′, f ′′) (4.37)

= x2y3f ′ + y2

(

−2x2f − 4xf ′ − 3x3f ′ +
1

2
σ2f ′′ +

2f

1 + x2

)

(4.38)

+ yA1(x, f, f ′, f ′′) + A0(x, f, f ′, f ′′) (4.39)

A necessary condition (for V (x, y) to be a SLF) is that yf ′ < 0 implying that f needs

to be decreasing in the positive half-strip. Since the deterministic version of “Model

2” blows up exponentially (and for that reason it does not have a stochastic Lyapunov

function) it must be the stochastic term in the generator 1
2
σ2∂xxV (x, y, σ) that kills

all the terms that blow up and makes function LV (x, y, σ) approach −∞. This leads

to the observation that V (x, y, σ) must be concave in x for x ≈ 0 and also that its

second derivative (with respect to x) must dominate positive terms in LV (x, y, σ).

The construction is divided into three steps, for more details, see Appendix C.

• Construct f ′′(x) as a piecewise linear function that is equal to a large negative

constant in a ε-neighborhood of x = 0. The simplest candidate is schematically

plotted on Fig. 4.3.3.2. There are 5 parameters that we control: ε, K, L, X
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and Y .

−K 

L 

−Y X −ε ε 

−ε 

−2 

2 

f’’(x) 

Figure 4.9: Piecewise defined function f ′′(x, σ) in the slow region. Values of
K and ε both depend exclusively on the magnitude of the noise strength
σ. K is chosen big enough and ε small enough to satisfy SLF properties.

• Integrate the function f ′′(x) twice to find f(x) with the use of boundary condi-

tions f ′′(−2) = f ′′(2) = f ′(−2) = f ′(2) = 0, f(−2) = A > 0 and f(2) = B > 0.

Note that constants A and B are linked together by a fundamental theorem of

calculus. As we verify by calculation in Appendix C this yields

L = ε +
X + Y + 2ε

2− ε
, (4.40)

A = B +
1

6
(−2ε3 + K(2 + Y )(X + Y ) + ε2(2K −X − Y ) (4.41)

+ 2ε(4 + X + Y + K(2 + X + Y ))) . (4.42)

• Choose B = ε and X = Y = 2ε. Lyapunov condition implies that the coefficient

A2(x) needs to be negative. This sets a positive upper bound on ε as a function
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of noise level σ. The SLF condition becomes

−6ε3 + ε2(8 + 22K − 6x− 9x3) + ε(3K(8 + 6x + 9x3)) + (4.43)

+2(10 + 6x + 9x3)) + 3K(6x2 + 6x4 − σ2) < 0 . (4.44)

that leads to restrictions on K and ε based on the magnitude of σ ≤ 1. The

condition is satisfied if K = 1
ε

and ε(σ) ≤ 1
16

σ2 (for example ε = 1
16

σ2).

The coefficient A2(x) then by construction satisfies

A2(x) < −cσ2K for any x ∈ [−ε, ε) , (4.45)

for some positive c ∈ R and in the limit y →∞ ,

V (x, y, σ)→ A3(x)y3 + A2(x)y2 ≤ −(xy)2|yf ′(x)| − cσ2Ky2 → −∞ (4.46)

for any x ∈ [−2, 2]. Moreover the stochastic Lyapunov function connects in a C2

manner to V (x, y) = AV̂ (x, y) for x ≤ −2 and to V (x, y) = BV̂ (x, y) for x ≥ 2. Note

that for y < −1 we need to define V (x, y, σ) = V (−x,−y, σ) and V (x, y) = BV̂ (x, y)

for x ≤ −2 and to V (x, y) = AV̂ (x, y) for x ≥ 2.
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Below is the summary of all boundary conditions for f(x, σ) in the upper half-strip

(|x| ≤ 2, y ≥ 1)

f(−2, σ) = A = −ε3 +
14K + 4

6
ε2 +

12K + 14

6
ε (4.47)

f ′(−2, σ) = 0 (4.48)

f ′′(−2, σ) = 0 (4.49)

f(2, σ) = B = ε (4.50)

f ′(2, σ) = 0 (4.51)

f ′′(2, σ) = 0 (4.52)

and by symmetry in the lower half-strip (|x| ≤ 2, y ≤ −1).

The last thing to do is to smoothly connect AV̂ (x, y) with BV̂ (x, y) to avoid a

sharp transition of V (x, y) along the x-axis. This can be done in a straightforward

way by using a fifth-order polynomial as a smoothing function close to the x-axis.

4.3.3.3 Final patching

Here we define the function V (x, y) on |y| < 1 for x > 2 (denoted by +) and on

|y| < 1 for x < −2 (denoted by −) in order for it to have a smooth connection with

the rest. We will take V (x, y) of a form V (x, y) = g±(y)V̂ (x, y) where g±(y) satisfy

boundary conditions (smoothness requirements)

g+(1) = ε and g+(−1) = A (4.53)

g−(1) = A and g−(−1) = ε (4.54)
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and also g′
±(y) = g′′

±(y) = 0 for y = ±1. Polynomial function of the lowest order that

satisfies all stated requirements is

g+(y) = A− (A− ε)

∫ y

−1
(u + 1)2(u− 1)2du

∫ 1

−1
(u + 1)2(u− 1)2du

(4.55)

g−(y) = ε + (A− ε)

∫ y

−1
(u + 1)2(u− 1)2du

∫ 1

−1
(u + 1)2(u− 1)2du

(4.56)

We need to make sure that as |x| → ∞ then LV (x, y) → −∞ (y is bounded). The

stochastic system in the described region has an approximate form

dx = (−x3 +O(x2y))dt + σdξ (4.57)

dy = (−x +O(1 + y))dt (4.58)

therefore

LV (x, y) = −2x4g(y) + δ(x3, y, g, g′) (4.59)

where δ(x3, y, g, g′) ∼ O(x3) and y, g(y) and g′(y) are all bounded by a constant.

Since the leading term is negative (and grows to −∞ with x) V (x, y) satisfies SLF

condition. Now is the construction a SLF for Model 1 almost complete. The function

V (x, y) is a C2 function in the following form, schematicaly plotted on Fig. C.1 where
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Figure 4.10: Schematic picture of the stochastic Lyapunov function in R
2.

V̂ (x, y) = (x− y)2, where ε(σ) depends on the noise strength:

V (x, y) =
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εV̂ (x, y) if x > 2 and y > 1,

AV̂ (x, y) if x < −2 and y > 1,

εV̂ (x, y) if x < −2 and y < −1,

AV̂ (x, y) if x > 2 and y < −1,

f(x, ε)V̂ (x, y) if |x| ≤ 2 and y ≥ 1,

f(−x, ε)V̂ (x, y) if |x| ≤ 2 and y ≤ −1,

g+(y)V̂ (x, y) if x ≥ 2 and |y| ≤ 1,

g−(y)V̂ (x, y) if x ≤ −2 and |y| ≤ 1,

arbitrary if |x| < 2 and |y| < 1

(4.60)

Remark IV.13. In order to satisfy V (x, y) > 0 for all (x, y) ∈ R
2 we add an arbitrary
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positive constant to the function V . The properties of LV (x, y) will not depend on

the choice of this constant.

Remark IV.14. For simplicity the stochastic Lyapunov function was based on a func-

tion V (x, y) = (x − y)2. This polynomial does not allways grow to infinity as

|(x, y)| → ∞. One can modify the construction and base the stochastic Lyapunov

function on a different polynomial V ′(x, y) = (x − y)2 + y2. The growth condition

will then be satisfied and the whole construction will be completely analogous (only

a few constants will change).

Remark IV.15. Regularity of the process (x(t), y(t)) is trivially satisfied for every ini-

tial condition. This is due to the fact that Theorem (IV.3) requires finding a stochastic

Lyapunov function with a weaker condition that we have already constructed. Process

is therefore regular for all initial conditions.

4.4 First exit time problem

The dynamics of (4.23), (4.24) is very sensitive to noise in the slow region {|y| ≤

|x|+ 1/|x|} ∩ {|x| ≤ c} whereas in the rest of the phase space (“weak” region) noise

does not alter the trajectory considerably. Noise-driven collapse together with the

system’s dynamical properties force trajectories to repeatedly visit a small rectangle

around the origin. Therefore we can say that the system has short memory, e.g.

it effectively resets once it enters the neighborhood of origin. The trajectory may

also travel very far away along the y-axis (in the slow region) before returning back

towards origin. The dynamics is therefore dominated by the slow noisy region and we

can analyse the dynamical system in the whole real plane by a first exit time problem

in the noisy region with a carefuly chosen initial condition. However, it seems that

the initial condition does not have major effect on the outcome and for simplicity

we choose it to be fixed (x, y) = (0, 1). Alternatively, one may use a random initial
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condition (say, y = 1 and x ∈ [−4, 4] according some distribution). Using Monte-

Carlo simulation of multiple trajectory paths we can find statistical properties of the

first hitting time/value and a time-depended distribution of position x(t) conditioned

on not having yet hit the boundary (conditional distribution).

Formally we can write the first exit value problem as the first time in which the

dynamical system

x-dynamics: dx = −x(4− xy + x2)dt + σdW (4.61)

y-dynamics: dy =
y − x3

1 + x2
dt (4.62)

with initial conditions

initial conditions: x(0) = x0 , y(0) = 1 , (4.63)

hits the nullcline 4− xy + x2 = 0

exit condition: 0 = 4− xy + x2 . (4.64)

In order to find statistical properties of the first exit value in the asymptotic regime

y → ∞ (and also σ → ∞) we can make two approximations. We first set initial

condition to be x0 = 0 and let the system forget this initial condition before the

statistics is measured. In the second step we approximate the x and y dynamics for

x ≈ 0 by

dx = −x(4− xy)dt + σdW , (4.65)

dy = ydt . (4.66)
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The dynamics is then reduced to a one-dimensional non-autonomous SDE

dx = −x(4− xet)dt + σdW . (4.67)

The nonlinear first exit time problem with constraints 4.67, 4.63 and 4.64 will be

studied both numericaly using an effective Monte Carlo simulation and analyticaly

in the regime t → ∞ (or y → ∞) using an asymptotic analysis in terms of the

corresponding Fokker-Planck equation.

4.4.1 Monte Carlo method with recycling (MCR)

Standard Monte Carlo method (MC) is a simple numerical method that may be

used to compute properties of the first exit value problem above. Unfortunately we

are interested in large y (respectively long time) limit. The biggest disadvantage of

MC in this context is the fact that during most of the trials trajectory does not even

reach the specified time/value because it exits the noise-sensitive region before that

time. In addition, the region is narrowing as time progresses at an exponential rate

and with a set value of noise level σ trajectories are progressively less likely to stay

inside the region as time goes on (also the step size must be finer as the region gets

narrower). The probability that a trajectory stays in the region is very small for long

time/large y and the events are therefore called rare. It is extremely computationaly

expensive to answer even the simpliest possible questions such as: “What does the

survival probability S(t) look like as t→∞ (or y →∞)?”

The easiest solution is to design a modified MC that reduces the number of tra-

jectories that exit given region, i.e., to use an importance sampling method. Such

methods have been useful in applications, for example to find harmonic measure for

critical percolation Ising clusters, see Adams et al. (2008). We develop a new compu-

tationaly effective method, suitable for the first exit value problem.
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The idea behind the method is to “recycle” otherwise irrelevant trajectories.

Therefore we will call it MCR. In terms of the implementation, MCR will simul-

taneously keep track of many trajectories. Once a trajectory hits the boundary of

the region it is replaced by a different, randomly chosen trajectory from the sam-

ple. Consequently the survival probability S(t) is updated and the process continues.

Numerical algorithm of the MCR is

1. Initialization: Start with a population of N trajectories at t(0) = 0 with the

same initial condition

(x(0)
n , y(0)

n ) = (x, 1) (4.68)

where the initial value x is either randomly chosen from some distribution or

x = 0. Set the inital values of the survival probability S(t) at time t and the

probability P (t) of having hit the boundary by time t

S(t(0)) = 1− P (t(0)) = 1 . (4.69)

2. Time step: For all trajectories n ∈ {1, . . . , N} use an Euler scheme to move

forward in time

t(i+1) → t(i) + ∆t

x(i+1)
n = x(i)

n − x(i)
n (4− x(i)

n y(i)
n )∆t + σ

√
∆tW (i)

y(i+1)
n = y(i)

n + y(i)
n ∆t

with adjustable ∆t.

3. Exit of trajectory: If x
(i)
n ≥ 4e−t(i) , replace trajectory (x

(i)
n , y

(i)
n ) by an other,

randomly chosen from the remaining N − 1 trajectories. Update survival prob-

ability S(t(i) + ∆t) = N−1
N

S(t(i)).
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4. Loop: Repeat steps (2)-(3) until the terminal time.

The MCR algorithm is able to compute survival probabilities of very small mag-

nitudes. It is important to choose a number of sample trajectories N large enough in

order to visit majority of possible outcomes at each time. Also, the time step needs

to be adjusted in such a way that the probability of two trajectories exiting at the

same time step is negligible. In practice we need to decrease the time step at the

same rate as the nullcline approaches the y-axis. This happens at an exponential rate

and the calculation therefore exponentialy slows down in time.
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Figure 4.11: Monte Carlo method with recycling for three sample trajec-
tories. Simulation is plotted at six different times: at a time of first,
second, . . . up to the sixth hit of the boundary with σ = 1. Each time
a boundary is hit trajectory is replaced by a different one from the sur-
viving set.

4.4.1.1 Application to first exit time problem

In order to turn the first exit value problem with an exponentialy fast moving

boundary to a simpler problem with a constant boundary the transformation x̄ =
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x− 4e−t is used. The first exit time problem constraints then become

x-dynamics: dx̄ = (16e−t + 7x̄ + x̄2et)dt + σdW (4.70)

init. condition: x̄(0) = −4 , (4.71)

exit condition: x̄(t) = 0 . (4.72)

First we illustrate the algorithm by applying it to the first exit value problem (4.70),

(4.71), (4.72) for only three trajectories. In the Fig. 4.11 one can observe the numerical

simulation until terminal time T = 3 at a time of first, second, . . . , up to sixth hit of

the boundary and at the terminal time.

The algorithm provides information about both the decay of the survival proba-

bility and about the distribution of trajectories that have not hit the boundary yet.

For the numerical analysis we choose terminal time T = 10 (corresponding to a value

y = 4e10 ≈ 88106) and number of sample trajectories N = 2000. By numerically

applying the MCR algorithm to the first exit time problem with constraints (4.63),

(4.64) and (4.67) we numerically justify the following two hypotheses in the asymp-

totic regime t→∞:

• The survival probability S(t) has a double exponential asymptotic growth:

S(t) ∼ e−kσδeαt
with appropriate k, δ and α.

• The mean m(t) of the conditional distribution of x̄(t) asymptotically approaches

exponential function of the form: m(t) = Be−βt

The survival probability is naturally a decreasing function of time and y. The simu-

lation results on Fig. 4.12 suggest that log | log S(t)| is approaching a linear function.

Results on Fig. 4.12 for different values of noise parameter σ imply that the slope

does not depend on σ whereas the shift depends linearly on some power of σ. This
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Figure 4.12: Survival probability S(t) approaches a double exponential func-
tion as t → ∞. This information is contained in the graph of
log(− log S(t)) that appears to converge to a linear function for any σ.
The slope of the function corresponds to α and vertical shift corresponds
to a linear function logk + δlog(σ).

numericaly confirms the hypothesis that S(t) satisfies

S(t) ∼ e−kσδeαt

(4.73)

in the large time regime. To estimate values of coefficients α, k, δ for different σ we

fit numerical data to a function of the form (4.73). Best fit in L2 space for this rule

is a solution of the minimization problem

(k, a) = argmin
M
∑

i=i∗

(log(− log S(i)) + log k − δ log σ − αt(i))2 . (4.74)

Note that the fitting function is chosen to match the values only in the asymptotic

region, i.e. after some time (specified by index i∗) For σ = 1, 1
2

and 1
3

the minimization

problem yields Results are expected to be less accurate for smaller σ because the

asymptotic region is reached at larger times. Fig. 4.12 agrees with the assumed
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Figure 4.13: Histogram of trajectories in the MCR simulation at time T =
1, 2, . . . , 8. Distribution is being squeezed towards the origin as time
increases.

asymptotic form for S(t), with α ≈ δ ≈ 2/3.

Next we explore the properties of the conditional distribution of x̄ (shifted x) at

time t conditioned on not having hit the boundary yet. The distribution is represented

in the MCR simulation by an unconditional distribution of trajectories at a given time.

The Fig. 4.13 shows histograms of numericaly computed random trajectories at times

t = 1, 2, . . . , 7. Clearly, for t = 0 the distribution is a delta function positioned at

Constant α δ k
σ = 1 0.6659 0.6434 0.0373
σ = 1/2 0.6562 0.6434 0.0555
σ = 1/4 0.6710 0.6329 0.1100

Table 4.1: Fitted parameter values for the decay of S(t).
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x̄ = −4. The distribution function is being squeezed towards x̄ = 0 as time progresses.

The rate at which the contraction happens can be estimated from the time evolution

of the mean x̄ position. The mean m(t) for a fixed boundary exit value problem is a

0 2 4 6
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t

lo
g(

m
(t

))
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0.2

t

er
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numerical estimate

log(Ae−at+Be−β t)

Figure 4.14: Mean of the conditional distribution of z(t) as a function of
time. Function can be closely approximated by a sum of two exponential
functions with a random nonsystematic error.

monotone negative function that increases to 0 exponentialy as the time progresses.

There is an initial transition from one rate to a different exponential rate of decay. It

is possible to accurately fit profile of m(t) to a function of the form

log m(t) = log(Ae−at + Be−βt) (4.75)

by solving a nonlinear minimization problem

(A, B, a, β) = argmin
N
∑

i=1

(log m(i)− log(Ae−at(i) + Be−βt(i)))2 (4.76)

where the criterion of good fit is the L2 norm. The fit remarkably resembles the

original function and the error does not seem to be systematic (at least not in the
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Constant A B a β
σ = 1 3.3683 0.8161 1.4744 0.3372

Table 4.2: Fitted parameter values for the particle mean m(t).

asymptotic regime). Also the value of β coefficient is very close to the 1
3
. Therefore

we hypothesize that asymptoticaly

m(t) ∼ e−βt where β =
1

3
. (4.77)

A natural way to confirm that (4.73) and (4.77) are true is to rescale the histograms

Fig. 4.13 in a following way

z = eβtx̄ (4.78)

u(t, x̄) = e−kσδeαt

v(t, z) (4.79)

where u(t, x̄) was the unconditional pdf on the interval (−∞, 0) and v(t, z) is the

conditional pdf after the normalization. If both hypotheses are correct then as time

grows to∞ density function v(t, z) should converge to a limiting profile. And indeed,

the rescaled probability density function of the conditional distribution of v(t, z) at

time t = 3, . . . t = 7, plotted on Fig. 4.15, numerically confirms the hypothesis.

4.4.2 Asymptotic Methods for the first exit time problem

As shown in $4.3.3 trajectories of this system exhibit statistical oscillations due

to the existence of the probabilistic invariant measure. No matter how small the

noise magnitude σ is, the dynamics in the noise sensitive region is dominated by

the random term. Here, the SDE system may be reduced to a simpler, 1-dimensional

stochastic differential equation due to the fact that x << 1 and y >> 1. The problem

is formulated as a reduced first passage time problem (4.63), (4.64), (4.67) with the

absorbing boundary at x(t)y0 = 4e−t (transition between the noise regulated and
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Figure 4.15: Rescaled probability density function v(t, z) at times T =
3, 4, . . . , 7. Functions converge to a time invariant pdf that captures
behavior in the asymptotic regime t =∞.

deterministic regions). After choosing y0 = 1 the problem becomes

dx = (−4x + x2et)dt + σdWt , (4.80)

x(t) = 4e−t absorbing boundary, (4.81)

This problem has been studied numerically using the MCR method in $4.4.1 and the

suitable scaling laws have been proposed and numerically verified. Next, we will use

these to arrive at a better theoretical understanding of the problem. The conditional

probability density function u(t, x) of x(t) that has not yet reached the boundary

satisfies the FPE with a moving boundary

ut =
(

(4x− x2et)u
)

x
+

σ2

2
uxx , (4.82)

0 = u(t, 4e−t) . (4.83)
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The problem can be transformed to a stationary boundary problem by a linear in x

transformation x̄ = x− 4e−t. Specifically

ut = ut + ux̄x̄t = ut + 4e−tux̄ , (4.84)

ux̄ = ux , (4.85)

ux̄x̄ = uxx . (4.86)

The FPE with a fixed boundary at 0 has the form

ut = −(4 + 2x̄et)u− (4x̄ + x̄2et + 4e−t)ux̄ +
σ2

2
ux̄x̄ , (4.87)

0 = u(t, 0) . (4.88)

Based on numerical results the survival probability S(t) has a simple form in the

asymptotic limit t→∞ ,

S(t) =

0
∫

−∞

u(t, x̄)dx̄ ∼ e−kσδeαt

(4.89)

with k, δ and α are suitable growth constants. Also, numerics suggests that as t→∞

the profile of u(t, x̄) is contracting at an exponential rate

u(t, x̄) ∼ eβtu(t, eβtx̄) (4.90)

Due to the above information ((4.73) and (4.77)) we formulate an ansatz for the

asymptotic form of u(t, z) for t→∞.

u(t, x̄) = e−kσδeαt

eβtv(t, eβtx̄) = eβt−kσδeαt

v(t, eβtx̄) (4.91)
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Note that

S(t) =

0
∫

−∞

u(t, x̄)dx̄ = e−kσδeαt

0
∫

−∞

eβtv(t, eβtx̄)dx̄ = e−σkeαt

0
∫

−∞

v(t, x̂)dx̂ (4.92)

Therefore v(t, x̄) is the conditional probability density function of x̄ in the noise

dominated region (it is normalized to give
∫ 0

−∞ v(t, x̄) = 1). If we denote z = eβtx̄

then

ut = eβt−kσδeαt (

(β − αkσδeαt)v + vt + βzvz

)

, (4.93)

ux̄ = eβt−kσδeαt

(eβtvz) , (4.94)

ux̄x̄ = eβt−kσδeαt

(e2βtvzz) . (4.95)

Subtitution into the Fokker–Planck equation gives

vt =
(

−β + αkσδeαt
)

v −
(

(4z + z2e(1−β)t + 4e(β−1)t)v
)

z
+

σ2

2
e2βtvzz . (4.96)

For t large we can use the numerical evidence that α, β ∈ (0, 1) to obtain effective

long time behavior as

vt = eαt(αkσδv)− e(1−β)t(z2v)z + e2βt σ
2

2
vzz . (4.97)

The stationary distribution, if it exists, has the property that ∂t = 0. But the

right hand side of the PDE also depends on time and as t → ∞, so the terms with

the largest exponential growth rate dominate. In fact, we may rewrite (4.97) using

r = max{α, 1− β, 2β} as

e−rtvt = e−(r−α)t(αkσδv)− e−(r−1+β)t(z2v)z + e−(r−2β)t σ
2

2
vzz . (4.98)
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If the stationary distribution exists, then it satisfies the ODE where the left hand side

of (4.98) is replaced by 0 and right hand side only contains terms without exponential

factors. The existence of invariant measure is then closely connected to the magnitude

of growth constants α and β. There are three possible cases for constant β: (i) β > 1
3
;

(ii) β < 1
3
; and (iii) β = 1

3
and then after elimination of conflicting cases there are

two possible cases for constant α: (1) 2β 6= α and (2) 2β = α. The cases eliminate

in the following way:

• If β > 1
3

the nonlinear term vanishes. There are no solutions of the linear ODE

that are both normalizable and go through the origin.

• If β < 1
3

the diffusion term is negligible and there is no solution that is both

normalizable and that goes through the origin.

⇒ For the invariant distribution to exists it must be true that β = 1
3
.

• If 2β 6= α the solution that satisfies boundary conditions is not normalizable.

⇒ For the invariant distribution to exists it must be true that α = 2
3
, β = 1

3
.

The only way how we can obtain a normalizable solution satisfying boundary condi-

tions v(z = 0) = 0 and limz→−∞ v(z) = 0 is that all exponential growth coefficients

in the FPE are the same. That implies α = 2
3

and β = 1
3
. This is consistent with

numerically estimated values of constants α ≈ 0.725 and β = 0.337. The problem

becomes

0 = αkσδv − (z2v)z +
σ2

2
vzz . (4.99)

This is a linear eigenvalue problem with an eigenvalue λ = αkσδ = 2
3
kσδ that we can

compute numerically. We are interested in a positive normalizable solution, e.g. the

eigenfunction (or the ground state), corresponding to the smallest positive eigenvalue

of the related operator. There are two ways of finding the proper eigenvalue
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• using a numerical method to satisfy boundary conditions v(0) = v(∞) = 0,

• solve initial value problem with boundary conditions at z = 0 and find λ such

that v(∞) = 0 is satisfied (simplified shooting algorithm)

To find the boundary condition on vz(0) we can assume that
∫ 0

−∞ v(z)dz = 1 (by

linearity). Then integration of the ODE results in

0 = λ

0
∫

−∞

v(z)dz +

0
∫

−∞

[−z2v(z) +
σ2

2
vz(z)]zdz (4.100)

vz(0) = −2λ

σ2
= − 2αk

σ2−δ
(4.101)

There is only one eigenvalue for which the eigenfunction is positive and integrable at

the same time.

Normal form of the Sturm-Liouville problem (S-L) problem. We first trans-

form the eigenvalue problem (4.99) to a self-adjoint S-L problem by an exponential

transformation

v = we
z3

3σ2 (4.102)

vz =

(

wz +
1

σ2
z2w

)

e
z3

3σ2 (4.103)

vzz =

(

wzz +
2

σ2
z2wz +

2

σ2
z2w +

1

σ4
z4wz

)

e
z3

3σ2 (4.104)

The term with wz vanishes and we obtain a singular Sturm-Liouville problem on

interval (−∞, 0]

αkσδw = −σ2

2
wzz +

(

1

2σ2
z4 + z

)

w (Formulation 1) (4.105)
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with λ = αkσδ being the eigenvalue of the corresponding regular S-L problem. Note

that initial conditions remain unchanged

w(0) = 0 and wz(0) = vz(0) = −2λ

σ2
. (4.106)

Scaling argument, normalization. The dependence of eigenvalue λ on a noise

strength σ can be verified by a scaling argument. Linear transformation z = σ2/3z̄

yields

2λσ−2/3w = −wz̄z̄ +
(

z̄4 + 2z̄
)

w . (4.107)

Since ρ = 2λσ−2/3 is an eigenvalue of the operator that does not depend on a noise

strength σ, the eigenvalue itself should be independent of σ as well. This implies

2λσ2/3 = 2αkσδ−2/3 = 2αk, where δ = 2/3 and the eigenvalue ρ = 2αk = 4/3k. The

scaled SL! (SL!) problem is

4

3
kw = −wz̄z̄ +

(

z̄4 + 2z̄
)

w (Formulation 2) (4.108)

This SL problem still depends on the noise magnitude σ via the boundary conditions

w(0) = 0 and wz̄(0) = wz(0)
dz

dz̄
= vz(0)σ2/3 = −2αk

σ2/3
. (4.109)

The eigenfunctions of the operator in Formulation 1 w(t, z, σ) is related to the

eigenfunctions of the noise-independent operator in Formulation 2 w(t, z̄) by

w(t, z̄) = w(t,
z

c
) = w(t,

z

σ2/3
) = w(t, z, σ) . (4.110)
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4.4.2.1 Asymptotic scaling argument.

In this section we use asymptotic methods to verify the smallest eigenvalue and

the form of the ground state of problem Formulation 1. First, we rescale the

independent variable z and introduce a new variable z̄ = ( 1
2σ2 )

1
4 z. The result after

dropping bars is

σ√
8
wzz + (λ− V (z))w = 0 (Formulation 3) (4.111)

where

V (z) = z4 + (2σ2)
1
4 z (4.112)

Let us denote

φ(z) = λ− V (z) = λ− (z4 + (2σ2)
1
4 z) (4.113)

The ODE we obtained has a form of a time-independent Schrődinger equation (SE)

with a potential V (z) for z ≤ 0 and V (z) = ∞ for z > 0 (this implies w(0) = 0).

The parameter σ is small and as σ → 0 the potential asymptotically approaches

potential of an anharmonic oscillator V (z) = z4. The physical interpretation of the

problem suggests that the smallest eigenvalue of the problem is positive. Otherwise

there would need to be an exponentialy growing pattern in the time evolution of the

survival probability. But the survival probability of a first exit time problem must be

non-increasing in time. Therefore there are only two distinct regions: (i) z ∈ (∞, z)

where λ > V (z); and (ii) (z, 0) where λ < V (z). We can approximate the solution of

SE on both intervals.
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If λ > V (z) the solution is oscillatory and we use the ansatz

w = fei( 8
σ2 )

1/4
g (4.114)

wy =

(

f ′ + i

(

8

σ2

)1/4

fg′

)

ei( 8
σ2 )

1/4
g (4.115)

wyy =

(

8

σ2

)1/4
(

(

8

σ2

)−1/4

f ′′ + 2if ′g′ + ifg′′ − f(g′)2

)

ei( 8
σ2 )

1/4
g(z)(4.116)

The differential equations for the real and imaginary part are

0 =
σ√
8
f ′′ − f(g′)2 + φf (4.117)

0 = 2f ′g′ + fg′′ (4.118)

The noise magnitude σ is small and if we assume that f does not oscillate too fast

one can use the Wentzel-Kramers-Brillouin approximation (WKB) approximation and

neglect the f ′′ term. The parameter σ shows up also in the potential term that we

keep in the equation (with power 1/2 rather then 1). More careful calculation of the

asymptotic solution follows in the next section. The solution of above equations is

g(z) =

z
∫

z1

√

φ(z′)dz′ (4.119)

f(z) =

(

φ(z1)

φ(z)

)1/4

w(z1) (4.120)

where z1 is an integration constant. So far we have only found the form of the solution
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in the case λ > V (z):

w+(z) ∼ K

φ(z)1/4
e

i( 8
σ2 )

1/4 R z
z1

√
φ(z′)dz′

(4.121)

=
a

φ(z)1/4
sin





(

8

σ2

)1/4
z
∫

z1

√

φ(z′)dz′



 (4.122)

+
b

φ(z)1/4
cos





(

8

σ2

)1/4
z
∫

z1

√

φ(z′)dz′



 (4.123)

If λ < V (z) one can find similar general form for the solution w−(z). In this interval

we obtain exponentialy growing and decaying solutions

w−(z) ∼ A

φ(z)1/4
e(

8
σ2 )

1/4 R y
z1

√
φ(z′)dz′

(4.124)

+
B

φ(z)1/4
e
−( 8

σ2 )
1/4 R z

z1

√
φ(z′)dz′

(4.125)

Let us for simplicity denote the argument of the sine by U . In order to find all

eigenvalues of the problem we need to connect the solution at a “turning point” ẑ

(such thet φ(ẑ) = 0). We will follow the matching process discussed in J. D. Murray

– Asymptotic Analysis (1984). Required decay at z = −∞ forces B = 0. Connection

formula has a form

a =
1√
2
(
B

2
− A) (4.126)

b =
1√
2
(
B

2
+ A) (4.127)

and after simplification a = −b. The boundary condition at z = 0 then gives

sin(U) = cos(U) (4.128)
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where

U =

(

8

σ2

)1/4
z
∫

z1

√

φ(y′)dz′ (4.129)

This yields that U = π
4

+ kπ. The quantization of eigenvalues for this problem has a

form
(

8

σ2

)1/4
0
∫

ẑ

√

φ(z′)dz′ =
π

4
+ kπ (4.130)

With a potential V (z) the quantization condition for eigenvalues becomes

(

8

σ2

)1/4
0
∫

ẑ

√

λ− z′4 − (2σ2)1/4z′dz′ =
π

4
+ kπ (4.131)

where ẑ is the unique negative solution of a polynomial equation

ẑ4 + (2σ2)1/4ẑ = λ (4.132)

The ground state corresponds to the smallest eigenvalue, for k = 0. The ground

state is the only eigenfunction that remains nonnegative for all z ∈ (−∞, 0]. The

asymptotic approximation of the smallest eigenvalue can be found for σ small if

we take V (z) ≈ z4. The eigenvalue can be explicitly found from the quantization

equation (turning point is ẑ = −λ1/4) since

0
∫

−λ1/4

√

λ− z′4dz′ = λ3/4

0
∫

−1

√

1− z′4dz′ = λ3/4

√
πΓ(1

4
)

8Γ(7
4
)

(4.133)

The approximation for λ is

λ ≈
[

3

4

√
π

(

σ2

8

)1/4 8Γ(7
4
)√

πΓ(1
4
)

]4/3

∼ σ2/3 (4.134)

where the scaling law is consistent with the intuitive answer found by the scaling
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argument λ = αkσδ = 2
3
kσ

2
3 .

4.4.2.2 Numerical results

In this section we compare numerical findings for the first exit problem (4.63),

(4.64), (4.67), using two different methods. The goal is to estimate the probability

density function of the position of the trajectory in the noise-sensitive region. The

first approach is to simulate the problem using MCR method and to arrive to a time-

dependent density function (in rescaled coordinates), as on Fig. 4.15. In the limit

t → ∞ this converges to the invariant probability density function for the problem.

Second approach is a combination of analysis and numerics. Here we numerically

solve the rescaled Fokker-Planck equation, given by Formulation 2 with boundary

conditions w(0) = 0 and wẑ(0) = − 2αk
σ2/3 . We choose the value of parameter k so that

the solution satisfies w(−∞) = 0. Note that there is only one such value. Then we

transform the solution from w(ẑ) back to v(z) to obtain the ground state of the S-L

problem (4.99). This ground state, after normalization to
∫ 0

−∞ w(z)dz = 1, should be

the same as the invariant probability density function from the first approach. Also,

one can evaluate the asymptotic solution found by using a WKB approximation as

sketched above. As Figure 4.16 suggests, the solution of the Fokker-Planck equation

captures the trend in MCR results as time grows. Since the time t = 7 is still not very

large, the match is not perfect. Note that time t = 7 in the MCR method corresponds

to y = e7 ≈ 103 for which the time step required is the original time step reduced by

the factor of 103. The slowdown of the numerical calculation due to the exponential

approach of the exit boundary is the major difficulty of the numerical method.

The WKB analysis predicts, based on the quantization condition (4.134), the value

of constant k as follows

k =
3

2
λσ−2/3 ≈

[

3

4

√
π

(

1

8

)1/4 8Γ(7
4
)√

πΓ(1
4
)

]4/3

∼ 1.31184 (4.135)
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Figure 4.16: Comparation of MCR and Fokker-Planck solutions. Solid lines
are probability density functions of the conditional survival probability
distribution inside the noise-sensitive region found by MCR (for times
t = 3, . . . 7), dashed line is the numericaly found and normalized eigen-
function of the stationary Fokker-Planck equation corresponding to the
first exit time problem. The dashed line seems to capture the limit of
solid lines as time grows to ∞.

On the other hand the numerics yields that in order to satisfy w(−∞) = 0 we need

k ∼ 0.5535. The following is a review of parameter predictions by the numerical

MCR method and by analytic approach for σ = 1: We remark that MCR method

Constant α δ k β
Monte Carlo with recycling 0.6659 0.6434 0.0373 0.3372
Fokker-Planck equation 2/3 2/3 1.3118 1/3
Numerics of Fokker-Planck (2/3) (2/3) 0.5535 1/3

Table 4.3: Parameter values for different methods.

and analysis via the Fokker-Planck equation give almost identical values of α (double

exponential decay rate of the survival probability), β (exponential contraction rate

on the horizontal axis) and δ (noise-sensitivity coefficient in the decay rate of the

survival probability). On the other hand, the three different ways of evaluating the

prefactor k give all different result.
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4.5 Conclusions

The noise-driven collapse of exponentially growing solutions in the RBC model is

phenomenologically studied using the simple two-dimensional system of differential

equations, that mimic the essential features of the RBC dynamics. Perhaps the most

significant outcome is that Gaussian noise perturbation of arbitrarily small magnitude

can induce collapses of trajectories towards origin. The stochastic Lyapunov function

theory is used to prove existence of an invariant measure for the underlying stochastic

process for arbitrary small noise.

The properties of the process, i.e. when does the collapce occur, are studied (both

numerically and analytically) by the first exit time problem in a noise-sensitive region.

Using numerical methods, based on Monte Carlo type algorithms, we estimate the

survival probability S(t) and mean trajectory position m(t) in the noise-sensitive

region and formulate two hypotheses

S(t) ∼ e−kσδeαt

and m(t) ∼ Be−βt as t→∞

with appropriate values of constants α, δ, k and β. In the analytic approach, we

use the hypotheses to study the the appropriate Fokker-Planck equation. The two

approaches give remarkably similar parameter values α, δ and β (the parameter k

differs). Also, the solution of the FP equation (eigenfunction that corresponds to

the smallest eigenvalue) is compared to the numerically found probability density

function close to the y-axis. As t → ∞, the numerical solution appears to converge

to the solution of the Fokker-Planck equation.

One of the originally intended goals was to show, that the simple SDE model

reproduces a scaling similar to Nu ∼ Raα in the RBC model. The system with
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additional parameter r (analog of Rayleigh number) has a form

dx = −x(4− xy + x2)dt + σdW ,

dy =
ry − x3

1 + x2
dt .

Unfortunately, as r grows the model undergoes a series of bifurcations, changing the

dynamics of the problem. Therefore this particular model cannot be used to illustrate

the behavior in the limit r →∞.
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CHAPTER V

Conclusions

To understand the effect of randomness, caused by a discrete nature of a system

on small scale, we studied a classical Hodgkin-Huxley model in Chapter II. Two

different stochastic representations were examined and compared. The mechanism

of signal propagation, that is driven by the opening and closing of Na and K chan-

nels was demonstrated to be highly sensitive to the variability (channel density) of

sodium channels as opposed to being almost completely insensitive to the variability

in potassium channels. The computations, performed for a large set of parameter

values, demonstrated the effect of noise on a bistable system that goes through a

subcritical Hopf bifurcation. The simplest deterministic quantity, that captures the

effects of variability is the average firing rate of the neuron. The numerical experi-

ments showed that noise is responsible for the induction of action potentials in the

subthreshold region, whereas it is also responsible for suppression of the action poten-

tials in the superthreshold region. But for any level of noise the firing rate appeared

to increase monotonically with the input current. The robustness of the observed

features was confirmed as both numerical approaches led to qualitative agreement.

In order to obtain a quantitative agreement an additional understanding of the rela-

tionship between the two stochastic models is necessary.

Next we turned our attention to the problem of mixing. Several mixing mea-
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sures found in literature were described and an apparent conflict among existing

theories (homogenization theory and internal-layer theory) was outlined. In an effort

to resolve the conflict we presented a new approach (dispersion-diffusion approach),

based on the particle dispersion modelling with a time consistent implementation

and studied it for a simple shear flow. In the first step of the construction, explicit

calculation of the covariance matrix for the nonlinear stochastic differential system

was presented. This matrix was then used to find a Green’s function of the homoge-

nous problem (no sources and sinks). Finally, the solution of the nonhomogenous

problem was expressed as a superposition of the source with the Green’s function.

Using the variance suppression mixing measure we computed the concentration fields

and the mixing efficiency for the numerical approximation of the exact solution, for

homogenization theory (HT) and internal-layer theory (ILT) and finally also for the

dispersion-diffusion theory (DDT). The DDT captured HT in the regime r > Pe and

ILT in the regime Pe > r. The DDT matched perfectly with the exact solution of the

advection-diffusion equation. We explored the non-comutativity between the limits

Pe→∞ and r →∞ for the simple test problem.

In effort to understand the observed repetitive random pattern in homogeneous

Rayleigh-Bénard convection, described in Calzavarini et al. (2006), we constructed

two simpler, 2-dimensional systems of ODEs in Chapter IV, possessing the same

features as the homogeneous Rayleigh-Bénard convection. In the first system (Model

1) the nonlinearity in the dynamics was showed not to be strong enough to force

trajectories to stay in some bounded region. However, the second system (Model 2)

had a property that trajectories always return to a neighborhood of the origin. We

proved that arbitrarily small perturbation in the horizontal component of Model 2

leads to an existing invariant measure, even though the system without noise diverges

to infinity at an exponential rate. This was proved using the stochastic Lyapunov

function theorem by Khasminskii (1980). Once we knew that trajectories almost
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surely do not blow up we approximated the problem by the first exit time problem

from the noise-sensitive region. We developed a fast computational method, based

on Monte Carlo methods with importance sampling and showed that probability of

exiting by time t behaves asymptotically for large times as P (t) ∼ 1− e−kσδeαt
. The

mean position of the trajectory that has not yet exited the noise-sensitive region

was found to be asymptotically m(t) ∼ Be−βt. This ansatz was used to derive an

ordinary differential equation for the distribution of the trajectory position as t →

∞. We noted that the result accurately approximates the distribution found by the

Monte Carlo method for relatively large times. The model was originally designed

to explain not only the effects of small noise on its dynamics but also to investigate

the regime when the rate of exponential blowup grows to infinity. Unfortunately, this

model problem was unable to do so because of the bifurcation as the rate parameter

increased.
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APPENDIX A

Expanding property in Model 1

Proof. We first transform the deterministic dynamical system into polar coordinates

by

x = r cos θ , y = r sin θ

This leads to a dynamical system for r and θ

ṙ = −r cos 2θ ,

θ̇ = sin 2θ − r3 cos2θ .

Given that the trajectory enters the region Ω+ at a value rout we may specify the angle

θout ∈ [0, π
2
] at which it entered by a exit condition xy = r2 sin θ cos θ = 1 (where x is

small). The resulting θout satisfies

θout =
1

2
arcsin

2

r2
= O

(

π

2
− 1

r2

)

as r →∞

and the entering angle θin = −θout. Moreover it has a property that θout → 0 as

r →∞. First note that for sufficiently large r > R the angle θ decreases on Ω+ and
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if R is large the effective form of Model 1 in polar coordinates is

ṙ = −r cos 2θ , (A.1)

θ̇ = −r3 cos2θ . (A.2)

Monotonicity of θ implies that there exists a bijection τ : t→ θ. Using τ we can view

radius as a function of θ. Then

rin = rout +

θin
∫

θout

dr/dt

dθ/dt
dθ = rout +

θout
∫

θin

−r(θ) cos 2θ

r(θ)3 cos2 θ − sin 2θ
dθ

Observe that for θ ∈ (π
4
, π

2
)∪ (−π

2
, π

2
) the value of r increases whereas for θ ∈ (−π

4
, π

4
)

it decreases. Using symmetry of sin and cos functions the net increase of r is

∆r = 2







θout
∫

π
4

−r(θ) cos 2θ

r(θ)3 cos2 θ − sin 2θ
dθ −

π
4
∫

0

r(θ) cos 2θ

r(θ)3 cos2 θ − sin 2θ
dθ







≥ 2







θout
∫

π
4

− cos 2θ

cos2 θ

1

r(θ)2
dθ −

π
4
∫

0

cos 2θ

cos2 θ

1

(r(θ)− 1)2
dθ







The key information is that for large rout the rate at which θ decreases is much greater

than the rate ar which r changes (compare coefficients r and r3 in (A.1)-(A.2)). The

range of angles for which this statement is true can be extracted from

dr

dθ
=

−r(θ) cos 2θ

sin 2θ − r(θ)3 cos2 θ
∼ cos 2θ

r(θ)2 cos2 θ
= − 1

r(θ)2
(tan2 θ − 1)

For θ ∈ [−π
4
, π

4
] the magnitude |dr/dθ| ∼ O(1/r2) and the dominant contribution is

when tan2 θ > O(r2). But

tan2 θ ∼ r2 when
π

2
− θ ∼ 1

r
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The biggest contribution of dr/dθ is for θ ≤ O(π
2
− 1

r
). As shown in (A), θout ∼

O(π
2
− 1/r2) implying that the interval of biggest contribution is [θout,

k
r
) (contained

in the first integral of expression for ∆r). Because r grows on this interval, this makes

∆r > 0. The proof is analogous for trajectories that enter the deterministic region

Ω− due to symmetry of the problem.
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APPENDIX B

Contraction property in Model 2

y=x+4/x

y = x

y

x
B

B

A

A

2

4

Figure B.1: Invariance of region B under the flow.

Lemma B.1. Let B = {(x, y) : d|x|
dt

(x, y) < 0, x(y − x) > 0}. Then any trajectory

that starts in region A enters B in a finite time.

Proof. The proof is done for the deterministic system and consists of three parts. Only

the first quadrant case will be studied (the proof in the third quadrant is analogous).

First we show that if (x(0), y(0)) ∈ A then x(t) has to satisfy x(τ1) = 2 at a finite
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time τ1. If this is not true then certainly x(t) is bounded and monotone increasing,

therefore limt→∞ x(t) = x∗ ≤ 2 and limt→∞ y(t) =∞. But this implies

lim
t→∞

ẋ = −4x∗ − x∗
3 + x∗

2 lim
t→∞

y =∞

that contradicts with assumed finite limit of x(t). By smoothness of the map x(τ1) = 2

at τ1 ∈ R. Next we will argue that trajectory will also cross the nullcline y = x3

in a finite time τ2 due to a faster growth of x(t) compared to y(t). Assume that

limt→∞ y(t) = ∞ and limt→∞ x(t) = ∞ but at the same time y(t) < x(t)3 for all t

(note that the x-limit cannot be different by the previous contradiction argument).

Now compare the slopes

ẋ = −x(4− xy + x2) > −4x + y(x2 − 1) ∼ y(x2 − 1)

ẏ ∼ y

x2
− x

But since x > 2 this implies that ẋ >> ẏ > 0 (contradiction with not crossing the

nullcline). The trajectory therefore crosses y = x3 in a finite time τ2. The last claim

is that once trajectory has crossed y-nullcline y = x3 then it will also cross x-nullcline

y = 4/x + x in a finite time τ3. This will be done by a direct proof. Observe that if

(x(τ3), y(τ3)) ∈ A− {(x, y) : y < x3} then x will increase and y will decrease until it

potentialy crosses the x-nullcline. The crossing must occur in a finite time because

either the growth of x or the decay of y is bounded away from 0. In conclusion,

trajectory starting in A will enter B in a finite time.

Lemma B.2. Trajectories of the flow given by (4.23)-(4.24) starting in region B ∩

{(x, y) : |x| > 2} may leave the region only by crossing x = 2. Moreover, at the point

of crossing |y|/2 ≤ 2.

Proof. To prove the lemma it is sufficient to show that the flow on both boundaries
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y = x and y = x + 4/x of region B is pointing inside the region. First, if x = y then

the flow has a form

ẋ = −4x

ẏ =
x− x3

1 + x2

But 0 > ẏ > ẋ for any x > 0 and therefore the flow points inside B. Second, if

y = x + 4/x then

ẋ = 0

ẏ =
x + 4/x− x3

1 + x2

where ẏ < 0 for any x > 2. Since for |x| = 2 the crossing poit satisfies |y| <

|x|+ 4/|x| ≤ 2 + 2 = 4.

Proof. Contraction of Model 2. The Lemmas above imply that if (x(0), y(0)) ∈ A

then in a finite time (x(τ), y(τ)) ∈ B and since y(t) decays monotonicaly at the rate

that is bounded away from 0 then in finite time max{|x(τ)|, |y(τ)|
2
} ≤ 2.
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APPENDIX C

Details of SLF calculation

Define piecewise linear function f(x) to be

f ′′(x) =































































− ε
2−Y

(x + 2) for x ∈ [−2,−Y )

−K−ε
Y −ε

(x + Y )− ε for x ∈ [−Y,−ε)

−K for x ∈ [−ε, ε)

K+L
X−ε

(x− ε)−K for x ∈ [ε, X)

2−x
2−X

L for x ∈ [X, 2)

and set X = Y = 2ε. Then integration with respect to x plus the boundary condition
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f ′(−2) = 0 gives us

f ′(x) =















































































−ε(2+x)2

4(1−ε)
for x ∈ [−2,−2ε)

ε(ε− 1 + x) + x2

2
−K(2ε + 2x− x2

2ε
) for x ∈ [−2ε,−ε)

− ε
2
(2− ε)− K

2
(3ε + 2x) for x ∈ [−ε, ε)

6ε2−2ε4+2ε3x+2εx2−ε2(2+x)2

2ε(2−ε)
+

+K 8ε3−xε(8−5x)+2x2−ε2(4+8x)
2ε(2−ε)

for x ∈ [ε, 2ε)

−ε(2+6K−ε)(2−x)2

4(2−ε)(1−ε)
for x ∈ [2ε, 2)

where K and L are be chosen such that the boundary condition f ′(2) = 0 is satisfied

L = ε + K
X + Y + 2ε

2− ε
.

After one more integration we obtain f(x) in a form of piecewise defined third-order

polynomial in x. Formulas are presented just for the sake of completeness of the
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function definition:

f(x) =















































































































































ε(2+ε−3ε2)
1−ε

K+

+ ε(20−12ε−28ε2+12ε3−12x−6x2−x3)
12(1−ε)

for x ∈ [−2,−2ε)

10ε3+12ε2(1−x)−6εx2−x3

6ε
K+

+10ε2+4ε3−2ε4−6ε2x+6ε3x+3ε2x2+εx3

6ε
for x ∈ [−2ε,−ε)

1
6
K(11ε2 + ε(12− 9x)− 3x2)+

+1
6
(10ε + 4ε2 − 3ε3 − 6εx + 3ε2x) for x ∈ [−ε, ε)

−16ε4+8ε3(1+3x)−12ε2(x2+x−2)+εx2(12−5x)−2x3

6ε(2−ε)
K+

+4ε5−ε4(12+6x)+ε3(−2+18x+3x2)+ε2(20−12x−6x2−x3)+2εx3

6ε(2−ε)
for x ∈ [ε, 2ε)

− ε(x−2)3

2(ε−2)(ε−1)
K+

+ ε(12ε2+ε(−44+12x−6x2+x3)+(40−24x+12x2−2x3))
12(ε−2)(ε−1)

for x ∈ [2ε, 2)

Constants A and B are chosen to satisfy boundary conditions f(−2) = A and f(2) =

B = ε leading to a relationship between A and B (again by using a fundamental

theorem of calculus)

A = B +
1

6
(−2ε3 + K(2 + Y )(X + Y ) + ε2(2K −X − Y )

+ 2ε(4 + X + Y + K(2 + X + Y ))) ,

or using X = Y = 2ε values

A = −ε3 +

(

4

3
+ 3K

)

ε2 +

(

7

3
+ 2K

)

ε .

At the end we plug f(x), f ′(x) and f ′′(x) into the coefficient function A2(x) to

find conditions on remaining parameters K and ε that will guarantee A2(x) < 0

and consequently the validity of the stochastic Lyapunov function. The coefficient
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function A2(x) for x ∈ [−ε, ε) will have a form

A2(x) = 3Kx4 +
1

6
(18ε− 9ε2 + 27εK)x3 + 3Kx2

+
1

6
(12ε− 6ε2 + 18εK)x

+
1

6
(20ε + 8ε2 − 6ε3 + 24εK + 22ε2K − 3Kσ2)

= (4ε− 1

2
σ2)K +O(ε(1 + εK))

For small values of noise level σ we can certainly choose ǫ(σ) < 1
16

σ2 small enough

and K ∼ O(1
ε
) so that the coefficient A2(x) satisfies

A2(x) < −1

4
σ2K for any x ∈ [−ǫ, ǫ)
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Figure C.1: Stochastic Lypunov function V (x, y, σ). A positive constant c = e−2

is added to the function to satisfy V (x, y, σ) > 0 for all R
2.
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APPENDIX D

Flow-independent upper bound on mixing

efficiency E0

The advection-diffusion equation for the mixing problem with arbitrary stirring

flow and spatially inhomogeneous steady sources given by s =
√

2S sin ksx is

θ̇ + ~u · ~∇θ = κ∆θ + s .

Multiplying the equation by a test function φ(~x) and space-time averaging yields

〈~u · ~∇θ · φ〉 = 〈κ∆θ · φ〉+ 〈s · φ〉 ,

and after integrating by parts and using Cauchy-Schwartz inequality one obtains

〈s · φ〉 = −〈(κ∆φ + u · ∇φ)θ〉 ≤ 〈(κ∆φ + u · ∇φ)2〉1/2 · 〈θ2〉1/2 . (D.1)

Inequality (D.1) may be used to find an upper bound for the mixing efficiency at

intermediate scales since θ0 = 1
κ
〈∆−1s〉

E2
0 =

〈θ2
0〉
〈θ2〉 ≤

〈∆−1s〉2〈(κ∆φ + u · ∇φ)2〉
κ2〈(s · φ)2〉
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In particular, if the test function is chosen to be φ =
√

2S sin ksx the flow-independent

bound simplifies to

E2
0 ≤ 2S2〈sin2 ksx〉

κ2k4
s

· 2κ
2k4

sS
2〈sin2 ksx〉 + 〈(u · ∇φ)2〉
4S4〈sin2 ksx〉2

= 1 +
〈(u · ∇φ)2〉

κ2k4
sS

2
= 1 +

〈2 cos2 ksx · u2
x〉

κ2k2
s

≤ 1 + 2
U2

κ2k2
s

= 1 + 2r2Pe2 (D.2)

where U = 〈||(ux, uy)||2〉. In case the fluid is stirred by a shear flow in the direction

perpendicular to x, e.g., u = î
√

2U sin kuy, a tighter upper bound can be obtained by

E2
0 ≤ = 1 +

〈2 cos2 ksx · u2
y〉

κ2k2
s

≤ 1 +
U2

κ2k2
s

= 1 + r2Pe2 (D.3)

134



BIBLIOGRAPHY

135



BIBLIOGRAPHY

Adams, D. A., L. M. Sander, and R. M. Ziff (2008), Harmonic Measure for Percolation
and Ising Clusters Including Rare Events, Phys. Rev. Let., 101, 144,102.

Ahlers, G., S. Grossmann, and D. Lohse (2009), Heat transfer and large scale dynam-
ics in turbulent Rayleigh-Bénard convection, Rev. Mod. Phys., 81, 503.

Aidley, D. J. (1978), The physiology of excitable cells, Cambridge University Press,
Cambridge.

Amati, G., K. Koal, F. Massaioli, and K. R. Sreenivasan (2005), Turbulent thermal
convection at high Rayleigh numbers for a constant-Prandtl-number fluid under
Boussinesq conditions, Phys. Fluids, 17, 121,701.

Bazso, F., L. Zalanyi, and G. Csardi (2003), Channel noise in Hodgkin-Huxley model
neurons, Physica A, 325, 165–175.

Bourlioux, A., and A. J. Majda (2002), Elementary models with probability distribu-
tion function intermittency for passive scalars with a mean gradient, Phys. Fluids,
2, 881–897.

Boussinesq, J. (1879), Theorie Analytique de la Chaleur, vol. 2, Gauthier-Villars,
Paris.

Bruce, I. C. (2006), Implementation issues in approximate methods for stochastic
Hodgkin-Huxley models, Annals Biomed. Eng., 35, 315–318.

Busse, F. H. (2003), The sequence-of-bifurcations approach towards understanding
turbulent fluid flow, Surv. Geophys., 24, 269–288.

Calzavarini, E., C. R. Doering, J. D. Gibbon, D. Lohse, A. Tanabe, and F. Toschi
(2006), Exponentially growing solutions in homogeneous Rayleigh–Bérnard convec-
tion, Phys. Rev. E, 73, 035,301.

Chow, C. C., and J. A. White (1996), Spontaneous action potentials due to channel
fluctuations, Biophys. J., 71, 3013–3021.

Clay, J. R., and L. J. DeFelice (1983), Relationship between membrane excitability
and single channel open-close kinetics, Biophys. J., 42, 151–157.

136



Colquhoun, D., and B. Sakmann (1985), Fast events in single-channel currents acti-
vated by acetylcholine and its analogues at the frog muscle end-plate, J. Physiol.,
369, 501–557.

Constantin, P., A. Kiselev, L. Ryzhik, and A. Zlatoš (2008), Diffusion and mixing in
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