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CHAPTER I:  INTRODUCTION 

Research Context 

Decision making, the process of choosing among a set of options, is a fundamental 

aspect of everyday mental life.  Decisions are often made under conditions of 

uncertainty, when the payoffs are probabilistic and unknown.  Should the commuter 

continue to sit in freeway traffic, or take the next exit and attempt local roads?  Should 

the seller accept the current offer, or reject it for the possibility of a better offer in the 

future?  The study of decision making has been approached from many perspectives – 

philosophical, behavioral, biological, mathematical, and computational – yet many 

challenges remain for understanding this important function of higher cognition.  

Among them, two central challenges are to understand how decision making processes 

are instantiated computationally in the brain and to reveal and characterize differences 

in decision making processes across individuals.   

Historically, research on decision making in different fields has often proceeded 

independently.  However, in recent years there has been a convergence.  

Multidisciplinary work in the nascent field of Decision Neuroscience (also referred to as 

Neuroeconomics) has sought to forge deeper links between brain, behavior and 

computation, drawing on a large body of behavioral data and theory from psychology 

and economics, and on an emerging understanding of computational and neural 

mechanisms as revealed by empirical and theoretical work on the neurobiology of 

reward learning and motivation.  Although this dissertation focuses exclusively on the 

behavioral and computational approaches to the study of decision making, the three 

approaches are highly integrated and therefore this dissertation is informed in part by 

neural data and theory (Figure 1.1).  For example, characterization of decision making 

impaired by neurological damage has contributed to the understanding of decision 

behavior in healthy individuals, and an intriguingly close correspondence between 

variables simulated in computational models of reward-learning and their neural 

counterparts have helped to validate the use of these computational models in testing 
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mechanistic theories of decision behavior.  Furthermore, because of the links between 

approaches, the research conducted for this dissertation has the potential to contribute to 

future research using neural approaches.  For example, this dissertation focuses on 

decision making in healthy adults, but its results may have implications for better 

characterizing and assessing decision making in brain-damaged patients, and the 

modeling and clustering results may lead to neural predictions that can be tested using 

imaging methods.  

 

Figure 1.1  Integration of three approaches to the study of decision making.  This 

dissertation focuses on behavioral and computational approaches, but these 

approaches are informed by neural data and theory. 

 Decision making is studied normatively as well as descriptively.  This dissertation 

focuses on descriptive accounts of decision making under uncertainty in the context of 

an important experimental paradigm known as the Iowa Gambling Task (IGT).  The 

overarching aim of this work is to contribute to a better understanding of the important 

attributes that guide decision making under uncertainty and how individuals differ in 

these attributes.    In this dissertation, I will use the term “individual differences” in two 

ways that merit definition at the outset.  First, I will use the term in referring to a level of 

analysis in which the focus is on understanding differences in performance within a 

population using analysis methods performed primarily at the level of individual 

decision data.   I will also use the term somewhat more loosely to refer to differences 

among groups of individuals within a population typically analyzed only in the 

aggregate. 

Background 

The Iowa Gambling Task 

The Iowa Gambling task is an extensively studied behavioral paradigm that involves 

decision making under uncertainty. The IGT was designed to simulate the often 

encountered task of choosing among a set of competing options when payoffs are a priori 

Behavioral

Neural Computational 
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uncertain and must be learned through experience (Bechara, Damasio, Damasio, & 

Anderson, 1994).  In the IGT, subjects are instructed to choose cards from four decks to 

maximize the payoffs obtained from their choices across a sequence of trials (Figure 1.2).  

In the standard version of the task, each chosen card reveals a positive monetary gain, 

and these gains vary in magnitude.  Periodically, cards also include a loss amount which 

when combined with the gain amount delivers a negative net payoff.  The task is 

typically run for 100 card selections, with the duration not known in advance by 

participants. 

 

Figure 1.2  The IGT paradigm as administered through a computer.  Participants 

choose cards from four decks.  Participants begin the game with an initial loan of 

$2000.  The Bank bar tracks current profits, and the Borrow bar tracks how much 

money has been borrowed.  Wins and losses are indicated visually and auditorily 

after each choice.   

The schedule of payoffs for each deck is fixed by the experimenter.  A typical payoff 

schedule (the A’B’C’D’ version of the task) is shown in Table 1.1.  Decks A‟ and B‟ are 

high gain decks that deliver gains of $80 to $170 on every card, while decks C‟ and D‟ are 

lower gain decks that deliver $40 to $95 on every card.  In addition to gain amounts, the 

decks also deliver periodic losses.  On average, decks A‟ and C‟ (the high frequency decks) 

deliver a loss on every other card, while decks B‟ and D‟ (the low frequency decks) on 

average deliver a loss in one out of ten cards. The magnitudes of these losses vary, with 

losses in decks A‟ and B‟ tending to be larger than in decks C‟ and D‟.   The schedule of 

payoffs is designed such that the larger gains in decks A‟ and B‟ are outweighed by the 
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periodic losses and these decks therefore have negative expected values (each -$72).  In 

contrast, the smaller gains in decks C‟ and D‟ outweigh the periodic losses and so these 

decks have positive expected values (each +$32).  Decks A‟ and B‟ are therefore 

considered the disadvantageous or bad decks, and C‟ and D‟ the advantageous or good decks. 

Critically, this payoff schedule imposes a tradeoff on decision making:  To perform well 

on the task, decision makers must learn to avoid the choices offering consistently larger 

gains (A‟ and B)‟ and instead pursue choices offering consistently smaller gains (C‟ and 

D‟) but greater expected value.    

Table 1.1  Payoff schedule for the A‟B‟C‟D‟ version of the Iowa Gambling Task. 

Deck 

Deck 

type 

Every-trial 

gain amounts 

Periodic 

loss amounts 

Loss 

frequency 

Expected 

value 

A‟ Bad $80  to $170 –$150 to –$350 50% –$72 

B‟ Bad $80  to $170 – $1250 to -$2500 10% –$72 

C‟ Good $40 to $95 – $25 to –$75 50% +$32 

D‟ Good $40 to $95 –$250 to -$375 10% +$32 

Notes. Decks A‟ and B‟ are the disadvantageous decks (bad decks) that deliver 

larger gains on every card, but have periodic losses that outweigh the gains.  

These bad decks deliver a negative expected value (-$72).  Decks C‟ and D‟ are 

advantageous decks (good decks) that deliver smaller gains on every card, but 

these gains outweigh the periodic losses yielding a positive expected value 

(+$32).  The decks also differ in the frequency of their losses (Bechara, Tranel, & 

Damasio, 2000). 

Analyzing Performance in the IGT 

Empirical research on the IGT has identified a robust set of performance 

characteristics (see B. D. Dunn, Dalgleish, & Lawrence, 2006 for a review) which have 

been shown to hold under a wide range of variations in the task, for example: real vs. 

faux monetary payoffs (Bechara, Tranel, et al., 2000), inversion of the gain/loss schedules 

(Bechara, Damasio, & Damasio, 2000), manual versus computer administration (Bechara, 

et al., 1994), and payoff schedules with fixed (van den Bos, Houx, & Spruijt, 2006) versus 

diverging differences between gains and losses (Maia & McClelland, 2004).  The primary 

dependent variable upon which IGT performance is typically assessed is the total 

percentage of cards selected from the two good decks (%Good), or equivalently the 

difference between the mean number of good and bad selections (i.e., [C‟+D‟] - [A‟+B‟] 

where A‟,B‟,C‟,D‟ are either the total number or the percent of cards selected from each 

deck).   A participant who performs advantageously selects more cards from the good 
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decks (C‟ and D‟) than the bad decks (A‟ and B‟) over 100 trials. In aggregate, a 

population of healthy subjects performs advantageously, typically selecting 

approximately 60-70% of their cards from the good decks (Figure 1.3A).  Clinical 

populations with decision making deficits show an opposite pattern of performance, 

selecting in aggregate more cards from the bad decks (Figure 1.3B).  

One logical problem with the use of %Good as a dependent measure is that early in 

the task participants experience few losses due to the way the fixed payoff schedule is 

designed (Maia & McClelland, 2004).  As a result, the expected values of the “bad” decks 

as experienced by participants actually tend to be positive and larger than for the “good” 

decks.  Maia and McClelland (Bechara, et al., 1994; Damasio, 1994) proposed an 

improved measure that tracks the percentage of cards selected by participants from the 

two decks that, on any given trial, have the highest experienced expected value up to that 

trial (%EEV).  By this measure, advantageous performance is defined in terms of deck 

values participants actually experience rather than the good/bad labels assigned to the 

decks a priori by the experimenters.   Practically, a divergence between %Good and %EEV 

is manifested primarily in the early trials, and only rarely in later trials.  Aggregate IGT 

performance measured according to %EEV therefore shows a similar overall pattern of 

performance as measured by %Good.    
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(A)

 

(B) 

 

Figure 1.3  Typical patterns of IGT card selections.  (A) 844 healthy adults and (B) 11 

patients with damage to ventromedial prefrontal cortices.  In aggregate, healthy 

participants select more cards from the good decks (C‟ and D‟) than the bad decks (A‟ 

and B‟), while the patients exhibit the opposite pattern of performance. Percentages 

for each deck were pooled over trials and participants. Source: (A) multiple IGT data 

sets obtained for the purposes of this dissertation (see Chapter IV for a detailed 

description of these data); (B) data courtesy of Dr. Antoine Bechara, University of 

Southern California.  

Performance on the IGT has also been analyzed in terms of the time course of 

selections, either on a trial-by-trial basis, or more often aggregated in five blocks of 20 

trials. This temporal transition is shown in Figure 1.4 for a population of 844 healthy 

participants.  In the first block of trials, healthy participants typically sample from each of 

the decks and exhibit an early preference for the bad decks that offer consistently larger 

gains.  However, as participants learn more about the payoffs, their choices shift to the 

good two decks that offer positive expected value.   
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Figure 1.4. Trajectory of IGT choice behavior for 844 healthy participants.  The plot 

shows the mean percentage of cards selected from the two good decks minus the two 

bad decks across five blocks (each of 20 trials). Source: Multiple IGT data sets 

obtained for the purposes of this dissertation (see Chapter IV for a description of 

these data). 

The Use of the IGT in Research 

The IGT was originally developed as an experimental paradigm diagnostic of the 

types of real-world decision making deficits exhibited by patients with damage to 

ventromedial prefrontal cortex who exhibit the pattern of performance shown in Figure 

1.2B (Bechara, Damasio, & Damasio, 2003; Bechara, Damasio, Damasio, & Lee, 1999).   Its 

use has subsequently been extended to the study of:  (i) neuropsychological conditions 

beyond ventromedial prefrontal cortex, for example the amygdala (Campbell, Stout, & 

Finn, 2004; Mimura, Oeda, & Kawamura, 2006; Pagonabarraga, et al., 2007; Stout, 

Rodawalt, & Siemers, 2001) and basal ganglia (B. D. Dunn, et al., 2006  provides a 

summary as of 2005); (ii) a wide range of psychopathologies including substance abuse 

and dependency, pathological gambling, obsessive-compulsive disorder, schizophrenia, 

attention deficit disorders, eating disorders, impulse and aggression disorders, and 

psychopathy (Bolla, Eldreth, Matochik, & Cadet, 2004; Desmeules, Bechara, & Dube, 

2008; Franken & Muris, 2005; Preston, Buchanan, Stansfield, & Bechara, 2007; Reavis & 

Overman, 2001; Suhr & Tsanadis, 2006; Sweitzer, Allen, & Kaut, 2008; van Honk, 

Schutter, Hermans, & Putman, 2003; Zermatten, Van der Linden, d'Acremont, Jermann, 

& Bechara, 2005);  (iii) the link between decision making and personality traits, affective 

states, and other individual differences among healthy individuals (Crone, Bunge, 

Latenstein, & van der Molen, 2005; Crone & van der Molen, 2004, 2007; Garon & Moore, 
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2004, 2007; Hooper, Luciana, Conklin, & Yarger, 2004; Huizenga, Crone, & Jansen, 2007; 

Kerr & Zelazo, 2004); (iv) the development of decision making and executive  function 

across the lifespan (Bolla, et al., 2004; Bolla, Eldreth, Matochik, & Cadet, 2005; Fukui, 

Murai, Fukuyama, Hayashi, & Hanakawa, 2005; Lawrence, Jollant, O'Daly, Zelaya, & 

Phillips, 2009; Oya, et al., 2005; Schutter, de Haan, & van Honk, 2004), and (v) the neural 

correlates of decision making under risk and uncertainty (Bechara, 2007).  

 (A)

 

(B) 

 

Figure 1.5.  The IGT continues to be a widely used and studied experimental 

paradigm. (A) Number of yearly citations of the core set of IGT papers.  (B) Number 

of yearly citations matching the keyword “Iowa Gambling Task”. Source: Journal 

Citation Reports®, ISI Web of Knowledge: Thomson Reuters, Inc. 

The IGT continues to be an important task used for basic research on decision 

making in both healthy and clinical populations, as evidenced by the fact that it has been 

administered and/or cited in thousands of published studies (Figure 1.5).   The IGT is also 

a widely used tool for clinical assessment and its recent commercial availability is likely 

to further contribute to its continued use for this purpose (for example, Xiaohua & Illhoi, 

2004).   

Aims and Methods 

Given the important role of the IGT in the study of decision making, a 

comprehensive conceptualization of behavior in this task is necessary as a foundation for 

inference.  This is particularly true for studies of clinical populations where results have 

implications for how we conceptualize neurological disorders and psychological 

disturbances in decision making.  A comprehensive conceptualization should include an 

accurate framework for understanding important attributes of performance and should 
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identify and characterize how performance differs across individuals, if fundamental 

differences exist.    

There are reasons to believe that the current conceptualization of the IGT may be 

incomplete.  These reasons will be discussed in the chapters that follow, but in brief these 

include:  (i) the presence of large minorities of healthy participants who perform 

disadvantageously, yet show no real-life decision making impairments; (ii) unreliable 

findings in studies that have tested the association between IGT performance and 

demographic, trait, and cognitive measures, (iii) high variances in group-averaged model 

parameters fit to decision data; and lastly (iv) a set of important assumptions underlying 

IGT analysis methods that have not yet been tested.   If the current conceptualization of 

the task is incomplete, this would have important implications for the measures, 

methods of inference, and approaches to clinical assessment that are currently being 

used. 

 The primary research objective of this dissertation was to investigate performance in 

the IGT at a lower-level of analysis and using more thorough methods than have 

previously been used in analyzing this task.  The dissertation consists of a set of studies 

that reflect the interdisciplinary nature of the doctoral degree that I am defending.  The 

dissertation consists primarily of three primary objectives and three methods (Figure 

1.6).  First, I used computational models to try to better understand the IGT in terms of 

decision attributes and mechanisms (Chapter II).  These models were independently 

motivated by theory and data on reinforcement learning systems in brain that have been 

previously been shown to provide a good account of related decision tasks in humans 

and animals.  The aims of this first study were to (i) provide a better account of the IGT 

than provided by the currently accepted model of the task and (ii) to test the efficacy of 

the reinforcement learning framework as an account of behavior in the IGT.  The second 

major objective was to test for the presence of important individual differences in 

performance in the IGT, or alternatively confirm that the task is well-captured through 

population-level analysis (Chapter III and IV).  To pursue this objective, I used 

unsupervised clustering methods drawn from the fields of machine learning and data 

mining and widely used in the analysis of gene expression data (Bechara, et al., 1994; 

Bechara, Damasio, Tranel, & Damasio, 1997; Bechara, Tranel, Damasio, & Damasio, 1996).   

Having found robust individual differences in the task, I then pursued a third and final 
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objective which was to try to further characterize differences in the IGT in terms of more 

fundamental measures independent of performance in the IGT (Chapter V).  To pursue 

this aim, I conducted an empirical study in which I collected IGT data from a set of 

healthy participants concurrent with collection of demographic, trait, and cognitive 

measures.   

 

Figure 1.6 Overview of the primary objectives and methods undertaken in the 

dissertation.   
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CHAPTER II:  MODELING DECISION MAKING 

Introduction 

Motivation 

There is a large body of empirical data on the IGT, but at present there is no explicit, 

comprehensive theory of performance in this task.  Given the ongoing use of the IGT in 

the study of decision making, additional theoretical work is merited.  The two aims of 

this study were to investigate the ability of a set of computational reward-learning 

models to (i) capture the core phenomena associated with the task, and (ii) to account for 

variability in the performance of individual participants.  

It has been demonstrated that damage to ventromedial and orbitofrontal regions of 

prefrontal cortex (vmPFC) can lead to marked impairments in real-world decision 

making and to impaired performance in the IGT (for example, Daw, O'Doherty, Dayan, 

Seymour, & Dolan, 2006; Rolls, 1996, 2004; Schultz, 1998, 2006; Schultz, Tremblay, & 

Hollerman, 2000; Thut, et al., 1997; Tremblay & Schultz, 1999).  Interestingly, these same 

brain regions are among those also known to be involved in reward-based learning in 

both animals and humans (for example, Kakade & Dayan, 2002; Montague, Dayan, 

Person, & Sejnowski, 1995; Niv, Daw, & Dayan, 2006; J. P. O'Doherty, Dayan, Friston, 

Critchley, & Dolan, 2003; Schultz, Dayan, & Montague, 1997) This commonality in the 

brain areas involved in reinforcement learning processes and in impaired IGT 

performance suggests that theories of reward-based learning developed in behavioral 

neuroscience might be good candidates as theories of performance in the IGT.   

In the past decade, theoretical work on reward-based learning in the brain has made 

contact with computational work developed relatively independently by learning 

theorists in computer science. This productive connection has led to explicit 

computational models of reward learning in the brain.  Critically, these reinforcement 

learning (RL) models have been validated against neural data in both animals and 

humans (Bechara, Damasio, et al., 2000; Damasio, 1996). Taken together, the established 

link between IGT performance and neural mechanisms of reward learning, and the 
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availability of neurobiologically-grounded models of these mechanisms motivates the 

application of computational RL models to the study of performance in the IGT, as was 

done in the research reported here.   

While motivated independently, there is an important connection between the RL-

based modeling work undertaken here, and the principal theory of the IGT put forth by 

the original developers of the task in what is known as the Somatic Marker Hypothesis 

or SMH (See B. D. Dunn, et al., 2006 for a detailed review of the SMH).  At the core of the 

SMH is the assertion that in choosing among options of uncertain value, decision 

processes are guided by affective biasing signals that originate either in the body or 

cortical representations of the body (Colombetti, 2008; B. D. Dunn, et al., 2006). The act of 

experiencing rewarding or punishing stimuli generates affective responses that are 

stored as somatic states or “as-if” representations of these states in somatosensory cortex.  

These stored somatic states, or somatic markers, are useful future indicators of stimulus 

value that can serve to guide decision making.  Although based on a substantial body of 

behavioral and physiological data, the SMH is a verbal theory, and one which has not 

been made sufficiently explicit such that it can either be falsified, or distinguished from 

more explicit accounts that might be developed (Busemeyer & Stout, 2002). However, 

two of the core claims of the SMH are fully consistent with the core premises of 

reinforcement learning theory and it is therefore not unreasonable to consider RL 

models of the IGT as partial instantiations of the SMH.  The core claims shared by these 

theories, stated in terms of the SMH are: (i) that immediate reward-based experience 

generates longer-term markers of value, and (ii) that these markers serve as signals that 

guide decision making.  The SMH, however, makes the further claim that these markers 

originate from somatic representations of reward, a claim not shared by RL theory which 

makes no assumptions about the internal representation of reward.     

Prior Work 

Previous computational studies of the IGT have used primarily both heuristic and 

formal models developed in the fields of decision theory and mathematical psychology.  

In this initial work, three alternative models (Heuristic Strategy Switching, Bayesian 

Expected Utility, and Expectancy-Valence) were fit to IGT data and compared using 

model selection methods (Sutton & Barto, 1998).  The expectancy-valence model was 

shown to best fit the IGT data.  Interestingly, the expectancy-valence model is 
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isomorphic to the single-state, Q-learning model that has been well developed in the 

computational reinforcement learning literature (Busemeyer & Stout, 2002; Kalidindi & 

Bowman, 2007; Lane, Yechiam, & Busemeyer, 2006; Stout, Busemeyer, Bechara, & Lin, 

2002; Stout, Busemeyer, Lin, Grant, & Bonson, 2004; Yechiam, Busemeyer, Stout, & 

Bechara, 2005), but this existing modeling work on the IGT has made little contact with 

this literature. Since its initial publication, the expectancy-valence model has become the 

accepted model of the IGT and has been put to use in clinical settings to help 

characterize impaired decision making due to neurological damage and disorder as well 

as to a wide range of psychopathologies.  In clinical use, the expectancy-valence model 

has been fit to clinical populations and the population-averaged parameters of the model 

were then compared to the parameters obtained from healthy controls.  Differences in 

the parameters across populations were used as the basis for inference in characterizing 

differences in decision making (for example, Bechara, et al., 1997).   

The expectancy-valence model represents an important first step in offering an 

explicit computational framework for studying the IGT.  Furthermore, work using this 

model has demonstrated how an explicit computational model of the task might be used 

as a way to study and characterize impaired decision making.  However, there are 

important limitations in this prior work that motivate, in part, the aims of the present 

study.  First, the expectancy-valence model was selected from among a set of three 

models.  One of these models was a Bayesian decision model.  Given the well-

documented departure of human decision making from the normative accounts offered 

by Bayesian theory, one would not necessarily expect this candidate model to do well in 

explaining the IGT.   The second model, the Heuristic Strategy-Switching model was not 

independently motivated, but rather it instantiated directly in its equations the core 

behavioral phenomena to be modeled, namely an initial preference for the bad decks, 

followed by a switch to the good decks.  While few (if any) model comparisons studies 

are able to explore the full space of possible models relevant to modeling a psychological 

task, that the expectancy-valence model was selected from among a set of three models 

does not provide strong support for its validity, and certainly suggests a broader search 

for a better model might be productive.  As a standard reinforcement learning model, the 

expectancy-valence model is among a class of models with many variants that have been 



14 

 

explored by learning theorists.  Little or no work has been done to determine whether 

other members of this class provide a better account of IGT performance.   

A second important limitation is that the assumptions underlying the use of the 

expectancy-valence model as a tool for inference across populations have not been well 

tested.  While models have been fit to individual decision data, model selection and 

inference have been done using population-averaged parameters. Implicit in population-

level selection and inference is an assumption that a population is a reasonable 

representation for some, if not most individuals.  This is an important assumption that 

does not necessarily hold.  As an extreme example, an average computed from a 

population comprised of two subsets performing at opposite extremes on a dependent 

measure, contains no individual that is similar in performance to the population average.  

The validity of this assumption has great import given that the expectancy-valence 

model is being used for clinical assessment. Yet, to the author‟s knowledge no prior work 

has challenged this assumption and there are several reasons to believe it does not hold.  

The IGT is a complex task as evidenced by the robust finding that a large number of 

normal participants (typically 20-40%) routinely fail to perform the task successfully 

(Bechara, et al., 1994; Bechara, et al., 1997; Bechara, et al., 2001; Bechara, et al., 1996; Maia 

& McClelland, 2004; Tomb, Hauser, Deldin, & Caramazza, 2002; Turnbull, Berry, & 

Bowman, 2003). While this finding might be explained by extra-task factors (e.g. 

motivation, attention) it might instead result from the presence of more fundamental 

differences in the way some individuals perform the task.  The high variance in 

population-averaged model parameters reported using the expectancy-valence model 

also suggest the possibility that this model (and possibly the entire class of models) may 

not accurately characterize decision making behavior for a large subset of participants.   

In combination, these limitations motivate the aims of the present study:  (i) to use a 

base RL model to replicate the type of group-averaged results reported in prior modeling 

work, (ii) to compare the base model to a diverse set of model variants to identify 

possible individual differences in decision making, and (iii) to analyze the results across 

models and individuals to assess the overall efficacy of this class of RL models in 

capturing performance in the IGT.   
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Empirical Phenomena to be Modeled 

As discussed in the introductory chapter, the primary dependent variable upon 

which IGT performance is assessed is the total percentage of cards selected from the 

good decks (c.f., Figures 1.3A and 1.4).  In addition to this aggregate measure, a robust set 

of behavioral phenomena have been reported in the IGT literature (Sutton & Barto, 1998) 

and can be identified through inspection of individual performance data.  The selection 

history of typical participant exhibiting advantageous performance and the important 

behavioral phenomena associated with this performance are summarized in Table 2.1 

and shown in Figure 2.1.   

Table 2.1   Behavioral phenomena in the IGT. 

Phenomena Description 

(1) Exploration In the early trials participants typically sample from all four decks, often 

selecting one card from each deck in turn, or selecting several cards from 

each deck before sampling from another. 

(2) Early Bias for Bad 

Decks 

In the first twenty trials, participants typically choose more cards from the 

bad decks. 

(3) Shift to Good 

Decks 

Typically after twenty trials, participants that ultimately succeed in the 

task begin choosing more cards from the good decks.  Advantageous 

selection continues until the end of the experiment. 

(4) Resampling In the last 10-20 trials, many participants make occasional selections from 

the bad decks. 

Notes.  The number listed with each phenomenon are associated with the 

numbers labeling the plots in Figures 2.1 and 2.2. 

Participants begin the experiment with the knowledge that cards will deliver gains 

and losses, but no knowledge about the payoff schedule (c.f., Appendix D for example of 

IGT instructions).  In the initial trials they typically sample from each of the decks to 

learn more about the nature of these payoffs (phenomenon 1).  In subsequent trials, 

participants exhibit an early preference for the bad decks, typically deck B (phenomenon 

2).  As the experiment progresses participants‟ selections shift to the good decks 

(phenomenon 3) and in the later trials they make occasional selections from the bad 

decks (phenomenon 4).  The advantageous participant in Figure 2.1 shows each of these 

phenomena and it is evident from the figure that this participant made many selections 

from the deck that had the highest experienced expected values on a given trial (pink 

markers).   



16 

 

 

Figure 2.1  Patterns of deck selections for a healthy participant who performed 

advantageously.  The core phenomena are numbered and described in Table 2.1.  

Red dots indicate loss trials, green dots gain-only trials. The size of the dot indicates 

the size of the gain or loss.  The pink markers indicate the deck with highest 

experienced expected value on a each trial.  Source:  Data set described in methods 

section of this chapter. 

In contrast, disadvantageous participants within a healthy population show a 

different pattern of selections (Figure 2.2). Although these participants exhibit the same 

initial exploration and preference for the bad decks, they do not show a shift from the 

bad decks to the good decks and instead exhibit a continuing preference for the bad 

decks.  The disadvantageous participant shown in the figure made few choices from the 

decks with the highest (pink markers) and second highest (orange markers) experienced 

expected values on a given trial, suggesting the possibility that other attributes of choice 

were guiding behavior. 



17 

 

 

Figure 2.2  Patterns of deck selections for a healthy participant who performed 

disadvantageously.  The core phenomena are numbered and described in Table 2.1. 

Red dots indicate loss trials, green dots gain-only trials. The size of the dot indicates 

the size of the gain or loss.  The pink markers indicate the deck with highest 

experienced expected value, and the orange markers indicate the deck with the 

second highest experienced expected value on each trial.  This participant does not 

show the a transition from the bad decks to the good decks (phonomenon3).  Source:  

Data set described in methods section of this chapter. 

While there is variability in trial-by-trial patterns of deck selections across 

participants, in aggregate healthy participants exhibit a robust shift from an initial 

preference for the bad decks to a preference for the good decks (c.f., Figures 1.3A and 

1.4). 

Models 

Formally, the IGT can be modeled as a reinforcement learning (RL) problem in which 

participants must learn, via experienced rewards, the relative values of the four decks.  It 

is isomorphic to the n-arm bandit problem that has been extensively analyzed in the 

machine learning literature (Dayan & Abbott, 2001; Montague, et al., 1995). It is also 

isomorphic to the classic bee foraging problem addressed in the behavioral and 

neuroscience literature (Dayan & Abbott, 2001).  In the IGT, because there is no delay 

between the choice of deck and the receipt of reward the task falls within the static-

action class of reinforcement learning problems (Sutton & Barto, 1998). The IGT may also 

be considered as a non-associative reinforcement learning problem (Luce, 1959, 1977) 

under the assumption that participants learn to select advantageously from a single state, 

and therefore learned actions need not be associated with multiple states.  The IGT, 

could, however, be modeled as an associative problem where the representation of state 
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might include a metric of current profitability and/or attributes that capture aspects of a 

participant‟s declarative knowledge.  As a starting point, I pursued the non-associative 

approach and I leave the associative possibility for future work. Action value models 

(also known as delta-rule models) are a standard approach to modeling non-associative, 

static-action RL problems and this was the approach pursued in this study. 

The Base Model 

The base model used in this study had three components: (i) a learning component 

responsible for storing and updating estimates of the value of each deck based upon 

experienced payoffs, (ii) a selection component that chooses cards from the decks based on 

their estimated values, and (iii) a reward function that translates experienced monetary 

payoffs into an internal representation of reward. 

Learning component 

The learning component of the base model served the role of applying current 

experience to update previously stored knowledge. In learning to choose cards 

advantageously, the model assumed that participants have a representation of value (V
A
, 

V
B
, V

C
, V

D
) for each deck (A, B, C, D) and that these values are updated based on the 

payoffs experienced from each deck during the task.  The values were initialized to zero 

and updated on each trial according to the following learning equations, known as the 

delta rule: 

 𝑉𝑖 𝑡 + 1 =  1 − 𝛼 ∙ 𝑉𝑖 𝑡 + 𝛼 ∙ 𝑟 𝑡 ∶ 𝑖 ∈ [𝐴, 𝐵, 𝐶, 𝐷] (1a) 

 𝑉𝑖 𝑡 + 1 = 𝑉𝑖 𝑡 + 𝛼 ∙  𝑟 𝑡 − 𝑉𝑖 𝑡  ∶ 𝑖 ∈  𝐴, 𝐵, 𝐶, 𝐷  (1b) 

In the learning component, r(t) was the internal reward experienced by the 

participant after receiving the monetary payoff from the deck selected on trial t.  The 

form of equation (1a) makes clear that , the learning rate, governs the relative influence 

of the current value estimate V
i
(t) and the current reward r(t) on the updated value 

V
i
(t+1).  Alternatively, the form of equation (1b) highlights the fact that values are 

updated based on an error term  r(t)-V
i
(t) that represents the difference between the 

actual reward r(t) experienced from deck i on trial t, and the currently stored estimate of 

that value as represented by V
i
(t).   

Selection component 

The selection component of the model produced deck choices based on the stored 

values for each deck.  The base model assumed that on each trial, participants select 
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probabilistically from among the decks based on the current estimated values stored 

with each deck.  The assumption of probabilistic choice was mathematically codified in 

Luce‟s well-known Choice Axiom which relates choice probabilistically to relative value 

(Herrnstein, 1961).  Probabilistic choice was also demonstrated in instrumental 

conditioning tasks by Herrnstein who observed that the frequency of responses among a 

set of options was closely matched to the frequency of rewards delivered by those 

responses (Lau & Glimcher, 2005). It has also been shown that response frequencies also 

match the magnitudes of the rewards associated with each response (J. P. O'Doherty, et 

al., 2004).  The applicability of the probabilistic choice rules to human behavior has also 

been demonstrated more recently in neuroimaging studies of human participants. 

(Corrado, Sugrue, Seung, & Newsome, 2005; Daw & Doya, 2006; Lau & Glimcher, 2005).   

Additional work has clarified the functional form of matching-based selection, and 

found that a softmax selection rule (discussed below) best fits behavioral choice data 

(Sutton & Barto, 1998). Interestingly, the softmax rule is also a predominant model of 

action selection in the machine learning literature (Daw & Doya, 2006).  The softmax rule 

is value-sensitive method for implementing probabilistic selection because the relative 

choice probabilities are proportional to the relative value estimates associated with each 

deck.  This rule was recently  tested in a human choice task against an undirected 

probabilistic rule (-greedy) and against a more sophisticated softmax rule that gives 

greater weight to actions for which selection might resolve outstanding uncertainty 

(Sutton & Barto, 1998).  The base softmax rule was found to provide the best fit to the 

data. 

In the present study, the probability P
d
(t+1) that a participant selects deck d on trial 

t+1 was computed according to the following softmax rule (for example, Tremblay & 

Schultz, 1999) 

 

𝑃𝑑 𝑡 + 1 =  
𝑒𝜃 ∙𝑉𝑑(𝑡)

 𝑒
𝜃 ∙𝑉𝑗 (𝑡)

𝑗

 ∶   𝑗, 𝑑 ∈ [𝐴, 𝐵, 𝐶, 𝐷] (2) 

In this selection equation, the sensitivity parameter  determines the degree to which 

differences in the deck values V
i
 are transformed into differences in selection 

probabilities.  When  is zero, selection probabilities are uniform regardless of the value 

estimates and therefore selection is random.  Large values of  lead to large differences in 
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selection probabilities, and as  approaches infinity selection becomes deterministic, with 

the highest valued deck always selected.   

Reward function 

The reward function in the model transformed monetary payoffs (stimuli) 

experienced by the participant during the task into an internal scalar representation of 

reward r(t).  In the base model, trial rewards were computed according to the following 

equation: 

 𝑟 𝑡 = 𝐺 ∙ 𝑔𝑎𝑖𝑛 𝑡 +  𝐿 ∙ 𝑙𝑜𝑠𝑠(𝑡) (3) 

In the base model, the rewards represented the net monetary payoff obtained on a 

given trial, with the parameters G and L allowing for both relative weighting of the 

contribution of gains and losses to the reward as well as absolute weighting of the levels 

of reward experienced by a participant. 

Model Rationale 

While the specific form of the base model did not depart from standard single-state 

Q-learning model in the RL literature, it is nevertheless important to note that the choice 

of this model was grounded in both empirical and theoretical considerations.  These 

considerations are outlined below. 

Attention to gains and losses 

There is evidence that the reward value of stimuli are represented in vmPFC, the 

same brain area associated with patient deficits in the IGT (J. O'Doherty, Rolls, Francis, 

Bowtell, & McGlone, 2001).  In addition, there is evidence that representations of 

rewarding and punishing stimuli in the human brain are dissociable.  In a recent human 

neuroimaging study, medial areas of OFC were found to be activated by monetary 

rewards while more lateral areas were responsive to monetary losses (Kahneman & 

Tversky, 1979)  The magnitude of neural responses in these two areas were also found to 

be correlated with the magnitude of the monetary payoffs. That gains and losses are 

weighed differently is also consistent with the well-known finding in behavioral 

economics that “losses loom larger than gains” (Daw, et al., 2006). The base model 

provided for this possibility through the use of independent gain and loss parameters as 

a way to investigate the possibility that participants performing the IGT place differing 

absolute and relative value on the monetary gains and losses obtained in the task.   
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Influence of past rewards on learned values 

In the original set of IGT studies, vmPFC patients exhibited a preference for the decks 

that deliver higher immediate gains, with a putative myopia for the longer-term net 

consequences that result from the pursuit of this preference.  A subset of healthy control 

participants also exhibit disadvantageous performance.  One algorithmic explanation for 

impaired performance is the possibility that participants (and patients) differ in the 

degree to which current payoffs are able to influence value updates.  The base model 

provided for this possibility via the learning rate parameter .  Larger values of α 

increase the influence of current payoffs on the updating of values, while smaller values 

of α have an opposite effect. 

(A) 

 

(B) 

 

Figure 2.3 The IGT selection histories for two healthy participants.  Both participants 

performed advantageously, but the selections of the participant shown in (A) appear 

more deterministic than those of the participant shown in (B).  This raises the 

possibility that participants may differ in the sensitivity of choice based on learned 

value estimates.  Source:  Data set described in methods section of this chapter. 
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Control of probabilistic deck selections 

Reinforcement learning problems typically involve a tradeoff between exploring 

options for the benefit of improving learned value estimates and exploiting these 

estimates to improve performance. A recent neuroimaging study localized these two 

competing functions to different neural substrates (Sutton & Barto, 1998).  It is therefore 

plausible that participants may differ significantly in the degree to which they explore 

versus exploit.  The base model allowed for these differences via the sensitivity 

parameter θ in the selection equation.  Figure 2.3 shows an example of two participants 

who both performed the IGT advantageously, but who seemingly differed in the degree 

of determinism in their choices.  

Model Variants 

For the purposes of identifying the algorithmic assumptions that might better fit IGT 

participant data, I explored a range of variations of the base model, each of which was 

motivated theoretically and empirically.  The models varied along five dimensions:  (i) 

the functional form of the learning rate (exponential vs. simple averaging), (ii) the nature 

of action selection (softmax vs. pursuit), (iii) the nature of prediction error (delta-rule 

versus reinforcement comparison), (iv) the presence or absence of value decay, and (v) 

the functional form of the reward function.  This section presents each of these model 

variants and their motivations.  The variations in the base model were considered one-at-

a-time to determine the extent to which each might capture unique aspects of individual 

decision behavior.  I believe this approach was appropriate given the aims of the study 

which were to investigate the efficacy of RL models in capturing behavior in the IGT and 

to identify possible differences in decision behavior across individuals.   A full factorial 

investigation of model variants would be appropriate in seeking a “best” model from 

among this class, and this is left for future work. 

Simple versus exponential averaging 

In Equation (1), the learning rate parameter  determined the relative influence of 

current and past rewards on the updating of value estimates.  In the base model, α was a 

constant.  A constant α leads to an exponential weighting of past rewards, with more 

recent rewards having exponentially greater influence on learned values than more 

remote rewards.  In a variant model,  varied inversely with the number of times a deck 

had been selected.  This produced learned values for each deck that were simple 
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arithmetic averages of all rewards experienced.  For non-stationary and effectively non-

stationary problems, the exponential form has been shown to be advantageous (J. P. 

O'Doherty, Critchley, Deichmann, & Dolan, 2003), but given lack of knowledge about 

how participants perceive the sequence of payoffs in the IGT, both the simple- and 

exponential-average methods were utilized.  

Independently stored action probabilities 

In the base model, value estimates were stored and updated on every trial.  Selection 

probabilities were computed on each trial using these stored values.  There is some 

evidence that selection processes and value learning and storage processes might be 

supported by different neural substrates (Sutton & Barto, 1998). Therefore, selection 

probabilities themselves may be independently stored and subject to a different course 

of learning than the action values upon which they are derived.  This possibility was 

captured by a variant model (Pursuit model) that utilized a pursuit method of selection 

(for example, Kahneman & Tversky, 2000; Tversky & Kahneman, 1981).  In this model, a 

selection probability P
j
 was stored for each deck, and these probabilities were updated on 

each trial according to the following equations. 

 𝑃𝑗 ∗ 𝑡 + 1 = 𝑃𝑗 ∗ 𝑡 + 𝛽 ∙  1 − 𝑃𝑗 ∗ 𝑡   ∶ 𝑗∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗 𝑉𝑗 , 𝑗 ∈ [𝐴, 𝐵, 𝐶, 𝐷] (4a) 

 𝑃𝑗  𝑡 + 1 = 𝑃𝑗  𝑡 + 𝛽 ∙  0 − 𝑃𝑗  𝑡      ∀𝑗 ≠ 𝑗∗, 𝑗 ∈ [𝐴, 𝐵, 𝐶, 𝐷] (4b) 

In the Pursuit model, value estimates were computed and stored as in the base 

model, but on every trial the probability of the choice with the highest value was moved 

towards one, and the probabilities all other choices were moved towards zero.  The 

parameter  determined the rate at which stored probabilities were updated.  The effect 

of this change to the model was that frequent selection of a deck made this deck more 

likely to be chosen again in the future, a separate influence on choice acting in concert 

with the influence of the stored value estimates. 

Learning using a reference reward 

In the Base model, the updates to stored values were made based on the prediction 

error computed as the difference between the current reward r(t) and the current value 

estimate V
i
(t) (see Equation 1b).  Reference effects, the dependence of choice on a 

context-specific reference point, are well documented in the psychological literature on 

decision making (Sutton & Barto, 1998).  Therefore, I investigated the possibility that 
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deck selections in the IGT might be affected by a reference level of reward, i.e. premised 

upon the establishment of a reference level of payoff upon which each selection is 

compared.  A natural way to implement this possibility computationally was via a 

Reinforcement Comparison model (see Shizgal, 1997 for a review).  In this model, I 

modified Equation (1b) so that prediction error was based on the difference between the 

current reward r(t) and a reference reward ( )r t  which was learned across trials:  

  𝑉𝑖 𝑡 + 1 = 𝑉𝑖 𝑡 + 𝛼 ∙  𝑟 𝑡 − 𝑟  𝑡  ∶ 𝑖 ∈  𝐴, 𝐵, 𝐶, 𝐷  (5a) 

 𝑟  𝑡 + 1 = 𝑟  𝑡 + 𝛽 ∙  𝑟 𝑡 − 𝑟  𝑡   (5b) 

The reference reward was updated on every trial, based on the rewards experienced 

from all decks.  The parameter  governed the rate at which the reference reward was 

updated. 

Limitations in the maintenance of learned values 

In the Base model, the only value updated on each trial was the value of the selected 

deck.  Implicit in this model was the assumption that previously learned values for all 

other decks are faithfully maintained.  The task demands of the IGT are substantial 

enough that 20% of healthy participants typically fail to perform advantageously.  It is 

therefore possible that as a result of task demands and/or noise in learning processes, not 

all participants are able to maintain accurate value estimates for decks which have gone 

unselected over multiple trials.  I instantiated this possibility computationally in a variant 

model (Decay Model) in which on every trial that a deck went unselected, the value 

estimate for that deck decayed towards zero.   

 𝑉𝑖∗ 𝑡 + 1 = 𝑉𝑖∗ 𝑡 + 𝛼 ∙  𝑟 𝑡 − 𝑉𝑖∗ 𝑡  ∶  𝑖 ∈ [𝐴, 𝐵, 𝐶, 𝐷] (6a) 

   𝑉𝑖 𝑡 + 1 = 𝛽 ∙ 𝑉𝑖(𝑡) ∀𝑖 ≠ 𝑖∗ (6b) 

In this model, value updates for the selected deck i
*

 on each trial (Equation 6a) were 

identical to the base model (Equation 1a).  The value of unselected decks decayed by the 

fraction  which as fixed at 0.8 (i.e. a constant decay rate of 20%).   

Individual differences in the nature of reward 

Although the reward function is a critical component in the computational RL 

framework, it has received very little research attention.  The mapping between stimuli 

and environmental conditions and internal representation of rewards is considered 

domain-specific, and as such have typically thought to lie outside the RL framework 
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itself.  The standard reward function typically produces scalar values based on 

magnitude quantities experienced in the environment (e.g., amount of money, hedonic 

value of a food reward, attractiveness of potential mate).  Magnitudes, however, are not 

the only possible basis of reward.  There is neural evidence that brain areas involved in 

reward processing code for frequency and temporal delay in addition to magnitude 

(Ellsberg, 1961).  What neural computations produce these quantities is an open 

question, but the relevant point here is that such quantities are available in the brain.  

There is also a wealth of behavioral evidence demonstrating that human decision 

making is guided by quantities other than magnitudes.  For example, in the famous 

paradox that bears his name, Ellsburg demonstrated that given comparable choices, 

people tend to prefer those with lower ambiguity concerning the nature of the 

underlying payoffs (Kahneman & Tversky, 2000). The framing of payoffs and their 

associated risks are also attributes known to shape decisions (Singh, Lewis, & Barto, 

2009).  Furthermore, recent theoretical work in RL has shown that that there are adaptive 

benefits when reward functions are themselves subject to learning via experience (Maia 

& McClelland, 2004).  In this work, reward functions selected globally across a diversity 

of experiences were shown to confer local advantages in the performance of tasks 

compatible with those previously experienced.  Decision making under uncertainty is 

ubiquitous in human experience, and taken together the neural and behavioral evidence 

and computational proposals suggest that broadening the conceptualization of reward 

beyond magnitude quantities may allow RL models greater flexibility in capturing 

human performance.  

In the Base model, the reward function transformed monetary payoffs into rewards 

assuming that it was the net payoff that was internally rewarding to participants (c.f., 

Equation 3).  The net payoff from a given card is certainly a salient attribute of the IGT, 

and best-case performance in the IGT is achieved by learning the expected values of the 

decks based on the trial-by-trial net payoffs.  However, a sizable subset of participants 

perform the IGT disadvantageously therefore deviating from best-case performance. 

This suggests that other decision attributes may play a role in guiding choice.  Further 

support for the role of other attributes is provided by a study in which self-reported 

knowledge was collected from participants as they performed the IGT.  This study 

demonstrated that the majority of participants were aware of multiple declarative 
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aspects of the task, including the frequency of losses (Preston, et al., 2007).  To allow for 

other quantities to enter into the functional mapping from deck payoffs to experienced 

rewards, I modeled three risk-based alternatives to net payoff magnitude as the basis of 

reward (Equations 7a, 7b, and 7c). 

 𝑟 𝑡 = −𝑛𝑒𝑡𝑣𝑎𝑟(𝑡) (7a) 

 𝑟 𝑡 = −𝑙𝑜𝑠𝑠𝑣𝑎𝑟(𝑡) (7b) 

 𝑟 𝑡 = 1 − 𝑙𝑜𝑠𝑠𝑓𝑟𝑒𝑞(𝑡) (7c) 

  In these Risk-Focused models, reward was based entirely on risk quantities, either 

the variance in net payoffs (Equation 7a), the variance in losses (Equation 7b), or the 

frequency of loss occurrence (Equation 7c).   In each of these Risk-Focused models, lower 

values of these quantities (lower variance, lower frequency) were modeled as more 

rewarding than higher quantities. Each of the risk quantities were computed based on 

the last four payoffs obtained on each deck. For example, if on the tenth trial a loss was 

experienced in deck C and there were no other losses from this deck in the last three 

trials, the loss frequency for deck C would be 25% and the reward function would yield a 

scalar value r(t) = 1- 0.25 = 0.75.   

 𝑟 𝑡 = 𝐺 ∙ 𝑔𝑎𝑖𝑛 𝑡 +  𝐿 ∙ 𝑙𝑜𝑠𝑠 𝑡 + β ∙  −𝑙𝑜𝑠𝑠𝑣𝑎𝑟 𝑡    (8a) 

 𝑟 𝑡 = 𝐺 ∙ 𝑔𝑎𝑖𝑛 𝑡 +  𝐿 ∙ 𝑙𝑜𝑠𝑠 𝑡 + β ∙  1 − 𝑙𝑜𝑠𝑠𝑓𝑟𝑒𝑞 𝑡    (8b) 

 In addition to the three Risk-Focused models, I also tested two hybrid models in 

which rewards were represented as a linear combination of net payoffs (as in Equation 3)  

and either loss variance (Equation 8a) or loss frequency (Equation 8b), with a weight 

parameter β determining the relative influence of the risk term on reward.  As in the 

Risk-Focused models, the risk quantities were computed based on the last four payoffs 

obtained from each deck. 

Methods 

Data 

To investigate the decision making mechanisms involved in the IGT and the ability of 

reinforcement learning models to capture the core phenomena associated with the task, I 

fit a set of RL models to behavioral data from the IGT. The behavioral data were 

previously collected from control participants by Preston and colleagues at the 

University of Iowa in a study investigating the effects of anticipatory stress on IGT 

decision making (Bechara, Tranel, et al., 2000).  These participants were screened for 
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known brain damage and decision making impairments.  The experimental paradigm 

used to collect these data was the A‟B‟C‟D‟ version of the IGT first reported in (Bechara, 

2007) and currently used in the commercially available version of the task used in 

assessment (Busemeyer & Stout, 2002; Yechiam & Busemeyer, 2005). Of the 41 

participants, 9 (22%) failed to perform advantageously. In aggregate, participants chose 

59 percent of their cards from advantageous decks C and D, a result consistent with 

standard administration of this task. 

Modeling Procedures 

Model fitting 

The parameters for each of the models were fit to the deck selection histories 

independently for each of the 41 participants using maximum likelihood methods.  The 

log-likelihood function is given in Equation 7.   

 𝑙𝑛 ℒ 𝜃 |𝑑𝑎𝑡𝑎𝑖 ,𝑚𝑜𝑑𝑒𝑙𝑗  =  𝑙𝑛  𝑃𝑟𝑜𝑏  𝑑𝑗  𝑡 = 𝑑𝑖 𝑡 |𝑑𝑖 1: 𝑡 − 1   𝑇
𝑡=1  (7) 

This log-likelihood function captured, for each trial t, the probability that model j 

selected the same deck d
j
 that was selected by subject i, given the subject‟s entire 

selection history 𝑑𝑖 1: 𝑡 − 1  leading up to trial t.  This log-likelihood function therefore 

represented the ability of a model to do one-step look-ahead for each of the T trials in the 

experiment.  An ideal model would predict with probability equal to one the deck 

actually chosen by the subject on each trial, and would produce a likelihood equal 

to ln(𝑇).  This formulation of the likelihood is identical to methods previously reported in 

the literature (Busemeyer & Stout, 2002). 

The parameters of each model were numerically fit to the participant data using the 

Nelder-Mead Simplex numerical optimization algorithm available in the Mathematica® 

programming language (6.0, Wolfram Research, Inc.: Champagne, IL).  To minimize the 

chance of finding local maxima, the algorithm was run for each participant at multiple, 

random starting locations and the maximum value returned by these runs was used as 

the final result.    

Model comparison and simulation 

For the purposes of comparing models I adopted an approach used in (Kahneman & 

Tversky, 1979).  Comparisons were made using the Bayesian Information Criterion (BIC) 

which, unlike pure goodness-of-fit criteria, penalizes a model based on the number of 
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free parameters.  After fitting the models, I computed a relative BIC score for each model 

m compared to a null model.  The null model assumed fixed selection probabilities for 

each deck, with the probabilities computed based on the proportion of selections from 

each of the decks.  For example, if the total number of selections a participant made from 

each deck were A=10, B=15, C=35, and D=40, then the null model assumed fixed 

selection probabilities on each trial of 10%, 15%, 35% and 40% for deck A, B, C and D, 

respectively.  The null model thus had three free parameters (the fourth probability can 

be imputed based on the other three).  This model replicated the marginal selection 

probabilities, but did not account for any temporal patterns in the history of selections.  I 

computed a relative BIC score for each model m as compared to the null model using 

Equation (8), in which ℒ
m

 was the likelihood of a model computed defined within 

Equation (7) , and k
m
 and k

null
 represented the number of free parameters in model m and 

in the null model, respectively.   

 𝛿𝐵𝐼𝐶𝑚 = 2 ∙ 𝑙𝑛 ℒ𝑚 − ℒ𝑛𝑢𝑙𝑙  − (𝑘𝑚 − 𝑘𝑛𝑢𝑙𝑙 ) ∙ 𝑙𝑛 𝑇 (8) 

The BIC score therefore provided a complexity-adjusted indication of the fit of a 

given model to the data.  A positive BIC indicated that a model provided a better fit to 

the data than the null model, a condition which was possible only if the model was able 

to capture temporal aspects of participant‟s selection history not captured by the null 

model.   

In addition to investigating the fit of each model relative to the null model, I tested 

for significant differences between pairwise BIC scores for each variant model and the 

Base model using the Wilcoxon Signed Rank test from which I generated standard two-

sided p-values.  The Wilcoxon test was appropriate for two reasons.  First, the 

comparison of the fit of two models across the same 41 participants is a repeated 

measures comparison. The Wilcoxon test accounts for the repeated measures by 

operating on difference scores, thus providing greater statistical power.  Second, a 

cursory inspection of the BIC scores indicated that the scores were not normally 

distributed, and therefore a non-parametric test such as the Wilcoxon test is preferred 

over parametric approaches such as a paired t-test.    

In addition to using the BIC scores to compare models, I used several other criteria 

that captured key behavioral phenomena in the task (c.f., Table 2.1 and Figure 2.1). A 
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summary of the primary selection criteria and other comparison criteria is given in Table 

2.2.  Several of these criteria were computed by comparing the performance of model 

simulations to the performance of participants.  These simulations were carried out as 

follows.  For each model, the maximum likelihood parameters for each participant were 

introduced into the model and each participant was simulated twenty times, with the 

mean values across the twenty simulations then used as the model‟s results for that 

participant.  The results of these simulations for each participant were then compared to 

the empirical data for each participant.  I compared the models using these criteria both 

at the aggregate level and at the level of individual participants.  More qualitatively, I 

generated plots of selection histories for each participant based on both the empirical 

data and simulations using the best fit models.  Comparison of these plots provided a 

qualitative sense for how well the models were able to capture participant decision 

making across the 100 trials. 

Table 2.2 Model comparison criteria. 

Criteria Description of criteria 

Mean BIC (m
i
 , m

j
) 

With p-value   

The relative fit of model i compared to model j, using the BIC score (model 

fit relative to null model) as the metric.  Significance determined via 

Wilcoxon Signed Rank test. 

%BIC>0 The percentage of participants for which a model produces a positive BIC 

score.  A large value indicated that a model outperformed the null model in 

fitting many participants. 

%Participants Best 

Fit 

The percent of participants for which a given model was the best fitting 

model, when all ten models were fit to the all participants. 

Selection Score 

Good/Bad 

The mean percentage of simulated participant selections allocated to the 

good decks and bad decks as compared to the data. 

Selection Score 

ABCD 

The mean percentage of participants‟ simulated selections allocated to the 

each of the four decks (A, B, C, D) as compared to the data. 

%EEV 

(model vs. data) 

The mean percentage of trial selections that were from the decks with the 1
st

 

or 2
nd

 highest experienced expected value based on the payoff history 

preceding a trial.   

%Participant Adv.  

(model vs data) 

The percentage of simulated participants that performed advantageously 

compared to the data. 

Mean Run Length  

(model vs data) 

The mean length of sequential selections that participants make from the 

same deck.  This provides some measure of “persistence” in selections. 

Mean Profit 

(model vs data) 

The mean profit (or loss) generated by participants at the end of the 

experiment.  

Notes.  The Mean δBIC, %δBIC>0, and %ParticipantsBestFit (shaded) were the 

three primary model comparison criteria. 
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Results 

Base Model Evaluation 

The aggregate results of fitting the base model to each of the 41 participants are 

summarized in Table 2.3.  As evidenced by the positive mean and median BIC scores, 

the model captured temporal aspects of participant selections not captured by the null 

model.  The model generated positive BIC scores for 61% of the 41 participants, and 

88% of the deck selections matched participants‟ allocations to the good (C, D) and bad 

(A, B) decks.  Furthermore, 80% of the deck selections matched participants‟ allocations 

to each of the individual decks.  On average, 65% of participant selections (and 53% of 

model selections) on each trial were made from the decks with the 1
st

 or 2
nd

 highest 

expected value based on experienced rewards.  On average, both the model and the 

actual participants produced a negative profit.  On average, 50% of the participants 

simulated by the model performed advantageously as compared to 78% in the actual 

data.  In addition to performing more disadvantageously, simulated participants had a 

lower mean run length, indicating that they switched decks more frequently than actual 

participants. 

Table 2.3 Evaluation of the base model. 

Evaluation criteria Data Base Model 

BIC Mean  +13.6  (SD=31.6) 

BIC Median  +3.5 

%BIC>0  61% 

%ParticipantsBestFit
1 

 15% 

Selection Score 

Good/Bad 

 88% 

Selection Score 

ABCD 

 80% 

%ParticipantAdv  78% 50% 

%EEV 65% 53% 

Mean Run Length  5.5 2.5 

Mean Profit -$437 -$260 

Notes:  
1

Percentage of participants best fit by model when fit of all ten models 

was considered. 

Figure 2.4 shows the observed and simulated selection histories for a typical, 

advantageously performing participant.  The model was able to reproduce the important 

behavioral phenomena including:  (i) early exploration of all decks (phenomenon 1), (ii) 
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an early preference for disadvantageous decks A and B (phenomenon 2), (iii) a shift to a 

preference for advantageous decks C and D (phenomenon 3), and (iv) occasional 

selections from disadvantageous decks in the later trials of the task (phenomenon 4).   

(A:  Data) 

 

(B: Model) 

  

Figure 2.4.  Observed and simulated selection histories.  (A) Observed selection 

history for a typical participant who performed advantageously, and (B) the selection 

history for the same participant as simulated by the base model using the maximum 

likelihood parameters.  Red dots indicate loss trials, green dots gain-only trials. The 

size of the dot indicates the size of the gain or loss.  The pink (orange) markers 

indicate the deck with highest (2nd highest) expected value on a given trial based on 

the rewards experienced up to that trial.  The numbered labels refer to the core 

phenomena presented in the introduction to this chapter and summarized in Table 

2.1: (1) initial exploration, (2) early preference for bad decks, (3) transition to 

preference for good decks, (4) occasional resampling from the bad decks. 

Figure 2.5 shows the observed and simulated selection paths from the advantageous 

decks, pooled over all 41 participants and smoothed using a 7 trial window.  The model 

closely reproduces the overall pattern in the selection path, with early disadvantageous 
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selection shifting to advantageous selections after 20-30 trials, and continuing thereafter 

with a maximal level of 7-trial selections from the good decks reaching approximately 

80%.    

 

Figure 2.5.  Observed (gray) and simulated (blue) mean selection path from the good 

decks.  The figure shows the mean percent selections from the good decks) pooled 

over 41 participants and smoothed using a seven trial window. 

Performance of the Variant Models 

Simple vs. exponential averaging 

I conducted the first pair wise test to determine whether the base model was 

improved upon by a model in the learning rate produces  value estimates that are simple 

rather than exponential average of experienced rewards  (Equation 1).  The results of this 

model comparison are given in Table 2.4.  In aggregate, the Mean BIC for the base 

model was significantly higher than for the simple average model (13.6 versus 5.1. 

p<0.01).  The base model fit was also superior in terms of the number of participants for 

which BIC was positive (61% vs. 51%).  The percentage of participants for which the 

model was the the best fit was 15% for both models.  The relative performance of the two 

models was mixed across the other criteria.  The Simple Average model did a better job of 

allocating selections to good/bad decks and to each of the four individual decks, and 

more closely reproduced the percent of participants who performed advantageously. It 

also more closely reproduced the percentage of selections from the decks with the 

highest expected value.  
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Table 2.4  Simple versus exponential averaging. 

 

Evaluation criteria 

 

Data Base Model 

Simple 

Average 

BIC Mean  +13.6 

(SD=31.6) 

+5.1 (SD=29.3) 

p<0.01 

BIC Median  3.5 0.64 

%BIC>0  61% 51% 

%PartcipantsBestFit
1

  15% 15% 

Selection Score Good/Bad  88% 96% 

Selection Score ABCD  80% 93% 

%EEV  65% 53% 65% 

%ParticipantAdv 78% 50% 90% 

Mean Runs  5.5 2.5 2.4 

Mean Profit -$437 -$260 -$292 

Notes:  
1

Percentage of participants best fit by model when fit of all ten models 

was considered. 

Pursuit vs. softmax 

In the second test, I investigated whether allowing independent storage and learning 

of action selection probabilities would better fit the participants.  The results of this 

model comparison are given in Table 2.5.  In terms of selection criteria, the Pursuit model 

significantly underperformed the Base model (Mean BIC 4.4 vs 13.6. p<0.01).  The 

pursuit model generated positive BIC scores for only 39% of the participants.  In terms 

of reproducing other behavioral phenomena, the Pursuit model was better along a 

number of the selection-based criteria, and similar in terms of profit and mean run 

length.  The Pursuit model also fit a smaller percent of participants than the Base model 

(10% vs.  15%).  
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Table 2.5  Pursuit versus softmax choice. 

 

Evaluation criteria Data Base Model Pursuit 

BIC Mean  +13.6 

(SD=31.6) 

+4.4 

(SD=31.9) 

p<0.01 

BIC Median  3.5 -2.6 

%BIC>0  61% 39% 

%PartcipantsBestFit
1

  15% 10% 

Selection Score Good/Bad  88% 93% 

Selection Score ABCD  80% 91% 

%EEV  65% 53% 58% 

%ParticipantAdv 78% 50% 70% 

Mean Runs  5.5 2.5 2.4 

Mean Profit  -$437 -$260 -$254 

Notes:  
1

Percentage of participants best fit by model when fit of all ten models 

was considered. 

Delta rule vs. reinforcement comparison 

In the next test, I considered the Reinforcement Comparison model which assumed 

prediction error was based upon a reference reward rather than value estimates as in the 

delta-rule used in the Base model.  The results of this model comparison are given in 

Table 2.6.  Once again the Base model was superior in terms of fit, with a Mean BIC 

significantly higher than the Reinforcement Comparison model (13.6 vs. 8.8, p<0.01).  

The Reinforcement Comparison model also fell short in terms of generating positive 

BIC scores across participants (51% vs. 61%) and was best model for only 7% of the 

participants.  On the selection and other behavioral criteria, the two models performed 

very similarly.   



35 

 

Table 2.6  Reinforcement comparison versus delta-rule learning. 

 

Evaluation criteria Data 

Base 

Model 

Reinforcement 

Comparison 

BIC Mean  +13.6 

(SD=31.6) 

+8.8 (SD=30.0) 

p<0.01 

BIC Median  3.5 0.8 

%BIC>0  61% 51% 

%PartcipantsBestFit
1

  15% 7% 

Selection Score Good/Bad  88% 88% 

Selection Score ABCD  80% 80% 

%EEV  65% 53% 52% 

%ParticipantAdv 78% 50% 50% 

Mean Runs  5.5 2.5 2.5 

Mean Profit  -$437 -$260 -$383 

Notes:  
1

Percentage of participants best fit by model when fit of all ten models 

was considered. 

The effect of value decay 

Next, I investigated whether allowing the values estimates for each deck to decay 

might provide a better fit of the data.  The results of this model comparison are given in 

Table 2.7.  Although the Decay model had a lower mean BIC score (12.4 vs. 13.6), this 

difference was not significant. The Decay model generated a positive BIC for a smaller 

percentage of the participants (51% vs. 61%) and was the best model for a smaller 

percentage of participants (7 vs. 15%) than the Base Model.  On all other criteria the two 

models performed similarly.   
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Table 2.7  Decaying versus stable values estimates. 

 

Evaluation criteria Data 

Base 

Model Decay 

BIC Mean  +13.6 

(SD=31.6) 

+12.4 (SD=31.6) 

p>0.3 

BIC Median  3.5 3.4 

%BIC>0  61% 56% 

%PartcipantsBestFit
1

  15% 7% 

Selection Score Good/Bad  88% 90% 

Selection Score ABCD  80% 82% 

%EEV  65% 53% 54% 

%ParticipantAdv 78% 50% 42% 

Mean Runs  5.5 2.5 2.4 

Mean Profit  -$437 -$260 -$378 

Notes:  
1

Percentage of participants best fit by model when fit of all ten models 

was considered. 

Risk-focused reward models 

I next conducted a set of tests using the three Risk-Focused models that incorporated 

risk-based attributes in the definition of reward.  The results of these model comparisons 

are given in Table 2.8.  Each of these variant models performed significantly worse, in 

aggregate, than the Base model. These models produced negative δBIC scores indicating 

that they underperformed the null model which made choices based on a participants 

marginal deck probabilities. Interestingly, however, the Risk-Focused Loss Frequency and 

Risk-Focused Net Payoff Variance models provided the best fit for a small subset of 

participants: 7%, and 5%, respectively.  This fact further motivated an investigation of 

model fits at the level of individual participants, which I report in a subsequent section. 
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Table 2.8  Risk-focused reward models. 

Evaluation criteria Data Base Model 

Net Payoff 

Variance 

Loss 

Variance 

Loss 

Frequency 

BIC Mean  +13.6 

(SD=31.6) 

-16.6 

(SD=20.0) 

p<0.0001 

-20.3 

(SD=24.7) 

p<0.0001 

-8.0 

(SD=21.6) 

p<0.001 

BIC Median  3.5 -10.7 -14.2 -7.8 

%BIC>0  61% 17% 20% 22% 

%PartcipantsBestFit
1 

 3415 5% 0% 7% 

Selection Score 

Good/Bad 

 88% 90% 90% 74% 

Selection Score ABCD  80% 86% 86% 50% 

%EEV  65% 53% 51% 53% 62% 

%ParticipantAdv 78% 50% 46% 44% 48% 

Mean Runs  5.5 2.5 2.3 2.2 18.8 

Mean Profit  -$437 -$260 -$125 -$187 -$451 

Notes:  
1

Percentage of participants best fit by model when fit of all ten models 

was considered. 

Risk-sensitive reward functions 

Lastly, I tested the set of Risk-Sensitive models in which the reward was defined as a 

linear combination of net payoff and either loss variance or loss frequency.  In terms of 

the BIC scores, the Base model outperformed the Risk-Sensitive Loss Variance model 

(13.6 vs. 10.4, p<0.01).  However, the Risk-Sensitive Loss Frequency model generated a 

higher mean BIC (17.9 vs. 13.6) and a higher median BIC (8.2 vs. 3.5) than the base 

model, but this difference in mean BIC was not significant (p>0.2).  Note that the BIC is 

considered the most conservative of the commonly used information criteria in 

penalizing models for additional parameters, and the Risk-Sensitive Loss Frequency 

model had one more parameter than the Base model.  It is possible that the difference in 

model fits might be significant under a different criterion such as the Aikake Information 

Criterion (AIC) which imposes a lesser penalty on free parameters.  The Risk-Sensitive 

Loss Frequency model generated approximately the same percentage of positive BIC 

scores across participants (63% vs. 61%) as the Base model, but was the model for more 

than twice as many participants (32% vs. 15%).  On all other criteria except mean profit, 

the Risk-Sensitive Loss Frequency model outperformed the Base model.  
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Table 2.9 Risk-sensitive reward models. 

Evaluation criteria Data Base Model 

Net Payoff + 

 Loss Frequency 

Net Payoff + 

 Loss Variance 

BIC Mean  +13.6 

(SD=31.6) 

+17.9 (SD=32.1) 

p>0.2 

+10.4 (SD=29.5) 

p<0.01 

BIC Median  3.5 8.2 0.0 

%BIC>0  61% 63% 49% 

%PartcipantsBestFit
1

  15% 32% 3% 

Selection Score 

Good/Bad 

 88% 91% 88% 

Selection Score ABCD  80% 84% 68% 

%EEV  65% 53% 64% 46% 

%ParticipantAdv 78% 50% 88% 66% 

Mean Runs  5.5 2.5 3.4 6.4 

Mean Profit  -$437 -$260 +$198 +$107 

Notes:  
1

Percentage of participants best fit by model when fit of all ten models 

was considered. 

Aggregate Model Comparison 

The results for all models are summarized in Table 2.10 and are shown graphically in 

Figure 2.6.  Across the population of participants, the Risk-Sensitive Loss Frequency 

model provided the best fit and the Base model yielded the second best fit.  Although the 

difference in the Mean BIC for the Risk-Sensitive Loss Frequency model and base model 

was not found to be significant, the Risk-Sensitive Loss Frequency model was the best 

performing model on each of the model selection criteria:  it provided a higher mean 

δBIC score (Figure 2.6B), was the best fitting model for more than twice as many 

participants (Figure 2.6A) and outperformed the Null model for a slightly larger 

percentage of participants.  This model was also better than the Base model on many of 

other criteria considered, for example in reproducing trial-by-trial selections and 

percentage of advantageous participants.  Although the Simple Average model best fit 

the same percentage of participants as the Base model, in aggregate it produced a 

significantly lower mean δBIC score and outperformed the Null model for a smaller 

percentage of participants.  The Decay model yielded a mean δBIC not significantly 

different than the Base model, but was the best fitting model for half as many 

participants.  In summary, the Risk Sensitive Loss Frequency model on a range of criteria 

was a better model across the population than any of the other models.   
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Table 2.10  Summary of model performance. 

 

Models 

BIC 

Mean 

Participants 

Best Fit (%) 

Participants 

1
st

 or 2
nd 

 Best Fit (%)  BIC>0 (%) 

Base  +13.6 15% 34% 61% 

Simple Average +5.1 15% 24% 51% 

Decay +12.8 7% 22% 56% 

Pursuit +4.4 10% 29% 39% 

Reinforcement  Comparison +8.8 7% 7% 51% 

Risk Focused: Net Payoff 

Variance 

-16.6 5% 7% 17% 

Risk Focused: Loss Variance -20.3 0% 2% 20% 

Risk Focused: Loss Frequency -8.0 7% 7% 22% 

Risk-Sensitive:  Loss Variance +10.4 3% 10% 49% 

Risk-Sensitive: Loss Frequency +17.9 32% 44% 63% 
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(A) 

 

(B) 

 

Figure 2.6 Summary of model comparison results.  (A) Performance in terms of the 

percentage of participants best fit by each model.  The Risk-Sensitive Loss Frequency 

model generated the best fit across the population of participants, while the other 

risk-based models were the worst performing models on this criterion.  (B)  

Performance in terms of mean δBIC score across the 41 participants.  On this criterion 

the Risk-Sensitive Loss Frequency model was also the best performing model.    
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Aggregate Parameter Analysis 

The median maximum likelihood parameters for the two best-fitting models are 

shown in Table 2.11.  Of interest are relative values of the parameters across models, 

rather than absolute parameters.  For the Base model, gains were weighted more heavily 

than losses in the reward function.  In contrast to the Base model, the weighting of gains 

and losses in the definition of reward in the Risk-Sensitive Loss Frequency model was 

approximately equal, suggesting that part of the contribution of losses was better 

modeled in the risk component of reward, and the β parameter in the Risk Sensitive Loss 

Frequency model was estimated to be 0.54 indicating that the risk and magnitude 

components contributed about equally to reward.  With the addition of the risk 

component to the instantiation of reward, the estimated learning rate α for the Risk 

Sensitive Loss Frequency model was higher (recent payoffs matter more) than in the 

Base model and the choice sensitivity parameter θ was found to be lower (lesser 

influence of value estimates on choice).  This difference in the learning rate parameters 

makes sense in that the occurrence of losses should weigh more heavily on value 

updates if losses signal the possibility of both lower expected value as well as more 

frequent losses, and a higher learning rate allows loss events to have greater influence on 

the updating of stored value estimates.  In terms of the difference in the choice 

sensitivity parameter, one possible account is that if reward tracks both net payoffs and 

loss frequencies, than two attributes of choice must be tracked across the four decks and 

doing so is more demanding; in the face of higher demands, choice processes become 

more difficult and as a result are less influenced by stored value estimates and more 

influenced by noise.  Perhaps of most interest in the estimated parameters is the finding 

that the addition of risk to the definition of reward resulted in sizable
1

 changes in the 

parameter estimates of the learning rate (α), choice sensitivity (θ), and relative weighting of 

gains and losses (G/L).  This change in parameters suggests that prior inferences using the 

Base model may not be robust if an important improvement to this model results in 

major re-parameterization for a similar population of participants.   

                                                        

 

1

 Sizable within the range of differences in parameter estimates across all of the models (not 

reported). 
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Table 2.11  Median parameter estimates for the two best-fitting models. 

Model G L α    

Base  0.49 0.27 0.04 0.16 - 

Risk-Sensitive Loss 

Frequency 

0.25 0.23 0.07 0.05 0.54 

 

Individual-Level Analysis 

When evaluated in terms of their overall ability to fit the population of participants, 

there were large differences in performance across the set of models (c.f., Figure 2.6).  For 

example, the three Risk-Focused models failed to outperform the null model, and the 

Simple-Average and Pursuit models performed significantly worse than three best fitting 

models.  However, many of the models that performed poorly across the population 

were the best fit for subsets of individual participants – and generated high δBIC scores 

for those subsets. Figure 2.7 highlights this finding by contrasting the mean fit of each 

model across the population (blue bars) with the mean fit of each model considering 

only the participants for which a model provided the best fit (green bars); the figure also 

shows the total percentage of participants best fit by each model (percent scores 

indicated along the horizontal axis).  Of particular note is the contrast for the 

Reinforcement Comparison model.  Viewed in terms of mean fit across the population, 

this model underperformed the Base model and the overall best fitting Risk-Sensitive 

Loss Frequency model.  However, viewed in terms of its best-fit subset, the 

Reinforcement Comparison model produced the highest mean δBIC score among all the 

models.  What this indicates is that a subset of 7% of the participants was very well fit by 

this model relative to the other models, and that this subset of participants was sensitive 

to reward relative to a learned reference rather than to absolute reward magnitudes. 

Similarly, the Risk-Focused Loss Frequency model and the Pursuit model generated 

low/negative mean BIC scores across the population, but considered at best-fit subset 

level, these two models performed much better than many other models.  Notably, in the 

Risk-Focused Loss Frequency model net payoffs were completely absent in the definition 

of reward, and yet this model was the best fit for 7% of the participants and produced a 

moderately high mean δBIC for these participants.  Lastly, the Risk-Sensitive Loss 

Frequency model that was the best fitting model across the participants (in terms of 

percentage of participants best fit, and mean δBIC score) also generated a very high 



43 

 

mean δBIC score for the subset of participants that it fit the best, therefore providing 

further evidence for this model as the overall best model among those studied. 

 

Figure 2.7. Model performance for all participants versus best fit subsets. Performance 

of models in fitting all participants (blue) as compared to individual participants best 

fit by a given model (green). The percentages listed next to the models indicate the 

percent of participants that were best fit by each model.   

Evaluation of the models at the level of individual participants makes the findings 

reported in the last paragraph more clear (Table 2.12, Figure 2.8). For example, the Risk-

Focused Loss Frequency model (that was among the worst overall models) produced a 

relatively high δBIC score in fitting Participant 1 (δBIC=40.9) suggesting that in 

performing the IGT what was internally rewarding for this participant was not net 

payoffs obtained from decks, but instead choices that generated fewer losses.  Similarly, 

in fitting Participant 4, the Pursuit model produced the highest δBIC score of any model 

fit to any participant (δBIC=99.1).  This suggests that for this participant, decisions may 

have been guided not only be learned values signaling the expected payoffs from the 
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four decks, but also somewhat independently by positive reinforcement of previous 

choices (response reinforcement). Three participants (Participants 3, 14, and 35) were best 

fit by the Reinforcement Comparison model suggesting that the learning of the values 

associated with each deck may have been shaped in part by relative comparison of 

payoffs obtained from each deck to a reference level of reward rather than by the 

absolute magnitudes of these payoffs.   While the Risk-Sensitive Loss Frequency model is 

well supported by the data as the best model for the population, it is evident from the 

data in the table that no one model is able to capture all of the individual differences in 

decision making, despite having free parameters that were fit to individual participant 

data.  Moreover, a large minority of participants (25-30%) were not well-fit by any of the 

models considered in the study (see participants indicated by the bracket in Figure 2.8). 



45 

 

Table 2.12  Individual-level analysis of model performance. 

 

Participant % Good Best Model for Participant 

Mean BIC 

All Models 

BIC 

Best Model 

15 70 Base 8.8 17.5 

16 73 Base -0.2 22 

17 56 Base 40 69.1 

20 (D) 46 Base 2.1 14.6 

29 76 Base 19.2 30.3 

41 (D) 27 Base 24.9 44.1 

2 52 Simple Average -11.1 -4.7 

13 56 Simple Average -5.2 -1 

18 61 Simple Average -3.3 2.8 

22 69 Simple Average -1.7 5.6 

33 67 Simple Average 1.5 12.6 

37 69 Simple Average 1.7 11.1 

8 (D) 23 Decay -14.4 -5.5 

26 68 Decay -0.3 16.7 

30 59 Decay 8.5 13.8 

4 76 Pursuit 52.7 99.1 

5 (D) 39 Pursuit -15.2 -4.3 

9 (D) 18 Pursuit -9.5 -0.9 

23 (D) 37 Pursuit -11.8 -2.6 

3 75 Reinforcement Comparison -0.5 36.7 

14 83 Reinforcement Comparison 22.8 45.6 

35 76 Reinforcement Comparison 20.1 55.4 

7 (D) 32 Risk-Focused: Net Payoff Variance -8.9 2 

19 58 Risk-Focused: Net Payoff Variance -2.7 2 

1 55 Risk-Focused: Loss Frequency -4.8 40.9 

11 (D) 46 Risk-Focused: Loss Frequency -4.2 11.0 

36 52 Risk-Focused: Loss Frequency -10.3 -2.5 

12 65 Risk-Sensitive: Loss Variance -6.1 -2 

6 55 Risk-Sensitive: Loss Frequency -28.5 -12.1 

10 61 Risk-Sensitive: Loss Frequency -5.8 46.3 

21 69 Risk-Sensitive: Loss Frequency -26 -6.2 

24 56 Risk-Sensitive: Loss Frequency -0.6 7.9 

25 84 Risk-Sensitive: Loss Frequency 2.1 32.8 

27 (D) 39 Risk-Sensitive: Loss Frequency 1 17.5 

28 51 Risk-Sensitive: Loss Frequency 4.6 33 

31 78 Risk-Sensitive: Loss Frequency -22.1 15.9 

32 76 Risk-Sensitive: Loss Frequency 109 151.4 

34 55 Risk-Sensitive: Loss Frequency 2.9 13.4 

38 74 Risk-Sensitive: Loss Frequency 17 38.2 

39 70 Risk-Sensitive: Loss Frequency 30.5 68 

40 71 Risk-Sensitive: Loss Frequency 21.6 57.8 

Notes.   D indicates participants who performed disadvantageously.  Mean δBIC 

indicates how well the entire class of models was able to fit each participant.  The 

δBIC Best Model indicates how well the best-fitting model fit each participant.   
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Figure 2.8.  Best-fitting models for each of the 41 participants, sorted in descending 

order based on the δBIC criterion.  Bars shaded in blue identify participants for 

whom the Risk-Sensitive Loss Frequency model was the best fitting model.  A large 

minority of participants (indicated by the bracket) were not well fit by any of the 

models considered in the study. 

Discussion 

In this work I sought to formalize decision making in the IGT in terms of an explicit 

set of computational reinforcement learning (RL) models that were motivated by a 

previously demonstrated neurobiological association between frontal reward-learning 

areas in the brain and performance in the task.  My aim was to investigate the extent to 

which this class of models could account for the well-documented decision phenomena 

associated with the task as well as for the variability in performance across individuals.  

Analysis in the aggregate demonstrated that the RL framework is able to reproduce, 

endogenously, the core features of the task: initial exploration, an early preference for 

the bad decks and a subsequent shift to the good decks. Comparisons between models 

differing in their assumptions about reward, learning, and choice mechanisms revealed 

that the addition of risk as an attribute of reward yielded the best fitting model across the 

population of participants.  Specifically, when reward was augmented to include a loss 

frequency, the resulting model outperformed the currently accepted model of the task 

(as well as the other models studied) across a range of criteria, including complexity-
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adjusted goodness of fit (δBIC) and the percentage of the participants best fit by the 

model.  That this was the best performing model suggests that for many individuals, the 

avoidance of losses was an important component of reward in addition to the receipt of 

net monetary payoffs.  Moreover, the fact that one of the models that considered only 

loss avoidance as reward (Risk-Sensitive Loss Frequency) provided a good fits for 7% of 

the participants further supports a role for loss avoidance in decision making.  This is 

consistent with the idea of “loss aversion” that has been well-documented in the decision 

theory literature (2004).  

Analysis at the level of individual participants, however, suggests that even the best 

model does not yet provide a comprehensive account of the task.  No one model among 

those studied possessed sufficient structure to provide a good fit for a majority of 

participants.  Furthermore, many of the models that performed very poorly across 

participants, turned out to be the best fitting model for sizable subsets of individuals.  

This was true for participants who performed advantageously as well as 

disadvantageously and therefore cannot be attributed to the inability of the best models 

to fit the poorly performing individuals.   

The fact that no model in the class of models tested was able to reasonably account 

for individual differences for even a majority of the participants is not surprising.  The 

standard RL framework is a model of lower-level procedural learning processes.  Stimuli 

are processed by a procedural learning system that transforms stimuli into scalar 

representations of reward and then into learned values that represent the longer-term 

payoffs associated with the experienced stimuli and that can be used to guide choice   

Although the basic RL paradigm takes no stance on whether these learning and choice 

processes are purely implicit, explicit, or some combination, by not including higher-

order cognitive functions such as problem-solving and planning, the paradigm is more 

consistent with lower-level procedural process commonly associated with implicit 

learning and less consistent with more declarative processes typically associated with 

higher cognition.  Whether the IGT is better conceptualized as a primarily implicit task 

involving more of the affective or “hot” decision processes, or as a more declarative 

problem-solving task involving the more “cold” decision processes is the subject of 

considerable ongoing debate. The results of this study suggest that there are significant 

individual differences in the way individuals perform the IGT and that some of these 
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differences are not easily captured by the procedural learning processes instantiated in 

the RL framework.  One possible explanation for these results is that higher-level 

cognitive processes may be at work in addition to lower-level learning processes.  While 

its developers took an initial stance that the IGT is “cognitively impenetrable”, 

subsequent studies have provided quite convincing evidence to the contrary.  For 

example, Maia & McClelland (Yechiam, et al., 2005) have demonstrated that a majority of 

participants who performed the IGT developed declarative knowledge of the payoff 

structure of the task sufficient support advantageous performance.  It remains to be 

shown whether such information is causally linked to decision behavior, but 

nevertheless this finding (and other related findings) suggest that computational work 

combining lower-level learning processes with higher-order problem solving may be  

worthy of attention.  Alternatively, the RL models used in this study were the simplest 

form of model within the larger class of RL models and these were studied with 

functional variations considered one at a time.  It is possible that by combining model 

variants (e.g., using simple averaging in conjunction with a loss frequency component 

and pursuit-based selection) greater variability might have been captured.  Also, richer 

models certainly exist and it is possible that these models might better account for 

individual variability in the task.   For example, it is possible that a richer representation 

of state that includes participants‟ current profit (a quantity available to participants 

during the game) and/or that includes informational attributes of the game (the 

occurrence of important events such as the first loss in a deck) might provide additional 

explanatory value.  Hybrid models that integrate goal-oriented problem solving with the 

choice mechanisms of the RL framework might also an interesting direction for further 

research. 

Lastly, the results of this study offer a note of caution for the use of the currently 

accepted models of the IGT to characterize clinical impairments in decision making.  To 

date, studies using this model have relied on differences in population-averaged model 

parameters to infer behavioral differences between patients and healthy controls.  For 

example, Huntington‟s patients and chronic substance users have been characterized as 

“more focused on gains and recent payoffs than healthy controls”, while Parkinson‟s 

patients have been characterized as “more focused on losses and less deterministic in 

choice” than healthy controls (see B. D. Dunn, et al., 2006 for a review).  The results of 
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these clinical studies rest on two important assumptions: First, that population averages 

provide a reasonable proxy for individual performance; and second, that the expectancy-

valence model offers a reasonable (if not comprehensive) account of the decision 

processes that underlie behavior in the IGT.  The findings reported in this study suggest 

that neither of these assumptions holds with great force. By adding a component of risk 

to the computational instantiation of reward, the efficacy of the RL-based account of the 

IGT was greatly improved. Critically, however, the median parameter estimates for this 

risk-sensitive model were very different than those found for the Base model.  While it is 

possible that prior characterizations of patients based on model parameters might still 

hold in under the Risk-Sensitive Loss Frequency model, this is by no means a foregone 

conclusion.  The base model is nested within the Risk-Sensitive model (setting the β 

parameter in the Risk-Sensitive model to zero yields the Base model) and that fact that 

median parameter estimates dramatically changed upon the introduction of risk does 

not bode well for the robustness of the clinical assessments that have been based on 

these parameters.  Until a more comprehensive model of the IGT is found, it is my 

opinion that model comparisons are a more appropriate approach to clinical assessment 

than are parameter comparisons.  
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CHAPTER III. IDENTIFYING INDIVIDUAL DIFFERENCES 

Introduction 

Studies of decision making using the IGT have followed three approaches that differ 

in objective and method of inference (Figure 3.1).  In the first approach (Figure 3.1A), the 

performance of a population of interest is compared to performance by a control 

population, and inferences are drawn based on tests of mean differences in a dependent 

measure, typically %Good.   Research hypotheses most often involve proposals that the 

population of interest will exhibit disadvantageous performance relative to controls. 

Examples of such studies are numerous, and include comparisons of clinical populations 

to healthy controls (for example, Crone & van der Molen, 2004), comparisons across age 

groups (for example, O'Carroll & Papps, 2003), and comparisons of treatment to control 

groups under pharmacological (for example, Hinson, Whitney, Holben, & Wirick, 2006), 

cognitive (for example, Preston, et al., 2007), affective  (for example, Brand & Altstotter-

Gleich, 2008) or other experimental manipulations.   
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 (A) 

 

(B) 

 

(C) 

 

Figure 3.1 Three approaches to using the IGT to characterize decision making.  (A) 

Clinical, developmental, and other experimental studies have compared mean 

differences in %Good to draw conclusions about decision behavior in the comparison 

population/condition relative to a control population/condition.  (B)  Correlational 

studies have analyzed the association between individual IGT performance in terms 

of %Good and concurrent measures such as scores from personality assessments or 

cognitive tasks.  (C) Computational studies have fit models to individual decision 

data from patient and control populations and then used differences in mean 

parameters to characterize differences in decision behavior. 

A second common approach to inference using the IGT are correlation studies that 

have investigated the relationship between IGT performance (typically measured using 

%Good) and concurrent measures of interest (Figure 3.1B).   Examples of such studies are 

also numerous, and have utilized a wide range of different measures including 

personality traits (for example, Suhr & Tsanadis, 2006), affective states (for example, 

Brand, Recknor, Grabenhorst, & Bechara, 2007), and concurrent cognitive measures (for 

example, Yechiam, et al., 2005).  A third and less common approach to inference based on 

the IGT has utilized computational process models to characterize differences in decision 

behavior across populations (Figure 3.1C).  In these studies, models are fit to decision 

data from individual participants from two or more populations of interest.  Mean (or 

median) model parameters are then computed for each population and parameter 

differences are  used to characterize differences in decision behavior across the 

populations (Huizenga, et al., 2007). 
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My purpose in briefly reviewing these uses of the IGT in the study of decision 

making is to highlight the fact that the vast majority of these studies (i) have been based 

on univariate analysis of %Good (or %EEV) as a dependent measure, and/or (ii) have 

focused on population averages as the level of analysis. For example, clinical, 

developmental and experimental studies (as in Figure3.1A) have focused on population-

averaged inference using univariate analyses of %Good.  Correlational studies (as in 

Figure 3.1B) have narrowed the level of analysis to the individual, but are inherently 

univariate in terms of inference in that they attempt to predict a single dependent 

measure from one or more personality or behavioral measures.  And computational 

studies (as in Figure 3.1C), in fitting a sequence of selections from the four decks, have 

taken a multivariate approach, but have drawn their inferences based on comparisons of 

population-averaged model parameters.  

Given the wide ranging use of the IGT, particularly in clinical settings, one 

reasonable and important question is whether or not the standard univariate, 

population-level approach is well-justified by the data.  The soundness of this approach 

rests on several implicit and critical assumptions.  First, population-level analyses, in 

general, rely on an assumption that population-averaged measures are a reasonable 

approximation to the way most individuals perform a task.   In the IGT, this implies that 

the choice behavior of participants is reasonably captured by a common pattern of deck 

selections as defined by the percentage of cards chosen from the good versus the bad 

decks (c.f., Figure 1.4), or the distribution of selections across the four decks (Figure 3.2A), 

or more stringently by a common temporal pattern of selections (Figure 3.2B).   If 

population-level analysis is well justified, then one or more of the population-averaged 

patterns ought to offer a reasonable approximation to performance in the task – and in 

doing so provide support for inference based on the comparison of means across 

populations or conditions. 
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 (A)

 

(B) 

 

Figure 3.2  Typical IGT performance as characterized by three population-averaged 

patterns.  (A) Mean percent of selections across the four decks and 100 trials.  (B)  

Distribution of selections across the four decks, in five blocks of 20 trials.  The values 

in each plot are means taken across a population of 844 participants from four 

independent data sets. Source: Multiple IGT data sets obtained for the purposes of 

this dissertation (see Methods in Chapter IV).  

A second important assumption is entailed by the use of a single measure of 

performance, namely the assumption that individual differences are quantitative and are 

reasonably captured by variation along a single dimension of performance.  In particular, 

analyses of the IGT based on %Good (or %EEV) rest on the assumption that decision 

behavior is guided largely by sensitivity to the expected values of the four decks and 

furthermore that differences in performance across participants can be explained 

dimensionally by differences in their sensitivity to expected value.  While it is possible 

that IGT performance is well represented by population-averaged patterns of 

performance and that individual differences are well captured by quantitative 

differences in %Good (or %EEV), to my knowledge the strength of these assumptions has 

not been tested. At first look, these assumptions seem quite reasonable.  Figure 3.3 shows 

the distribution of %Good across a population of participants aggregated from several 

independent IGT data sets.  These data do not appear plainly multi-modal (Figure 3.3A), 

and the nearly linear pattern of variation across of the range of %Good (Figure 3.3B) at 

least suggestive that differences in performance may be dimensional in nature.  
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 (A) 

 

(B) 

 

Figure 3.3.  Distribution of IGT performance measured as %Good across a population 

of 844 healthy participants.  (A) Histogram showing the overall shape of the 

distribution of %Good, overlaid with a Gaussian distribution fit to the data.  (B)  The 

%Good measure shown for each of the 844 participants, sorted from least to most 

advantageous.  The circle marks the mean of %Good for the population, and the 

dashed and dotted lines indicate the values of %Good that are one and two standard 

deviations above/below the mean.  Source: IGT data collected by the authors and 

combined for the purposes of this study (see Methods in Chapter IV). 

However, there are several reasons to question the assumptions underlying standard 

univariate, population-level analysis of the IGT.   First, there is typically a high degree of 

variability in the mean percentage of cards selected from each deck across participants 

(Figure 3.4A). Second, a large number of healthy participants typically perform the task 

disadvantageously.  In the data set of healthy participants (N=844) used to generate the 

figures in this introduction, 27% of the participants selected more cards from the good 

decks than the bad decks (i.e., performed with %Good ≤ 0.5), and 14% selected more 

cards from the two decks with the lowest experienced value (i.e., performed with %EEV 

≤ 0.5). Third, the results of the computational study in Chapter II revealed that a model 

incorporating sensitivity to risk in addition to expected value provided both a better 

overall fit to individual IGT decision data as well as the best fit for a large subset of the 

participants.  Fourth, a recent study of IGT performance across age groups found a 

developmental trend in decision rules with guessing in young children giving way to 

proportional reasoning and then subsequently to value-based decision making in young 

adults (for example, in: Bechara, et al., 1994; Bechara, Damasio, et al., 2000; Bechara, 

Damasio, Tranel, & Anderson, 1998; Bechara, Tranel, et al., 2000; Preston, et al., 2007). 

Lastly, visual inspection  of multivariate decision data at the level of individual 



55 

 

participants (but ignoring all temporal aspects of decision making) raises the possibility 

that there may be important structure in the decision data beyond what can be captured 

by a single measure (Figure 3.4B). While there are no well-separated clusters in the low, 

3-dimensional representation of the task shown in Figure 3.4B, the data seem to be 

dispersed across the three diagonals suggesting the possibility of underlying structure 

that might be present in higher a higher-dimensional representation. 

 (A) 

 

(B) 

 

Figure 3.4  Selection variability and dispersion. (A) Mean selections by deck 

aggregated across a population of 844 participants from several independent data 

sets.  The plot shows the median, 25
th

 and 75
th

 percentiles, range, and outliers for each 

deck.  (B) Patterns of participant selections in multivariate space depicting the 

percentage of selections by each participant across decks B, C and D.   Source: IGT 

data collected by the authors and combined for the purposes of this study (see 

Methods in Chapter IV). 

Taken together, these facts suggest that there may be important differences in 

decision behavior in the IGT and I  therefore sought to reexamine the task in a large 

sample of participants using a multivariate approach that focused on the behavior of 

individual participants. 

Methods 

I first sought to determine whether or not there exist fundamental differences in the 

way healthy participants perform the IGT. Based on the evidence reviewed in the 

Introduction, I hypothesized that decision making by participants who perform the task 

disadvantageously might be qualitatively different from the behavior of advantageously 

performing participants.  I further speculated that among advantageously performing 

participants, there might be important differences in the temporal patterns of their 
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selections and/or differences in the nature of their preferences for the four decks.   I 

tested these hypotheses using multivariate, unsupervised clustering procedures to 

determine whether IGT performance is well represented by a single, common decision 

style or is better represented by multiple decision styles.  I use the term decision style to 

refer to a unique pattern of decision behavior, choosing this term because of its neutrality 

with respect to the ongoing debate about whether decision making in tasks like the IGT 

is explicit (declarative, or “cold”), implicit (affective, procedural, or “hot”), or some 

combination of the two. 

Data Sources 

The behavioral data used in this study consisted of IGT data collected from 315 

participants by experimenters at the University of Iowa and reported as control subjects 

in the literature (Bechara, 2007).  These data were also used in the development of 

normative data to support the version of the IGT now available as an assessment tool 

(Bechara, Tranel, et al., 2000).   The participants were recruited from sources within and 

outside the university, screened for psychiatric and neurological disorders, and paid for 

their participation.  The population of participants was 61.3% female and had mean age 

of 28.8 (SD of 0.79, range of 18-65) and mean years of education of 15.7 (SD =2.1, range of 

11-22). These data were collected using a computerized administration of the IGT with 

the A‟B‟C‟D‟ version of the decks. The payoff schedule of these decks is summarized in 

Table 1.1, described in more detail in Bechara et. al (Bechara, 2007), and is the same as the 

payoff schedule used in the commercially available IGT assessment tool (Hastie, 

Tibshirani, & Friedman, 2001).  For convenience, in the remainder of this article I omit the 

apostrophes and refer to the four decks simply as A, B, C, and D.   

Analysis Procedures 

My approach to testing for the presence of multiple decision styles involved four 

steps. First, I generated a multivariate set of performance features for each subject.  I then 

used these features as input to a robust clustering procedure adapted from methods 

developed in the literature on machine learning and data mining.  Next, I used a large 

set of validity metrics to evaluate and select the clustering solution best-supported by the 

data.  In the final step of the procedure, I analyzed the prototypical patterns of 

performance associated with the clustering solution as a basis for characterizing decision 

making in the task.  
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Feature extraction 

Given the objective of investigating performance from a multivariate perspective, I 

extracted a set of features based on two considerations.  First, I wanted the features to 

directly reflect the decision options available to participants as they performed the task, 

rather than being a set of derived measures abstracted from the task.  I therefore used 

participants‟ choices among the four decks as the primary basis for measuring 

performance.   Second, because the IGT involves learning through experience, I wanted 

the features to capture the temporal aspects of the task.   I therefore chose to measure 

performance in terms of choices among the four decks across five blocks of 20 trials.   

Based on prior experience with IGT data, I believed that a trajectory of choices across five 

blocks would sufficiently capture the most important temporal aspects of task.  While a 

more fine-grained division of choices across time might have provided additional 

information to a clustering procedure, I felt that such benefits would be outweighed by 

the additional computational complexity.  Furthermore, the “four-deck by five-block” 

feature set provides explanatory convenience as it is consistent with the way many users 

of the IGT visualize their data.  In summary, I chose to quantify the performance of each 

participant as a multivariate set of features (a 20-vector) representing the percentage of 

choices made from each deck, in each of five blocks of 20 trials.    

The feature set therefore consisted of a [315 x 20] matrix of percentages representing 

the selections of four decks across five blocks by 315 participants.  Because each of the 20 

features were represented in percentages, they shared a common range of [0,1] and I 

therefore chose not to rescale the data.  Furthermore, because any differences in variance 

across the 20 features should have been due to underlying differences in decision 

behavior rather than differences in unit of measure or scale, I chose not to standardize or 

normalize the features. For a useful discussion of the benefits and risks of data 

normalization and scaling prior to clustering, see Section 14.3.3 in (Duda, Hart, & Stork, 

2001) and Section 10.6.1 in (Hastie, et al., 2001).  As a final step in feature extraction, I 

looked for the presence of outliers by computing the Mahalanobis distance
2

 between 

each participant‟s multidimensional performance data and the multidimensional 

                                                        

 

2

 Mahalanobis distance is a scale-invariant multivariate measure of distance (dissimilarity) that 

accounts for feature correlations in the data.  
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population mean.  I then standardized these distances and removed four participants 

whose data were more than three standard deviations from the mean.  Inspection of 

their performance patterns revealed that these participants either selected nearly all of 

their 100 cards from the two advantageous decks (suggesting that they may have had 

prior knowledge of the task), or they chose from one or two decks (not necessarily 

advantageous) and perseverated in their choice throughout the task (suggesting they 

may not have performed the task according to the instructions).  After removal of these 

four outliers, the data set consisted of 311 participants.   

Clustering and validity 

While data clustering is well-known method in the behavioral sciences and has 

become an off-the-shelf tool available in most commercial statistics packages, clustering is 

in many ways an ill-posed problem that presents a set of challenges often obscured by its 

ready availability.  These challenges are less serious when clustering is used for 

exploratory analysis.  However, when identification of the underlying clusters in a data 

set has significant import, but “ground truth” is unknown – as is often the case in clinical 

assessment and medical diagnosis – these challenges loom quite large.  Given the 

widespread and increasing use of the IGT in the study of decision making and in clinical 

assessment, I utilized a clustering procedure designed to address these challenges. 

The objective of unsupervised clustering analysis is to use a set of features to identify 

subsets of samples in the data (in this study, subsets of participants) that possess a higher 

degree of similarity to each other than to samples that are not members of the same 

subset.  As applied to the IGT, the goal in this study was to identify regions in 20-

dimensional feature space in which there are “clumps” or clusters of participants sharing 

similar patterns of performance in the task (if they exist).  Given no a priori knowledge of 

the statistical structure of the feature space and no ground truth on which to validate a 

clustering solution, clustering is inherently a difficult problem.  Before presenting the 

procedures used in this study, I first discuss a set of well-known problems with data 

clustering that motivate my particular choice of methods.   

In the choice of clustering methods, I sought to overcome five factors that pose 

challenges to the robustness and stability of clustering solutions.  First, all clustering 

algorithms must in some way mathematically define the manner in which data samples 

will be judged as being similar (or dissimilar) to one another.  In this study I will refer 
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most often to the concept of dissimilarity, but note that similarity is its inverse.  It is well-

established that clustering solutions can be very sensitive to the choice of dissimilarity 

measure, and often the choice of an appropriate dissimilarity measure is more important 

than the choice of the clustering algorithm itself (Dubes & Jain, 1976; Halkidi, Batistakis, 

& Vazirgiannis, 2002; Halkidi & Vazirgiannis, 2001; Milligan & Cooper, 1985).  While 

dissimilarity measures are numerous, there is little theoretical guidance to assist a 

modeler in choosing among them and thus a dilemma:  the choice of dissimilarity metric 

should be motivated by an understanding of the data, but the modeler typically lacks 

such knowledge, a priori.  The most common solution to this dilemma is to use Euclidean 

distance (or for technical reasons, squared Euclidean Distance) and in fact, Euclidean 

distance is the default in many off-the-shelf clustering programs.  A second important 

challenge is the fact that clustering solutions are often highly dependent on the choice of 

algorithm (e.g., k-means, hierarchical, etc.).  Algorithms differ in their underlying 

assumptions and in the criteria they seek to optimize.  The appropriateness of one 

algorithm over another depends largely on the number, shape, size, density, and 

separability of the clusters present in the data.  So here again, a dilemma:  determining 

whether a given algorithm is well- or ill-suited for a particular data set depends on 

knowledge that is often not available in advance.  A third challenge is presented by the 

fact that many clustering algorithms (particularly those that require iterative 

optimization) are non-deterministic because of their dependence on how they are 

initialized:  when run multiple times on the same data set, these algorithms can produce 

different solutions representing local optima or incomplete convergence to a global 

optimum.   Another well-known problem is that clustering solutions can be highly 

sensitive to the number of clusters an algorithm is asked to fit, and typically the true or 

“natural” number of clusters is not known a priori.  It can be the case that a solution fit to 

k clusters does not contain some (or any) of the same clusters found in a solution fit to k-1 

or k+1 clusters.  A typical approach to identifying the number of clusters (k*) best-

supported by the data is to fit solutions across a range of k and to identify the best 

solution based on finding the maximum (or in some cases minimum) value of a validity 

criterion computed for each value of k.  Once again, however, the modeler is faced with a 

dilemma:  Among validity criteria commonly used in the selection of clustering solutions, 

it has been found – using both artificial and real data sets in which ground truth is 
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known –  that some criteria routinely outperform others, but no one criterion 

consistently selects the correct solution (Duarte, Fred, Lourenco, & Rodrigues, 2005; 

Sandrine Dudoit & Fridlyand, 2002, 2003; Fred & Jain, 2003, 2005, 2006; Lange, Roth, 

Braun, & Buhmann, 2004; Law, Topchy, & Jain, 2004; Lourenco & Fred, 2005; Topchy, 

Law, Jain, & Fred, 2004).   A fifth challenge in data clustering is that solutions can be very 

sensitive to the idiosyncrasies of the particular data sample being fit, and thus do not 

always generalize to the population from which the sample was drawn. Small 

perturbations in a data sample (e.g., removal of a few samples, a slight change in the 

proportion of samples from different clusters, the presence of outliers, or differing 

numbers of outliers) can lead to significant changes in a clustering solution.  This is 

particularly problematic in situations when data is scarce and the number of samples is 

small.  

Clustering procedure 

My approach to ensuring robustness in the clustering procedure was to exploit 

diversity – to rely on converging evidence from a diversity of methodological choices – 

rather than make single arbitrary decisions based on little or no a priori knowledge of the 

statistical structure of the IGT data.   By using (i) multiple dissimilarity metrics, (ii) 

multiple clustering algorithms, (iii) multiple algorithm initializations, (iv) multiple 

validity criteria in selecting the number of clusters, and (iv) multiple realizations of the 

data set as produced by resampling, I addressed each of the five challenges to validity 

outlined in the preceding section.  One difficulty in relying on a diversity of clustering 

methods is that clustering results must be combined in some way to determine a 

“consensus” solution.   One approach to combination is to run all the planned variations 

and then to identify a final solution heuristically via examination of the resulting 

solutions.  Another more principled approach is provided by ensemble clustering 

methods
3

.  Ensemble clustering methods have been well-developed in the machine 

learning literature (Avogadri & Valentini, 2007; S. Dudoit, Fridlyand, & Speed, 2002; Luo 

& Liu, 2007; Masulli & Rovetta, 2003; Qiu, Wang, & Liu, 2005; Smyth & Coomans, 2007; 

                                                        

 

3

 Ensemble clustering is also referred to as consensus clustering. This method is similar in 

approach to bootstrap aggregation (bagging), but is more general in that it allows for aggregation 

across variations in method other than perturbations in the data via bootstrapping.   
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Yu, Wong, & Wang, 2007) and are widely employed in DNA microarray analysis and in 

mining gene-expression data (e.g., (Fred & Jain, 2003, 2005, 2006)), but to my knowledge 

are not widely used in the behavioral sciences.   

In this study, I used an ensemble clustering method adapted from the evidence 

accumulation clustering approach of Fred and Jain (Sandrine Dudoit & Fridlyand, 2003) 

and the bagged clustering methods of Dudoit and Fridyland (Hartigan & Wong, 1979).  A 

conceptual overview of the approach is shown in Figure 3.5. The main idea is to generate 

a large set of solutions (an ensemble) using a diversity of methods and to use these 

solutions as a basis for measuring the similarity between every pair of participants.  

Specifically, every time a clustering solution assigns two participants to the same cluster, 

these participants receive a "vote" as being similar to one another.  Participants that are 

frequently assigned to the same cluster across all the solutions in the ensemble receive a 

large number of votes.  In contrast, participants that are rarely assigned to the same 

cluster receive few votes.  A consensus similarity matrix is produced by tallying the votes, 

i.e. counting the number of times each pair of participants is assigned to the same cluster.  

This consensus similarity matrix is then used as an input to a final stage of clustering, 

yielding a single k-cluster solution across a range of values for k.   A set of validity criteria 

are used to select the number of clusters (k
*

) that is best supported by the data. The 

efficacy of this method is rooted in diversification:  participants that are frequently 

clustered together in spite of perturbations of the data set, differences in dissimilarity 

measures, differences in clustering algorithms, and variation of the number of clusters, 

are considered highly similar as supported by a convergence of evidence. 

I used five clustering algorithms chosen because of their common usage and the 

diversity of their underlying assumptions.  These were k-means clustering (Ng, Jordan, 

& Weiss, 2001), spectral clustering (Ward, 1963), and three variants of agglomerative 

hierarchical clustering (Duda, et al., 2001; Hastie, et al., 2001) that used the average, 

complete, and Ward‟s linkage methods (Sandrine Dudoit & Fridlyand, 2003; Fred & Jain, 

2005).  Each of these algorithms were applied to the data using four different measures of 

dissimilarity:  squared Euclidean distance, city-block distance, cosine distance, and a 

correlation-based distance metric.  Because Ward‟s linkage is defined only in terms of 

Euclidean-based distances, I did not use the other three distance metrics with this 

algorithm.  Combining the five algorithms with four dissimilarity metrics, and taking 
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into account the limitations of Ward‟s linkage method, the procedure used a total of 17 

different clustering models in generating the ensemble of solutions.   

 

Figure 3.5 Conceptual overview of the ensemble clustering procedure. A diversity of 

methods is used to generate a large ensemble of clustering solutions.  In the figure, 

this diversity includes multiple resampling of the data (bootstrapping), multiple 

clustering algorithms (with multiple re-initializations to avoid local optima), multiple 

dissimilarity measures, and fitting solutions varying in the number of clusters (k) to 

be fit.  Other forms of diversity are also possible, for example diversity in data 

preprocessing and input features.  An ensemble consists of solutions that assign each 

participant to a cluster, and the solutions vary in the number of clusters fit to the 

data.  Participants frequently assigned to the same cluster across the solutions 

contained in the ensemble are considered more similar than participants that are 

rarely assigned to the same cluster.  The ensemble therefore provides a set of votes – 

converging evidence – for the similarity structure in the data.  A consensus similarity 

matrix is produced by tallying the votes, i.e. counting the number of times each pair 

of participants are assigned to the same cluster.  A final stage of clustering is used to 

extract a consensus solution from the consensus similarity matrix across a range of 

values of k, and the number of clusters (k*) that is best supported by the data is 

selected using a large set of validity criteria.   In this study, I used 50 bootstrap 

samples (blue cylinders) of a [311x20] data set, five clustering algorithms (green 

squares), four dissimilarity measures (orange circles), and varied k from 2 to 15 in 

steps of 1 and from 15 to 60 in steps of 5, for a total of 24 variations.  Method adapted 

from (Calinski & Harabasz, 1974). 

To address the issue of generalizability of clustering solutions across data samples, I 

used bootstrapping to generate 50 replications of the data set of 311 participants and 

applied each of the 17 clustering models to each of these 50 bootstrap samples.  Each 

bootstrap sample was generated by drawing 311 participants, with replacement, from 

the original data set. By sampling with replacement, bootstrapping generated 

replications of the data that excluded many participants and in their place included 
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duplicates of other participants.  For the data set of 311 participants, on average a 

bootstrap sample will exclude approximately (1 − 1 311 )311
 or 37% of the participants 

and therefore the bootstrapped samples represent a substantial perturbation of the data.  

By including solutions fit to each of these 50 bootstrap samples in the ensemble, we 

sought to reduce the sensitivity of the consensus solution to idiosyncratic realizations of 

a single data set.  I note, however, that while the use of bootstrapping provides a way to 

enhance the internal validity of a clustering solution for a single data set, it is not a 

substitute for external validation using independent data sets – an endeavor pursued in 

Chapter IV.    

Each of the 17 clustering models were fit to each of the 50 bootstrap samples, with 

the number of clusters (k) to be fit ranging from 1 to 15 in steps of 1, and from 15 to 60 in 

steps of 5, for a total of 24 levels of k.  Note that k=1 is a degenerate case in which all 

participants were assigned to a single cluster.   Although it would be extremely unlikely 

to find as many as 15 to 60 natural clusters in a population of 311 participants, the 

purpose of including solutions at very large values of k is that these solutions provide 

important evidence for the similarity of each pair of subjects.  For example, when a 

subset of participants is frequently assigned to the same cluster across a set of 60-cluster 

solutions, this is strong evidence that these participants have similar patterns of 

performance
4

.  Using the 17 clustering models, 50 bootstrap samples and 24 values of k, 

the procedure generated an ensemble consisting of 20,400 clustering solutions for the 

IGT data set.   To guard against finding local optima with the two non-deterministic 

algorithms (the k-means and spectral methods), each of the 50x24=1200 runs of these 

algorithms was repeated 20 times with random initialization and only the best solution 

(the minimum squared error solution) was retained and added to the ensemble.  

To extract a final solution from the consensus similarity matrix (c.f., Figure 7), I used a 

spectral clustering algorithm to fit k-cluster solutions for values of k ranging from 1 to 10.  

I then computed values for 13 validity criteria across each of these 10 extracted solutions 

                                                        

 

4

 Note:  Including large-k solutions in the ensemble precludes the use of parametric clustering 

models such as Gaussian Mixtures because of the large number of parameters that need to be fit.  

For example, a Gaussian Mixture model with 60 clusters applied to a 20-feature data set would 

necessitate fitting 120 parameters in a minimal form of the model and 24,119 in a full form of the 

model.  
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and used the mean values and majority vote of these criteria to determine the number of 

clusters k
*

 best supported by the data.   In general, validity criteria attempt to quantify 

the compactness of clusters, the separation of clusters, or some combination of the two:  

better solutions tend to be those with very compact clusters that are well-separated.  The 

validity criteria used in this study were:  Calinksi-Harbasz criterion (Rousseeuw, 1987), 

mean Silhouette width (Tibshirani, Walther, & Hastie, 2001) using Euclidean, city-block, 

correlation, and cosine distances, Gap-PC and Gap-Uniform statistics (J. C. Dunn, 1974), 

Dunn‟s index (Krzanowski & Lai, 1988), Krzanowski-Lai criterion (Davies & Bouldin, 

1979), Davies-Bouldin criterion (Zhao, Liang, & Hu, 2006), Improved Hubert Gamma 

Statistic (Duda, et al., 2001), Within-Cluster Sum Squared Error criterion (Duda, et al., 

2001), and the Trace Criterion (Tibshirani, et al., 2001).  I abbreviate these as Ch, Sil-euc, 

Sil-city, Sil-corr, Sil-cos, Gap-pc, Gap-uni, Dunn, Kl, Db, Hubi, SSW, and Tr(W/T), 

respectively.  Nine of these criteria (Ch, Sil-euc, Sil-city, Sil-corr, Sil-cos, Dunn, Kl, Db, 

and Hubi) select k* as the number clusters that minimizes or maximizes the criterion.  

Because these criteria differ in unit of measure and whether they select based on a 

minimum or maximum, I linearly scaled them such that each had the range [0,1], with 

larger values indicating a better solution.  Two of the criteria, Gap-pc and Gap-uni select 

k* based a test comparing the values of the statistic at successive values of k:  k* is 

selected as the smallest k for which Gap(k) ≥ Gap(k+1) – s(k) where s is an error term 

(Tibshirani, et al., 2001).  The two criteria SSW and Tr(W/T) are both monotonically 

decreasing functions of k.  SSW is the total within-cluster sum-of-squares for a clustering 

solution and selection of k
* 

is accomplished by finding the inflection point (“knee”) in the 

plot of SSW versus k.   Tr(W/T) is a standardized variant of SSW in which k
*

 is also 

selected by finding a knee.  To avoid the biases of determining the knee via visual 

inspection, I developed a regression-based approach to find the knee algorithmically. 

Results 

Number of Clusters 

After generating the ensemble of 20,400 clustering solutions and extracting consensus 

solutions with the number of clusters ranging from one to ten
5

, we computed and 

                                                        

 

5

 I did not expect to find more than 10 natural clusters in the data. 
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analyzed the validity criteria to determine whether the data better supported a single- or 

multiple-cluster grouping of the participants.  The validity metrics for each value of k are 

given in Table 3.1.  It is clear from these results that a single-cluster solution is rejected 

and that a three-cluster solution is strongly supported by the data.  Of the 11 validity 

criteria that selected k
*

 at their maximum value, 10 selected the three cluster solution and 

the outlier (Dunn‟s index) selected a two-cluster solution with the three-cluster solution 

a very close second.  The test-based Gap-pc and Gap-uni criteria selected three- and six-

cluster solutions, respectively.  While split in their selections, it is important to note that 

these are the only criteria mathematically defined for k=1, and both strongly rejected 

this single-cluster solution.  The two “knee” criteria both selected the three-cluster 

solution, and therefore overall 11 of the 13 validity criteria selected the three cluster 

solution.    
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Table 3.1  Normalized validity criteria for ensemble solutions. 

Validity 

Criteria 

Selection 

Basis 

Criteria values for number of clusters (k) 

1 2 3 4 5 6 7 8 9 10 

Ch
a

 Max - 0.776 1.000 0.619 0.395 0.430 0.234 0.010 0.060 0.00 

Sil-euc
a

 Max - 0.788 1.000 0.754 0.375 0.371 0.242 0.000 0.078 0.103 

Sil-city
a

 Max - 0.603 1.000 0.614 0.286 0.355 0.219 0.000 0.039 0.049 

Sil-corr
a

 Max - 0.444 1.000 0.430 0.215 0.200 0.000 0.268 0.082 0.024 

Sil-cos
a

 Max - 0.419 1.000 0.564 0.262 0.314 0.095 0.019 0.000 0.008 

Dunn
a

 Max - 1.000 0.946 0.245 0.059 0.376 0.399 0.000 0.160 0.364 

Kl
a

 Max - 0.143 0.647 0.191 0.051 1.000 0.421 0.000 0.257 - 

Db
a

 Max - 0.277 1.000 0.413 0.347 0.359 0.092 0.055 0.054 0.000 

Hub
a

i Max - 0.483 1.000 0.511 0.421 0.165 0.198 0.000 0.102 - 

Gap-pc
b

 Test 0.000 0.000 0.614 0.070 0.000 0.957 1.000 0.000 0.321 - 

Gap-uni
b

 Test 0.000 0.000 0.000 0.000 0.000 0.798 1.000 0.000 0.000 - 

SSW
c

 Knee 1.000 0.656 0.380 0.294 0.229 0.120 0.092 0.075 0.030 0.000 

Tr(W/T)
 c

 Knee 1.000 0.313 0.222 0.176 0.146 0.083 0.051 0.059 0.017 0.000 

Notes: Dashes denote criteria that are not mathematically defined at a particular 

value of k.  The selected value for each criterion is indicated in boldface type.
 

a

 Validity criteria were normalized to the range [0,1] and inverted as necessary so 

that the basis for selecting the number of clusters was based on their maximum 

value.  For some criteria, selection was based on either a test comparing the value 

of the criterion at successive levels of k (e.g. Gap-pc and Gap-uni) or based on 

finding the point of maximum inflection (a “knee”).  The k-cluster solution 

selected by each criterion is indicated in shaded cells with boldface type. 

b

 The Gap criteria select k
*

 as the smallest k that satisfies the inequality Gap(k) ≥ 

Gap(k+1) – s(k) where s is an error term (Hastie, et al., 2001; Rencher, 2002; 

Tabachnick & Fidell, 2001).  Values for the Gap criteria in the table are the degree 

to which the inequality has been satisfied i.e., the difference between Gap(k) and 

Gap(k+1) – s(k), with all negative values shown as zero.  k
*

 is indicated by the 

first cell with a value greater than zero.   

c

  SSE and Tr(W/T) are decreasing functions of k and therefore k
*

 is selected by 

finding the “knee” in the plot of the criterion versus k.  To avoid the biases of 

visual inspection, I developedd a regression-based approach to select the knee 

algorithmically. 

While the validity criteria strongly supported the three-cluster solution based on 

their “majority vote”, it was also important to consider how strongly this solution was 

favored over the next best set of solutions.  I therefore computed the means, medians 

and standard errors across the criteria and these values are shown in Figure 3.6.  It can be 

seen in the figure that the mean and median of the criteria for the three-cluster solution 

are well separated from the other solutions.  Taken together, the majority voting and the 

mean/median analyses strongly support the conclusion that the 311 participants in the 
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data set were best represented in terms of three groups that differ in their pattern of 

selections from the four decks across five blocks. 

 

 

Figure 3.6  Means and medians of eleven cluster validity criteria for ensemble 

solutions ranging from 1 to 10 clusters.  Error bars represent the standard error of the 

mean across the eleven criteria.  Criteria were normalized to the range [0,1] and 

inverted as necessary so that larger values correspond to higher indicated validity. 

Converging evidence from this set of criteria support selection of a solution with 

three clusters.  Not shown are two validity criteria that select k based on a “knee” in a 

sequence rather than based on a maximum value.  These three criteria also support 

the three-cluster solution. 

Cluster Prototypes 

Having found strong support for grouping participants into three clusters, I next 

sought to characterize the participants in these clusters in terms of their similarities and 

differences in decision behavior in the task.  A clustering solution simply consists of an 

assignment of each participant to one of k clusters.  I used these assignments to 

investigate the patterns of performance for participants in these three clusters, by 

averaging the four-deck by five-block data separately for each cluster and then analyzing 

the resulting prototypical decision patterns.    
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The first cluster
6

 prototype is shown in Figure 3.7. Of the 311 participants, 121 (39%) 

were assigned to this cluster by the ensemble clustering procedure.  In the first block of 

20 trials, these participants showed a preference for deck B, selecting approximately 

twice as many cards from this deck as from the other three decks from which they made 

approximately an equal number of selections.   In subsequent blocks, these participants 

exhibited a strong and persistent preference for deck D, the deck that offered positive 

expected value and delivered low frequency losses (losses on average once every ten 

cards).   In the final block, participants showed a slight increase in their preference for 

deck C. This seemed an odd change in behavior given the consistency in preference for 

deck D across the blocks.  I therefore inspected the trial-by-trial selections for individual 

participants assigned to this cluster.  I discovered that as a result of developing a strong 

early preference for deck D, many of these individuals depleted the cards
7

 in deck D and 

as a result were forced to choose from another deck – and chose to select from deck C, 

the other advantageous deck.   Given this fact, I concluded that after the first block, 

participants in this cluster did in fact show a preference for deck D that persisted for the 

remainder of the task.  That many participants were forced to shift their selections after 

depleting deck D and switched to advantageous deck C underscores the interpretation 

that these participants were driven foremost, by a sensitivity to expected value (rather 

than by some other attribute unique to deck D). Hereafter, for convenience I refer to this 

cluster as the “EV-LowFreq” cluster.  

                                                        

 

6

 Note that clusters are typically labeled with numerical indices and the assignment and ordering 

of these labels is arbitrary. 

7

 These data were collected using decks each consisting of 60 cards. More recent versions of the 

IGT include more cards so that no deck can be depleted. 



69 

 

 

Figure 3.7  Mean pattern of performance for participants in the first cluster found in 

the data.   This subset of participants performed advantageously.  They exhibited a 

preference for deck B in the first block which rapidly shifted in subsequent blocks to a 

persistent preference for deck D, the deck that delivered positive expected value with 

low frequency losses.  Note that the slight shift from deck D to deck C in the final 

block was due to the fact that many of the participants depleted the cards in deck D:  

forced to choose from another deck these participants chose deck C, the other 

advantageous deck. Of the 311 participants, 121 (39%) were assigned to this cluster. 

The second cluster prototype is shown in Figure 3.8. Of the 311 participants, 76 (24%) 

were assigned to this cluster.  In the first block of selections, these participants exhibited 

a pattern of selections quite similar to the participants in the EV-Low cluster, with an 

early preference for deck B.  In the second block, their selections shifted to advantageous 

decks C and D, and in subsequent blocks these participants developed a clear and 

persistent preference for deck C, the deck that offered a positive expected value and high 

frequency losses (losses on average every-other card).  This pattern of performance 

suggests that participants in this cluster were sensitive to the expected value of the 

decks.  Hereafter, I refer to this cluster as the “EV-HighFreq” cluster and note that these 

participants performed the task advantageously, with none yielding a %Good score less 

than 0.57. 
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Figure 3.8 Mean pattern of performance for participants in the second cluster found 

in the data. This subset of participants performed advantageously.  They exhibited a 

preference for deck B in the first block which shifted to an equal preference for decks 

C and D in the second block.  In subsequent blocks, these participants developed an 

increasing preference for deck C, the deck that delivered positive expected values 

with high frequency losses. Of the 311 participants, 76 (24%) were assigned to this 

cluster. 

The third cluster prototype is shown in Figure 3.9.  Of the 311 participants, 114 (37%) 

were assigned to this cluster.  In the first block of selections, these participants exhibited 

a similar pattern of selections as the participants in the EV-LowFreq and EV-HighFreq 

clusters, i.e. they developed an early preference for deck B.  After the first block, these 

participants exhibited a clear, persistent and roughly equal preference for decks B and D, 

the two decks that have the common feature of delivering losses with lower frequency 

(on average 10% versus 50% in the decks A and C).  Of the 114 participants in this in this 

cluster, 58 (51%) performed disadvantageously and 56 (49%) performed advantageously.  

Hereafter, I refer to this cluster as the “Frequency-Sensitive” cluster.    
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Figure 3.9 Mean pattern of performance for participants in the third cluster found in 

the data.  These participants exhibited a combined preference for decks B and D that 

both delivered low frequency losses. An approximately equal number of participants 

in this cluster performed advantageously and disadvantageously.  Of the 311 

participants, 114 (37%) were assigned to this cluster. 

While the results of the ensemble clustering procedure strongly supported a three-

cluster solution, because of the second and smaller peak in the mean and median validity 

criteria in Figure 3.6, I further investigated the six-cluster solution to determine whether 

it represented a qualitatively different way of grouping the 311 participants, or 

alternatively whether it might be a variant of the three-cluster solution.  By comparing 

the prototypical performance patterns across the six- and three-cluster solutions, I found 

that each of the clusters in the three-cluster solution (c.f., Figures 3.7, 3.8 and 3.9) were 

also present in the six cluster solution.  Furthermore, I found that the additional three 

patterns present in the six cluster solution were variants of the three-cluster patterns of 

performance.  Specifically, I found a variant of the EV-LowFreq cluster (c.f., Figure 3.7) in 

which participants‟ preferences for deck D developed more slowly and therefore these 

participants did not run out of cards in deck D.   I also found a variant of the EV-High 

cluster in which participants‟ preferences for deck C developed more rapidly and as a 

result they depleted the cards in deck C and switched to deck D in the final block.   

Lastly, I found a variant of the Frequency-Sensitive cluster in which participants‟ 
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preferences for the two low-frequency decks (B and D) diminished in the later blocks, 

giving way to a preference for deck D as in the EV-LowFreq cluster.   The fact that the six 

cluster solution was not qualitatively different from the three cluster solution provides 

additional support for the validity of the three decision patterns revealed in this study. 

Discussion 

Using a robust multivariate clustering method designed to minimize the dependence 

of the results on choice of algorithm, dissimilarity measure, initialization, and the 

idiosyncrasies of a single sample, I identified three subsets of participants that differed 

qualitatively in their performance on the IGT.   These results may seem at odds with 

prior research on the IGT that has suggested differences in performance are reasonably 

characterized as quantitative differences in sensitivity to the expected values of the decks 

as measured by %Good or %EEV.  However, by comparing and contrasting the results 

with prior research, I am led to interpret the findings as being complementary rather 

than incompatible with prevailing approaches to analyzing the IGT.   

First, considering participants characterized in the literature as “advantageous”, I 

revealed two very different decision styles.  The data suggest that these two styles have 

in common a greater sensitivity to the longer-term expected values of the decks than to 

differences in the magnitude of the immediate gains obtained on each trial.  The two 

styles, however, differed in another feature of the task, namely in the frequency with 

which losses occur.  Within the set of the two decks with positive expected value, the 

participants characterized by the EV-LowFreq decision style showed a strong preference 

for the deck in which the losses were less frequent (deck D), while the EV-HighFreq 

decision style showed a persistent preference for the deck in which losses were more 

frequent (deck C).   

The clustering results also provide new insights into the performance of healthy 

participants characterized in prior research as “disadvantageous” based on their 

performance measured in terms of %Good.  Of the 311 participants in the data set, 58 

(19%) performed disadvantageously (%Good<0.50).  Of these participants, all of them 

were assigned to the Frequency-Sensitive cluster and on average these subjects drew 

41% of their cards from the good decks. However, the Frequency-Sensitive cluster also 

consisted of an additional 56 participants who performed advantageously, drawing 54% 
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of their cards from the good decks.  Therefore, participants in the Frequency-Sensitive 

decision style shared a common preference for the two low-frequency decks (B and D), 

but differed in the relative proportion of cards they selected from these two decks.  One 

subset of these participants preferred deck B over deck D and as a result performed 

disadvantageously, while the other subset preferred deck D over deck B and as a result 

performed advantageously.  These results suggest that rather than failing to perform the 

task advantageously according to the experimenter-expected objective of pursuing 

expected value, a large number of participants (114 of 311, or 37%) simply performed the 

task differently, pursuing choices that delivered losses less frequently.  That there are 

both “advantageous” and “disadvantageous” participants in the Frequency-Sensitive 

cluster highlights the limitations of characterizing performance according to %Good (or 

%EEV) and strongly suggests that individual differences in decision behavior in the IGT 

are not well-characterized solely in terms of sensitivity to expected value.   
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CHAPTER IV. VALIDATING INDIVIDUAL DIFFERENCES 

Introduction 

Having revealed three decision styles using a single data set, I next investigated the 

external validity of the results using independent data sets. While the ensemble 

clustering procedure used in Chapter III provided a high degree of robustness to 

variability in both clustering methods as well as perturbations of the data, it is possible 

that the three decision styles were unique to the specific IGT data set and might not 

generalize to other independent IGT data. Lack of external validity could be driven by 

many factors including differences in test environment, task instructions, participant 

incentives and motivations, participant demographics, and language and culture, to 

name only a few of the possible  sources of variability.  

I sought to test the external validity of the results in two ways, via replication and via 

prediction.  If the three decision styles found in Chapter III were robust, then applying 

the same ensemble clustering methods to independent IGT data sets should replicate the 

findings of Chapter III, producing:  (i) a solution with the three clusters and (ii) a similar 

set of prototypical patterns for each of the three clusters.  Satisfying these requirements 

would provide strong support for the external validity of the three decision styles.  I also 

sought to challenge external validity in a different way, by investigating how accurately 

a clustering solution fit to one data set could predict the decision styles of participants 

from the other data sets. 

Methods:  Replication 

Data Sources 

For this study I used four independently collected data sets (Ind1-4) in addition to 

the data set of 311 participants used in Chapter III (Base).  These data were provided by 

five different primary investigators, in four different laboratories, at three universities, in 

two countries spanning a period of approximately five years.  In each of these data 

collections, the IGT was administered using the same payoff schedule (A’B’C’D’) and the 

same computerized administration software.  The participants in each of these data sets 
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were used as the control population in the experiments for which they were collected.   

All participants in these studies were adults, were screened for neurological and 

psychiatric disorders, and were given monetary payments or lottery tickets to win prizes 

based on their performance in the task;  an exception are the participants in the Base 

data set who were paid on an hourly basis rather than based on their performance.   

Summary information for each data set is given in Table 4.1.  Across these five 

populations of healthy adults, participants vary in age (lowest mean age 18.73, highest 

mean age 32.28) and relative proportion of males and females (lowest percentage of 

females 0.32, highest percentage 0.78). While participants in each of the data sets in 

aggregate performed advantageously, a one-way analysis of variance revealed a 

significant difference across the five sets, F(2,884)=9.848, p<0.001.  Post-hoc, Bonferroni-

corrected comparisons (α=0.05) indicated that the higher mean values of %Good in the 

Base and Ind3 data sets were significant relative to the mean values of %Good in the Ind1 

and Ind2 data sets.    

Table 4.1 Data sets used for external validation. 

Data 

Set N 

Mean (std) 

Age 

Percent 

Female 

Mean (std) 

%Good 

Mean (std) 

%EEV 

Country, Language, 

University 

Base 311 28.82 (9.84) 0.61 0.63 (0.15)
a

 0.70 (0.16) U.S.A, English, Univ. Iowa 

Ind1 352 18.73 (1.07) 0.78 0.57 (0.15) 0.65 (0.15) U.S.A., English, Univ. Iowa 

Ind2 73 31.48 (8.09) 
0.32 0.57 (0.15) 0.64 (0.14) Rep. Korea, English, 

Catholic Univ. 

Ind3 110 21.73 (6.16) 
0.56 0.64 (0.15) 0.69 (0.17) U.S.A., English, Univ. 

Michigan 

Ind4 39 32.28 (10.69) 0.50 0.59 (0.15) 0.66 (0.14) U.S.A., English, U. Iowa 

Notes.  
a 

The presence of nearly identical standard deviations is chance result and 

not due to miscalculations.  These values differ, but identical when rounded to 

two digits.  

Analysis Procedures 

To investigate whether or not there was evidence of the three decision styles in the 

four independent data sets, I performed the identical ensemble clustering procedure that 

was used in Chapter III on each of these data sets.   As in Chapter III, prior to clustering I 

computed Mahalanobis distances to check for the presence of outliers using a z-score of 

3.0 as a cutoff.  This procedure led to the removal of 4, 5, 1, 3, and 1 participant in the 

Base, Ind1, Ind2, Ind3, and Ind4 data sets, respectively.  I then ran the ensemble 
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clustering procedure, identified the number of clusters selected in each data set by 

majority vote of the 13 validity criteria (c.f.,  Table 3.1) and a confirmatory examination of  

a plot of these criteria (c.f., Figure 3.6).  I also plotted and compared the prototypical 

patterns of performance for each cluster across the five data sets, to determine whether 

or not these were qualitatively similar or different patterns.   

Results:  Replication 

The results of applying the ensemble clustering procedure to each data set are shown 

in Table 4.2 and Figure 4.1. For each of the four independent data sets, the converging 

evidence provided by the validity criteria selected a three-cluster solution.  For each of 

the data sets, Table 4.2 and Figure 4.1 show the mean values of 11 normalized validity 

criterion for clustering solutions ranging from 1 to 10 clusters.  Consistent with the 

results from Chapter III, a three-cluster solution provides the best fit to each of the data 

sets.  The validity criteria not included in the mean values shown in the table were 

excluded because they select the number of clusters based on finding a knee (SSW, 

Trace(W/T) and therefore are not commensurate with the others for the purposes of 

computing means.  These two criteria selected either the three- or four-cluster solution in 

each of the data sets, and consideration of these criteria in the analysis did not change 

the majority vote for a three cluster solution in any of the data sets. 

Table 4.2 Results of ensemble clustering across IGT data sets. 

Data 

Set 

Selected 

k
*

 

Mean value of validity criteria
a

 for number of  clusters (k) 

1
b

 2 3 4 5 6 7 8 9 10 

Base 3 0.00 0.45 0.85 0.40 0.22 0.48 0.36 0.04 0.11 0.08 

Ind1 3 0.00 0.31 0.82 0.37 0.43 0.10 0.26 0.18 0.24 0.03 

Ind2 3 0.40 0.59 0.87 0.76 0.55 0.26 0.20 0.35 0.12 0.11 

Ind3 3 0.00 0.73 0.80 0.68 0.62 0.48 0.20 0.17 0.29 0.10 

Ind4 3 0.25 0.48 0.83 0.66 0.53 0.26 0.36 0.27 0.23 0.07 

Notes.  Selected value of k for each data set is shown in boldface type.  
a

 Mean of 

eleven validity criteria that select k
*

 at the maximum value of the criterion. 
b

 Mean 

value at k=1 includes only the two criteria (Gap-pc, Gap-uni) that are 

mathematically defined at a one cluster solution. 

Figure 4.1 shows a plot of the mean values of the 11 criteria for each of data sets, 

highlighting the support for the three-cluster solution.  The lack of a clear peak in the 

validity criteria for the six-cluster solution that received some support from the Base data 
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set (c.f., Table 3.1 and Figure 3.6) suggests that this solution was an artifact of that data set 

–likely due to the depletion of cards in decks C and D by some of the participants.  

Furthermore, there is little agreement across the data sets for solutions at the larger 

values of k.   

 

Figure 4.1 Mean values of eleven validity criteria for solutions consisting of 1 to 10 

clusters.  The results for the Base data set from Chapter III are shown by the dotted 

line, for reference.  Converging evidence from the validity criteria support a three-

cluster solution for each of the five data sets.    

Having identified a three-cluster solution for each data set, I investigated the 

prototypical patterns of performance associated with each of the three clusters, for each 

data set.   To facilitate comparison, I present these prototype patterns as mean selections 

from the four decks in total, rather than across five blocks as presented in Chapter III.  

Comparison of prototype patterns required that these patterns be matched across the 

data sets to identify which patterns in each of the independent data sets most closely 

matched the EV-LowFreq, EV-HighFreq and Risk Sensitive patterns found in the Base 

Data.  Because I found that the patterns were very similar across the data sets, I was able 

to do this matching by visual inspection
8

.  I first consider the results of comparing the 

prototypical patterns most closely matched to the EV-LowFreq pattern (Figure 4.2).  It 

                                                        

 

8

 Note, however, that the matching process could be done algorithmically using exact (checking 

all permutations) or approximate methods (greedy search), depending on the number of clusters 

to be matched.  
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can be seen in the figure that the ensemble clustering procedure found the EV-LowFreq 

decision style in each of the data sets.  While there are small quantitative differences in 

the patterns across the five data sets, it is clear that there were participants in each data 

set that exhibited a strong preference for deck D that delivered positive expected value 

with low frequency losses.  In addition to the clear preference for deck D shown in the 

figure, the ordering of preferences over the four decks is also perfectly replicated in each 

of the five data sets (𝐷 ≽ 𝐵 ≻ 𝐶 ≻  𝐴).   

 

Figure 4.2 Prototypical patterns (mean proportion of selections) most closely matched 

to the EV-LowFreq cluster identified in the base data set.  While the prototypes show 

small quantitative differences across the five data sets, they represent the same 

qualitative pattern of performance: a clear preference for deck D that delivered 

positive expected value and low frequency losses. 

I next consider the results comparing the best-matched patterns for the EV-HighFreq 

cluster (Figure 4.3).  It is evident from this comparison that participants exhibiting the 

EV-LowFreq decision style were present in each of the data sets.  As in the comparison of 

the EV-LowFreq cluster, there are small quantitative differences, but the prototypical 

pattern is remarkably similar across the data sets and the ordering over preferences is 

identical (𝐶 ≽ 𝐷 ≻ 𝐵 ≻  𝐴).  These participants exhibited a clear preference for the deck 

that delivered positive expected value with high frequency losses, selecting 39-48% of 

their cards from this deck.   
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Figure 4.3 Prototypical patterns (mean proportion of selections) most closely matched 

to the EV-HighFreq cluster identified in the base data set.  While the prototypes show 

small quantitative differences across the five data sets, they represent the same 

qualitative pattern of performance:  a clear preference for deck C that delivered 

positive expected value and high frequency losses. 

Lastly, I checked for replication of the Frequency-Sensitive cluster across data sets 

(Figure 4.4).  Again, the results show that the clustering results found in the Base data set 

generalized well to the other data sets.  In all data sets, participants assigned to this 

cluster showed a preference for the two decks that have in common the fact that they 

delivered lower frequency losses.  There are quantitative differences in the patterns, 

most notable for the Ind3 data set in which the preference for decks B and D are more 

balanced than in the other data sets in which deck B is preferred over deck D.   As in the 

other two clusters, the ordering of preferences over the four decks was identical across 

the data sets (𝐵 ≻ 𝐷 ≻ 𝐶 ≻  𝐴).   
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Figure 4.4  Prototypical patterns (mean proportion of selections) most closely 

matched to the Frequency-Sensitive cluster identified in the base data set.  While the 

prototypes exhibit small quantitative differences across the five data sets, they 

represent the same qualitative pattern of performance, namely a preference for decks 

B and D that delivers deliver low frequency losses relative to the other two decks. 

Having found the same number of clusters in each of the data sets, and determined 

that they represent the same qualitative decision styles found in the Base data set, I was 

interested in whether or not there were large differences in the relative proportions of 

participants assigned to each decision style across the five data sets.   A high similarity in 

the distribution of participants across decision styles would provide additional evidence 

to support the generalizability of the results.   To investigate this, I identified the 

proportion of participants found in each of the three clusters in the Base data, and these 

are summarized in Table 4.3.  While there are quantitative differences, overall I found a 

very similar distribution of participants across the three decision styles.   With the 

exception of the Ind4 data set, I found a consistent minority of participants in the EV-

HighFreq cluster.  This decision style seems to represent, on average, approximately 25% 

of the total population of 885 participants that I studied.  The EV-LowFreq and 

Frequency-Sensitive decision styles seem to be present in approximately equal 

proportions, with participants assigned to the Frequency-Sensitive cluster being the 

majority in four of the five data sets.  To test whether the distributions of participants 

across clusters in any of the four independent data sets differed significantly from the 

proportions found in the Base data set, I conducted χ
2
 goodness-of-fit tests using the 

frequencies from the Base data set as expected frequencies against which to test the 
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observed frequencies for each of the other four data sets.  The results of these tests are 

given in the last column Table 4.3 and indicate that the null hypothesis cannot be 

rejected for any of the data sets, suggesting that the distribution of participants by 

decision style generalized across independent data sets.  Finding similar distributions 

across independent data sets is certainly not necessary evidence for the external validity 

of the clustering results.   The data sets differ in mean age and in gender ratio (and 

possibly other factors), so any associations between these factors and decision style could 

certainly impact these distributions.  However, the fact that I did not find large 

differences in the size of the three clusters is certainly comforting.  

Table 4.3 Distribution of participants across decision styles. 

Data Set N 

EV-

LowFreq 

EV-

HighFreq 

Frequency-

Sensitive 𝝌𝟐(𝟎. 𝟎𝟏, 𝟐) 

Base  311 121 (39%) 76 (24%) 114 (37%) - 

Ind1 352 138 (39%) 69 (20%) 
145 (41%) 5.35 

(p=0.079) 

Ind2 73 23 (32%) 20 (27%) 
30 (41%) 1.68 

(p=0.431) 

Ind3 110 38 (35%) 27 (25%) 
45 (41%) 1.08 

(p=0.582) 

Ind4 39 11 (28%) 16 (41%) 
12 (31%) 5.91 

(p=0.052) 

Total 

(Mean %) 
885 331 (37%) 208 (24%) 

346 (39%) - 

 

Methods:  Prediction 

Data Sources 

The data set used for prediction was the same set used in the replication analyses 

reported in the previous section. 

Analysis Procedures 

I sought to provide additional support for the external validity of the findings by 

assessing the degree to which the clustering solutions identified using one sample of 

data were able to generalize by predicting the cluster membership of participants in 

other independent data sets.  For this prediction analysis I used discriminant 

classification methods (Rencher, 2002; Tabachnick & Fidell, 2001).  The basic idea of 

discriminant classification is to assign a set of unknown test observations (in this study, 
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participants) to a particular group (in this study, cluster/decision style) based on a model 

obtained from a set of known training observations.  In discriminant classification, the 

model is a based on a set of discriminant functions that represent boundaries of 

maximum separation between groups of observations in multivariate feature space.  In 

this study, as in Chapter III, the feature space was represented by 20-dimensional vectors 

that were the percentages of selections in the four decks across five blocks.  Each of our 

data sets therefore consisted of these 20-dimensional vectors, one for each of the 

participants in the data set.  As in Chapter III, a clustering solution was simply an 

assignment of each of the participants to a particular cluster (decision style).   To do 

prediction analysis, we fit discriminant models using the cluster assignments and feature 

vectors from a set of training data (one of the five data sets or a combination of the data 

sets), and I then used this trained model to predict the cluster (decision style) of 

participants from test data sets.    

One of the most commonly used discriminant classifiers is based on linear 

discriminant functions. Linear discriminant classifiers, however, can produce poor 

solutions when there is heterogeneity in the covariance matrices across the groups being 

classified (Hastie, et al., 2001).  I tested for heterogeneity in the covariance matrices in the 

Base data set using Box‟s M-test (χ
2 
approximation) which rejected the null hypothesis of 

homogeneity (M=146.66, 𝜒(.05,420 )
2 =133.03, p<0.0001).  I therefore chose to perform 

quadratic discriminant classification (QDC), a common approach used when the 

covariance matrices are heterogeneous across groups
9

.   I also sought to confirm the QDC 

results using a k-nearest-neighbor classifier (KNN) which is a non-parametric approach 

to classification.   

My objective in this prediction analysis was not to identify a maximally accurate 

classification model by testing a broad array of different models, but rather to assess how 

well a reasonable model trained on one set of IGT data might generalize in predicting 

another set of independent data.  Given this objective, I was therefore interested in 

comparing actual classification accuracy (“between-data” accuracy; accuracy in 

                                                        

 

9

 In quadratic discriminant classification, separate covariance matrices are used for each group 

rather than a single pooled covariance matrix as used in the linear discriminant approach.  I used 

a parsimonious form of the quadratic model, one which accounts for differences in variances 

across groups, but ignores covariances.  
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predicting test data) to apparent classification accuracy („within-data” accuracy; accuracy 

in predicting the training data itself
10

) as well as to chance.   In all cases, a prediction was 

considered correct when a model assigned a participant to the same cluster as was 

assigned by the ensemble clustering procedure. I computed apparent accuracy using 

leave-one-out cross-validation (B. D. Dunn, et al., 2006):  I trained a classifier using 

training data with one participant left out and I then determined whether this 

participant was assigned to the same cluster that was assigned by the ensemble 

clustering procedure;  I repeated this process for each participant in the training data, 

and computed apparent accuracy as the mean percent accuracy across all participants.  

I conducted two types of prediction tests.  First, given that Chapter III focused 

entirely on the Base data set, for continuity across studies I thought it would be useful to 

understand how well the three clusters found in the Base data generalized to 

independently collected data. I therefore trained a classifier model on the features and 

three-cluster solution for the Base data set, and tested its accuracy in predicting the 

decision style for participants in one of the other independent data sets.  I performed this 

type of pairwise prediction test using the Base data set and each of the four independent 

data sets (c.f., Table 4.1). I considered these strong tests of generalizability, as any unique 

differences between the independent data sets and the Base data set would be 

highlighted in the pair wise prediction accuracies, thus offering the possibility of 

revealing a data set for which the clustering results from Chapter III did not generalize.  

Although I identified and characterized a three-cluster solution in Chapter III using the 

Base data set, there was no a priori reason to believe that this data set should serve as 

“the” solution to use in evaluating the generalizability of the results.  I therefore 

performed a second set of prediction tests that I believed would provide a better 

measure of the generalizability.  I combined the five data sets into a single data set that 

consisted of 885 participants and then used leave-one-out cross-validation to measure 

classification accuracy.  I trained a classifier using data from 884 participants, tested the 

classifier using the one participant excluded from the data, and repeated this process 884 

times to yielding a mean classification rate across the 885 tests.  

                                                        

 

10

 It is often the case that a classifier is less than 100% accurate when tested on the same data on 

which it was trained.  
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Results:  Prediction 

Table 4.4 gives the results of testing how well the three clusters found in the Base 

data serve as predictors of the decision styles of the participants in each of the four other 

independent data sets. I remind the reader that the objective was not to identify a 

maximally accurate classifier for predicting IGT performance, but rather to use a 

reasonably accurate classifier to test how well the clustering solution from Chapter III 

generalized to predicting other data.   As a baseline, the within-data set prediction 

accuracies for the QDC and KNN classifiers were 93.6% and 95.8%, respectively.  Chance 

for these predictions was 33%. We therefore concluded that both of these classifiers met 

the requirement for reasonable accuracy.   The ability of these classifiers to predict 

decision style in the four independent data sets is given in Table 4.4.  Overall, the 

classifiers demonstrated a high level of accuracy, with mean accuracies of 84.9% (8.7 

percentage points lower than baseline) and 83.2% (12.8 percentage points to baseline) for 

the QDC and KNN models, respectively (chance was 33%).   Put differently, what these 

results indicate is that as a basis for predicting the decision style of IGT participants, 

there is only about a 10% loss in accuracy when predicting across independent data sets 

(differing in size, mean age, gender ratio, experimental methods, and culture and 

language) as compared to prediction within a single data set.   I take this as solid 

evidence for the external validity of the results of Chapter III. 

Table 4.4 Pairwise tests of prediction accuracy. 

Pairwise 

test N 

QDC 

accuracy 

KNN
b

 

accuracy 

Base / Base
a

 311 93.6% 95.8% 

Base / Ind1 352 83.2% 85.5% 

Base / Ind2 73 88.2% 84.6% 

Base / Ind3 110 83.6% 87.7% 

Base / Ind4 39 84.6% 74.4% 

Notes. 
a

Percent accuracy for the base model was conducted using leave-one-out 

cross-validation and represents a baseline for how well the classifier was able to 

classify the same data on which it was trained. 
b

 Results based on k-nearest-

neighbor classifier with k=8. 

In the second set of prediction tests I combined the five data sets and used leave-one-

out cross-validation to better estimate the prediction error that might be expected in 

generalizing the three decision styles to other IGT data sets.  The results of the second set 



85 

 

of predictions tests are given in Table 4.5.  Overall, the QDA model was able to predict 

the decision style of participants with 91.4%accuracy and the KNN model with 92.2% 

accuracy.  I found no large and consistent differences in the prediction accuracies for 

each cluster.  I believe these results serve as additional evidence supporting the external 

validity of our Chapter III results, and suggest that the prototype patterns associated 

with each decision style should generalize well as a basis for characterizing performance 

in the IGT. 

Table 4.5 Leave-one-out tests of prediction accuracy. 

Level 

QDC mean 

accuracy 

KNN mean 

accuracy 

Overall 91.4% 92.2% 

EV-LowFreq 87.9% 93.7% 

EV-HighFreq 90.9% 91.4% 

Frequency-Sensitive 95.1% 91.3% 

 

Discussion 

There are numerous reasons why a clustering solution found in one data set might 

not generalize to independent data sets.  First, generalization might be challenged due to 

variability in the data itself across independent experimental collections, for example due 

to (i) variability in participant demographics and traits due to differences in recruiting 

and screening, (ii) variability in experimental procedures such as task instructions and 

the testing environment, and (iii) variability in incentives and motivation.  Second, the 

inherent difficulties posed by unsupervised clustering pose technical challenges to the 

generalizability of solutions, for example due to: (i) overfitting a single sample of data, (ii) 

the sensitivity of clustering solutions to the choice of algorithm, dissimilarity measure 

and initialization, and (iii) the lack of a well-established, formal method for selecting the 

appropriate number of clusters.   I addressed the latter set of challenges, and to some 

extent the former, using an ensemble clustering procedure combined with bootstrapping 

of the data set.   To fully address the challenges posed by variability in data, I tested the 

external validity of the results from Chapter III by attempting to replicate them across a 

diverse set of four independent IGT data sets, and by assessing their ability to predict 

decision style across these data sets.  
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For each of five IGT data sets, I found a three-cluster solution, and for each of these 

solutions I found that the prototypical patterns of performance were remarkably similar.  

That the EV-Low, EV-High and Frequency-Sensitive patterns of performance were 

found across five data sets differing in mean age, gender ratio, collection location, and 

culture, suggests that these patterns represent fundamental differences in decision 

making behavior across individuals performing the IGT.  The fact that the prevalence of 

each of these decision styles across experiments was found to be relatively stable further 

suggests that these differences are real rather than an artifact of either the clustering 

procedure or a particular data set.  The results of the pairwise prediction tests showed 

that by representing each decision style as a group-averaged pattern of performance 

from a single data set (i.e. as a “cluster prototype”), I could reliably predict the decision 

style assigned to participants in other data sets.   Lastly, the high level of generalization 

accuracy that was estimated using the combined data set of 885 participants provides 

support for the possibility of using “normed prototypes” of each decision style as a 

future way to analyze and perform inference in experimental and correlation studies of 

decision making using the IGT.    
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CHAPTER V. CHARACTERIZING INDIVIDUAL DIFFERENCES 

Introduction 

The clustering studies in the previous chapters revealed three robust groups of 

decision makers differing in their performance on the IGT.  These groups were 

characterized in terms of choice performance as measured by differences in their learned 

preferences over the four decks.  This characterization is necessarily incomplete, being 

derived only from an analysis of performance on the IGT itself.   A more complete 

account of the differences across the groups must make contact with other concurrent 

and/or predictive measures, such as behavioral (for example, measures of performance 

on other cognitive tasks), latent (for example, psychometric measures of personality 

traits) or more fundamental measures (for example, electrophysiological measures or 

genetic correlates). Revealing associations between the three IGT decision groups and 

other measures not directly related to the IGT is a necessary aim to further characterize 

group differences. The purpose of the next set of studies was to investigate a more 

extensive set of measures that might reasonably be associated with differences in 

decision making in the IGT.  

There is a small existing literature that has attempted to identify traits and cognitive 

measures associated with differences in decision making on the IGT (Table 5.1).  The 

limited attention given to this area of research is somewhat surprising given the ubiquity 

of the claim that disadvantageous performance on the IGT reflects “risky decision 

making” and the stronger claim that this risky pattern of decision making is associated 

with impulsivity (2003).  The set of measures investigated in this limited set of studies is 

far from complete, and those measures that have been studied have been found to be 

only weakly associated with performance on the IGT. Furthermore, multiple 

independent studies testing the same (or similar) measures have often produced 

conflicting results.  Taken together, these studies suggest that women perform the IGT 

more disadvantageously than men and that performance on the IGT may be associated 
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with performance on the Wisconsin Card Sorting Task (WCST) as well as to measures of 

disinhibition, impulsivity, sensation, and reward seeking behavior (Table 5.1).  

While it may simply be the case that associations between the IGT and previously 

studied traits and behavioral measures are either weak or non-existent, an alternative 

hypothesis is that true underlying associations may have been obscured by analyses that 

have implicitly assumed individual differences were well-captured by %Good as a 

dependent measure (either overall %Good, or the pattern of %Good by blocks) – an 

assumption shown to be incomplete by the results of the clustering analysis done in this 

dissertation.  Specifically, it is possible that important  concurrent measures might be 

associated with the three decision making groups identified in this dissertation, but 

produced weak or insignificant effects when tested against individual performance 

measured in terms of %Good (as in regression or correlation studies) or tested against 

groups defined in dichotomously in terms of advantageous/disadvantageous 

performance (as in analysis-of-variance studies).   The first aim of the set of studies 

presented in this chapter was therefore to test for the degree of association between 

previously studied traits and cognitive measures and the three decision styles identified 

in this dissertation.  By conducting analyses using the three groups as the focus of study, 

it is possible that stronger associations between traits and IGT performance might be 

revealed.  A second and related aim was to investigate the relative merits of trait-based 

accounts of the IGT and more cognitive accounts.  While trait-based accounts of the IGT 

have become widely accepted, another important hypothesis originally advanced by 

Farah and Fellows (Brand & Altstotter-Gleich, 2008; Brand, et al., 2007; Goudriaan, 

Grekin, & Sher, 2007; Sweitzer, et al., 2008; van Honk, Hermans, Putman, Montague, & 

Schutter, 2002) is that impaired decision making in the IGT is due to impairments in 

executive functions rather than to somatic biasing signals.  By simultaneously 

investigating associations between both trait and cognitive measures and IGT group, I 

sought evidence that might favor one of these two competing accounts. 
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Table 5.1.  Studies associating traits and cognitive measures with the IGT. 

Measures  Identified association with IGT performance 

Sex 

Differences 

 No significant effects of sex on IGT performance (Bolla, et al., 2004; Denburg, et al., 2009; Overman, 

2004; Reavis & Overman, 2001). 

 Significant effect of sex: men choose more advantageously than women (Reavis & Overman, 2001).  

 Men lower in testosterone more advantageous than those with higher testosterone (Goudriaan, et al., 

2007).  

 Women have greater preference for low-frequency, positive expected value deck than men 

(Zermatten, et al., 2005). 

Impulsivity  

(BIS11, 

UPPS, I7, 

DII) 

 High scores on Premeditation scale of UPPS correlated with disadvantageous performance (Sweitzer, 

et al., 2008).  No significant correlation on other three UPPS scales. 

 Higher BIS11 composite scores associated with more disadvantageous performance in the last block of 

the IGT (Franken, van Strien, Nijs, & Muris, 2008). 

 Higher scores on the I7 Impulsiveness scale associated with more disadvantageous 

performance(Goudriaan, et al., 2007).   

 No correlation between BIS11 total scale and IGT performance in substance dependent populations 

(Franken & Muris, 2005). 

 Higher scores on the Functional Impulsivity (FI) scale of the Dickman Impulsivity Inventory (DII) 

associated with more advantageous performance (Reavis & Overman, 2001).  

Sensation 

Seeking 

(SSS) 

 Higher SSS correlated with more advantageous performance. (Crone, Vendel, & van der Molen, 2003). 

 Higher scores on Disinhibition scale of SSS associated with more advantageous performance 

(Harmsen, Bischof, Brooks, Hohagen, & Rumpf, 2006).  

 No significant correlations between SSS scales and IGT performance in populations of cigarette 

smokers (van Honk, et al., 2002). 

Behavioral 

Inhibition & 

Activation  

(BIS-BAS) 

 Individuals with high BAS and low BIS performed more disadvantageously than individuals with low 

BAS and high BIS (Desmeules, et al., 2008).    

 Individuals with low BAS and high BIS performed more disadvantageously than individuals with low 

BIS and low BAS scores (Franken & Muris, 2005). 

 Higher scores on BAS Reward Responsiveness correlated with more advantageous performance.  No 

significant correlations between BIS scales or other BAS scales and IGT (Suhr & Tsanadis, 2006). 

 Higher scores on BAS Fun Seeking scale and Reward Responsiveness associated with more 

disadvantageous performance (Brand & Altstotter-Gleich, 2008). 

 No significant association between the BIS Anxiety/Nervousness or Frustration/Tearfulness scales nor 

with the BAS Drive or Reward Responsiveness subscales (Reavis & Overman, 2001). 

Depression  

(CES-D) 

 No significant association between Center for Epidemiologic Studies Depression Scale (CES-D) and 

IGT performance (Denburg, et al., 2009). 

 No significant association between depression and IGT performance (Brand & Altstotter-Gleich, 2008).  

Perfectionism 

(FMPS) 

 The Doubts About Actions, Concern Over Mistakes and Personal Standards scales of the Frost 

Multidimensional Perfectionism Scale were not correlated with IGT performance (Lakey, Rose, 

Campbell, & Goodie, 2008). 

Narcissism  

(NPI) 

 Higher scores on the Narcissistic Personality Inventory were significantly associated with more 

disadvantageous performance on the IGT (Suhr & Tsanadis, 2006).  

Affect  

(PANAS) 

 Negative affect scale of PANAS associated with disadvantageous performance (Denburg, et al., 2009). 

General 

Traits 

(EPQ-J, NEO-

FFI) 

 Higher scores on Neuroticism scale of the NEO Five Factor Inventory (NEO-FFI) was associated with 

more disadvantageous performance among older but not younger adults.  No significant association 

was found between the Extraversion, Openness, Agreeableness, and Conscientiousness scales in 

either older or young adults (Hooper, Luciana, Wahlstrom, Conklin, & Yarger, 2008).  

 Higher scores on Neuroticism scale of Eysenck Personality Questionnaire-Junior (EPQ-J) were 

associated with more disadvantageous performance in adolescent males, but not females.  Scores on 

the Psychoticism, Extraversion, and Externalizing scales were not significantly associated with IGT 

performance (Overman, 2004).  

Executive 

Function  

(WCST, 

TOH, Dual-

Tasking) 

 Perseverative errors, non-perseverative errors, and trials-to-first-category on the Wisconsin Card 

Sorting Task (WCST) associated with more advantageous performance, particularly in the later stage 

of the task.   

 Performance on the WCST not associated with IGT performance in adolsescents (Brand, et al., 2007).  

 Performance on Tower of Hanoi (TOH) task not found to be associated with performance on the IGT 

(Hinson, Jameson, & Whitney, 2002; Jameson, Hinson, & Whitney, 2004). 

 Performance of a secondary serial order task interfered with  performance on the IGT  and 

anticipatory affective responses  as compared to secondary tasks involving either verbal buffering or 

keyboard responses (Zuckerman, 1964, 1971; Zuckerman & Link, 1968). 
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Methods 

To investigate possible associations between IGT decision style and demographic, 

trait and cognitive factors, the IGT was administered to 119 participants.   In addition to 

the IGT, these same participants also performed two other cognitive tasks and completed 

a battery of personality assessments.  Data from the IGT was clustered
11

 using the 

ensemble clustering methods presented in Chapter III, and the association between the 

identified IGT decision style and the concurrent cognitive measures, self-reported trait 

measures, and demographic variables were then tested.  

Procedures 

Participants and study administration 

All procedures were approved by the Institutional Review Board of the University of 

Michigan in Ann Arbor.  The IGT data used in this study was collected from 119 

participants. These participants were recruited from within the University of Michigan 

community as well as more broadly in the local Ann Arbor Community.  Recruitment 

was done using flyers and postings on the Internet.  All participants were screened for 

known psychiatric and neurological disorders. The screening questionnaire (see 

Appendix A) was made available to participants via the UM Lessons web-based 

questionnaire administration tool. The mean age of the participants was 21.73 (SD=6.16, 

range 17-54) and 56.36% were female. The study sessions lasted approximately 2 hours 

and consisted of 10 to 20 participants per session.  Participants were paid based on their 

performance in the IGT component of the session.  After participants provided informed 

consent, they participated in a session consisting of a 15 minute olfactory discrimination 

task (not reported here) followed by a self-paced set of personality questionnaires, the 

IGT, the Wisconsin Cart Sorting Task (WCST) and lastly a Digit Span task.  Participants 

were free to take short breaks between each phase of the session, and the computer 

mandatory imposed breaks of two minutes in between each of the cognitive tasks.  With 

the exception of the olfactory task, all questionnaires and tasks were administered by 

computer.  Data from six of the 119 participants was excluded due to either a malfunction 

of the task administration software (one participant), failure to disclose prior experience 

                                                        

 

11

 This data set is the “Ind3” set that was used in the external validation study reported in Chapter 

IV. 
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with the IGT (four participants), or disclosure of unreported screening information after 

administration of the task (one participant).  Data from the remaining 113 participants 

were then input into the ensemble clustering procedure described in Chapter III.  Three 

participants were found to be outliers (more than three standard deviations from the 

group mean using z-scored Mahalanobis distance as a metric).  Data from these 

participants were removed, and the data from the remaining 110 participants were used 

as the basis for the two studies reported in this chapter.   The instructions shown to 

participants for the personality questionnaire, IGT, WCST and Digit Span are given in 

Appendices B, C and D. 

Questionnaires and trait assessments 

After completing the olfactory discrimination task lasting approximately fifteen 

minutes, participants then completed a self-paced set of questionnaires administered via 

the computer-based survey administration tool.  The order of the questionnaires was 

identical for each participant.  The total time spent completing the questionnaires was 

recorded for each participant.  The mean completion time was 35.4 minutes and the 

minimum and maximum times were 22.9 minutes and 63.8 minutes, respectively.  The 

first questionnaire (Appendix E) included demographic questions as well as five 

“lifestyle” questions pertaining to the frequency of cigarette smoking, alcohol 

consumption, drug use, and gambling.  The collection of these measures was motivated 

by frequent use of the IGT in the study of pathological and non-pathological substance 

dependence and gambling.  In addition to these four measures, participants were also 

asked to indicate their average hours of nightly sleep as well as their level of 

mathematical skill.   

The demographic and lifestyle questionnaire was followed by fourteen standardized 

personality assessments designed to measure constructs either previously studied 

directly in relation to the IGT and/or that are well-known to be associated with decision 

behavior more generally (Table 5.2).  The constructs covered by this set of assessments 

included:  (i) risk taking and sensation seeking, (ii) impulsiveness, (iii) behavioral 

inhibition and activation, (iv) maximizing and regret, (v) perfectionism, compulsiveness, 

and indecisiveness, (vi) general affect, and (vii) general temperament and personality.  

Several of these constructs were assessed by multiple instruments.  For example, 

impulsiveness was assessed directly by the UPPS Impulsive Behavior Scale, the Barratt 
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Impulsiveness Scale, and the Dickman Impulsivity Inventory – and less directly by 

several of the subscales of assessments designed to measure other related constructs (e.g., 

the Disinhibition subscale of the Sensation Seeking Scale and the Disinhibition subscale 

of the General Temperament Survey).   The reason for using multiple assessments was 

diversity.  Rather than making arbitrary decisions about which of several widely used 

assessments might “best” measure a particular construct, I chose to include multiple 

instruments that putatively measure different facets of the same construct.  Two 

challenges in using multiple assessments of the same construct were the concomitant 

increase in dimensionality of the data to be analyzed, and the possibility of high 

correlations (and possibly multicollinearity) among sets of measures expected to be 

highly similar.  These challenges were addressed by using dimensionality reduction 

methods, described in the Data Analysis section that follows.   The simultaneous 

investigation of a wide range of measures comes with the associated pitfall of multiple 

comparisons, but I believed it more principled to acknowledge the exploratory nature of 

the study and to simultaneously consider a large set of relevant measures, rather than to 

partition this larger study into individual, independently reported studies for the 

purpose of avoiding the statistical onus of corrections for multiple comparisons.  

Furthermore, by using prediction models as a complement to hypothesis testing 

procedures, effects possibly obscured by statistical tests might be revealed. 
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Table 5.2  Summary of assessments administered to participants. 

Assessments  (abbrev.; items) Scales collected  Source 

Sensation Seeking Scale  

(SSS; 40) 

Thrill and Adventure Seeking (TAS) 

Experience Seeking (ES) 

Disinhibition (DIS) 

Boredom Susceptibility (BS) 

(Blais & Weber, 2006; Weber, Blais, & 

Betz, 2002) 

Domain-Specific Risk Taking  

(DOSPERT; 50) 

Financial (FIN) 

Health/Safety (HS) 

Recreational (REC) 

Ethical (ETH) 

Social (SOC) 

(Dickman, 1990) 

Dickman Impulsivity Inventory  

(DII; 23) 

Functional Impulsivity (FI) 

Dysfunctional Impulsivity (DI) 

(Whiteside & Lynam, 2001; Whiteside, 

Lynam, Miller, & Reynolds, 2005) 

UPPS Impulsive Behavior Scale 

 (UPPS; 45) 

Urgency (URG) 

Premeditation (PRE) 

Perseverance (PER) 

Sensation Seeking (SEN) 

(Barratt, 1985; Patton, Stanford, & 

Barratt, 1995) 

Barratt Impulsiveness Scale  

(BIS-11; 30) 

Attentional (ATT) 

Motor (MOT) 

Nonplanning (NPL) 

(Carver & White, 1994) 

Behavioral Inhibition and Activation 

System 

 (BIS-BAS; 20) 

Behavioral Inhibition (BIS) 

BAS – Drive (DRV) 

BAS – Fun Seeking (FS) 

BAS – Reward Responsiveness (RR) 

(Schwartz, et al., 2002) 

Regret and Maximizing Scale  

(RMS; 18) 

Regret (R) 

Maximizing (M) 

(Frost, Marten, Lahart, & Rosenblate, 

1990) 

Multidimensional Perfectionism Scale 

 (MPS; 35) 

Concern Over Mistakes (CM) 

Doubts About Actions (DA) 

Personal Standards (PS) 

Organization (ORG) 

Parental Criticism (PC) 

Parental Expectations (PE) 

(Kagan & Squires, 1985) 

Compulsiveness Inventory  

(CI; 11) 

Indecision and Double-Checking 

(IDC) 

Detail and Perfectionism (DP) 

Order and Regularity (OR) 

(Frost & Shows, 1993) 

Frost Indecisiveness Scale  (FIS; 15) Indecisiveness (IS) (Watson, Clark, & Tellegen, 1988) 

Positive and Negative Affect Scale   

(PANAS; 20) 

Positive Affect (PA) 

Negative Affect (NA) 

(Watson & Clark, 1992) 

General Temperament Survey 

 (GTS; 90) 

Positive Temperament (PT) 

Negative Temperament (NT) 

Disinhibition (DI) 

(John, Donahue, & Kentle, 1991) 

Big Five Inventory  

 (BFI; 44) 

Openness (O) 

Conscientiousness (C) 

Extraversion (E) 

Agreeableness (AA) 

Neuroticism (N) 

(Beck, Erbaugh, Ward, Mock, & 

Mendelsohn, 1961; Beck, Steer, Ball, & 

Ranieri, 1996; Beck, Steer, & Brown, 

1996) 

Beck Depression Inventory  

(BDI-II; 21) 

Total Depression Score  (BDI) (Appollonio, et al., 2002; Della Sala, 

MacPherson, Phillips, Sacco, & 

Spinnler, 2001; Shallice & Evans, 1978; 

Spreen & Strauss, 1998a) 

Cognitive Estimation Test  

(CET;  10) 

Total Absolute Deviation (TAD) (Shallice & Evans, 1978; Spreen & 

Strauss, 1998b) 
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Cognitive Estimation Test (CET) 

While the relative involvement of implicit and explicit decision processes in the IGT 

continues to be debated, there is little reason to doubt that the task involves processing 

numerical quantities to some degree. Setting aside whether this processing is done 

implicitly or explicitly, performance on the task requires estimation (possibly of payoff 

magnitudes, variances, and frequencies) and therefore it is possible that individual 

differences in the IGT might be associated with differences in cognitive estimation 

abilities.  To test this hypothesis, participants completed the Cognitive Estimation Test 

(CET) as part of the assessment phase of the experimental session (Shallice & Evans, 

1978).  In the CET, participants respond to a series of ten questions that require 

estimation of quantities such as the height of the Empire State Building, the length of the 

average necktie, and the flight speed of a commercial jet.  The CET was originally 

developed to measure impaired executive function in frontal patients (Spreen & Strauss, 

1998b), but its use has been extended to healthy populations. The CET is thought to test 

estimation abilities and problem solving strategies in tasks in which exact computations 

are not possible.  Performance on the task has been shown to be only weakly correlated 

with other commonly used tests such as the Wisconsin Card Sorting Task and the Tower 

of Hanoi (PEBL, Mueller, 2008).  The test is scored by comparing each response to a table 

of normed values which indicate a degree of deviation ranging from -2 

(underestimation) to +2 (overestimation), with zero indicating an accurate response 

within a small range of the true answer.  The score for the test is the Total Absolute 

Deviation (TAD), the sum of the absolute values of the deviation scores computed for 

each question. 

Iowa Gambling Task (IGT) 

IGT data were collected using a computer-based administration of the IGT 

implemented in the Psychology Experiment Building Language (Bechara, 2007).  This 

implementation of the IGT was identical in both graphics and sounds to the computer-

based version of the IGT developed and used by Bechara and colleagues.  I used the 

A‟B‟C‟D‟ version of the task, the same version used in the commercially available IGT 

assessment tool (Grant & Berg, 1948; Spreen & Strauss, 1998b), and in the collection of 

each of the data sets presented in Chapter IV, with one exception:  forty additional cards 
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were added to the decks to avoid deck depletion as was found to have occurred in prior 

administrations of this task.   These additional cards were generated randomly based on 

the same rules for determining payoff magnitudes and frequencies used to generate the 

cards in the 60-card version of this task.   For convenience, in the remainder of this 

chapter I will omit the apostrophes and refer to the four decks simply as A, B, C, and D.  

Participants were paid based on their performance on this task.  The payoff schedule was 

provided to participants in both the consent form and in the instruction sheet given out 

prior to performing the task.   The minimum payment was $5.00 and corresponded to 

IGT net profits of -$4000 or less.  The maximum payment was $50.00 and was awarded 

for IGT net profits of $4000 or more.   There were eight additional levels of payoffs 

associated with IGT net profits ranging from -$4000 to +$4000 in increments of $1000. 

The primary dependent measure used in this study was group membership as computed 

using the ensemble clustering procedure described in Chapter III.  The percentage of 

cards selected from the two advantageous decks (%Good) was also computed to confirm 

proper administration of the task.  The decision time on each trial was also collected.   

Wisconsin Card Sorting Task (WCST)  

Given the currently inconclusive evidence relating IGT and WCST performance, I 

was interested in further testing this relationship as mediated through analysis at the 

level of the group differences in the IGT.  After completing the IGT, participants 

performed a computer-based version of the WCST implemented in PEBL.  The WCST is 

known to require a range of executive functions including set shifting, rule abstraction, 

response inhibition, and feedback utilization (Greve, Stickle, Love, Bianchini, & Stanford, 

2003).  In the WCST, participants are given a set of cards which they must place, one at a 

time, on one of four decks according to a sorting rule which must be learned through 

trial-and-error. Each card depicts one or more identical geometric objects and the cards 

differ in the shape (circle, triangle, square, cross), color (red, green, blue, yellow), and 

number (1, 2, 3, 4) of objects shown.  At any given time, a single sorting rule is in force 

(number, color, shape) and critically, after successfully sorting some number of cards, the 

rule changes.  Participants must recognize via feedback that the rule has changed, and 

must learn each new rule through trial-and-error. The WCST used in this study was the 

original 128 card version with the sorting rule changed after a run of ten correct 

responses.  The task was stopped after participants sorted 128 cards, or successfully 
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completed nine categories.  The dependent measures obtained from this task were:  

Categories Completed (CC), Number of Trials (NT), Perseverative Errors (PE), Non-

Perseverative Errors (NPE), Trials to First Category (TFC), the mean length of 

perseverative runs (MeanPR), and the length of the longest perseverative run (maxPR).  

While each of these dependent measures is thought to capture somewhat different 

aspects of WCST performance, it has been argued that the performance by healthy 

adults is best captured by a single factor (Miller, 1956).  The seven measures were thus 

collapsed into a single WCST score for each participant using Factor Analysis as will be 

described in the following section.  In addition to the accuracy and error measures, the 

decision time on each trial was collected.  

Digit Span Task 

The Digit Span (Lilliefor, 1967) is known to test working memory capacity as well 

associated abilities in verbal rehearsal and was included as a cognitive task to test the 

possibility that differences in IGT performance might be related to differences in 

working memory capacity and/or executive rehearsal processes.  In the Digit Span, 

participants are presented with lists of numbers, one number at a time, and are 

instructed to remember each digit in a list, in the order in which they are presented.  In 

the forward version of the task, the length of the list is increased until a stopping 

criterion is met. After completing the WCST, participants performed a computer-based 

version of the forward Digit Span task as the final step of the experimental session.  The 

Digit Span was implemented in PEBL.  Digits were presented visually on the computer 

monitor and also simultaneously spoken aloud via a recorded voice heard through 

closed-type headphones.  Because the sessions consisted of multiple participants, it was 

not feasible to collect auditory responses.  Instead, participants responded by pressing 

the number keys located at the top of their computer keyboard.  The list size was 

increased from three to a maximum of fifteen digits, with three trials presented at each 

list length.  The task was stopped when a participant failed to successfully complete two 

of three trials at the current list length.  The dependent measure was the digit span, the 

largest list length at which a participant completed two out of three trials.  Response time 

on each trial was also collected.  
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Data Analysis  

Data processing 

The dependent measures for the IGT, WCST, and Digit Span tasks were computed 

directly from the raw data using MATLAB® (2008b, The MathWorks, Inc.: Natick, MA).  

Unless noted otherwise, all analyses reported in the remainder of this chapter were 

conducting using MATLAB.   The data collected from the fifteen assessments consisted of 

420 responses for each of the 110 participants.  Scores on each of the 45 trait scales and 

the TAD score for the CET (c.f., Table 5.2) were computed from these responses using an 

automated assessment toolbox developed in MATLAB by the author.  The five scores on 

the lifestyle measures (Smoking, Drinking, Drug Use, Gambling, and Sleep) and the self-

reported Math ability score were computed directly from individual responses.   To 

determine the reliability of the trait data, Cronbach‟s alpha statistic of internal-

consistency reliability was computed for each scale and compared to published norms as 

well as to the widely accepted heuristic that values in the range 0.60 - 0.70 are indicative 

of acceptable reliability and values of 0.80 or higher are indicative of good reliability.   

Each of the cognitive and trait measures was checked for normality using a two-sided 

Lilliefors test (Hastie, et al., 2001; Rencher, 2002).  Measures found to significantly depart 

from normality were transformed using the following automated procedure. First, the 

skew of each measure was computed and those with a negative skew were reflected.  

Transformations were then applied stepwise in order of increasing strength (square-root, 

then logarithmic, then inverse), with the Lilliefors test repeated on each step.  If a 

transformed measure was accepted as normal according to the normality test, the 

procedure was stopped.  If no transform led to normality, the transform producing the 

smallest absolute skew was used.  After transformation, all measures that were reflected 

were once again reflected to preserve the original interpretation of their values.   Lastly, 

because the units of measure were not commensurate across the set of measures, all 

measures were standardized.  

Dimensionality reduction of trait data 

Given the prior expectation that many of the trait scores would be highly correlated 

due to the use of multiple instruments for each of the major constructs that were 

assessed, a factor analysis (using principal components extraction) of the data correlation 

matrix was conducted to identify the most important latent structure in the data and to 
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reduce the dimensionality of the data prior to further analysis (Rencher, 2002).  In typical 

applications of exploratory factor analysis to personality assessment, the primary 

objective is to reveal previously unidentified latent factors based on item-level responses.  

Exploratory factor analysis is often contrasted with confirmatory factor analysis which 

assumes prior knowledge of the latent factors in the data and seeks to test hypotheses 

related to these factors.  The trait measures analyzed in this study were factor scores 

previously identified and validated in the development of the assessments used to 

generate them.  As such, the application of factor-analytic methods fell somewhere 

between the exploratory and confirmatory methods and several considerations needed 

to be taken into account to appropriately factor-analyze these data.   

First, as previously mentioned, the most similar among the trait measures were 

expected to be highly correlated, for example the Negative Temperament scale of the 

GTS and the Negative Affect scale of the PANAS.  These highly correlated measures 

were expected to load on a common factor.  However, other related measures were 

originally developed specifically to identify unique facets of the constructs they purport 

to measure, as for example in the case of the Functional and Dysfunctional measures of 

impulsivity in the DII as compared to the Attentional, Motor and Nonplanning measures 

of the BIS11.  Thus, while the correlations between these related measures were expected 

to be greater than their correlations with unrelated measures, it was also expected that 

the presence of these measures would produce a very flat eigenvalue decomposition of 

the data which would in turn lead to overestimation of the number of factors using the 

standard approach of selecting the number of factors based on the number of 

eigenvalues greater than one.   The practical significance of this expectation was that 

extra care needed to be taken in selecting the appropriate number of factors to represent 

the trait data.  Two procedures were used to identify the number of factors to use in 

representing the trait data.  The scree plot of the eigenvalues extracted using principal 

components analysis was examined and the number of supported factors was 

determined based on the inflection point (“knee”) in the plot.  A second procedure was 

accomplished by (i) examining the loadings of each factor as additional factors were 

added to the solution being fit, and then (ii) selecting the number of factors at the point 

when the addition of another factor resulted in a “low quality” factor being generated.  

In factor analysis, factor quality is often indicated by the presence of several highly 
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loaded variables:  factors with only small loadings or with only a single highly loaded 

variable are typically not interpreted.  Using this concept of quality, I varied the number 

of factors from 2 to 20 and for each factor solution, identified the number of high-quality 

factors for each solution using the criteria that a high-quality factor should have at least 

three variables loaded with a correlation of at least 0.50.  The smallest solution for which 

every factor was determined to be high-quality was then selected.  A final consideration 

in appropriately applying factor analysis to the data was the stringency with which 

factors loadings were interpreted.  In exploratory factor analysis, interpretation of factors 

is typically on loadings that exceed than 0.30; given the substantial a priori knowledge of 

the latent structure expected from the data in this study, the criterion for interpretation 

in this study was set at 0.50.  Prior to interpreting the selected factor solution, the 

extracted principal components were rotated using orthogonal Varimax rotation 

(Rencher, 2002).  After selecting and interpreting a factor solution, scores on each factor 

were generated for each participant.   

 Dimensionality reduction of WCST data 

The seven error and accuracy measures obtained from the WCST were collapsed into 

a single WCST score for each participant using factor analysis with principal-components 

extraction and orthogonal Varimax rotation.  This single WCST score was then used in all 

subsequent analysis that included the WCST.  The response time measure was not 

included in this factor, but analyzed independently along with response time measures 

from the other cognitive tasks.  

Tests of association and prediction 

To investigate the primary aims of this study, traits and concurrent cognitive 

measures were tested for mean differences across each of the three groups of IGT 

decision makers.  The measures were divided into four sets and these sets were analyzed 

separately to determine their relative importance as possible correlates of IGT decision 

group.  These sets were: lifestyle measures, trait measures (as represented by the results 

of the factor analysis), cognitive measures, and response time measures.  To investigate 

the degree of association between each set of measures and IGT decision group, I 

conducted multivariate analyses of variance (MANOVAs) with IGT decision group as the 

between-subjects factor and sex as a covariate.   Statistical significance was determined 
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and will be reported based on Wilks‟ Λ and Pillai‟s Trace, statistics known to be robust in 

the presence of unequally sized groups, as is the case with the three IGT decision groups 

to be tested (Tabachnick & Fidell, 2001).  Positive multivariate omnibus tests for mean 

differences were followed by univariate analyses of variance (ANOVAs) for each measure 

based on Bonferoni adjusted p-values to account for multiple comparisons within a 

given set of measures.  Partial η
2
 values were used to evaluate the degree of association 

between IGT groups and measures found to significantly differ across the groups.  

Given the number of measures tested in this study, it was possible that important 

associations might be present but fail to reach significance due to the use of corrected p-

values and/or lack of power due insufficient sample size, high variability, or both of these 

factors.   As a complement to hypothesis testing procedures, a classifier model was used 

to further investigate the possible associations between the traits and cognitive measures 

and the IGT decision groups.  The four sets of measures used in the MANOVA analyses 

were each entered as sets of predictors in a series of multinomial logistic regression 

models which were used to predict the group membership of each participant.  Like 

multiple regression models, logistic regression models fit a set of beta values 

representing the coefficients of each predictor in a linear equation used to predict an 

outcome variable.  In logistic regression, the outcome is nominal rather than continuous 

and may take any number of discrete values.  The regression equations model the log-

odds of a participant being in one group rather than in a reference group.   The choice of 

reference group is arbitrary, and a final model consists of one logistic regression equation 

for each of the groups not used as the reference group (Spreen & Strauss, 1998b).    

To evaluate the association between measures of interest and the IGT decision 

groups, logistic regression models were fit to each of the four sets of measures (lifestyle, 

trait, cognitive, and response times) and the significance of each model was determined 

using a χ
2
-test of the log-likelihood of each model compared to the log-likelihood of a 

reduced model with no predictors and only an intercept term.  The relative importance 

of models was then evaluated by determining the overall accuracy with which each set 

of measures could predict group membership for each of the participants.  Finally, the 

relative contribution of predictors within each model was evaluated directly based on 

exponentiated beta values which indicate the increase in the log-odds of membership in 

a group (relative to the reference group) for each unit change in a predictor; 
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exponentiated beta values were examined for all predictors found to be significant based 

on the Wald test.  

Results 

Data Validation 

After processing the trait assessments, the internal-consistency reliabilities were 

checked.  Of the 45 trait measures collected, 22 (49%) had reliabilities greater than 0.80, 12 

(27%) had reliabilities between 0.70 and 0.80, 9 (20%) had reliabilities between 0.60 and 

0.70, and 2 (4%) had reliabilities less than 0.60 (Appendix F gives the reliabilities and 

published norms for each measure).  The reliability of the Attentional scale of the BIS11 

was 0.59, but this measure was retained because this value was higher than the 

published norm of 0.58 for this scale.  The reliability of the Boredom Susceptibility scale 

of the SSS was 0.54 and although slightly lower than the published norm of 0.57, this 

difference was not deemed sufficient to merit eliminating the scale from further analysis.  

The reliability of the Cognitive Estimation Test included within the trait assessments was 

found to be 0.48 which is substantially higher than a college-age norm of 0.37 for this task 

(Rencher, 2002). 

Results from the WCST and Digit Span tasks were checked to ensure that 

administration of these tasks was not anomalous.  Results for the WCST and Digit Span 

tasks are shown in Table 5.3.   Overall, participants performed well on the WCST, 

completing a median number of categories of 8 out of the 9 possible and sorting on 

average 80% of the cards correctly. Three participants failed to understand the WCST as 

evidenced by their failure to complete a single category correctly; these participants 

performed within the normal range on the IGT and Digit Span.  The WCST data from 

these three participants were excluded from further analysis.   No anomalous results 

were found for the Digit Span task; participant spans ranged from 4 to 10 with a mean 

span of 7.11. 
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Table 5.3.  Summary of performance on the WCST and Digit Span. 

Measure 

WCST 

CC
 a

 

WCST 

NT 

WCST 

PE 

WCST 

NPE 

WCST 

TFC 

WCST 

Mean PR 

WCST  

Max PR 

Digit 

Span 

Mean 7.57 123.83 15.58 9.21 13.51 1.99 4.08 7.11 

SD 1.78 6.63 6.32 6.78 5.51 0.73 2.11 1.38 

Notes.  Categories Completed (CC); Number of Trials (NT); Perseverative Errors 

(PE), Non-Perseverative Errors (NPE), Trials-to-First-Category (TFC), Mean and 

Maximum Length of Perseverative Runs (MeanPR, MaxPR). 

To confirm that the administration of the IGT was consistent with expected results, 

the %Good and %EEV measures was computed for each participant and compared to the 

results from another large, independent data set (the Base data set presented in chapter 

IV). There were no significant differences across the two data sets for either measure:  

t(426)=0.5938, p>0.10 for %Good and  t(426)=-0.4390, p>0.10 for %EEV.    

The results of applying the ensemble clustering procedure to the data were 

previously presented in chapter IV.  The data supported a three cluster solution with 

40%, 35%, and 25% of the participants assigned to the Frequency-Sensitive, EV-LowFreq, 

and EV-HighFreq groups, respectively.  The distribution of participants across the 

groups was compared to the Base data set and no significant difference was found: 

χ
2
(2)=1.08, p>0.10.   

Before using IGT group for the primary analyses of this study, I tested for differences 

in sex, age, handedness, and education across the groups using independent-sample t-

tests or χ
2
-tests, as appropriate.  There were no significant differences in any of these 

variables across the groups:  sex χ
2
(2)=1.26, p>0.10; age F(2,106)=2.42, p>0.10; 

handedness χ
2
(4)=6.08, p>0.10; education F(2,107)=0.29, p>0.10. Age, handedness and 

education were therefore excluded from all subsequent analyses. Although sex was not 

found to be significantly different across the groups, there are known sex-differences in 

many of the traits assessed in this study, and therefore sex was included as a covariate in 

all subsequent analyses.  

Factor Analysis of Trait Data 

Kaiser‟s Measure of Sampling Adequacy (MSA) provides an indication of whether or 

not a correlation matrix might have structure sufficient to produce satisfactory results 

from factor-analysis, with a MSA values larger than 0.8 considered to be positive support 

(Bechara, 2004).  The MSA for the trait data considered in this study was 0.83.  Principal-
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components extraction was performed on the set of 45 trait measures and the resulting 

eigenvalues are shown in the scree plot depicted in Figure 5.1.  The scree plot is relatively 

flat across the majority of the components, as was expected given the fact that the data 

consisted of a set of measures that were previously derived via factor-analytic methods.  

The large incremental change in the eigenvalues from the first to the fourth and the 

subsequent smaller incremental changes following the fourth eigenvalue suggest a four 

component solution as a parsimonious representation of the data in reduced dimensions.  

Taken together, the first four components account for 49% of the variance in the data.  It 

is worth noting that for these data, the standard procedure for determining the number 

of factors based on the number of eigenvalues greater than 1 would have selected a 

twelve-factor solution. 

 

Figure 5.1. Scree plot of eigenvalues from principal-components analysis performed 

on correlation matrix of the 45 trait measures.  As expected, the plot is relatively flat 

as a result of analyzing a set of measures that were themselves previously derived via 

factor-analysis.  

As a second approach to selecting the number of factors, the factor-quality procedure 

outlined in the Methods section was performed on the trait data.   The results of this 

analysis are shown in Figure 5.2.  Conceptually, if each factor added to an initial two-

factor solution produced a high-quality factor, the plot should follow the diagonal line 

shown in the figure; the point at which the plot departs and fails to return to the 

diagonal would indicate that larger models do not necessarily produce better solutions.  
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Applied to the trait data, this selection procedure suggested that models fit with more 

than four or five factors did not produce parsimonious solutions.  The fact that five factor 

model itself produced only four factors meeting the quality criteria favors the four-factor 

solution as more parsimonious.   Taken together, the scree test and the quality test both 

provided support for a four-factor solution.   

 

Figure 5.2.  Results of factor quality procedure applied to the trait data.  As factors are 

added to an initial two-factor model (horizontal axis), the number of factors meeting 

the quality criteria were identified (vertical axis).   An idealized plot should follow the 

diagonal, and then depart at a point when larger models are no longer parsimonious.  

For the trait data shown in the figure, the plot departs from the diagonal after four or 

five factors, suggesting that larger models were not parsimonious.   The five factor 

model generated only four factors meeting the quality criteria, and therefore the four-

factor model was selected.  

A factor analysis using principal-components extraction and Varimax rotation was 

then performed on the data, with the number of factors to be modeled fixed at four.  The 

loadings (greater than 0.50) and communalities (h
2

) for the four-factor solution are given 

in Table 5.4.  The full rotated loading matrix is provided in Appendix G.   The factor 

analysis produced a clear, simple result structure, as evidenced by: (i) high correlations 

(loadings) between measures and factors, (ii) the large number of measures highly 

loaded on each factor, (iii) the fact that only one variable highly loaded on multiple 

factors (Neuroticism), (iv) the loading of related measures in the same factor, and (v) the 

generally high proportion of common variance component of each measure accounted 

for by the factors (h
2

).  Examination of the loadings matrix shown in Table 5.4 led to the 
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following interpretation of the four factors.  The first factor (“Positive-Drive”) was 

associated with assertiveness and enthusiasm, positive affect and outlook, highly goal-

driven behavior, and functional impulsivity contrasted with low levels of indecision. The 

second factor (“Dysfunctional Impulsivity”) was highly correlated with measures from 

each of the three impulsivity assessments (DII, BIS11, UPPS) as well as with the related 

constructs of disinhibition and lack of conscientiousness.  The third factor (“Negative 

Inhibited Perfectionism”) was associated with perfectionism and compulsivity, 

maximizing and regret-oriented decision making combined with the general traits of 

negative temperament and neuroticism. The fourth factor (“Sensation Seeking”) was 

correlated with self-reported risk-taking and sensation-seeking behavior as measured by 

the two instruments that assess these traits (the SSS and DOSPERT) as well by related 

scales from the UPPS and BIS-BAS.  Each of the factors reflected known associations 

between the measures that loaded on them. The factor score coefficients produced by the 

factor analysis were used to generate scores for each participant, on each of the four 

factors.  Scores on the 45 trait measures were thus reduced to scores on four trait factors 

and these were used to test the association between traits and the IGT decision groups.  

Higher scores on factors corresponded to greater association with each of the four traits 

represented by the factors. 
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Table 5.4 Rotated loading matrix from factor analysis of trait data. 

Measure (Assessment) Factor 1 Factor 2 Factor 3 Factor 4 h
2

 

Extraversion (BFI)    + 0.74    0.56 

Functional Impulsivity (DII) + 0.72    0.57 

Positive Temperament (GTS) + 0.68    0.52 

Positive Affect  (PANAS) + 0.68    0.50 

Drive (BIS-BAS) + 0.53    0.59 

Indecisiveness (FIS) – 0.63    0.53 

Indecision/Double Checking (CI) – 0.56    0.38 

      

Dysfunctional Impulsivity (DII)  + 0.71   0.71 

Nonplanning Impulsivity (BIS11)  + 0.70   0.58 

Attentional Impulsivity (BIS11)  + 0.67   0.54 

Disinhibition (GTS)  + 0.66   0.55 

Motor Impulsivity (BIS11)  + 0.63   0.63 

Premeditation (UPPS)  – 0.54   0.49 

Perseverance (UPPS)  – 0.62   0.61 

Conscientiousness (BFI)  – 0.78   0.71 

      

Concern Over Mistakes (FMPS)   +0.75  0.57 

Doubts About Actions (FMPS)   +0.68  0.58 

Regret (RMS)   +0.66  0.54 

Negative Temperament (GTS)   +0.65  0.67 

Maximizing (RMS)   +0.59  0.43 

Personal Standards (FMPS)   +0.59  0.54 

Behavioral Inhibition (BIS-BAS)   +0.57  0.55 

Parental Expectations (FMPS)   +0.56  0.34 

Neuroticism (BFI) – 0.52  +0.55  0.61 

Order/Regularity  (CI)   +0.52  0.31 

Organization (FMPS)   +0.52  0.47 

      

Sensation Seeking (UPPS)    +0.81 0.72 

Recreational Risk Taking (DOSPERT)    +0.80 0.72 

Thrill & Adventure Seeking (SSS)    +0.74 0.58 

Fun Seeking (BIS-BAS)    +0.68 0.62 

Health & Safety Risk Taking (DOSPERT)    +0.58 0.48 

Ethical Risk Taking (DOSPERT)    +0.56 0.49 

      

Percent of Variance Explained 

Cumulative Percent of Variance Explained 

0.12 

0.12 

0.12 

0.24 

0.14 

0.38 

0.11 

0.49 

- 

Notes.  Measures shown in italics are negatively correlated with their associated 

factor. 
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Factor Analysis of WCST Data 

The results from the factor analysis performed on the WCST data are shown in Table 

5.5.  As intended, the analysis produced a single aggregate WCST factor based on a 

weighted combination of the seven original WCST measures. The number of categories 

completed, the number of trials completed and the two types of errors contributed 

somewhat more to the aggregate factor than two measures of perseverative runs.  The 

aggregate WCST factor accounted for 52% of the variance in the raw data.  The factor 

score coefficients produced by the factor analysis were used to generate a single WCST 

score for each participant, with higher scores representing better performance on the 

task.   

Table 5.5  Rotated loading matrix from factor analysis of WCST data. 

Measure Factor 1 h
2

 Score Coefficients 

Categories Completed (CC) + 0.89 0.79 +0.245 

Number of Trials (NT) – 0.83 0.68 –0.228 

Perseverative Errors (PE) – 0.83 0.69 –0.229 

Non-Perseverative Errors (NPE) – 0.75 0.56 –0.207 

Trials to First Category (TFC) – 0.67 0.20 –0.125 

Maximum Perseverative Run (MaxPR) – 0.51 0.26 –0.139 

Mean of Perseverative Runs (MeanPR) – 0.45 0.44 –0.184 

Percent of Variance Explained 0.52 - - 

 

Association between Measures and IGT groups 

Mean differences in the lifestyle, trait, cognitive and response time measures across 

IGT groups were tested using full-factorial MANOVAs with IGT Group and Sex entered 

as independent variables in all tests.  All univariate tests and post-hoc comparisons 

following the MANOVAs were performed with Bonferroni corrected significance levels, 

unless otherwise noted. 

Lifestyle measures 

The multivariate omnibus test using the five lifestyle measures (Smoke, Drink, Drugs, 

Gamble, Sleep) as dependent variables found no significant difference in the set of 

measures across IGT Group, (Wilks‟ Λ(10,200)=0.971, p>0.9; Pillai‟s Trace(10,202)=0.30,0 

p>0.9).  A significant sex-difference was found (Wilks‟ Λ(10,200)=0.854, p<0.01; Pillai‟s 

Trace(10,202)=0.146, p<0.01), but there was no significant interaction between IGT 

Group and Sex (Wilks‟ Λ(10,200)=0.933, p>0.7; Pillai‟s Trace(10,202)=0.068, p>0.7).  
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Univariate tests revealed no significant differences in any of the five lifestyle measures 

across the IGT groups; uncorrected comparisons were also not significant. 

Trait measures 

Next, a MANOVA was performed using the four trait factors as the dependent 

measures.  No significant association we found between the four trait factors and either 

IGT cluster (Wilks‟ Λ(8,202)=0.931, p>0.5; Pillai‟s Trace(8,204)=0.070,0 p>0.5) or Sex 

(Wilks‟ Λ(4,101)=0.946, p>0.2; Pillai‟s Trace(4,101)=0.054 p>0.2).  The interaction 

between IGT group and Sex was also not significant. Univariate tests revealed no 

significant differences in any of the four trait factors across IGT Group. No univariate 

post-hoc comparisons of the four traits across IGT groups were significant (or 

approaching significance); uncorrected comparisons were also not found to be 

significant. 

Cognitive measures 

I next investigated the association between the four cognitive measures (WCST, Digit 

Span, CET, and Math) and IGT Group.  This test revealed a significant association 

between the set of cognitive measures and IGT group (Wilks‟ Λ(8,196)=0.837, p<0.05; 

Pillai‟s Trace(8,198)=0.168, p<0.05) as well as Sex (Wilks‟ Λ(4,98)=0.890, p<0.05; Pillai‟s 

Trace(4,98)=0.110,0 p<0.05).  The interaction between IGT Group and Sex was not 

significant in the omnibus test.  Univariate tests using each of the four measures revealed 

that only the aggregate WCST score was significantly associated with IGT Group and 

furthermore that this measure also differed significantly across Sex (Table 5.6).  The 

interaction between IGT Group and Sex for the aggregate WCST score was not 

significant.  Consistent with the literature on sex-differences in the WCST, women 

performed better than men with a mean difference of 0.442 standardized units on the 

aggregate WCST measure, but this was a small effect (partial η
2
=0.05).  Of primary 

interest in this study were the differences in WCST performance across the three IGT 

groups.  Post-hoc tests revealed that the Frequency-Sensitive participants exhibited 

significantly poorer performance on the WCST than participants in the EV-LowFreq 

group (mean difference of 0.641 standard units, p<0.05) as well as the EV-HighFreq 

group (mean difference of 0.61 standard units, p<0.05).  There was no significant 

difference in WCST performance between the EV-LowFreq and EV-HighFreq groups.    
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Table 5.6 Univariate tests of cognitive measures versus IGT Group and Sex. 

Measure 

IGT Group Sex 

F p 

Partial 

η2

  F p 

Partial 

η2

  

WCST Aggregate Score 5.801 0.004 0.103 5.444 0.022 0.051 

Digit Span 1.592 0.209 0.031 0.021 0.886 0.000 

Cognitive Estimation Test (CET) .995 0.373 0.019 0.288 0.593 0.003 

Math Ability (self-reported) .887 0.415 0.017 6.299 0.014 0.059 

 

To better understand which measures of WCST performance contributed to the 

poorer performance found for the Frequency-Sensitive group, pair-wise mean 

differences across the IGT Groups were tested using independent sample t-tests (Table 

5.7).  Sex was not considered because the IGT Group x Sex interaction for the WCST was 

already found to be non-significant.  To facilitate interpreting the mean differences, raw 

WCST scores were used rather than the standardized and transformed measures as were 

used in the previous analyses. Participants in the Frequency Sensitive group performed 

significantly worse on the IGT compared to participants in the two EV-sensitive groups.  

In particular, the Frequency-Sensitive participants on average completed about one less 

category, terminated the task 3-4 trials later, and made 3-4 more perseverative errors 

with longer runs of perseverative choices. Interestingly, participants in the Frequency-

Sensitive group did not differ from the other groups in non-perseverative errors or the 

number of trials required in learning the first category.   

Table 5.7 Mean differences in WCST measures by IGT Group. 

Measure 

Frequency -

Sensitive  

vs. EV-

LowFreq 

Frequency-

Sensitive  

vs. EV-

HighFreq 

EV-HighFreq 

vs. 

 EV-LowFreq 

Categories Completed (CC) -0.90** -0.80 -0.10 

Number of Trials (NT) 3.70*** 3.11** 0.58 

Perseverative Errors (PE) 4.25*** 3.24* 1.00 

Non-Perseverative Errors (NPE) 1.63 2.09 -0.46 

Trials to First Category (TFC) 0.99 1.95 -0.96 

Maximum Perseverative Run (MaxPR) 1.19** 1.67*** -0.48 

Mean of Perseverative Runs (MeanPR) 0.40** 0.45** -0.05 

Note.  
*

=p<0.10, 
**

=p<0.05, 
***

=p<0.01 



110 

 

Response time measures 

I next investigated the association between response time measures and IGT Group.  

The five response time measures entered as dependent variables in the MANOVA were 

(i) mean response time in the IGT, (ii) mean response time in the WCST, (iii) mean 

response time in the Digit Span, and (iv) the total time participants spent filling out the 

trait assessments. This test revealed no significant association between these measures 

and IGT group (Wilks‟ Λ(8,198)=0.947, p>0.7; Pillai‟s Trace(8,200)=0.054, p>0.7) nor with 

Sex (Wilks‟ Λ(4,99)=0.983, p>0.7; Pillai‟s Trace(4,99)=0.017,0 p>0.7).  The interaction 

between IGT Group and Sex was not significant in the omnibus test.  Univariate tests 

revealed no significant differences in any of the response time measures across the IGT 

groups; uncorrected comparisons were also not significant. 

Univariate ANOVA on Individual Measures 

While the test of association between the trait factors and IGT group failed to show 

significant associations, it was possible that in reducing the 45 individual trait scales to 

four factors, important trait correlates may have been obscured.  Although the failure to 

find significant associations was not surprising given that strong correlations have not 

been found with any consistency in the existing literature on the IGT, I nevertheless 

wanted to further confirm the results of the MANOVA tests.  I therefore conducted 

exploratory, post-hoc analyses directly on each trait measure using univariate ANOVAs 

with IGT group as the independent variable.  I also examined the patterns of trait scores 

across the three groups to determine whether or not there were regularities in their 

distributions (Figure 5.3).  The plots in the figure show the standardized scores (Z values) 

for each trait, across each of the three IGT decision groups.  The traits are organized in 

related sets.  The related traits of compulsivity, perfectionism, maximizing and regret, 

and indecision are located in the bottom third of the figure; the impulsivity traits and the 

risk-taking and sensation-seeking traits in the middle of the plots, and the measures of 

general personality and affect are located in the top third of the plots.  While there seem 

to be some regularities across the IGT groups in scores on related measures (for example, 

in the pattern of scores for the related set of compulsivity, perfectionism, 

regret/maximizing, and indecision traits), what is most evident from the figure is that the 

differences in trait scores across the three groups were very small, with even the largest 

difference (the DI scale of the DII) differing by only half of one standardized score.  The 
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data shown in the figure offer little support for the hypothesis that the failure to find 

significant differences was due to the aggregation of individual trait scores into the four 

trait factors.   

 

Figure 5.3 Mean standardized trait scores for each of the three IGT decision groups.  

While there seem to be differences across the groups among sets of related traits, 

these differences are very small in terms of standardized scores.  These data do not 

suggest that significant differences in individual trait scores were obscured through 

the use composite scores obtained through factor analysis.  Key to sets of measures:  

(1) Compulsiveness and Perfectionism, (2) Impulsiveness, (3) Sensation Seeking and 

Risk Taking, (4) Behavioral Inhibition and Activation, (5) General personality and 

affective traits.  See Table 5.2 for trait abbreviations. 

Figure 5.4 shows the results of one additional analysis done to investigate the 

possibility that important trait associations might have been obscured by the use of the 

four-factor representation of the trait data.  The figure gives the uncorrected p-values 

generated by univariate tests of mean differences across the three IGT groups for each of 

the 45 traits.  Confirming the results suggested by the analysis shown in Figure 5.3, none 
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of the traits was found to be significant except the Dysfunctional Impulsivity scale of the 

DII; few traits approached even marginal significance.  Furthermore, among the set of six 

traits with the smallest p-values, there was no obvious pattern:  two were impulsivity 

traits (DII_DI, UPPS_PER), one a risk taking trait (DOSPERT_FIN), one a compulsiveness 

trait (CI_OR), one the regret trait (RMS_R), and one a measure of depression (BDI_BDI).  

There was therefore little evidence of a robust pattern of associations provided by this 

additional analysis.  

 

Figure 5.4 Results from univariate testsfor mean differences in each of the 45 trait 

measures across the three IGT decision groups.  The level of significance (uncorrected 

p-values) is shown for each measure.  Only one measure (the Dysfunctional 

Impulsivity scale of the DII) is significant at an uncorrected level of 0.05, and few 

traits even approach marginal significance.  See Table 5.2 for trait abbreviations. 
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Prediction Results 

The multivariate tests failed to reveal significant associations between trait factors 

and IGT decision group, and the exploratory post-hoc tests using individual trait 

measures revealed only one measure that was significant at an uncorrected alpha level of 

0.05.   One possible limitation in these tests was the size of the sample (N=110).  While 

the results presented in the preceding sections offer little support for the presence of 

strong associations between any trait measures and IGT decision group, it was possible 

that one or more of these traits might contribute to predicting IGT decision group 

despite lack of significance in the statistical tests.  To investigate this hypothesis, a set of 

classifier models were used to evaluate the degree to which the trait measures might 

contribute to predicting IGT Group as compared to the WCST, Digit Span, CET and 

Lifestyle measures.   Given the significant association found between performance on 

the WCST and IGT Group, the WCST was expected to perform better than chance in 

predicting group membership.  If there were regularities in the association between 

scores on the other measures and IGT Group, these regularities should be exploitable by 

the classifier model and should contribute to predicting group membership above 

chance.  

To predict the membership of each participant in one of the three IGT decision 

groups, multinomial logistic regression models were fit to each of the sets of predictors 

(the traits, WCST, Digit Span, CET, and lifestyle measures), and the classification 

accuracy was computed using the cross-validation procedure discussed in the Methods 

section of this chapter.  The results of this analysis are shown in Figure 5.5 which shows 

the cross-validated prediction accuracy for each of the sets of predictors that were tested.  

The dotted lines in the figure are reference levels of accuracy corresponding to chance 

(randomly assigning each participant to one of the three clusters) and to a null model 

(which always assigns participants to the modal group, in this case the Frequency-

Sensitive group that contained 39% of the participants).  As expected, when the single-

factor scores on the WCST were used as predictors, they contributed to prediction 

accuracy, yielding a mean accuracy of 0.444. In contrast, the lifestyle measures (Life), trait 

factor scores using both the four- and twelve-factor solutions (T4f, T12f), and the CET 

contributed nothing to prediction over and above the null model. A model using scores 
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on the Digit Span (D) as predictors yielded an accuracy of 0.407, contributing little 

relative to the null model.   

 

Figure 5.5  Mean cross-validated accuracy in predicting the membership of each 

participant in one of the three IGT decision groups.   Each bar represents a model 

based on a set of unique predictors:  the five lifestyle measures (Life), the four-factor 

trait scores (T4f), the 12-factor trait scores (T12f), the seven WCST measures (W7), the 

Cognitive Estimate Test scores (CET), the Digit Span scores (D), six individual trait 

scores found to be closest to significance in the univariate post-hoc analysis (T6m), 

the single-factor WCST scores (W1), and two models that combine the WCST single 

factor trait scores with the trait measures (W1,T6m) and with the trait measures as 

well as the Digit Span (W1,T6,D).  Error bars are standard errors of the mean 

classification accuracy as computed by the cross-validation procedure. 

As discussed in the last section, it was possible that a small set of the individual trait 

measures might contribute to prediction accuracy, despite being insignificant or 

marginally significant.  To test this hypothesis, the six traits found to have p-values less 

than 0.15 in the exploratory tests (c.f., Figure 5.4) were tested as predictors alone (model 

T6m) as well as combined with the WCST factor scores (model W1,T6m) and with the 

WCST factor scores and Digit Span scores (model W1,Tgm,D).  These six measures were 

Dysfunctional Impulsivity, Financial Risk Taking, Perseverance, Order/Regularity, 

Regret, and the Beck Depression Index.  Interestingly, these six traits independently 

yielded a mean accuracy of 0.417 as compared to accuracy of 0.444 obtained from the 

WCST factor scores.  When combined with the WCST predictor, however, these traits did 
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not contribute additional accuracy to the prediction model (c.f., Figure 5.5).  The 

contribution of each of the six traits was then evaluated by examining the exponentiated 

β coefficients (e
β
) in the logistic regression equations (Table 5.8).  The reason for 

interpreting e
β
 values rather than the β coefficients is that they indicate the 

increase/decrease in the log-odds of the outcome group relative to the reference group 

for each unit increase in the associated predictors.  Of the six trait measures included in 

the model, only Order/Regularity was significant in the prediction equation for the 

Frequency-Sensitive relative to the EV-LowFreq group, and the e
β
 value indicated that a 

participant one unit higher in this compulsiveness measure was 1.7 times more likely to 

be in the Frequency-Sensitive group than in the Low-Frequency group.  The Financial 

Risk Taking and Beck Depression Index approached significance for this same equation, 

and their respective e
β
 values indicated that participants in the Frequency-Sensitive 

group tended to have higher scores in self-reported depressiveness and lower scores in 

risk taking.  No coefficients were within, or near, significance for the prediction equation 

contrasting the EV-HighFreq group with the EV-LowFreq group.  Taken together with 

the other analysis of the trait measures, these results again find little evidence for a 

robust association between IGT group and the studied traits. 

Table 5.8  The e
β
 coefficients in the six-trait logistic regression model. 

Measure 

Frequency -

Sensitive  

vs. EV-LowFreq 

EV-HighFreq 

vs. 

 EV-LowFreq 

Order & Regularity 1.70** 1.36 

Beck Depression Index 1.56* 1.18 

Financial Risk Taking 0.66* 0.66 

Regret 1.31 0.89 

Dysfunctional Impulsiveness 0.82 1.33 

Perseverance 1.07 0.71 

Note.  
*

=p<0.10, 
**

=p<0.05.  Values in the table are exponentiated β coefficients, 

which indicate the increase or decrease in the log-odds of the outcome group 

relative to the reference group for a unit increase in a predictor. 

Discussion 

In this study, I sought to characterize three previously identified group differences in 

decision making style in the IGT.  These groups were shown to differ in their preferences 

over the four decks. The Frequency-Sensitive group preferred the two decks with the 
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common attribute of lower loss frequency relative to the other decks.  The EV-LowFreq 

and EV-HighFreq groups showed a common preference for options with higher 

expected value, but differed in their preference for loss frequency.  The primary aim of 

this study was to identify, aside from the demonstrated differences in performance in the 

IGT, other important ways in which the three groups might differ.  

The approach  pursued in addressing this aim was shaped in part by an existing 

body of research that has sought to characterize differences in IGT performance in terms 

of trait and affective correlates.  Trait-based research on the IGT has been largely 

motivated by the fact that certain clinical populations that tend to have extreme scores 

on various trait measures also tend to perform disadvantageously on the IGT.  The 

premise that these same traits are also robust correlates of IGT performance has not yet 

been established:  findings to date have found only weak associations and these results 

have not been consistently replicated. In this study, I hypothesized that by grouping 

participants according to the three decision styles, I might be able to reveal more robust 

trait correlates of IGT performance.  Included in the study were a large set of candidate 

measures (assessing a smaller set of constructs) chosen because they had been previously 

studied in the IGT literature or found to be associated with decision making, more 

broadly defined.   

The approach taken in this study was also shaped by a parallel body of research that 

has attempted to disentangle what appears to be a complex relationship between the IGT 

and executive function.  There are two views on what processes underlie performance 

on the IGT, each based primarily on neuropsychological evidence. One view is that the 

IGT is, foremost, a task driven by affective processes that serve to constrain and guide 

decision making.  Proponents of this “affective view” have pursued evidence that might 

show dissociations between IGT performance and cognitive functions typically 

associated with “cold” aspects of decision making (Fellows, 2007).  An alternative view 

suggests that advantageous performance in the IGT may be more a function of executive 

processes such as reversal learning and set-switching, and of cognitive flexibility. 

Proponents of this more “cognitive view” of the IGT have sought evidence showing that 

IGT performance and more “cold” executive functions are integrally related (Grant & 

Berg, 1948; Spreen & Strauss, 1998b). Much work is left to be done to reconcile these two 

views, and in this study I hoped that by investigating differences in IGT decision group 
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using candidate cognitive correlates concurrent with candidate trait correlates, I might 

provide new evidence to help do so. 

After demonstrating that differences in demographic and self-reported lifestyle 

measures were not significantly associated with differences in IGT decision style, I 

utilized a range of approaches to try to reveal meaningful associations with a set of 

personality constructs putatively related to decision making in the IGT:  (i) impulsivity, 

(ii) the closely related traits of compulsivity, indecision, negative perfectionism and 

maximizing behavior, (iii) behavioral drive and goal-seeking, (iv) risk-taking and 

sensation seeking behavior, and (v) general affect and temperament.  I found no 

evidence for strong associations between these traits and differences in performance on 

the IGT, despite analyzing the traits at the level of both individual scales as well as factor-

analyzed composites.  Exploratory post-hoc analyses and prediction modeling offered 

some evidence that a small set of individual measures may be associated with frequency-

sensitive behavior, but given the exploratory nature of these analyses, these associations 

should be viewed with caution. Of primary significance was the lack of evidence found 

to support the well-accepted claim that disadvantageous performance on the IGT is 

closely related to impulsivity.  I included in this study three differing and widely used 

assessments of impulsive behavior as well as subscales from related assessments that also 

measure facets of impulsivity. These measures were analyzed individually as well as via 

the construct of impulsivity that emerged as one of the factors in the factor analysis.   As 

a factor, impulsivity was not significantly associated with IGT decision making; of the 

individual  impulsivity measures, only one was found significant in univariate post-hoc 

comparisons (the Dysfunctional Impulsivity scale of the DII), but this measure did not 

contribute significantly to predicting decision style in the IGT.    

Concurrent with the trait analysis, I sought to identify associations between IGT 

decisions style and performance on three cognitive tasks (the WCST, the Digit Span, and 

the CET) as well as with a self-reported measure of mathematical ability. I found 

evidence for a significant association between IGT group and performance on the WCST, 

but not for any of the other measures.  In particular, poorer performance in sorting cards 

on the WCST was associated with the group of participants found to be more sensitive to 

the frequency of losses as compared to the expected value of the IGT decks.   This 

suggests that sensitivity to expected value – an important quantity on which this group 
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differed from the other two -- may be tied to executive functions tasked by the WCST.  

While the underlying processes tasked by the WCST are debated, it is thought to engage 

multiple components of executive function including categorization, rule learning and 

maintenance, set-shifting/reversal learning, and response inhibition (Fellows & Farah, 

2003, 2005).  The analysis of individual WCST measures revealed that poorer WCST 

performance by the Frequency-Sensitive group was significantly associated with 

perseverative- rather than non-perseverative errors (together, the two type of errors that 

can be made on the task).  Perseverative errors occur when, faced with a change in the 

sorting rule, participants continue sorting cards based on the last rule in force.  

Participants in the Frequency-Sensitive group made more perseverative errors, and on 

average persisted in perseverative responses for more trials than participants in the two 

EV-Sensitive groups.  These participants, however, did not seem to take longer to learn a 

sorting rule (there was no significant difference in trials-to-first-category across the three 

groups), which suggests that their perseverative errors were more likely due to poor 

performance in cognitive flexibility and set-shifting (reversal learning) than to 

categorization and learning abilities.   

Interestingly, one prominent account of decision making in the IGT – associated with 

the cognitive view – is that disadvantageous decision making is associated with reversal 

learning (Bechara & Damasio, 2005; Bechara, Damasio, et al., 2000). In both the affective 

and cognitive conceptualizations of the task, it has been accepted that (i) the bad decks 

appear good in the first trials of the game, and therefore (ii) to perform advantageously, 

participants must learn that the good decks offer better longer-term payoffs and forego 

choosing from the bad decks in favor of the good decks.  The two views differ in their 

claims about what processes underlie this transition from the bad decks to the good 

decks.  Proponents of the more affective view have proposed that successful transitions 

are guided by affective signals originating in the body (or cortical representations of the 

body) and that are the result of learned associations (“somatic markers”) that signal the 

value of the decks based on experienced payoffs (Bechara, et al., 1997; Bechara, et al., 

1996).  Patients with damage to vmPFC perform the IGT (and real life decision making 

tasks) disadvantageously, and because the vmPFC is thought to play a role in the 

integration of affective bodily signals with cognition, this involvement of this brain area 

in IGT performance is associated with the affective view of the task.  By this view, 
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disadvantageous performance is thought to be related to a reduced (or impaired) ability 

to integrate delayed reward values into the learned somatic markers (“myopia for the 

future”).  Behaviorally, this condition is thought to manifest itself as impulsivity.  The 

primary empirical evidence supporting the specific association between vmPFC and 

affective signaling (as opposed to other possible component processes of decision 

making) comes from studies that have measured skin-conductive responses (SCRs) and 

demonstrated that that advantageous participants in the IGT develop anticipatory 

responses prior to selecting cards from the bad decks, while disadvantageous patients 

fail to show such responses (for a review, see B. D. Dunn, et al., 2006).  Although these 

findings have been independently replicated, the link between anticipatory SCRs and 

affective signaling is debated (Fellows, 2007; Fellows & Farah, 2003, 2005). Farah and 

Fellows have advanced a somewhat different account, arguing that the transition across 

decks is subserved by processes involved in reversal learning (Fellows & Farah, 2005).  

The vmPFC is known to be involved in reversal learning, and by manipulating the 

payoff schedule in the decks, Farah and Fellows have shown that IGT performance in 

vmPFC patients improves when losses are experienced in the early trials and no reversal 

from the bad decks to the good decks is required (Jameson, et al., 2004). Farah and 

Fellows have also shown that patients with damage to dorsolateral prefrontal cortex 

(dlPFC) are impaired in the IGT, but critically these patients showed no improvement 

when the deck reversal requirement was eliminated.  These neuropsychological studies 

of the IGT suggest that while affective signaling (and the putative traits associated with 

it) may guide behavior in the IGT, performance on the task is likely to be more broadly 

related to executive processes that subserve problem solving aspects of decision making 

in the task.  The results of the present study in healthy participants are certainly 

consistent with this view.  Among the large set of measures studied, only poor 

performance in terms of perseveration and set-shifting in the WCST emerged as 

correlates of disadvantageous performance.  

The results of the present study are also consistent with evidence from related work 

that studied the effects of dual-tasking on performance in the IGT (for reviews see: 

Anderson, 1991; Ashby & Maddox, 2005; Bruner, Goodnow, & Austin, 1956; Medin & 

Smith, 1984; Murphy, 2002; Murphy & Medin, 1985; Osherson, Wilkie, Smith, Lopez, & 

Shafir, 1990). While performing the IGT, participants periodically engaged in secondary 
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tasks: either the maintenance and manipulation of a list of digits, or articulatory 

suppression.  The secondary digit task was found to disrupt performance on the IGT as 

well as skin-conductance responses; articulatory suppression had no significant effect on 

either measure.  Similarly, in the present study I found that while performance on the 

WCST was associated with the more disadvantageous IGT group, performance on the 

Digit Span was not.  Taken together, the findings of in this study and the dual-task study 

suggest that differences in IGT performance are related to the more complex 

components of executive function (for example rule manipulation and set-shifting) than 

to lower-level processes such as verbal buffering and rehearsal.   

One interesting attempt to reconcile the affective and cognitive views of the IGT has 

been put forth by Brand and colleagues.  They conducted a study comparing 

performance on the IGT, the WCST and the Game of Dice Task (GDT) – a decision task 

in which participants are given explicit knowledge of payoff probabilities.  The study 

found that performance on the WCST and the GDT was correlated more strongly with 

performance in the later trials of the IGT, than in the earlier trials.  The authors argue 

that the early trials of the IGT involve decision making under ambiguity, while the 

middle and later trials involve decision making under risk.  In the early trials, 

participants have little knowledge of the payoffs contained in the decks and must learn 

them through experience. As participants accumulate experience with the payoffs, their 

knowledge becomes more explicit, fundamentally changing the nature of the task. This 

view of the IGT is consistent with the findings from the clustering study reported in this 

dissertation. In this study I found that in each of the three groups, the participants‟ final 

pattern of preferences tended to emerge in the second or third block and persist for the 

duration of the task.  That their preferences were stable across the middle and later 

blocks of the task suggests that participants were not engaged in reducing ambiguity 

through trial-and-error learning in these later blocks, but rather that they had developed 

explicit preferences and were involved in decision making to apply these preferences in 

the probabilistic context of the task.   

The primary aims of this study were to further test the associations between IGT 

performance and traits previously studied in the literature, and to investigate the relative 

efficacy of trait and cognitive measures in characterizing differences in the IGT.  These 

two aims were accomplished. In finding (i) a significant association between IGT decision 
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style and performance in the WCST, and (ii) no significant associations with the Digit 

Span or with trait measures previously implicated in IGT performance, the current study 

provides evidence suggesting that differences in the IGT are more likely due to cognitive 

processes involved in executive control than to processes involved in affective signaling 

(and the putative traits associated with these processes). However, given the large 

number of candidate measures investigated, the current study provides more 

information about the factors that do not help characterize IGT decision style than those 

that do.  Participants in the Frequency-Sensitive group perform the IGT more 

disadvantageously and this difference in their performance was associated with 

differences in  the components of executive function tasked by the WCST.   However, 

the current study revealed little else about how the Frequency-Sensitive group differs 

from the two EV-sensitive groups.  The study also revealed no evidence to help 

characterize differences between the two EV-sensitive groups.  Further characterizing 

differences in the three identified IGT decision groups is necessary to provide a more 

complete conceptualization of individual differences in this task.  The results presented 

in this chapter suggest that studies focused on cognitive factors involved in problem 

solving and executive control are likely to be a productive agenda to pursue. 
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CHAPTER VI. GENERAL DISCUSSION 

Summary of Results 

Decision making behavior in the IGT has almost exclusively been characterized based 

on population-level analysis using a single univariate measure of performance that 

assumes participants perform the task based on the relative expected values of the four 

decks.  While it is certainly possible that (i) IGT performance is well represented by 

population-averaged patterns of performance, (ii) that individual differences are well-

captured by quantitative differences in univariate measures, and (iii) that the most 

appropriate measure is expected value (e.g., %Good or %EEV), in the present work I 

sought to test the strength of these assumptions and in doing so also challenge the 

validity of the current conceptualization of the task.  

I used computational models to determine how well decision making in the IGT is 

accounted for by single model that endogenously computes expected values based on 

lower-level procedural learning processes.  The choice of model was not based on 

attempts to directly model the core features of the task, but rather was independently 

motivated by a known connection between performance on the IGT, damage to brain 

areas involved in reward-based learning, and a class of computational models known to 

reproduce observed neural data in these brain areas.  I found that the class of 

reinforcement models, of which the widely accepted expectancy-valence model is a 

member, can account for the core phenomena in the task, when considered in the 

aggregate.  Critically, I found that the addition of a frequency-avoidance term to the 

definition of reward yielded a model that provided a better overall account of aggregate 

performance than the standard model.  However, considered at the level of individuals, 

this better model was the best fit for only a minority of participants. A range of variant 

models each were able to better capture performance for small subsets of participants 

than the best model. A modal model of the task therefore remains elusive.  The fact that 

the RL class of models was unable to capture the performance of a large percentage of 

participants suggests there are forces at work that may be beyond the reach of a 
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theoretical framework that includes only lower-level reward-based learning 

mechanisms.  This dissertation focused on the RL class of models motivated by their 

close relation to the Somatic Marker Hypothesis as well as by the goal of investigating 

this class of models more fully than has been done in prior computational work.  It is 

important to acknowledge, however, that in limiting the computational study to RL 

models, higher-level declarative models have been ignored.  The results of this 

dissertation suggest that declarative decision processes may have a greater influence on 

behavior in the IGT than has been suggested by the Somatic Marker Hypothesis and by 

the prevailing conceptualization of the task.  Taken together, the finding that the RL 

models were a poor fit for a large minority of participants, the failure to find significant 

associations between IGT decision making and trait measures, and the finding of a 

significant association between the IGT and WCST provide converging evidence that 

investigating the IGT from a more declarative perspective may be a fruitful avenue for 

future work; this future work might make contact with the large and well-developed 

literature on concept formation and hypothesis testing (For reviews, see: Anderson, 1991; 

Ashby & Maddox, 2005; Lamberts & Shanks, 1997; Medin & Smith, 1984; Murphy, 2002; 

Murphy & Medin, 1985; Osherson, et al., 1990).  An additional challenge to the 

application of the RL framework to modeling the IGT comes from a recent neuroimaging 

study demonstrating that exploratory behavior may be supported by a different neural 

substrate than the type of exploitative behavior associated with choices based on learned 

value estimates (Daw, et al., 2006).  The authors of this study suggest that exploratory 

behavior may be due to frontal control mechanisms that override exploitative behavior.   

Although initial exploratory behavior in the RL framework is endogenously generated as 

result of setting value estimates to the same initial value, exploration and exploitation are 

instantiated in a unitary mechanism (the choice function) and as such are not consistent 

with the neural data.  Explicitly modeling exploratory behavior as an independent 

control mechanism may also be a fruitful area for future research. 

Motivated by the results of the computational study, I then used a multivariate 

clustering procedure to determine more robustly whether decision makers in the IGT are 

better characterized by a single pattern of performance differing quantitatively in their 

sensitivity to expected value, or by multiple patterns of performance based on decision 

attributes other than, or in addition to, expected value.  Consistent with the results of the 
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computational study, the clustering results revealed three subsets of participants 

differing qualitatively in the ordering of their preferences over the four decks – three 

different decision styles.  I found that in the first block of trials, all participants performed 

similarly, exploring each of the four decks with a notable preference for deck B.  After 

this first block, the three decision styles began to emerge and each persisted for the 

remainder of the task.  Participants exhibiting the EV-LowFreq style showed a 

preference for a deck with positive expected value and low frequency losses (deck D).  

The participants in the EV-HighFreq cluster also showed a preference for a deck 

delivering positive expected value, but showed a concomitant preference for losses that 

occurred with high frequency.  Tellingly, when participants associated with each of these 

two decision styles depleted the cards in their preferred deck, they shifted their 

selections to the other deck offering positive expected value, suggesting strongly that 

their choices were based foremost on sensitivity to expected value, with loss frequency a 

secondary attribute.   I also found a third pattern of performance associated with 

participants who preferred the two decks that delivered low frequency losses (decks B 

and D).   

I interpret the performance of participants who showed a combined preference for 

decks B and D as being driven by sensitivity to loss frequency, and refer to this decision 

style as Frequency-Sensitive, but this interpretation deserves further justification as it is 

possible that one or more other confounded attributes might equally well characterize 

decks B and D.  The primary features of the task are the gain amounts, loss amounts, and 

net payoffs
12

 that participants experience as they select cards.  Plausible attributes that 

might influence choice behavior are the expected values, variances, and frequencies of 

these quantities as summarized in Table 6.1 for each of the four decks.  What our results 

demonstrated was that participants in the putative Frequency-Sensitive cluster showed a 

combined preference for decks B and D over decks A and C, and over a preference for 

any one deck.   Inspection of Table 6.1 reveals that loss frequency is the only attribute 

                                                        

 

12

 Net payoff in the task is the gain amount on a winning trial, and the sum of the gain amount 

and loss amount on a loss trial.  Net payoffs are not explicitly represented in the task, but it is 

plausible that a mental representation of this quantity is available to participants either via 

implicit or explicit processes.  Maia and McClelland (2004) provide evidence that net payoffs and 

expected value quantities are available to participants. Whether these quantities actually influence 

choice behavior has not been fully determined.  
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common to decks B and D and not shared by decks A and C.  While there may be other 

more complex attributes of choice that I have omitted in this analysis, parsimony 

supports the conclusion that loss frequency is the appropriate attribute for characterizing 

the participants that demonstrated a preference for decks B and D.  This finding is 

consistent with another recent study that found frequency was the dominant attribute of 

choice in children age 6-15 and that frequency and magnitude attributes were utilized in 

young adults aged 18-25  (B. D. Dunn, et al., 2006).   

Table 6.1 Decision attributes associated with decks in the IGT. 

Attribute A B C D 

EV
 a

 of Gains High ($131) High ($131) Low ($66) Low ($66) 

EV
 a

 of Losses High (-$203) High (-$203) Low (-$33) Low (-$33) 

EV
 a

 of Net Payoffs Negative (-$72) Negative (-$72) Positive (+$33) Positive (+$33) 

Std
 b 

of Gains High ($23) High ($23) Low ($14) Low ($14) 

Std
 b

 of Losses Medium ($116) Very High ($630) Very Low ($24) Medium ($100) 

Std
 b

 of Net Payoffs Medium ($109) Very High ($625) Very Low ($25) Medium ($100) 

Loss Frequency High (50%) Low (10%) High (50%) Low (10%) 

Notes. 
 a

 EV denotes expected value. Expected values were computed across the 

set of cards contained in each deck. 
b

 The text refers to variance, but the table 

shows standard deviations (std) to allow comparison of the values in terms of 

dollar amounts rather than squared dollar amounts. 

I cautiously interpret the behavior of participants who showed a preference for either 

deck C or D as being sensitive to expected value and I have therefore labeled their 

assigned clusters as EV-LowFreq and EV-HighFreq depending on whether they 

preferred the low or high frequency deck.  The fact that the design of payoffs in the IGT 

confound several attributes has been previously raised in the literature, for example (B. 

D. Dunn, et al., 2006).  This issue is evident from the attribute comparisons shown in 

Table 6.1.  Advantageous participants prefer decks C and D, and the clustering results 

show that they also tended to prefer one of the two decks, but not both.   What attributes 

are common to decks C and D, and not shared with decks A and B?  There are at least 

four possibilities.  Decks C and D have in common that they both deliver low average 

gains.  It is not likely that subjects prefer these decks because they offer average gain 

amounts, so I rule out this attribute.  Also common to these two decks is the fact that the 

average magnitude of the losses in these decks is lower than in decks A and B.  As noted 
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by Dunn (Kahneman & Tversky, 2000), advantageous performance could be an outcome 

of behavior that ignores gain magnitudes and instead seeks lower magnitude losses.   

The expected value of losses is therefore a quantity that may plausibly drive the behavior 

of participants in the EV-LowFreq and EV-HighFreq clusters.  Because the expected 

value of net payoffs is highly correlated with the expected values of the losses, it too is a 

plausible basis of performance.  The fourth attribute common to decks C and D is that 

the gains delivered by these decks are lower in variance than the gains in decks A and B.  

It is therefore also possible that advantageous performance is driven by sensitivity to the 

variability in the magnitude of gains.  The variance in losses and net payoffs are also 

shared by decks C and D, but also by deck A.  The variance differences between decks D 

and A are very small and it unknown whether such small differences are sufficient to 

influence performance in the task.  In summary, while I think that it is unlikely that 

participant preferences for either deck C or D are influenced predominantly by attributes 

of variance rather than expected value, I leave open this possibility for determination by 

future work.   The set of attributes outlined in Table 6.1 (and possibly others as well) 

need to be independently manipulated and tested to determine which of them influence 

advantageous behavior.  Critically, I suggest such tests should be done with the unit of 

analysis being groups (grouped based on the three decision styles identified in this 

study) rather than populations.  

Linking Modeling and Clustering Results 

In the computational study, patterns of deck choices were generated endogenously 

by the mechanisms instantiated in the set of models that were considered.  In the 

clustering study, patterns of empirically observed deck choices were analyzed to identify 

dimensions on which participants differed in their decision behavior.  The results of 

these two studies independently suggested that loss frequency is an important attribute 

associated with decision making in the IGT.   The best-fitting model included loss 

frequency as a component of the reward function, and loss frequency was shown to be 

an important attribute associated with differences in the three identified clusters. Given 

this convergence of results, I sought to further investigate the association between the 

models and the three identified clusters.  Table 6.2 gives a distribution of the best fitting 

models for participants in each of the three clusters.  
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Table 6.2 Distribution of best fitting models within clusters. 

Cluster  N Base 
Simple 

Average  Decay Pursuit 
Reinforcement 

Comparison 
Risk 

Models** 
EV/HighFreq  16 6% 13% 13% 0% 19% 50%  

EV/LowFreq  11 27% /0%*  18% 0% 18% 0% 36% /63%*  

Freq-Sensitive 12 17% 17% 0% 17% 0% 50%  

* The second value gives the percentage of participants without the complexity 

correction imposed by the use of the BIC criterion.  Because the Base model was 

nested within the Risk Sensitive models, comparison of these models without the 

complexity correction is appropriate.   The 27% of the participants in the 

EV/LowFreq cluster that was best fit by the Base model were best fit by the Risk-

Sensitive Loss Frequency model when the complexity correction was not 

considered.  ** For clarity of presentation the six risk-based models were 

combined into a single column in the table. 

It is evident from the table that for each of the three clusters, the set of Risk Models 

(which includes the best-fitting Risk-Sensitive Loss-Frequency model) fit more 

participants than any other model. This is the expected result if the modeling results and 

clustering results are meaningfully associated and serves to further corroborate the 

results of the two studies.  I note, however, that this is not a necessary result. The risk-

based models might have fit 100% of the participants in one cluster, a small number of 

participants in a second cluster, and no participants in a third cluster – an outcome that 

would have suggested the two studies were not capturing the same aspect of behavior.  

The pattern of the best-fitting models across the clusters is also suggestive of possible 

associations between model structures and the three clusters.  For example, the Decay 

and Reinforcement Comparison models were the best fitting models only for 

participants in the EV/HighFreq cluster.   These two models were both premised on 

lower fidelity of available information:  the Decay model instantiating reduced fidelity in 

the maintenance of value estimates and the Reinforcement Comparison modeling 

learning as based on a single reference level of reward rather than separate reference 

levels for each deck.  Taken together, this integration of the modeling and clustering 

offers a tentative suggestion that behavior by participants in the EV/HighFreq cluster 

may be driven by an inability to maintain information over time and/or possess decision 

processes that rely on reduced information sets.   As a second example, the Pursuit 

model also shows an interesting distribution by cluster.  This model fit a large percentage 

of participants in the two clusters that preferred lower frequency losses, but no 
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participants in the cluster that preferred higher frequency losses.  The Pursuit model 

instantiated the idea that choice probabilities may be learned independently from value 

estimates, making frequently chosen options more likely to be chosen again.  This result 

is well-aligned with the revealed association between the Frequency-Sensitive cluster 

and the WCST and further suggests that perseveration (switching behavior) may be 

associated with participants that exhibit a preference for avoiding losses.  

 

Figure 6.1   Association between model parameters and clusters. For participants in 

each cluster, the plot dhows the mean maximum-likelihood parameter estimates for 

each of the parameters in the Risk-Sensitive Loss-Frequency (RSLF) model.  The 

estimated Beta parameter for participants in the Frequency-Sensitive was higher than 

for participants in the other clusters indicating that loss-frequency was weighted 

more heavily in fitting the model to these participants.  The Gain and Loss weights 

were lower for participants in the Frequency-Sensitive cluster as compared to the 

other two clusters, further suggesting that choice behavior was associated more with 

loss-frequency than net payoffs for these participants. 

In addition to considering the distribution of models across clusters, I also sought to 

corroborate and integrate the two studies by analyzing the association between the three 

clusters and the estimated parameters for the best-fitting Risk-Sensitive Loss Frequency 

model.  This analysis is shown in Figure 6.1.  If the Risk-Sensitive Loss Frequency model 

did in fact capture the same underlying constructs of expected value and risk that were 

captured by the clustering procedure, then there should be a meaningful association 

between estimated model parameters and three clusters.  Specifically, based on the 
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results of the two studies one would predict that for participants in the Frequency-

Sensitive cluster, the risk term should have been more heavily weighted (the β parameter 

in Equation 8c) than for participants in the other clusters.  Likewise, the weighting of 

gains and losses (the G and L parameters in Equation 8c) should have been larger for 

participants in the EV/LowFreq and EV/HighFreq clusters as compared to participants in 

the Frequency-Sensitive cluster.  Both of these predictions are supported by the results 

shown in Figure 6.1.   

  

Reconceptualizing the IGT 

Taken together, the computational modeling and clustering results revealed that the 

current conceptualization of the IGT is not complete, and together suggest an 

augmented conceptualization that is both complementary to the prevailing 

characterization of the IGT and that helps to further elaborate the current dimensional 

conceptualization of IGT performance based on the disadvantageous-advantageous 

continuum (Figure 6.1). The results of this dissertation clarify advantageous 

performance, by revealing two distinct subsets of advantageous participants that differ 

in their preferences for loss frequency.  The results also help clarify disadvantageous 

performance by revealing a third decision style in which nearly equal proportions of 

disadvantageous and advantageous performers shared a preference for infrequent losses 

that seemed to prevail over their preference for expected value.  This finding suggests 

disadvantageous performance might be better conceptualized in terms of high sensitivity 

to loss frequency combined with reduced sensitivity to expected value.  This mapping 

between the widely accepted advantageous/disadvantageous conceptualization of 

performance and the three decision styles revealed in this study strongly suggests an 

alternative and multidimensional view on the nature of decision making in the IGT.  The 

existence of the EV-LowFreq and EV-HighFreq clusters (together representing 61% of the 

855 participants in the combined data set) underscores the well-established fact that 

decision making performance in the IGT is driven by sensitivity to expected value. The 

existence of the large Frequency-Sensitive cluster (representing 39% of the 855 

participants) suggests that sensitivity to risk (the frequency of losses, and/or other 

possibly confounded measures of risk common to decks B and D not identified in this 
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study) is also an important driver of decision behavior.  And critically, the fact that the 

two EV-sensitive clusters differ in sensitivity to frequency, and within the Frequency-

Sensitive are two subsets differing in sensitivity to EV, suggests a general framework for 

characterizing individual differences in the IGT (Figure 6.2). Whatever the underlying 

mechanisms, decision makers in the IGT seem to differ dimensionally in their sensitivity 

to two attributes of choice: the expected value and the loss frequency associated with 

each of their decision options.   This augmented conceptualization of the IGT is certainly 

consistent with well-established decision theory, and in this work I have identified and 

quantified these two attributes specifically for the IGT.   

 

 

Figure 6.2 Current and proposed conceptualization of decision making behavior in 

the IGT.  Participants currently characterized as advantageous share a sensitivity to 

expected value, but differ in their preference for loss frequency. Participants currently 

characterized as disadvantageous share a primary preference for low-frequency 

losses, and differ in their relative sensitivity to expected value.   

How well does this two-attribute framework capture individual differences as 

revealed by the 20-feature clustering procedure?  Figure 6.3 depicts each of the 855 

participants from the combined data set in terms of their location in two-attribute 

decision space, highlighting the participants based on their assignment to the three 

decision styles.  I measured the attribute “sensitivity to expected value” (horizontal axis) 

as the percentage of selections made from the two decks that deliver positive expected 
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value (C and D), and the attribute “sensitivity to loss frequency” (vertical axis) as the 

percentage of selections made from the two low frequency decks (B and D).  I computed 

these two measures across the final three blocks of the task to better reflect participants‟ 

stable preferences after the initial period of learning.  To check that the two measures did 

in fact capture two different attributes of choice, I computed the Pearson correlation 

coefficient and found a small (r=-0.243, r
2

=0.059; p<0.0001) inverse relationship between 

the two measures thus supporting the idea that these measures do capture two different 

constructs.  Figure 6.2 helps to clarify the relationship between the standard 

characterization of the IGT in terms of %Good (the vertical line at 0.5) and the proposed 

framework in which participants are also concurrently characterized in terms of their 

sensitivity to frequency of losses. Viewed in this two-attribute space, the three decision 

styles are well defined: the EV-LowFreq (dark blue) and EV-HighFreq (light blue) 

clusters occupy the region of high sensitivity to expected value and participants in these 

clusters are distinguished by differences in their sensitivities to frequency; the 

Frequency-Sensitive (orange) cluster occupies the upper frequency-avoiding region, and 

participants in this cluster differ in their relative sensitivities to expected value.  The 

region in two-attribute decision space corresponding to low sensitivity to expected value 

combined with frequency seeking behavior (the lower left region) is unoccupied 

indicating that no participants exhibited a decision style demonstrating a preference for 

deck A or for a combination of decks A and C.   Deck A is inferior on both attributes of 

choice (c.f. Table 6.1), and as a result it is likely the case that its inferiority is highly salient 

making it easy for all participants to avoid regardless of their individual differences in 

sensitivity to the two decision attributes.  Self-reports obtained by participants during a 

pilot study support the claim that the inferiority of deck A is salient to participants, and 

this is certainly borne out by the empty region in lower-left corner of  Figure 6.3.  
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Figure 6.3 Two-attribute framework for conceptualizing individual differences in the 

IGT.  Performance is conceptualized as being driven by differing levels of sensitivity 

to expected value and sensitivity to loss frequency.  These two measures are 

quantified as the proportion of cards selected from decks C and D, and decks B and 

D, respectively.  Shown are the 855 participants (points on the plot) from the 

combined data sets plotted in the two-attribute space based on their performance.  

The decision style assigned to each participant by the clustering procedure is 

represented by the color of each point in the plot.  The plot therefore represents a 

mapping of participants from the 20-dimensional space in which they were clustered 

to 2-dimensional space represented by the two attributes. 

The two-attribute framework seems to perform well in capturing the three decision 

styles identified in the clustering study.  However, it is important to note that it ignores 

all temporal aspects of the task (i.e., it maps the 20-dimensional temporal pattern of 

performance into an atemporal 2-dimensional space). The three decision styles 

themselves are also largely uninfluenced by the temporal features of performance and 
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instead are distinguished in terms of relatively static preferences following the first block 

of trials.  Temporal aspects of the task do play a role, and this is evident in Figure 6.3 by 

the presence of Frequency-Sensitive participants in the EV-Low region and by EV-Low 

participants in the region occupied by the Frequency-Sensitive participants:  these 

“outliers” were found more similar to the other members of their cluster than to 

members of other clusters, which indicates that there are aspects of their four-deck-by-

five-block patterns of performance not captured in the two-attribute framework.  Also, 

the patterns we identified in the six-cluster solution suggest that within the three 

decision styles, participants may differ more subtly in the temporal aspects of their 

performance.  However, the data clearly selected the three-cluster solution over the six-

cluster solution.  Whether temporal differences in performance are artifacts of the data 

set used in this study (e.g., picking up on depletion of cards from two of the decks), or 

indicative of subtypes of decision style that generalize to other data sets remains to be 

determined.   

One important set of questions left unanswered in the current study is what 

fundamental factors underlie the differences in performance across the three clusters.  

What factors lead participants in the Frequency-Sensitive and EV-LowFreq groups to 

prefer the decks with lower loss frequency, and the participants in the EV-HighFreq 

group to prefer higher loss frequency?  What factors lead decision makers in the 

Frequency-Sensitive group to be seemingly less driven by expected values than decision 

makers in the other two groups? The exploratory studies reported in Chapter V did not 

provide many answers to these questions.  Among the many demographic, trait and 

cognitive measures studied, only an association between IGT decision group and 

executive function as measured by the Wisconsin Cart Sorting Task was found.  In 

particular, decision makers in the Frequency-Sensitive group were found to perform 

poorly as compared to decision makers in the other two groups. Contrary to the often 

suggested (but largely unproven) claim that disadvantageous performance on the IGT is 

associated with impulsivity and risk-taking, the results of studies in Chapter V suggest 

that if traits have explanatory value in understanding differences in IGT decision 

making, their contribution is likely quite subtle and high-power studies will be needed to 

robustly identify and elucidate their effects.  Overall, the studies of Chapter V provided 

more evidence for what measures do not help explain differences in performance on the 
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IGT than those that do.  While fundamental differences underlying the three identified 

decision groups remain to be found, there are several possible theoretical accounts that 

might be sorted out in future work. 

One possibility is that frequency serves as a measure of risk, and that the clusters of 

participants differ in their risk preferences.  Loss aversion is a well-established finding in 

behavioral economics (Kahneman & Tversky, 2000) and it is possible the identified 

differences in behavior in the IGT reflect differences in this aspect of risk – either 

differences in aversion to loss occurrence or differences in response to losing current 

wealth (an endowment effect).  According to this risk-based hypothesis, for participants 

in the Frequency-Sensitive cluster, the expected value of the decks becomes secondary to 

the more rewarding outcome of avoiding loss events; for participants in the EV-LowFreq 

cluster, expected value becomes primary, but behavior is also guided by avoiding losses 

and therefore these participants prefer deck D over deck C.  

Another hypothesis (not necessarily mutually exclusive) is that loss-frequency serves 

as a proxy for ambiguity and that group differences are due in part to differences in 

tolerance for ambiguity.  Ambiguity aversion (separate from loss aversion) has also been 

demonstrated experimentally to be an attribute of choice (Ellsberg, 1961), with the 

famous Ellsberg Paradox being one early example (Shurman, Horan, & Ntuechterlein, 

2005).  By this account, the high-frequency decks (A and C) provide more information 

about the magnitude and frequency of losses.  For example, in the first 20 draws from 

deck A, a participant would experience 20 gains of varying amounts, and 11 almost 

evenly spaced losses in the range (-$150,-$350) which provides a consistent experience 

with the losses; likewise, the first 20 draws from deck C yield 20 gains of varying 

amounts and 11 losses in the (-$25,-$75).  In contrast, in the first 20 draws from deck B, a 

participant would experience one loss in the first nine trials (representing an experienced 

frequency of about 11%), and a second loss five trials later (representing a point 

frequency of 20% for this loss); deck D yields a similar experience as deck B.   The two 

decks with high frequency losses (A and C) therefore provide information about their 

payoffs more rapidly and more consistently, and it is possible that participants more 

averse to ambiguity prefer these decks.  Although this ambiguity- or information-based 

account would seem to predict that some participants should prefer both decks A and C, 
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participants seem to learn quickly that the payoffs in deck C are inferior and therefore no 

participants show a stable preference for this deck.    

A third possible account of group differences is that they are due to differences in 

executive function or problem solving style and/or capability.  Loss frequency may be a 

more salient attribute of the task than other attributes, for example it may be easier to 

track differences in the frequency of occurrence of losses across the decks than to track 

the average magnitudes of the losses relative to the average magnitudes of the gains as 

would be required to process expected value.   According to this hypothesis, the 

frequency-sensitive participants may be pursuing a lower-effort approach to decision 

making (easier to avoid losses than track expected values), either because they are “lazy” 

or less-motivated or because they are cognitively limited relative to other participants in 

terms of executive function and/or memory capacity.  If participants in the Frequency-

Sensitive cluster had more limited executive function, the task would be in effect more 

demanding for them and this might result in the pursuit of a simpler approach to 

problem solving.  In some ways this lower-effort problem solving approach of avoiding 

losses is akin to a “Maxi-Min” strategy whereby decision makers pursue options that 

seem to minimize outcomes defined as worst-case.  A variant of this account is that the 

limitation in executive function is due specifically to lower than average performance in 

functions associated with set-shifting and cognitive flexibility.  The revealed association 

between IGT decision group and WCST performance offers some support for this 

hypothesis, as do results of the reversal learning studies in vmPFC patients that were 

discussed in Chapter V.    

Contributions and Conclusions 

The primary contributions of this dissertation research are that it revealed important 

limitations in the current conceptualization of the IGT and identified important ways in 

which this conceptualization could be made more complete.   How might the proposed 

conceptualization come to bear on future performance analysis and inference using the 

IGT? Although univariate analysis of the IGT using %Good (total selections from decks C 

and D) is methodologically convenient, the proposed conceptualization suggests that a 

better account of performance may be achieved by adding loss frequency (total 

selections from decks B and D) as a second measure and using multivariate methods for 
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data analysis (c.f., Figure 6.3).    Furthermore, the generalizability of the cluster 

prototypes demonstrated in Chapter IV suggests the possibility of using these prototypes 

as “group norms” for each decision style.  These norms combined with a simple 

multivariate distance metric (Euclidean or Mahalanobis) could be used to classify 

participants for the purposes of group-wise univariate or multivariate inference (without 

having to perform the complex clustering procedure to do the classification).  By doing 

tests for mean differences or tests of association using group as the level of analysis 

rather than population, the loss of power due to the smaller sample size in each group 

might be outweighed by the reduction in variability gained by separating participants 

into more homogeneous subsets than the population as a whole. 

In terms of clinical implications, the results of this work suggest that a change of 

measure in assessment may be merited.  Characterizing clinical populations based solely 

on sensitivity to expected value ignores the important second dimension of performance 

(loss frequency) that was revealed in Chapters II and III.  Lack of uniformity in findings 

of studies testing for differences between clinical populations and healthy controls may 

be due in large part to the unitary focus on expected value (and perhaps also to 

differences across studies in the distribution of the healthy control among the three 

decision groups).  For example, a recent study of schizophrenia patients found that the 

patterns of performance exhibited by these patients differed from both healthy controls 

and vmPFC patients, and these differences were associated with both payoff magnitudes 

and loss frequencies (Glimcher, 2008). How might the proposed conceptualization of the 

IGT be used to better characterize clinical populations? Rather than focusing only on 

whether a patient population does/doesn‟t perform more disadvantageously than 

healthy controls, the proposed conceptualization engenders a different set of questions 

(Figure 6.4).  First, is the patient population better represented by a single pattern of performance, 

or multiple patterns of performance?  This question can be addressed by applying the 

ensemble clustering procedure directly to patient decision data.  Second, does performance 

in a population of patients differ qualitatively or quantitatively from healthy controls?  If patients 

(considered either in aggregate or in identified groups) differ qualitatively from the three 

decision groups identified in this dissertation, this could be revealed by applying the 

clustering procedure to a combined data set and determining whether the patients 

emerge in an independent cluster, or co-associate in one or more of the clusters of 
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healthy participants.  If patients differ only quantitatively, this could be manifested in 

either a difference in the distribution of patients across the three healthy decision groups 

(e.g., the patient group might be disproportionately represented in the Frequency-

Sensitive cluster) or as a difference in location within the healthy decision groups (e.g., 

the patient group might populate an extreme region within the EV-HighFrequency 

cluster).  Third, what computational models provide a better fit to a patient population as 

compared to healthy controls?   While previous modeling work has sought to characterize 

patients in terms of differences in model parameters, the results of this dissertation 

suggest that characterization using multi-model inference may be more appropriate.  By 

fitting a set of models to a population of patients and to healthy controls, inferences 

about differences in decision processes can be made by comparing differences in the 

structure of the best fitting models selected for each population.   

 

Figure 6.4  An alternative approach to characterizing impaired decision making in the 

IGT. The results of the dissertation suggest a clinical approach that seeks to 

conceptualize patient performance in terms of both expected value and loss 

frequency, and in terms of the three groups of healthy controls.  A patient population 

may differ qualitatively and be best represented as a unique pattern of decision 

making.  Alternatively, a patient population may be better represented as differing 

quantitatively from one or more of the patterns of performance identified in healthy 

controls. 

In addition to revealing differences in decision style and suggesting a new 

framework for conceptualizing the IGT, the results of this dissertation offer some 

methodological contributions to the study of decision making. Multivariate clustering is a 
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useful approach for representing performance in a behavioral task perhaps more deeply 

than is typically amenable to univariate hypothesis-testing procedures.  By 

characterizing performance in more detail, multivariate clustering methods can help 

reveal individual differences in performance and provide a way to test the validity of 

population-averaged measures prior to conducting univariate hypothesis tests. While 

clustering tools (e.g., k-means and hierarchical methods) are widely available and easy to 

use, the results of the ensemble clustering study offer a note of caution to the use of a 

single, off-the-shelf methods for clustering psychological data.  As discussed in Chapter 

III, there is little guidance available to assist the modeler in choosing among clustering 

methods when comprehensive knowledge of the underlying structure of the data is not 

available.   In fitting individual clustering models to the IGT data using a range of 

clustering algorithms and distance metrics, I found that while some combinations of 

models and metrics yielded clustering solutions similar to those obtained with the more 

robust ensemble procedure, other combinations produced very different solutions that 

were often unstable across bootstrap samples.   Interestingly, when I re-ran the ensemble 

clustering procedure on the data using only these ill-suited combinations of models and 

metrics, I recovered the same basic pattern of clustering solutions obtained with the full 

set of models and metrics.  Taken together, these findings therefore emphasize the 

importance of diversification of method that is the hallmark of ensemble clustering 

procedures – and critically, these findings highlight the possibility of obtaining 

erroneous results from applying a single off-the-shelf clustering method to a data set in 

the absence of prior knowledge (e.g., number, shape, size, density and separability) of 

the natural clusters that might exist.   Ensemble methods are widely used to uncover 

underlying patterns in gene-expression data, and here I have shown how these methods 

might be put to use in the analysis of psychological data. 

Future Directions 

Although the results of this dissertation improve on the current computational model 

and theoretical conceptualization of decision making in the IGT, it is important to note 

that the augmented model and conceptualization identified in this dissertation are still 

incomplete in many ways that suggest the need for further research.  First, the lower-

level learning processes instantiated in the RL framework provide a computational 
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account of the core phenomena of the IGT, but it is possible (and in my opinion, likely) 

that a more complete mechanistic account will require that the RL model be extended to 

include mechanisms reflecting high-order cognitive processes.  Behavioral economists 

have developed a range of models designed to explain normative departures in decision 

making under risk and uncertainty (Kahneman & Tversky, 2000; Maia & McClelland, 

2004). Integrating these higher-level models with reward-based learning models may be 

a productive avenue for future research.  Second, the three groups of decision makers 

revealed by the clustering study were shown to be robust across independent data sets, 

but how these groups differ in more fundamental ways remains largely unexplained.   

Traits that were plausibly relevant to decision making provided no account of these 

group differences, although this is an interesting result given the common claim that 

disadvantageous performance on the IGT is associated with impulsivity and risk-taking.  

The association between the IGT and the WCST identified in this study, taken together 

with the finding that the IGT is cognitively penetrable (Fischer, Corcoran, & Corcoran, 

2007) suggest that further studies seeking associations between the IGT and cognitive 

measures of performance may be more fruitful than further work seeking to identify 

trait-based correlates.  I proposed several cognitive-based accounts of how the three IGT 

decision styles might differ, and additional work linking IGT performance to differences 

in problem solving and executive function might be used to test competing predictions 

and to adjudicate among these accounts.  Additional evidence to help further 

characterize the three groups might also be revealed by using neuroimaging to test for 

group differences in the patterns of neural activity evoked by performance of the IGT.   

Lastly, the IGT was designed for the purposes of clinical assessment rather than careful 

experimental manipulation, and as a result it is messy task and one in which many 

variables are confounded and outside of experimenter control.   It is nevertheless an 

important task and as such, one that I felt was worthy of closer scrutiny.   The IGT is, 

however, but one of many experimental decision tasks and extending the methods and 

findings of this dissertation beyond the IGT is an important next step and one that I 

hope to pursue. 
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Appendix A.  Participant Screening Questionnaire 
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Appendix B.   Instructions for Trait Questionnaire 

  

First Screen 

 

Welcome: 

 

Thank you for taking the time to participate in today's experimental session. It is being 

conducted by the Computational and Cognitive Neuroscience Laboratory, in the 

Department of Psychology at the University of Michigan. 

 

Your participation will contribute important data to our scientific studies of higher 

cognitive functions such as memory, decision making, and reasoning. 

 

You are about to start the "Questionnaire" phase of the session.  For the next 30-40 

minutes, we would like you to fill out an important questionnaire by responding to 

questions that appear on your computer screen using your mouse and keyboard.   

 

Second Screen 

 

All of the questions on the questionnaire have been approved by the Institutional 

Review Board at the University of Michigan.  Our methods for secure data storage have 

also been approved by this Board.  It is critical for the scientific integrity of our 

experiment that you respond to the questions honestly, and accurately.  You are not 

required to respond to any question that you are not comfortable answering.  Please 

note, however, that your responses to the questions are confidential and anonymous.  

Your responses will be associated only with your anonymous Participant Code and 

*not* your name.  Given the anonymity and confidentiality of the questionnaire, we 

hope that you will feel comfortable responding openly and honestly for the purposes of 

scientific discovery. 
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Appendix C.  Instructions for Iowa Gambling Task 
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Appendix D.  Instructions for Other Cognitive Tasks 

 

Wisconsin Cart Sorting Task 

You are about to take part in a card sorting task in which you will try to categorize 

cards based on a specific rule.  You will see four piles of cards.  You will be shown a 

series of cards and your goal will be to put each card into the correct pile.  Press the 'c' 

key to continue. 

Each pile has card with objects that have a different number, color, and shape.  For 

each new card you see, your goal is to determine which pile it belongs to.  You will press 

the 1,2 3 and 4 keys ALONG THE TOP of the keyboard to place a card into one of the 

four piles.  Press the 'c' key to continue." 

The correct pile in which to place a card depends on a sorting rule that you will have 

to figure out. For example, if you think the sorting rule is COLOR, then you should put 

blue cards in the blue pile, red cards in the red pile, etc.  If you think the sorting rule is 

SHAPE, then you should put cards with triangles in the triangle pile, cards with circles in 

the circle pile, etc.  If you think the sorting rule is NUMBER, then you should place cards 

with two objects in the pile that has two objects, cards with three objects in the pile that 

has three objects, etc.  Press the 'c' key to continue. 

As you place cards in piles, you will be shown whether your choice is CORRECT or 

INCORRECT.  This feedback will help you figure out the correct sorting rule. 

Periodically, as you continue to do the task, the sorting rule will change.  When it does, 

try to figure out the new rule as quickly as possible.  You may have to change the way 

you place the cards in order to figure out the new rule. 

If you have any questions about the task, please ask the experimenter now. Press any 

the 's' to start the task. 

Digit Span Task 

Please make sure you are wearing your headphones.  You are about to take part in a 

memory test. You will hear and see a list of digits, one at a time.  Your goal is to 

remember these digits in the exact order in which they were presented. After the list of 

digits has been presented, you will see a blank list where you can type the digits, in 

order, using the number keys AT THE TOP of the keyboard 
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If you cannot remember a digit, you can skip over it by typing the '-' key (next to the 

zero key). If you need to correct your response, use the 'BACKSPACE' key. When you 

have finished typing the list of digits, press the 'ENTER' key. 

The task will begin by presenting you with three lists, each containing three digits.  If 

you are able to correctly recall two out of the three lists, you will then move on to lists of 

four digits, then five digits, and so on.  If you have any questions, please ask the 

Experimenter now.  Press the 's' key to start the task. 
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Appendix E.  Demographic and Lifestyle Questionnaire 

1. Date of birth (month/day/year, e.g. 01/12/84): 
2. Sex: 

A  Male 
B  Female 

3. Ethnicity: 
A  Hispanic/Latino 
B  Not Hispanic/Latino 

4. Racial category (please indicate the one option that best describes you): 
A  American Indian/Alaska Native 
B  Asian 
C  Pacific Islander/Native Hawaiian 
D  Black/African-American 
E  White 

5. Marital status: 
A  Married 
B  Divorced 
C  Single 

6. Level of education (if currently in school/dropped out of school, please indicate according to current grade level/grade level reached): 
A  Never attended school 
B  High School or below 
C  College 
D  Graduate School (Advanced Degree) or Higher 

7. Handedness: 
A  Left-handed 
B  Right-handed 
C  Ambidextrous 

8. Cigarette Use: 
A  I used to smoke heavily but have now quit 
B  I smoke a pack or more per day 
C  I smoke regularly but less than a pack per day 
D  I smoke occasionally but not regularly 
E  I almost never smoke cigarettes 
F  I have never smoked a cigarette. 

9. Alcohol consumption: 
A  I drink very frequently (several drinks per day) 
B  I drink often (a drink per day) 
C  I drink somewhat frequently (a few drinks per week) 
D  I drink occasionally (once every week or so) 
E  I almost never drink alcohol. 
F  I have never tried alcohol. 

10. Marijuana or other drug use, for recreational purposes: 
A  I used to smoke/use drugs frequently, but have now quit  
B  I smoke/use drugs daily 
C  I smoke/use drugs often, but not daily 
D  I smoke/use drugs occasionally, but not often 
E  I almost never smoke/use drugs 
F  I have never tried marijuana or other drugs for recreational purposes. 

11. Gambling (e.g. sports games, horse racing, card games, casinos, etc): 
A  I used to gamble frequently but quit 
B  I gamble daily 
C  I gamble often, but not daily 
D  I gamble occasionally, but not often 
E  I almost never gamble 
F  I have never gambled 

12. Amount of sleep per night, on average: 
A  0-2 hours 
B  2-4 hours 
C  4-6 hours 
D  6-8 hours 
E  More than 8 hours 

13. Math skills (please indicate how you best identify your abilities in math, on the following scale: 
I consider myself: 
A  Very Good at Math 
B  Okay at Math 
C  Not Very Good at Math 
D  Terrible at Math 
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Appendix F.  Internal-Reliability Consistencies  

Internal-Consistency Reliability 
(Cronbach’s Alpha) 

Dissertation 
Study 

Published 
Norm 

 
Source 

Compulsiveness (CI)    

 Indecision & Double Checking (IDC) 0.73 0.89 (Fischer, et al., 2007) 

 Order & Regularity (OR) 0.61 0.88 (Fischer, et al., 2007) 

 Detail & Perfection (DP) 0.83 0.85 (Frost, et al., 1990) 

Perfectionism (FMPS)    

 Concern Over Mistakes (CM) 0.89 0.88 (Frost, et al., 1990) 

 Personal Standards (PS) 0.78 0.83 (Frost, et al., 1990) 

 Parental Expectations (PE) 0.81 0.84 (Frost, et al., 1990) 

 Parental Criticism (PC) 0.78 0.84 (Frost, et al., 1990) 

 Doubts About Actions (DA) 0.80 0.77 (Frost, et al., 1990) 

 Organization (ORG) 0.94 0.93 (Nenkov, Morrin, Ward, Schwartz, & Hulland, 2008) 

Regret & Maximization (RMS)    

 Regret (R) 0.81 .76 (Schwartz, et al., 2002) 

 Maximizing (M) 0.69 .70 (Frost, et al., 1990) 

Indecisiveness (FIS)    

 Indecisiveness (IS) 0.83 0.87 (Zuckerman, Eysenck, & Eysenck, 1978) 

Sensation Seeking (SSS)    

 Thrill & Adventure Seeking (TAS) 0.76 0.77 (Zuckerman, et al., 1978) 

 Experience Seeking (ES) 0.60 0.61 (Zuckerman, et al., 1978) 

 Disinhibition (DIS) 0.75 0.75 (Zuckerman, et al., 1978) 

 Boredom Susceptibility (BS) 0.54 0.57 (Weber, et al., 2002) 

Risk Taking (DOSPERT)    

 Financial (FIN) 0.76 0.88 (Weber, et al., 2002) 

 Health & Safety (HS) 0.67 0.88 (Weber, et al., 2002) 

 Recreation (REC) 0.83 0.88 (Weber, et al., 2002) 

 Ethical (ETH) 0.81 0.88 (Weber, et al., 2002) 

 Social (SOC) 0.69 0.88 (Whiteside, et al., 2005) 

Impulsivity (UPPS)    

 Urgency  (URG) 0.88 0.89 (Whiteside, et al., 2005) 

 Premeditation (PRE) 0.88 0.87 (Whiteside, et al., 2005) 

 Perseverance (PER) 0.87 0.83 (Whiteside, et al., 2005) 

 Sensation Seeking (SEN) 0.89 0.85 (Stanford, et al., 2009) 

Impulsivity (BIS11)    

 Attention  (ATT) 0.59 0.74 (Stanford, et al., 2009) 

 Motor  (MOT) 0.72 0.59 (Stanford, et al., 2009) 

 Non-Planning (NPL) 0.70 0.72 (Dickman, 1990) 

Impulsivity (DII)    

 Functional Impulsivity (FI) 0.60 0.83 (Dickman, 1990) 

 Dysfunctional Impulsivity (DI) 0.65 0.86 (Carver & White, 1994) 

Inhibition & Activation (BIS-BAS)    

 Inhibition  (BIS) 0.80 0.74 (Carver & White, 1994) 

 Drive (DRV) 0.71 0.76 (Carver & White, 1994) 

 Fun Seeking (FS) 0.69 0.66 (Carver & White, 1994) 

 Reward Responsivity (RR) 0.66 0.73 (Watson, et al., 1988) 

General Affect (PANAS)    

 Positive Affect  (PA) 0.85 0.88 (Watson, et al., 1988) 

 Negative Affect (NA) 0.88 0.87 (Watson & Clark, 1992) 

General Temperament (GTS)    

 Negative Temperament (NT) 0.90 0.90 – 0.92 (Watson & Clark, 1992) 

 Positive Temperament (PT) 0.87 0.81 - 0.89 (Watson & Clark, 1992) 

 Disinhibition (DI) 0.84 0.81 – 0.86 (Srivastava, John, Gosling, & Potter, 2003) 

General Traits (BFI)    

 Openness (O) 0.79 0.81 (Srivastava, et al., 2003) 

 Conscientiousness (C) 0.83 0.82 (Srivastava, et al., 2003) 

 Extraversion (E) 0.90 0.88 (Srivastava, et al., 2003) 

 Agreeableness (A) 0.75 0.79 (Srivastava, et al., 2003) 

 Neuroticism (N) 0.84 0.84 (Beck, et al., 1961) 

Depression (BDI) 0.78 0.86  
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Appendix G.  Loadings for Factor Analysis of Trait Measures  

 
 
 

  

Rotated Component Matrixa

.747 .010 -.060 -.094

.682 .191 -.276 -.055

.657 .027 -.305 .109

.645 .209 -.445 -.094

.594 .057 -.132 .249

.590 -.283 .289 .168

.567 -.117 -.450 -.109

.555 -.005 .117 .120

.554 .141 -.519 -.136

.517 -.127 .077 -.136

.515 -.398 .177 -.117

.490 .126 .146 .053

.480 .472 -.056 .221

.390 -.336 -.081 -.171

-.018 -.779 .317 -.067

.049 .714 .105 .147

-.206 .702 .134 .164

.077 .675 -.285 -.031

.092 .668 .116 .491

.322 .631 .040 .351

.205 -.615 .437 .062

.184 -.539 -.311 -.253

-.329 -.381 -.177 .189

.029 .129 .736 .056

-.100 .160 .723 .099

.202 -.011 .678 .118

.118 -.153 .678 .036

.292 .321 -.626 -.077

.436 .053 -.560 -.140

.150 .036 .531 .269

.446 .295 -.459 -.137

-.121 .225 .409 .340

-.054 .030 .404 .103

.160 -.001 -.288 .121

.014 .017 .261 .807

-.242 -.078 .114 .800

.055 -.122 .113 .744

.063 .327 .211 .681

-.189 .326 .040 .577

-.034 .408 .051 .561

.239 .374 .075 .489

.098 .171 -.037 .463

-.312 .209 .174 .412

.350 -.072 .002 .357

.064 .326 .231 .331

FMPS_CM

FMPS_DA

RMS_R

GTS_NT

RMS_M

FMPS_PS

BISBAS_BIS

FMPS_PE

BFI_N

CI_OR

FMPS_ORG

FMPS_PC

UPPS_URG

CI_DP

BFI_C

DII_DI

BIS11_NPL

BIS11_ATT

GTS_DI

BIS11_MOT

UPPS_PER

UPPS_PRE

BFI_A

BFI_E

DII_FI

GTS_PT

PANAS_PA

FIS_IS

CI_IDC

BISBAS_BAS_DV

PANAS_NA

DOSPERT_SOC

BFI_O

BDI_BDI

UPPS_SEN

DOSPERT_REC

SSS_TAS

BISBAS_BAS_FS

DOSPERT_HS

DOSPERT_ETH

SSS_DIS

DOSPERT_FIN

SSS_ES

BISBAS_BAS_RR

SSS_BS

1 2 3 4

Component

Extraction Method:  Principal Component  Analysis. 

Rotation Method: Varimax with Kaiser Normalizat ion.

Rotation converged in 7 iterat ions.a. 
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