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ABSTRACT 

 
MULTISCALE MODELING OF LI-ION CELLS: MECHANICS, HEAT 

GENERATION, AND ELECTROCHEMICAL KINETICS 
 

by 
 

Xiangchun Zhang 
 

Co-Chairs: Ann Marie Sastry and Wei Shyy 
 

To assists implementing Li-ion battery technology in automotive drivetrain 

electrification, this study focuses on improving calendar life by reducing degradation due 

to stress-induced electrode particle fracture and heat generation, and creating models for 

computer simulations that can lead to optimizing battery design.  

To improve the calendar life of Li-ion batteries, capacity degradation during 

battery cycling has to be understood and minimized. One of the degradation mechanisms 

is fracture of electrode particles due to intercalation-induced stress. A model with the 

analogy to thermal stress modeling is proposed to determine localized intercalation-

induced stress in electrode particles. Intercalation-induced stress is calculated within 

ellipsoidal electrode particles with a constant diffusion flux assumed at the particle 

surface. It is found that internal stress gradients significantly enhance diffusion. 

Simulation results suggest that it is desirable to synthesize electrode particles with 

smaller sizes and larger aspect ratios, to reduce intercalation-induced stress during 

cycling of lithium-ion batteries. 



xvi 
 

Thermal runaway caused by excessive heat generation can lead to catastrophic 

failure of Li-ion batteries. Stress and heat generation are calculated for single ellipsoidal 

particles under potentiodynamic control. To systematically investigate how stress and 

heat generation are affected by electrode particle shape and cycling rate, a surrogate-

based analysis is conducted. It is shown that smaller sizes and larger aspect ratios of 

(prolate) particles reduce the heat and stress generation inside electrode particles. 

Battery scale modeling is required for optimizing battery design through computer 

simulations. To include the electrode microstructure information in battery scale 

modeling, a multiscale framework is proposed. The resulting closure terms for 

macroscopic scale governing equations derived from the volume averaging technique are 

calculated directly from 3D microscopic scale simulations of microstructure consisting of 

multiple solid electrode particles and liquid electrolyte. It is shown that 3D microscopic 

simulations give different values for closure terms from the traditional pseudo 2D 

treatment. To efficiently exchange the information between microscopic and macroscopic 

scales, a surrogate-based approach is proposed for scale bridging. The surrogate model 

characterizes the interplay between geometric and physical parameters, and is shown to 

be able to significantly enhance the macroscopic model. 
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CHAPTER I 

INTRODUCTION 

 

1. LI-ION BATTERY TECHNOLOGY: A SOLUTION TO GLOBAL ENERGY 
AND ENVIRONMENT PROBLEMS 

Ground transportation using gasoline engines is a major factor in global energy 

and environmental problems. Automotive vehicles contribute a significant portion of the 

total carbon emissions around the world. In 2003, an estimated 21 percent of world’s 

carbon emissions were generated by the United States. For these 6900 Tg (6.9 billion 

tons) CO2 equivalent emissions by the U.S. in 2003, the transportation sector accounted 

for approximately 27 percent of the total. 62 percent of the transportation emissions came 

from passenger vehicles or light trucks [1]. One solution to energy and environment 

problems caused by ground transportation is to electrify automotive drivetrains by 

developing hybrid electric, plug-in hybrid, or pure electric vehicles.  Analysis shows that 

hybrid electric vehicles reduce use phase greenhouse emissions by 30-37% compared to 

conventional gasoline vehicles, and plug-in hybrid electric vehicles reduce emissions by 

38-41% compared to conventional gasoline vehicles [ 2 ]. Pure electric vehicles are 

considered to produce zero carbon emissions during the use phase.  

The major candidates for electric vehicle power sources are fuel cells and 

batteries. Fuel cells are less attractive than batteries due to current issues with hydrogen 

storage and transportation. Table 1.1 shows a comparison of several key battery
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 3

technologies [3]. It is shown that Li-ion batteries have superior voltage, energy per unit 

mass and per unit volume. For all commercial hybrid vehicles available in the market, 

nickel metal hydride batteries are used. As shown in Table 1.1, Li-ion batteries have 

twice the specific energy of nickel metal hydride batteries. Other advantages of Li-ion 

batteries include no memory effect, broad temperature range of operation, and high rate 

and high power discharge capability.    

2. LI-ION BATTERY RESEARCH OVERVIEW 

Figure 1.1 illustrates the electrochemical process within a lithium-ion cell. A cell 

has one negative and one positive electrode. A separator is used between the two 

electrodes to prevent short-circuiting. A current collector is attached to each electrode, 

aluminum for positive and copper for negative electrodes respectively. During the 

discharge process, lithium ions are extracted from the negative electrode (deintercalation) 

and inserted into the positive electrode (intercalation). In the recharge process, lithium 

ions move in the opposite direction. Electrons are conducted through the external circuit 

corresponding to the movement of lithium ions. The negative electrode of Li-ion batteries 

commonly uses carbonaceous materials; recently silicon and Li4Ti5O12 have been 

proposed for this use. Common positive electrode materials include LiCoO2, LiNiO2, 

LiMn2O4, LiFePO4 and Li(Ni1/3Co1/3Mn1/3)O2. The porous electrodes consist of active 

material particles, binders and other additives. The porous configuration of electrodes 

provides a high surface area for reactions and reduces the distance between reactants and 

the surface where reactions occur. In the intercalation and deintercalation process, the 

lattice structure of intercalation hosts changes, causing volume change and strain inside 

the electrode. The corresponding stress is called intercalation-induced stress. The porous



Figure 1.1: Schematic diagram of a Li-ion cell

4



 5

electrode and separator is filled with electrolyte for transport of Li ions. An example for 

the most commonly used electrolyte is LiPF6 dissolved in carbonate solvents.  

Li-ion batteries are widely used in consumer electronics, such as cell phones and 

laptop computers, and in military electronics. To successfully implement Li-ion 

technology in pure electric vehicles, further improvements for Li-ion technology are 

required. The United States Advanced Battery Consortium (USABC) set goals [4] for 

advanced batteries for electric vehicles as shown in Figure 1.2. It could be seen that the 

current Li-ion battery technology fulfills the requirements of cycle life, power density 

and specific power. However, further improvements in energy density, specific energy, 

calendar life, operating temperature range and further reduction of cost are required. 

Moreover, even though the abuse tolerance goal that could not be quantified is not shown 

in Figure 1.2, improvements are necessary for Li-ion batteries’ response to abuse 

conditions such as crush, overcharge and overheating. Therefore, to successfully 

implement Li-ion technology in electric vehicles, the following issues have to be 

addressed: (1) reducing cost, (2) improving calendar life, (3) increasing tolerance to 

abusive conditions, and (4) further improving energy per unit volume and mass. To 

address these issues, Li-ion battery related research has concentrated on: (1) novel 

material synthesis and evaluation, (2) Li-ion cell diagnosis and testing, and (3) cell design 

optimization through modeling and simulations. Li-ion battery related research is briefly 

reviewed in the following sections. 

2.1. Selected Research on Novel Materials 

Novel materials for anode, cathode and electrolyte have been synthesized and 

evaluated to improve cell performance, life and cost. Carbon materials traditionally used



Figure 1.2: EV commercialization Li-ion battery technology spider 
chart (The figure is adopted from “Electrochemical Energy Storagechart. (The figure is adopted from  Electrochemical Energy Storage 
Technical Team Technology Development Roadmap” by USABC [4].)

6
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as Li-ion cell anodes give a theoretical capacity 372 mAh/g. To increase this theoretical 

capacity, silicon was used as anode material because lithium can alloy with Si up to 4.4 

per Si that gives a theoretical capacity of 4200mAh/g. However, the excessive expansion 

and contraction of the alloy lattice structure causes material pulverization that leads to 

capacity degradation due to loss of electric contact. Nano particles [5] and nanowires [6] 

have been proposed to solve the excessive volume expansion problem of silicon as an 

intercalation compound. To completely avoid the volume expansion that might lead to 

capacity degradation, Li4Ti5O12 was proposed for anodes as a zero-strain insertion 

material [7] to improve battery cycle life.  Due to the high open circuit potential of 

Li4Ti5O12 versus Li, no passivation film is formed during cycling. Therefore, lithium can 

be inserted and extracted from the compound at a high rate. However, cells using this 

material as anode have lower voltage output.  

For cathode materials, layered structure material LiCoO2 was first used for the 

first commercial Li-ion cells by Sony Corporation. However, LiCoO2 is expensive and 

toxic because of the element cobalt. Other cathode candidate materials have been 

proposed and studied, such as LiNiO2, LiMn2O4 [ 8 ], LiFePO4 [ 9 ] and 

Li(Ni1/3Co1/3Mn1/3)O2 [ 10 ]. Layer structure material LiNiO2 is thermally instable. 

Another layer structure Li(Ni1/3Co1/3Mn1/3)O2 has the combination of nickel, manganese 

and cobalt that can provide advantages including higher reversible capacity with milder 

thermal stability at charged state and lower cost and less toxicity than LiCoO2. However, 

it is difficult to prepare and synthesize this complicated material. Spinel structure 

material LiMn2O4 is inexpensive and environmentally benign, but it has the disadvantage 

of lower capacity and higher rate of capacity degradation when cycled or stored. Olivine 
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structure material LiFePO4 has the advantage of low cost, environmentally benignness, 

and relatively high capacity, but has the disadvantage of low electronic conductivity that 

results in lower power output. Several approaches were proposed to improve the 

electronic conductivity of LiFePO4, such as coating the active material with a thin layer 

of carbon [11, 12], and selective doping with supervalent cations [13].  

2.2. Selected Research on Cell Diagnosis and Testing 

Li-ion cells and battery have been diagnosed and tested to  understand (1) the 

capacity degradation mechanisms, especially from the aspects of solid-electrolyte 

interphase (SEI) [14] and material structural change, and (2) the abuse tolerance of cells 

[15].  

Solid electrolyte interphase (SEI), a protective passivation film formed on anode 

material surfaces during the first charge cycle, decides the retention capacity and storage 

life of Li-ion batteries because it creates a barrier between the negative electrode and the 

electrolyte that reduces transfer of electrons from the electrodes to the electrolyte and 

transfer of solvent molecules and salt anions from the electrolyte to the electrodes. Both 

in-situ and ex-situ characterization of SEI layers have been carried out to understand the 

formation and composition SEI layers. For example, an ex-situ study by atomic force 

microscopy (AFM) and x-ray photoelectron spectroscopy (XPS) revealed the electric 

potential-dependent character of the surface-film species formation and evidenced a 

process of dissolution/redeposition of SEI layer in the first five cycles [16]. An in-situ 

electrochemical impedance spectroscopy approach was used to measure the resistance of 

the SEI layer during cell cycling and it was found that addition of vinylene carbonate 

(VC) as an additive to LiPF6–ethylene carbonate/ethyl methyl carbonate (EC/EMC) 
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electrolyte solution helps to reduce SEI layer resistance by forming a high quality SEI 

film [17].  

When active materials of battery electrode undergo electrochemical cycling, they 

experience phase change and volume expansion/contraction that affects the battery 

performance. Material structural change during battery cycling has been studied 

experimentally. For example, an in-situ X-Ray diffraction technique was used to study 

the phase changes and regions of phase stability during the lithiation and delithiation of 

Si electrodes, and it was found that improved battery cycle life can be obtained if the Si 

electrodes are cycled above 70mV [ 18 ]. An in-situ synchrotron X-Ray diffraction 

technique was used to study the phase changes of LiMn2O4 cathode materials during cell 

cycling to understand the capacity fade caused by inhomogenetity of the spinel local 

structure [19]. The study proposed a phase transition model from a lithium-rich phase to a 

lithium-deficient phase and finally to a λ-MnO2-like cubic phase, instead of a continuous 

lattice constant contraction in a single phase.  

To improve the calendar life of Li-ion cells, cell testing has been conducted to 

understand aging phenomena and mechanisms. For example, electrochemical testing of 

different cell designs with different shapes and cathode materials showed that extra 

lithium (or lithium reserve) for nickel-based oxides as cathode materials enhances the 

calendar life of batteries [20].  

Abuse tolerance of Li-ion batteries is a major concern limiting their applications. 

Abuse can be categorized as physical abuse (crush and nail penetration), electrical abuse 

(short circuit and overcharge), and thermal abuse (overheating). Thermal abuse can occur 

during relatively normal operating conditions when excessive heat generated is not 
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efficiently dissipated. This condition can eventually cause catastrophic failure of batteries 

along with ignition of battery active materials, so called thermal runaway. Many cell 

testing studies have been conducted to understand battery abuse tolerance. For example, 

an experimental study with cycling of high power 18650 cells was carried out to study 

the contribution of individual cell components to overall cell thermal abuse tolerance 

[21]. It was found that microcarbon mesobeads increase thermal stability of cells due to 

more effective solid electrolyte interface formation.   

2.3. Selected Research on Cell Modeling, Simulations and Optimization 

Li-ion cell models have been developed for computer simulations and battery 

design optimization. For example, a pseudo 2D model was used to numerically study the 

effect of cathode thickness and electrode porosity on energy and power output of Li-ion 

cells [22]. A coupled electrochemical and thermal model was developed to study heat 

transfer and thermal management of lithium polymer batteries [ 23 ]. In this study, 

electrochemical and thermal behavior of batteries was studied under different discharge 

temperatures. Current and active material particle size and several thermal management 

systems approaches were discussed to prevent overheating of batteries. 

 

This study will focus on (1) improving calendar life by reducing performance 

degradation due to stress induced electrode particle fracture and heat generation through 

modeling and numerical simulations, and (2) creating models including electrode 

materials microstructural information for computer simulations that can lead to 

optimizing battery design for improved energy output per unit volume and mass. 

3. STRESS AND HEAT GENERATION INSIDE ELECTRODE PARTICLES 
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To improve the calendar life of Li-ion batteries, capacity degradation during 

battery cycling has to be understood and minimized. One of the capacity degradation 

mechanisms is fracture of electrode particles due to intercalation-induced stress. Fracture 

has been experimentally [ 24 ][ 25 ][ 26 ] observed in cathode particles of lithium-ion 

batteries after a relatively small number of cycles as shown in Figure 1.3. When Li ions 

are intercalated into the lattice of active material in electrodes, the lattice is expanded 

accordingly. This lattice expansion causes strain inside the material. Non-uniform strain 

results in stress, the so-called intercalation-induced stress. As Li ions are inserted and 

extracted during cycling of batteries, the intercalation compound undergoes cyclic load of 

intercalation-induced stress. This eventually causes electrode particle fracture after a 

certain number of discharge/charge cycles. Particle-scale fracture of active materials 

results in battery performance degradation due to the loss of electrical contact and 

subsequent increase in the surface area subjected to side reactions [27].   

To predict the intercalation-induced stress in electrode materials, a model is 

needed.  A one-dimensional model was developed to estimate stress generation within 

spherical electrode particles [28]. However, this model does not predict three dimensional 

stresses inside three dimensional electrode particles. Therefore, a three dimensional 

model based on the thermal stress analogy, following the treatment of diffusion-induced 

stress by analogy to thermal stresses first proposed by Prussin [29], will be proposed in 

this study to simulate the intercalation-induced stresses inside ellipsoidal particles. 

Heat generation inside batteries is a major safety concern because excessive heat 

generation in Li batteries, resulting in thermal runaway, results in complete cell failure



Figure 1.3: Experimental observation of fracture in cathode particles: 
(a) LiFePO4 particle after 60 cycles [24]; (b) gold-codeposited

LiMn O electrode particles after cyclic voltammetric tests at a scan

(a) (b) (c)

LiMn2O4 electrode particles after cyclic voltammetric tests at a scan 
rate of 4mV/s [25]; (c)LiCoO2 particles after 50 cycles [26].

12
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accompanied by violent venting and rupture, along with ignition of battery active 

materials. Heat generation inside batteries comes from irreversible resistive heating,   

reversible entropic heat, heat change of chemical side reactions, and heat of mixing due 

to the generation and relaxation of concentration gradients [30].  

To date, there has been no study in the literature on how to design electrode 

particles to reduce both stress and heat generation. In this study, a surrogate-based 

approach is used to systematically study the effect of both particle shape and cycling 

parameter on stress and heat generation inside single ellipsoidal cathode particles under 

potentiodynamic control and to provide design guidelines for reducing stress and heat 

generation. Experiments [31] and simulations [32] have been conducted using a single 

particle electrode to study the kinetic and transport properties of Li ion intercalation and 

deintercalation. The single particle electrode model is extended in this study to include 

stress and heat generation analysis. 

4. MULTISCALE MODELING OF LI-ION BATTERIES 

 Li-ion battery models in the existing literature with different fidelity include 

equivalent-circuit-based models, physics-based pseudo 2D models, and a mesoscale 3D 

model. Equivalent-circuit-based models, which originated from conventional 

electrochemical impedance spectroscopy (EIS) battery characterization techniques, use 

an equivalent electric circuit composed of resistors and capacitors to simulate cell 

performance and behavior [33, 34, 35]. Pseudo 2D models were first developed from 

porous electrode theory [36] by solving continuum scale governing equations for all the 

physicochemical processes over homogeneous media along the thickness direction of a 

cell [37]. The required effective material properties are commonly modeled by the 
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classical Bruggeman’s equation. The volumetric reaction rate is calculated using a 

simplified separated spherical electrode particle by introducing a pseudo dimension. A 

mesoscale modeling approach was proposed to implement the 3D detailed modeling of 

electrode materials consisting of regularly and randomly arranged cathode particles [38]. 

However, the number of electrode particles included in the model was limited due to the 

excessive computation power requirement.  

 Scales inside a Li-ion cell span from microns for electrode particles to millimeters 

for cell thickness. To successfully include electrode microstructure information in a 

battery scale model, a multiscale framework is needed. The main objective of multiscale 

modeling is to capture the physics to a certain desired accuracy in an efficient way. 

Microscopic models (for electrode microstructure) are accurate but computationally 

expensive, while macroscopic models (for a Li-ion cell) are simplified and efficient. The 

combinational use of models on these two scales will help to achieve accuracy and 

efficiency at the same time.  

Microscopic and macroscopic models could be fundamentally different in terms 

of the physics principles applied. For example, one could apply molecular dynamics to 

the microscopic scale and continuum fluid dynamics to the macroscopic scale. 

Sometimes, one basic physics principle is applicable for all scales and the scale disparity 

is caused by geometric complexity, which is the case for the processes in porous battery 

electrode materials. For multiscale modeling of the processes in porous media, there are 

two approaches to derive the macroscopic governing equations from their counterparts on 

the microscopic scale, volume averaging [39] and homogenization [40][41]. 
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4.1. Homogenization Approach 

The homogenization approach is an upscaling procedure that lets the microscopic 

scale approach zero asymptotically. A systematic way of performing this approach is to 

do asymptotic expansion of variables.  

To illustrate the basic idea of homogenization, the following diffusion equation is 

used.  

 
( ) ( ) ( )

( ) ( )

30,

,D

D c f

c c

ε ε⎧ ⎡ ⎤∇ ⋅ ∇ + = ∈Ω ⊂⎪ ⎣ ⎦⎨
= ∈∂Ω⎪⎩

x x x x R

x x x
. (1) 

It is assumed that the diffusion coefficient Dε is rapidly oscillating, and it is of the 

form ( )D D xε ε= , where function D is periodic (with periodicity smaller than unity) 

and ε a scale parameter ( 1<<ε ). With this assumption, the diffusion coefficient of 

porous media changes periodically from pores and solid matrix. Define a new variable 

ε/xy = . y is the coordinate for the microscale, and it is commonly called fast variable 

( x is often referred as slow variable). All variables should depends on the coordinates 

( x and y ) for both scales. Therefore, we can do the asymptotic expansion with respect to 

ε  

 ( ) ( ) ( ) ( )2
0 1 2, , ,c c c cε ε ε= + + +x x y x y x y " . (2) 

Submit the expansion into Equation (1) and rearrange the terms according to the order for 

ε , one finally obtains a homogenized equation based on the terms of the order 0ε   

 
( ) ( )

( ) ( )

0 30,

,D

c f

c c

⎧ ⎡ ⎤∇ ⋅ ∇ + = ∈Ω ⊂⎪ ⎣ ⎦⎨
= ∈∂Ω⎪⎩

D x x x R

x x x
. (3) 
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This is the equation for the macroscopic scale. Tensor 0D is obtained by solving a cell 

problem on the microscopic scale 

 ( )0 ( ) ( ) d
iij ij y j

Y
D D y w y yδ= + ∂∫ , (4) 

where Y  is the volume of periodicity cell and  )(ywj  is the solution of cell problem  

 ( ) ( )( ) ( ) ( )y y j y jD y w y D y∇ ⋅ ∇ = −∇ ⋅ e . (5) 

The process results in a set of equations for both macroscopic and microscopic 

scales. Homogenization approach is more complicated to implement than the volume 

averaging technique, but the obtained equations on micro and macroscopic scales 

constitute a closed system. The homogenization approach fits more into the methodology 

of multiscale modeling since the equations on each scale are already available, and two-

way coupling can be achieved relatively easily. Homogenization approach has been used 

for stress analysis in porous media and composites. For example, Matous et al. [42] used 

this methodology to analyze damage evolution, under different loads, in a model 2D 

composite system composed of particles and binder. Ghosh et al. [ 43 ] applied 

homogenization technique to develop a multi-level model for stress analysis of an elastic 

fibrous composite. Homogenization has also been used to model transport phenomena in 

porous media (for example [44][45]). 

4.2. Volume Averaging 

In the volume averaging technique, the variable of interest is first averaged over a 

representative elementary volume (REV).  

 
d

1 d
ds s s

V

c c V
V

γ= ∫ , (6) 
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where Vd is the volume of REV, 1=sγ in phase s and 0 elsewhere. The governing 

equations on the microscopic scale are then averaged over REV. For example, when a 

transient diffusion equation is averaged on both sides, 

 ( )
d d

1 1d dd d
s

s s s s
V V

c V D c VV t Vγ γ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∂ = ∇⋅ ∇
∂∫ ∫ . (7) 

In the differential equations, the volumetric average of the temporal and spatial 

derivatives is transformed into the temporal and spatial derivatives of the averaged 

quantities by using the two theorems dealing with the averages of derivatives, 

 
1

dV
∂cs

∂t
⎛
⎝⎜

⎞
⎠⎟
γ s

dV
∫ dV = ∂cs

∂t
− 1

dV
csv ⋅n

As

∫ dA , (8) 

 
1

dV
∇⋅ Ds∇cs( )γ s

dV
∫ dV = ∇⋅ Ds∇cs( )+ 1

dV
Ds∇cs( )⋅n

As

∫ dA . (9) 

There are additional closure terms ( )s sD c∇⋅ ∇  and ( )
s

1 d ds sA
J V D c A= ∇ ⋅∫ n  that require further 

modeling, appearing as the consequence of the averaging process. It is easier to obtain the 

macroscopic governing equations using the volume averaging technique than the 

homogenization approach. However, the resulting closure terms require further modeling 

to close the system. Also, this technique does not pass the information from macro to 

micro scale, but the resolution on the microscopic scale is sometimes desirable. This 

approach has been widely used to model the fluid flow and heat transfer in porous media 

(for example [46, 47]). It has also been used to analyze the mechanics inside porous 

media [48]. 

Volume averaging-like techniques have been applied for battery modeling to deal 

with the porous feature of electrode materials [22, 49, 50, 51]. However, closure terms 

for effective material properties and volumetric reaction rate have only been treated 
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analytically using oversimplified assumptions instead of detailed numerical modeling of 

microstructural architecture.  In this study, volume averaging technique is used and the 

closure terms are proposed to be calculated directly from 3D microscopic simulations 

instead of simplified analytical modeling. 

4.3. Scale Bridging 

  In the scale bridging concept from [52, 53], a REV on the microscopic scale is 

assigned to each integration point of the macro-mesh. Appropriate boundary conditions, 

derived from information available from the macroscopic scale, are imposed on REV on 

the microscopic scale. A separate computation is then conducted for the REV, and the 

obtained variable values are averaged over REV to provide macroscopic closure terms 

with which the governing equations on macroscopic scale are solved. This provides an 

approach to determine the macroscopic response of heterogeneous materials with 

accurate accounting of microstructural characteristics.  

There are two categories of approaches to couple microscopic and macroscopic scales, 

concurrent coupling and serial coupling [ 54 ] as summarized in Figure 1.4. In the 

concurrent coupling approach, microscopic and macroscopic simulations are conducted 

concurrently with simultaneous information exchange. In serial coupling, an effective 

macroscopic model is determined from the microscopic model in a pre-processing step. 

Concurrent coupling is computationally expensive. Therefore, in this study we prefer to 

adopt the serial coupling approach. To systematically arrange the simulations on 

microscopic scale and couple the two scales efficiently, the database approach [55] and 

look up table approach [56] have been used to map the microscopic information and 

macroscopic closure terms. In this study we propose a surrogate-based approach to bridge 



Macroscopic scale Microscopic scale

Scale briding

- Concurrent coupling

- Serial coupling

simultaneous, two-way information exchange; expensive

• database approach [55]

• look up table approach [56]

microscopic modeling in the pre-processing step; efficient; 
one-way coupling

Figure 1.4: Summary of scale bridging approaches.

• surrogate based approach (this study)
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the scales serially.  Surrogate-based approaches have been used for design optimization 

and analysis [57]. Surrogate models are constructed using numerical results obtained 

from simulations on carefully sampled points; they are capable of predicting the objective 

functions efficiently over the whole design space once these models are validated for 

sufficient accuracy. In applying a surrogate-based approach for scale bridging in battery 

modeling, the input variables for the surrogate models are the microscopic structure 

information and the microscopic scale simulation boundary conditions from nodes values 

on macroscopic scale mesh, and the output variables are those closure terms calculated 

from microscopic scale simulations. 

5. SURROGATE-BASED MODELING AND ANALYSIS  

The surrogate-based approach is used in two occasions in this study: (1) to 

systematically analyze the effect of particle shape and cycling rate on stress and heat 

generation, and (2) to efficiently bridge microscopic and macroscopic scale simulations 

in the multiscale modeling framework. 

Surrogate models, which are constructed using the available data generated from 

pre-selected designs, offer an effective way of evaluating geometrical and physical 

variables. For expensive computer simulations and experiments, surrogate models offer a 

low cost alternative to evaluate designs because surrogate models are constructed using 

the limited data generated using carefully selected designs. Moreover, surrogate models 

provide a global view of the objective functions’ response to the design variables. 

Surrogate-based approach has been widely used in analysis and design optimization, for 

example, model parameter calibration for cryogenic cavitation modeling [58 ], axial 

compressor blade shape optimization [59], hydraulic turbine diffuser shape optimization 
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[60], dielectric barrier discharge plasma actuator performance characterization [61], and 

flapping wing aerodynamic analysis [62 ]. The key steps of surrogate modeling, as 

illustrated in Figure 1.5 (a), include design of experiments, running numerical simulations 

or conducting experimental measurements, constructing surrogate models, validating and 

further refining the models if necessary [57, 63, 64].  

Commonly used design of experiments approaches include face centered central-

composite design (FCCD) [65], Latin hypercube sampling (LHS) [66], and orthogonal 

arrays [67]. FCCD includes designs on 2 vN  vertices, 2Nv axial points (where Nv is the 

dimension of the design space) and Nc repetitions of the central point. Rrepetitions at the 

center reduce the variance and improve stability. An illustration for FCCD in three 

dimensional design space is shown in Figure 1.5 (b). FCCD is not practical for higher 

dimensional spaces (Nv > 8) because the number of simulations or experiments needed 

becomes very high. LHS is a stratified sampling approach with the restriction that each of 

the input variables has all portions of its distribution represented by input values. A 

sample of size Ns can be constructed by dividing the range of each input variable into Ns 

strata of equal marginal probability 1/ Ns and sampling once from each stratum. Figure 

1.5 (c) shows an example of LHS design for Ns=6 points in a two dimensional design 

space. 

The obtained simulations or experiment results on the sampling points are used to 

construct surrogate models; sampling points from the design of experiments for surrogate 

model construction are sometimes also referred to as training points. Commonly used 

surrogate models include polynomial response surface (PRS), kriging [68], radial basis 

neural network (RBNN). Polynomial response surface represent the objective function as  



(a) Design of experiments

Numerical simulations or 
experimental measurements at 

sampling points

Construction of surrogate 
models (Model selection and 

identification)

Refining design 
space or adding 
more sampling 

points, if necessary

identification)

Model Validation

(b) (c)

Figure 1.5: Surrogate modeling: (a) key steps of surrogate 
modeling; (b) design of experiments by FCCD; (c) design of 

experiments by LHS.
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a linear combination of monomial basis functions. An example for the second order 

polynomial response surface approximation is 

 0
1 1

ˆ ( )
v vN N

i i ij i j
i i j i

f x x xβ β β
= = ≤

= + +∑ ∑∑x , (10)

where the coefficients β are determined by minimizing the approximation error in a least 

square sense. The kriging model estimates the value of a function (response) at some 

unsampled location as the sum of two components: the linear model (e.g. polynomial 

trend) 
1

( )
i i

i

p
fβ

=
∑ x and a systematic departure Z(x) representing low (large scale) and high 

frequency (small scale) variation components, respectively. The systematic departure 

components are assumed to be correlated as a function of distance between the locations 

under consideration. Gaussian function is commonly used for the correlation, 

 ( ) ( )2

1

exp( ), ( ), ( )x s θ i i i
i

vN
C Z Z x sθ

=

= − −∏ . (11)

Optimal parameters iθ  are determined for maximum likelihood estimation. The RBNN 

model uses linear weighted combinations of radially symmetric functions ( )ia x based on 

Euclidean distance or other such metrics to approximate response functions. A typical 

radial function is the Gaussian function,  

 ( ) 2

( ) radbas , where  radbas( ) na b n e−= − =x s x . (12)

Parameter b in the above equation is inversely related to a user-defined parameter ‘spread 

constant’ that controls the response of the radial basis function. Typically, spread 

constant is selected between zero and one. A very high spread constant would result in a 

highly non-linear response function. An example of surrogate models (PRS, kriging and 
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RBNN) constructed based on training data of 5 sampling points obtained from the 

analytical functions y=exp(x4) is shown in Figure 1.6. 

After surrogate models are constructed, their accuracy is evaluated using error 

measures. Error in approximation of surrogate models at any given point x is defined as 

the difference between the actual function ( )y x and the predicted response ˆ( )y x . 

However, the actual response in the design space is unknown. We can not compute the 

actual errors of surrogate model prediction. Therefore, error measures are practically 

obtained on the available training data used for surrogate model construction or 

additional testing data obtained from numerical simulations or experimental 

measurements. Commonly used error measures based on the available training data 

include the adjusted coefficient of multiple determination 2
adjR  for polynomial response 

surface and prediction error sum of squares (PRESS) [69]. The coefficient of multiple 

determination is defined as  

 2 1 E

T

SSR
SS

= − , (13)

where ( )2

1

ˆ
sN

E i i
i

SS y y
=

= −∑ is the sum of square of residuals and ( )2

1

sN

T i
i

SS y y
=

= −∑ is the 

total sum of squares (
1

1 sN

i
s i

y y
N =

= ∑ ).  This coefficient can be interpreted as the proportion 

of response variation explained by the surrogate model (PRS). 2 1R = indicates that the 

fitted model explains all variability in y. However, this coefficient increases weakly with 

the number of terms used in PRS. Therefore, it is important to take into account the 

number of terms used in the regression mode, which results in the definition for the 

adjusted coefficient of multiple determination 2
adjR . 2

adjR is defined as 



Figure 1.6: An example of varies surrogate models constructed based 
on training data obtained from the analytical function y=exp(x4).
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= − = − −
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, (14)

where p is the number of terms used in polynomial response surface model. The adjusted 

coefficient increases only if the newly added term improves the model. For a good fit, 

this coefficient should be close to one. PRESS is a cross-validation error. It is the 

summation of squares of all PRESS residues, each of which is calculated as the 

difference between the simulation by computer experiments and the prediction by 

surrogate models constructed from the remaining sampling points while excluding the 

point of interest [69]. PRESS RMS (root mean square) is the root mean square of the 

PRESS residues, 

 ( ) 2

1

1 ˆPRESS RMS ( )
s

i
i i

is

N

y y
N

−

=

= −∑ , (15)

where Ns is the number of training points, iy  is the value of the objective function 

obtained from numerical simulations or experimental measurements at training point i, 

and ( )ˆ i
iy −  is the prediction by the surrogate model constructed by leaving point i out and 

using the remaining Ns−1 training points. This strategy is also called leave-one-out. The 

smaller the PRESS RMS, the more accurate the surrogate model will be. PRESS RMS is 

expensive to calculate using leave-one-out strategy for larger number of training points 

since Ns different surrogate models need to be constructed based Ns different sets of 

training data containing Ns−1 points. To solve this problem, a k-fold strategy was used to 

approximate PRESS RMS [70, 71]. In this approach, the available data (p points) are first 

divided into p/k clusters. Each fold is constructed using a point randomly selected from 
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each of the clusters. Out of the k folds, a single fold is retained as the validation data for 

testing the model, and the remaining k-1 folds are used as training data. k-fold turns out to 

be the leave-one-out when k=p. This k-fold strategy provides a much faster approach for 

calculating PRESS. Surrogate models are also evaluated by comparing surrogate model 

prediction and actual numerical simulation or experimental measurement results on 

testing points. The actual root mean square error could be approximated by using the 

prediction error on testing points as 

 
test

2

1test

1 ˆRMSE ( )i i
i

N

y y
N =

= −∑ , (16)

where iy  is the actual data from numerical simulation or experimental measurements at 

testing points i, and ˆiy  is the prediction by surrogate models at testing points i. With the 

calculated error measures for surrogate models constructed, one can try to select the best 

surrogate model based on a given error measure as the criterion. However, since the 

actual response of the objective function is unknown, one does not really know which 

error measure criterion performs the best. Sometimes, it can be risky to use individual 

surrogate models for predicting objective functions. Weighted average surrogates or 

ensemble of surrogates was proposed to provide more robust prediction of objective 

functions than individual surrogates [72]. Surrogate models validated to have adequate 

accuracy can be used for further analysis such as global sensitivity analysis and 

optimization of objective functions. If the desired accuracy is not achieved, another 

iteration of the surrogate modeling process should be repeated with refined design space 

or additional sampling points in the same design space. 
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 With the constructed surrogate models, global sensitivity analysis can be 

conducted to study the importance of design variables. Global sensitivity analysis 

quantifies the variation of the objective functions caused by design variables. The 

importance of design variables is presented by main factor and total effect indices [57]. 

Main factor is the fraction of the total variance of the objective function contributed by a 

particular variable in isolation, while the total effect includes contribution of all partial 

variances in which the variable of interest is involved. When Sobol’s method [73] is 

commonly used to calculate global sensitivity indices, a surrogate model f(x) of a square 

integrable objective as a function of a vector of independent input variables x in domain 

[0, 1] is decomposed as the sum of functions of increasing dimensionality as 

 ( ) ( ) ( ) ( )0 12 1 2, , , ,i i ij i j NN
i i j

f f f x f x x f x x x
<

= + + + +∑ ∑x …" … . (17)

In the context of global sensitivity analysis, the total variance denoted as V(f) can be 

shown to be equal to 
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= ≤ ≤
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Each of the terms Vi, Vij, Vijk ⋅⋅⋅ represents the partial contribution or partial variance of 

the independent variables or set of variables to the total variance and provides an 

indication of their relative importance. The main factor index of variable xi is defined as  

 main

( )
i

i
VS

V f
= . (19)

The total effect index of variable xi is defined as 
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Constructed surrogate models can also be used for objective function 

optimization. With the objective function globally mapped over the design space by 

surrogate models, global minima or maxima of the objective function can be identified 

for the single objective optimization. For two-objective optimization, a pareto front can 

be generated using surrogate models constructed to identify the trade-offs between two 

objective functions.  

6. SCOPE AND OUTLINE OF THE DISSERTATION  

In Chapter 2, an intercalation-induced stress model with the analogy to thermal 

stress modeling is developed to determine localized intercalation-induced stress in 

electrode particles. Intercalation-induced stress is calculated within ellipsoidal electrode 

particles with a constant diffusion flux assumed at the particle surface. In Chapter 3, 

surrogate-based analysis is conducted to systematically investigate the effect of both 

particle shape and cycling parameter on stress and heat generation inside single 

ellipsoidal cathode particles under potentiodynamic control. The diffusion flux on the 

particles is determined by the rate of electrochemical reactions modeled by the Butler-

Volmer equation. The outcome from this surrogate-based analysis provides guidelines for 

electrode particle design that will reduce stress and heat generation during battery 

cycling. Chapters 2 and 3 facilitate the understanding of physicochemical mechanisms by 

choosing a simple geometry, single electrode particles, without dealing with geometric 

complexity. Chapter 4 develops a battery scale model that takes into account the 

complicated 3D microstructure information of battery electrode materials. A multiscale 
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modeling framework is proposed to deal with the disparate length scales present in Li-ion 

cells. Closure terms from macroscopic scale governing equations are extracted from 

microscopic scale modeling of electrode particle clusters. Scale bridging is achieved by 

serial coupling using a surrogate-based approach. 
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CHAPTER II 

NUMERICAL SIMULATION OF INTERCALATION-INDUCED STRESS IN LI-
ION BATTERY ELECTRODE PARTICLES* 

 

 

1. INTRODUCTION  

Severe, particle-level strains induced during both production and cycling have 

been putatively linked to lifetime limiting damage in lithium-ion cells. Intercalation and 

deintercalation of Li ions into cathodic lattices, including LiCoO2 [1], LiMn2O4 [2] and 

LiFePO4 [3], have been postulated to result in fraction inside the particles, as determined 

by experimentation on model systems. In LiMn2O4 for example, 6.5% percent of volume 

change has been reported when Mn2O4 is lithiated into LiMn2O4 [4]. The simulation of 

LiMn2O4 indicated that intercalation-induced stress could exceed the ultimate strength of 

the material [5]. Also, stress generation due to cell-scale loads by compression during 

manufacturing has been shown to result in localized particle stresses that are much higher 

in the graphite anode material [6] (the ratio between local and global stresses is around 25 

to 140). Indeed, stresses of these orders exceed known strength of the materials which 

comprise the most commonly used, and most promising, cathode materials (Table 2.1 [4, 

7, 8,  9]).  

 

                                                 
* The material in this chapter is a published paper: X. Zhang, W. Shyy, and A. M. Sastry, 
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode 
Particles, Journal of the Electrochemical Society, 154(10) A910-A916 (2007). 
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Stress generation due to Li-intercalation, and more generally in other processes, has been 

modeled in prior work at the particle scale. Christensen and Newman estimated stress 

generation in the lithium insertion process in carbon anode [10] and LiMn2O4 cathode [5] 

particles. More broadly, stresses induced by species diffusion have been studied in other 

fields including metal oxidation and semiconductor doping. Prussin [11] first treated 

diffusion induced stress by analogy to thermal stress. In this study, stress generation 

during doping of boron and phosphorus into silicon wafer was studied. Li [12] studied 

diffusion-induced stress or chemical stress in elastic media of simple geometries 

following this method, as well. Yang [13] studied the evolution of chemical stress in a 

thin plate by considering the interaction between chemical stress and diffusion Prussin’s 

thermal stress analogy [11].  

Though these sets of efforts offer a means of stress estimation at the particle scale, 

by different physical assumptions, the implementations to date have not been applied to 

the problem of three-dimensional stresses. Because of the presently unknown 

contributions of manufacturing- and intercalation-induced stresses in Li-cells, this 

correlation is critical: in determining optimal materials and manufacturing methods for 

these cells. Both global and localized loads must be estimated, in order to select materials 

able to resist fracture. Further, the role of localized particle fracture in capacity fade has 

been implied, but not quantified, given the general lack of understanding of localized 

loads in batteries. 

Thus, the present work is focused on determining localized particle stresses in 

cathodic particles. Here we select the LiMn2O4 system following [14, 15, 16, 17, 18] on 

battery performance modeling, [19, 20] on atomic scale simulation of structure and 
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diffusion properties, and [5] on intercalation-induced stress simulation because of the low 

cost and environmental safety of LiMn2O4. We have the following objectives in this 

study: 

1) To determine diffusion-induced stresses according to an analogy to 

thermal stress, following [11, 12 and 13] for single particles, and 

determine the correspondence with prior work in Li cells [5]; 

2) To verify the implementation of a single-particle model numerically, 

using a finite difference scheme and reproduction of simple results; and 

3) To implement this model into a full finite element scheme, and simulate 

stresses induced by intercalation in particles of nonspherical geometry.  

2. METHODS 

2.1 Stress-Strain Relations 

For intercalation processes, the lattice constants of the material may be assumed to 

change linearly [4] with the volume of ions inserted, which results in stresses. Therefore, 

one can calculate intercalation-induced stress by analogy to thermal stress. Prussin [11] 

previously treated concentration gradients analogously to those generated by temperature 

gradients in an otherwise unstressed body.  

Stress-strain relations including thermal effects are written classically for an elastic 

body [21], as  

 εxx −αT =
1
E

σ xx −ν σ yy + σ zz( )[ ] (1a) 

 εyy −αT =
1
E

σ yy −ν σ xx + σ zz( )[ ] (1b) 
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 εzz −αT =
1
E

σ zz −ν σ xx + σ yy( )[ ] (1c) 

 εxy =
σ xy

2G
,εyz =

σ yz

2G
,εxz =

σ xz

2G
 (1d) 

where ijε are strain components, ijσ  are stress components, E  is Young’s modulus, ν is 

Poisson’s ratio, G is modulus of elasticity in shear, α is thermal expansion coefficient, 

and T is the temperature change from the original value. Analogously, the stress-strain 

relation with the existing of concentration gradients can be written as [13] 

 ( )[ ] ijijkkijij
c

E
δδνσσνε

3

~
11 Ω

+−+=  (2) 

where 0
~ ccc −=  is the concentration change of the diffusion species from the original 

(stress-free) value, and  Ω  is partial molar volume of solute. Eq. (2) can be rewritten to 

obtain the expression for the components of stresses, 

 ( ) ijkkijij c δβλεμεσ ~2 −+=  (3) 

where ( )νμ += 12E , ( )ννμλ 212 −= , and ( ) 323 μλβ +Ω= . As usual in elasticity, 

the strain tensor is related to displacement u as [21] 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

=
i

j

j

i
ij x

u
x
u

2
1ε  (4) 

and the equilibrium equation, neglecting body forces, is [21] 

 )3,2,1(0, == jiijσ  (5) 

Substitution of Eq. (3) and (4) into (5), leads to the displacement equations [22] 

 μ∇2ui + λ + μ( )uk,ki − β?c ,i = 0 (i =1, 2, 3). (6) 

The boundary condition for the case of a single particle is that the particle surface is 

traction-free. This condition can be expressed as [22] 
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 0=++= nmlp zxyxxxnx σσσ  (7a) 

 0=++= nmlp zyyyxyny σσσ  (7b) 

 0=++= nmlp zzyzxznz σσσ  (7c) 

where nml ,, denote the direction cosines between the external normal and each axis. 

Substitution of Eq. (3) and (4) into boundary conditions (7), yields 

 μ ui, j + u j ,i( )n j + λuk,k − βc( )ni = 0 i =1, 2, 3 (8) 

where ln =1 , mn =2  and nn =3 . Therefore, we are left to solve Eq. (6), with boundary 

condition (8). 

2.2 Diffusion Equation 

 As shown in Eq. (2) and (3), concentrations are needed to calculate intercalation-

induced stresses. To obtain a concentration profile, the insertion and extraction of ions 

are modeled as a diffusion process. The effect of existing electrons in the solid on the 

species flux of lithium can be neglected, because electrons are much more mobile than 

intercalated atoms [23]. The chemical potential gradient is the driving force for the 

movement of lithium ions. The velocity of lithium ions can be expressed as 

 μ∇−= Mv  (9) 

where M is the mobility of lithium ions and μ is the chemical potential. The species flux 

can then be written as [23] 

 μ∇−== MccvJ  (10) 

where c is the concentration of the diffusion component (lithium ions).  

 The electrochemical potential in an ideal solid solution can be expressed as [13, 

24] 
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 hXRT σμμ Ω−+= ln0  (11) 

where 0μ  is a constant, R  is gas constant, T  is absolute temperature, X  is the molar 

fraction of lithium ion, Ω  is partial molar volume of lithium ion, and hσ  is the 

hydrostatic stress, which is defined as ( ) 3/332211 σσσσ ++=h  (where ijσ  are the 

elements in stress tensor). Eq. (10) and (11) show that the diffusion flux depends on 

concentration, temperature, and stress field. Substitution of (11) into (10), assuming 

temperature is uniform, and noting that  

 ( ) c
c

RTX
X

RTXRT ∇=∇=∇
11ln , (12) 

an expression of species flux (when there is no temperature gradient inside the particle) 

can be obtained as 

 ⎟
⎠
⎞

⎜
⎝
⎛ ∇

Ω
−∇−= hRT

ccD σJ  (13) 

where MRTD =  is the diffusion coefficient. Conservation of species gives  

 0=⋅∇+
∂
∂ J

t
c . (14) 

Then, substituting Eq. (13) into (14) gives, finally, 

 ⎟
⎠
⎞

⎜
⎝
⎛ ∇

Ω
−∇⋅∇

Ω
−∇=

∂
∂

hh RT
cc

RT
cD

t
c σσ 22 , (15) 

as the governing equation for the diffusion process. The initial condition is 0cc = , with 

the boundary condition  

 J = −D ∇c −
Ωc
RT

∇σ h

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

in

F
 (16) 
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where ni  is the current density on the particle surface (which is assumed to be a constant, 

known value in this study), and F  is Faraday’s constant. 

2.3 Numerical Methods 

a. Finite Difference Method for 1-D Problem 

For the case of a spherical particle, the above equations become one-dimensional. 

The stress tensor contains two independent components, radial stress rσ  and tangential 

stress tσ . The equilibrium equation (refer to Eq. (5)) for this case is simply  

 ( ) 02
d

d
=−+ tr

r

rr
σσ

σ , (17) 

and the stress-strain relations (referring to Eq. (2)) are   

 ( ) c
E trr

~
3

21 Ω
+−= νσσε  (18) 

 ( )[ ] c
E trtt

~
3

1 Ω
++−= σσνσε . (19) 

The strain-displacement relations (referring to Eq. (4)) are 

 
r
u

r d
d

=ε ,   
r
u

t =ε , (20) 

and displacement equation (refer to Eq. (6)) is 

 
r
c

r
u

r
u

rr
u

d

~d
31

12
d
d2

d
d

22

2 Ω
−
+

=−+
ν
ν . (21) 

Integration of this equation yields a solution for u , from which stresses may be obtained. 

Noting that stresses are finite at the center of the sphere ( 0=r ), and that radial stresses 

are zero, 0=rσ , at the particle surface ( 0rr = ), the two constants in the solution can be 

determined, as 
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 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
Ω

= ∫∫ rrc
r

rrc
r

E rr

r d~1d~1
13
2

0

2
3

0

2
3

0

0

ν
σ , and (22) 

 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

−
Ω

= ∫∫ crrc
r

rrc
r

E rr

t
~d~1d~2

13 0

2
3

0

2
3

0

0

ν
σ . (23) 

Eq. (22) shows that radial stress actually depends upon the difference between the global 

and local averages of concentration. 

 The diffusion equation is (referring to Eq. (15)), 

  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂Ω

−
∂

∂
∂
∂Ω

−
∂
∂

+
∂
∂

=
∂
∂

rrrRT
c

rr
c

RTr
c

rr
cD

t
c hhh σσσ 22

2

2

2

2

. (24) 

Eqs. (22) (23) allow calculation of hydrostatic stress, as 

  ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
Ω

=+= ∫ crrc
r

E r

trh
~d~3

19
23/2

0

0

2
3

0ν
σσσ . (25) 

By assuming that the characteristic time for elastic deformation of solids is much smaller 

than that for atomic diffusion, the elastic deformation can be treated as quasistatic [13]. 

Therefore, Eq. (25) can be substituted into Eq. (24) to obtain 
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where ( )ν
θ
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 .  

Substituting (25) into boundary conditions (16), one has 
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In this way, the two variables, concentration and stress, are decoupled.  
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To solve the above equation numerically, it, along with boundary and initial 

condition, is transformed into dimensionless form first, as  
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where dimensionless variables are defined as 

  
0

ˆ
r
rr =   2

0

ˆ
r
tDt =  

max

ˆ
c

cc =  max
ˆ cθθ =   

FDc
ri

I n

max

0=  

In the above equations, maxc  is the stoichiometric maximum concentration and 0c  is the 

initial concentration. It may be seen that the effect of discharge current density, particle 

radius and diffusion coefficient are all combined into the dimensionless current density 

I .  

The numerical procedure is as follows. For each time step, concentration 

distribution is solved first by Eq. (28). Then, the concentration is substituted into Eq. (22) 

(23) to calculate stresses. Eq. (28) is a nonlinear, parabolic partial differential equation. 

The finite difference method is used here to solve the equation. 

First Eq. (28) is rewritten as 
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To discretize the differential equation into difference equations, the problem is linearized 

by taking the value from the previous time step for the terms in the two parentheses on 

the right hand side. The Crank-Nicolson method is used for other terms. The difference 

equation obtained is  
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Terms including r̂/1 will be singular at the particle center 0ˆ =r . To solve this difficulty, 

noting that  

 0
ˆ
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=
∂
∂
r
c       when 0ˆ =r  (31) 

L’Hopital’s rule can be used 
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to eliminate the r̂/1  factor. Thus, Eq. (28) becomes 
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which has no singularity at 0ˆ =r . Therefore, Equation (33) will be solved at 0ˆ =r  while 

Equation (29) is solved elsewhere. 

At two boundary points, imaginary points (out of the boundary) are used to 

discretize the governing equation; the concentration values of these imaginary points are 

obtained by central differencing of the flux boundary condition at the boundary points.  
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The Thomas algorithm is used to solve the tridiagonal system of the difference 

equations. The simulation is halted when the concentration on the particle surface 1ˆ =r  

reaches the stoichiometric maximum. 

b. Finite Element Method for 3-D Problem 

The three-dimensional problem was simulated using FEMLAB (COMSOL 

Multiphysics®). Two models are included in the multiphysics simulation, PDE (partial 

differential equation) model (general form) and solid stress-strain model. In PDE model, 

the diffusion process is described by the generalized form of PDE 

 0=Γ⋅∇+
∂
∂

t
c  (34) 

where 

 ⎟
⎠
⎞

⎜
⎝
⎛ ∇

Ω
−∇−=Γ hRT

ccD σ . (35) 

In the solid stress-strain model, ‘thermal expansion’ is included as a load based on the 

variable of concentration c instead of temperature in thermal stress calculations. 

2.4 Material Properties 

All the material properties used in the simulation for Mn2O4 are listed in Table 2.2 

[5, 25]. From Eq. (2), we see that that partial molar volume plays a role analogous to a 

thermal expansion coefficient, in calculating intercalation-induced stress. To obtain the 

value for this property, the volume change of 6.5% for 2.0=y  to 995.0=y of LiyMn2O4 

is used [5]. The volume change of 6.5%, giving a strain of 0.0212, corresponds to the 

concentration change from 2.0=y  to 995.0=y . Therefore, by noting the analogy 

between thermal expansion coefficient and 3/Ω , partial molar volume is
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3. RESULTS AND DISCUSSIONS 

3.1 1-D Finite Difference Simulations 

 Christensen and Newman [5] modeled the stress generated in LiyMn2O4 during 

lithium intercalation on the 4-V plateau (0.2<y<1). The same parameters and properties 

are used here, except for the diffusion coefficient. In their simulation, they used a state of 

charge dependant diffusion coefficient that includes a binary interaction parameter and a 

thermodynamic factor. Here, a constant diffusion coefficient is used, taking the value of 

the reference binary interaction parameter in their paper. The simulation results from the 

thermal stress analogy model and the Christensen and Newman model are shown in 

Figure 2.1. Although different approaches are applied to calculate the intercalation-

induced stress, the results qualitatively show the same trend.  

We used the 1D model to simulate cycling of the active material between y=0 and 

y=1, giving an initial condition for Eq. (26) of 00 =c . Results show that maximum radial 

stress locates at the center of the particle. The magnitude of the spatial maximum 

dimensionless radial stress is given by 
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E ν
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Figure 2.2 shows how dimensionless maximum radial stress max,ˆ rσ (both temporally and 

spatially during the discharge process) varies with dimensionless current density (or 

dimensionless boundary flux) I . 



Figure 2.1: Comparison of simulation results of two models.
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Figure 2.2: Maximum dimensionless radial stress versus 
dimensionless current density.
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As shown in Figure 2.2, maximum radial stress (spatially and temporally) inside 

an electrode particle during the discharge process increases with increasing dimensionless 

current density when 7.20 << I . However, maximum radial stress decreases with 

increasing dimensionless current density when it is larger than 2.7. The decrease of stress 

occurs because the concentration profile is not fully developed, so that the global average 

term (first term in the parenthesis) in Eq. (36) decreases with dimensionless current 

density, while the local average (second term in the parenthesis) remains constant. This is 

not desirable in the cycling of batteries, because it reduces material utilization. Therefore, 

only the increasing branch of the curve is actually feasible. The increasing branch shows 

that increase of discharge current density and particle radius will increase the 

intercalation-induced stress. In other words, smaller particles should be used to reduce 

intercalation-induced stresses. 

As mentioned earlier, the model used here to simulate the intercalation-induced 

stress is a diffusion-stress coupling model. The effect of stress on diffusion will be 

discussed briefly using the one-dimensional equations for a spherical particle. 

Substituting Eq. (25) into (13), we obtain 

  ( )
r
ccD

∂
∂

+−= θ1J . (37) 

In Eq. (37), cθ is always a positive number, and the effective diffusion coefficient is 

essentially ( ) DcD >+θ1 . Therefore, the diffusion is enhanced due to the extra term cθ , 

which basically comes from hydrostatic stress gradient term in Eq. (13). In other words, 

stress enhances the diffusion. This stress enhancement effect is also demonstrated 

numerically, as shown in Figure 2.3. It shows the concentration profile at t=1000s with



Figure 2.3: Numerical results for the effects of stress.
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discharge current density 2mA2=i  on the surface. The profile including the effect of 

stress has a smaller gradient than that excluding the stress effect, confirming that stress 

enhances diffusion. 

Substituting the material properties into the expression of ( )[ ]RTE νθ −Ω= 192 2 , 

we obtain /molm101.557 3-5×=θ . If the maximum concentration is used, 356.0max =cθ , 

which is not negligible compared to unity. Therefore, for the case of LiMn2O4, the stress 

effect cannot be neglected. From the expression for θ , it can be observed that θ  has 

smaller magnitude when the material has smaller modulus E  and smaller partial molar 

volume Ω . Thus, the stress effect on diffusion may be negligible when the material is 

soft (i.e. having a low modulus). 

3.2 3-D Finite Element Simulation Results 

The 1-D finite difference simulation, with 4001 grid points and a time step of 

0.001s, was used as the reference solution to study the convergence of finite element 

method. Figure 2.4 shows the 2-norm errors (differences) between the finite element 

solutions and finite difference reference solutions at t=1000s. The parameters used in the 

simulations are current density 2mA2=i , and particle radius m50 μ=r . The finite 

element solutions converged to the reference solution as the number of elements used 

increased. At the same time, Figure 2.4 also shows that solutions from 1-D finite 

difference method and 3-D finite element method were consistent, because the 

nondimensionalized errors of concentration and stress from 17359 elements simulation 

were 7105.6 −× and 5105.1 −×  respectively (if nondimensionalized by the maximum values 

at t=1000s inside the particle). 



Figure 2.4: Convergence plot of finite element solutions for: (a) 
hydrostatic stress and (b) concentration.
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To study the effect of aspect ratios on the intercalation-induced stress, ellipsoids 

with different aspect ratios were studied. The current density on the surface is fixed at 

2mA2=i . For the ellipsoid, the lengths of three semi-axes a , b and c  satisfy ba = , 

and the aspect ratio is defined as ac /=α , as sketched in Figure 2.5. The volumes of the 

ellipsoids were fixed, at V = 4π × 53 3 μm3 . A set of simulations, with different aspect 

ratios, were run by FEMLAB. 

Characteristic solution profiles of concentration, von Mises stress and shear stress 

yzσ  are shown in Figure 2.6 at the end of the discharge process (when the surface 

concentration reaches the stoichiometric maximum) for an ellipsoid with aspect ratio 

1.953. Figure 2.6 shows that 1) the concentration is higher around the poles; 2) the von 

Mises stress is larger around the equator; and 3) shear stress has its maximum on the 

surface. The solution profiles have the same patterns for other ellipsoids with different 

aspect ratios. 

Figure 2.7 shows how the maximum von Mises stress inside the particle varies 

during the discharge process for particles with different aspect ratios. It takes less time 

for particles with larger aspect ratios to completely discharge. Also, during discharge, 

von Mises stress increases first, and then drops. In Figure 2.7, it can be observed that 

when aspect ratio increases, the stress increases first (for aspect ratios from 1.0 to 1.37) 

and then decreases (for aspect ratios from 1.37 to 3.81). For ellipsoids with aspect ratio 

2.92 and 3.81, the intercalation-induced stress is smaller than that inside a sphere (aspect 

ratio 1.0).  

Figure 2.8  shows how aspect ratio affects (a) peak value of maximum von Mises 

stress, and (b) peak value of maximum shear when the volumes of particles are fixed.  



Figure 2.5: Schematic of an ellipsoidal particle, with coordinate 
system.
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Figure 2.6: Solutions at the end of discharge for an ellipsoid of aspect 
ratio 1.953, (a) concentration, (b) von Mises stress, and  (c) shear 

tstress.
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Figure 2.7: Maximum von Mises stress during discharge, for various 
ellipsoids.
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Figure 2.8: The effect of aspect ratio, for fixed particle volume.
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Figure 2.8 (a) shows that the peak value of maximum von Mises stress inside the particle 

increases first and then decreases as the aspect ratio increases. Once the aspect ratios are 

larger than 2.2, the maximum von Mises stress is less than that inside spherical particles 

(aspect ratio 1). Figure 2.8  (b) shows that peak value of maximum shear stress decreases 

as aspect ratio increases. The results of Figure 2.8 show that particles with larger aspect 

ratios have less intercalation-induced stress generation, when the particle volume is 

preserved.  

 The peak values of maximum von Mises stresses are shown in Figure 2.8 (a). 

Maximum stress first increases, then decreases with aspect ratio. This is due to two 

competing effects. When particle volume is preserved, increased aspect ratios result in 

increase of the longer semi-axis c, and reduction of shorter, semi-axes a and b. 

Elongation of the longer semi-axis tends to increase maximum stress, while reduction of 

the shorter semi-axes tends to decrease the maximum stress. This competition results in a 

global maximum of stress at an aspect ratio of ~1.37.  

To further illustrate the effect of semi-axes on maximum stress, an additional set 

of simulations were performed, in which the shorter semi-axes a and b were fixed, and 

aspect ratio α was increased by elongation of the longer semi-axis, c. Results, obtained 

with a discharge current density 2mA2=i , are shown in Figure 2.9. Stress first 

increases with aspect ratio because of the increase of longer semi-axis, and then decreases 

slightly until asymptotically approaching the cylinder/fiber limit, i.e. α ∞. As 

represented by the dashed line in Figure 2.9, no physically relevant solutions are obtained 

for α>7.9, because the discharge process stops when the concentration on the particle 

surface reaches stoichiometric maximum, before the maximum stress actually



Figure 2.9: The effect of aspect ratio, for fixed shorter semi axes.
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reaches the peak value. To quantitatively illustrate this point, for an ellipsoid with aspect 

ratio 10, the stress reaches its peak value at t = 721s. However, the simulation should 

terminate at t = 617.5s, when the surface concentration already reaches stoichiometric 

maximum. The maximum stress at t = 721s is 52.47MPa, and the stress at t = 617.5s is 

52.26MPa. Therefore, the stress when the process is terminated, is only slightly smaller 

than the peak value. 

 

4. CONCLUSION 

Intercalation-induced stresses during the discharge process were simulated in this 

study using a stress-diffusion coupling model. Intercalation-induced stresses were 

simulated by analogy to thermal stress. Simulations of spherical particles show that larger 

particle sizes and larger discharge current densities give larger intercalation-induced 

stresses. Furthermore, internal stress gradients significantly enhance diffusion. 

Simulation results for ellipsoidal particles show that large aspect ratios are preferred, to 

reduce the intercalation-induced stresses.  In total, these results suggest that it is desirable 

to synthesize electrode particles with smaller sizes and larger aspect ratios, to reduce 

intercalation-induced stress during cycling of lithium-ion batteries. 
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CHAPTER III 

SURROGATE-BASED ANALYSIS OF STRESS AND HEAT GENERATION 
WITHIN SINGLE CATHODE PARTICLES UNDER POTENTIODYNAMIC 

CONTROL* 
 

 

1. INTRODUCTION 

   Excessive heat generation in Li batteries, resulting in thermal runaway, results in 

complete cell failure accompanied by violent venting and rupture, along with ignition of 

battery active materials [1, 2, 3, 4]. Stress-induced fracture also putatively degrades 

performance in these cells, as evidenced by observation of fractured surfaces in post 

mortem analysis of batteries [5, 6, 7]. Stress generation results from lithium ion extraction 

from the cathode (deintercalation), transport across the electrolyte and insertion into the 

anode (intercalation), and the reverse reaction [8]. Intercalation-induced stress varies 

cyclically, and thus damage aggregates with usage [5]. Particle-scale fracture of active 

materials results in performance degradation of batteries due to the loss of electrical 

contact and subsequent increase in the surface area subjected to side reactions [9].  These 

phenomena, heat and stress generation, undoubtedly amplify one another, and both 

phenomena are governed by cell kinetics. Inclusion of heat generation, mechanical 

                                                 
* The material in this chapter is a published paper: X. Zhang, A. M. Sastry and W. Shyy, 
Intercalation-induced Stress and Heat Generation within Single Lithium-Ion Battery 
Cathode Particles, Journal of the Electrochemical Society,155(7), A542-A552 (2008). 
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stresses, and chemical kinetics in models at critical scales, i.e. particle scales, appears 

necessary, and progress in each is discussed in order. 

  It is important to distinguish between heat transfer and heat generation analyses in 

battery materials. We use “heat generation” to refer to the sources of heat in the cell; 

“heat transfer”, by contrast, refers to the resulting distribution of temperature. Though the 

sources of heat generation may be readily determined, solution for the distribution of 

temperature requires even more detailed understanding of both geometry and materials 

properties, as will be discussed later. Heat transfer analyses of Lithium-ion batteries have 

stemmed from work on full cells [10]. This classic work [10] was later extended to 

consider the effect of lithium concentration in intercalation compounds [1]. Foci of 

subsequent studies have mainly been on improved modeling of heat transfer, rather than 

refinement of geometric models to the particle scale. A three-dimensional (3D) model 

was been developed, considering anisotropic conductivity, to simulate the temperature 

distribution inside lithium polymer batteries under galvanostatic discharge for a dynamic 

power profile [11]. Later, a layerwise 3D model (assuming different conductivities for 

each homogeneous layer), was derived [12], in which radiation and convection were 

considered.  

  Thus, progress to date in heat transfer modeling has been restricted to 

consideration of continuum layers, though modeling at the particle scale appears 

necessary at this time, given our ability to select particle geometry within electrodes. 

Meanwhile, models have appeared in intercalation-induced stress which do address the 

particle scale, e.g. a one-dimensional model to estimate stress generation within spherical 

electrode particles [ 13 ] and a two-dimensional model to predict electrochemically 
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induced stresses [14]. Neither, however, has considered complex particle shapes or the 

effect of layerwise thickness on critical percolation limits [15]. In more recent work [16], 

a three-dimensional model based on a thermal stress analogy has been used to simulate 

the intercalation-induced stress inside cathode particles, but without consideration of 

electrochemical kinetics.  

  In order to fully and predictively link thermal and stress-induced failures, kinetic 

effects must also be understood, in tandem with detailed models of electrode architecture, 

in three dimensions, and for complex particle shape. Though it has been established that 

microscopic features of structures in batteries, including particle shape and size 

distributions, are important factors in battery performance [17], models have not been 

reported that  incorporate electrochemical kinetics. Thus, in the present work, we model a 

LiMn2O4 cathode particle under potentiodynamic control, with linearly variable applied 

potential to the particle [18,19]. The cathode particle was assumed to be homogeneous. 

We had the following specific objectives: 

1) To develop and numerically implement particle scale models to simulate 

intercalation-induced stress and heat generation, and to interrogate the interactions among 

intercalation, stress and heat generation, for spherical particles; 

2) To understand, using surrogate-based analysis, how stress and heat 

generation depend upon the ratio of axial lengths for ellipsoidal cathode particles, and the 

operating conditions (discharge time). 

  Our general methodology comprised two sequential efforts. First, we developed a 

model that physically links intercalation-induced stress and thermal stress, following 

prior work [16]. Three distinct sources of heat generation were considered, namely, heat 
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of mixing, entropic heat, and resistive heating [1]. Though heat generation at this scale is 

different, we do not at present have sufficient information on local heat transfer 

coefficients within anisotropic particles to properly model heat transfer, and thus 

determination of localized temperature distribution via heat transfer analysis is not 

attempted here. Implementation of the model requires physical parameters, including 

partial molar volume [16], Young’s modulus [16] and the derivative of open-circuit 

potential (OCP) over temperature [20].  

   The second effort, in surrogate modeling, comprised use of surrogate models to 

analyze relationships among stress and heat generation, and ellipsoidal particle 

morphology and operating conditions.  We first conducted simulations on selected 

training points in critical regions, using the models developed to obtain the stress and 

heat generation. The simulation results were then approximated by surrogate models 

which were used, after validation, for further analysis of stress and heat generation for 

different particle geometries and cycling rates. 

2. ELECTROCHEMICAL, MECHANICAL AND THERMAL MODELING 

In lithium-ion batteries, actual cathode particle morphology varies with synthesis 

methods [21, 22, 23, 24]. Primary particles, made of crystalline grains, are agglomerated 

using polymeric binders (e.g. poly (vinylidene fluoride) (PVdF) [2, 25]) and conductive 

additives such as carbon black [25, 26], nonaqueous ultrafine carbon suspensions [27] 

and graphite [28, 29] are incorporated to form secondary particles. Typical cathode 

compositions and particle sizes are shown in Table 3.1 [Ref. 28, 25, 26, 22, 30, 31]. Sizes 

range from 0.3 to 4 μm for primary particles, and 11 to 60 μm for secondary particles.  

 



active material binder additives Ref.

LiFePO4

76 88 wt %

PVdF

12 wt %

carbon black 0-10 wt.%

graphite 0 6 wt %
28

76-88 wt.% 12 wt.% graphite 0-6 wt.%

LiMn2O4

81.5 wt.%

PVdF

10 wt.%

carbon black

8.5wt.%
25

EPDM
LiMn2O4

80 wt.%

(ethylene propylene 
diene terpolymer)
5 wt. %

carbon black

15 wt.%
26

active material synthesis method Sizes Ref.

LiMn2O4

calcination from Mn3O4

and Li2CO3

crystalline grain: ca. nanometers

primary particle: ca. 3-4 μm
22

Li[Mn1/3Ni1/3Co1/3]O2

carbonate
co-precipitation 

primary particle: ca. 1 μm

secondary particle: ca 11 μm
30

method at 950°C secondary particle: ca. 11 μm

LiFePO4 microwave processing
primary particle: ca. 0.3 μm

secondary particle: ca. 20-60 μm
31

Table 3.1: Representative cathode compositions and particle sizes.
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Modeling of these aggregates at the scale of single crystals requires molecular or 

atomistic simulations. Thus, we restrict our considerations in the present study to a pure 

active material (LiMn2O4) without inclusions. Our model cathodes particles are 

homogeneous, isotropic single-phase ellipsoidal particles (prolate spheroids) or spherical 

particles. The stress localization due to interaction between the crystalline grains is not 

considered in stress generation simulations, and the temperature inside a particle is 

assumed to be uniform in heat generation simulations.  

  Determination of intercalation-induced stress and heat generation first requires 

mapping of concentration distribution and current density. Concentrations are obtained 

by solving the diffusion equation with appropriate boundary conditions for each case (see 

section 2.1.1). To model the intercalation-induced stress, a constitutive equation is used 

to relate intercalation-induced strain. A heat generation model developed for a whole cell 

[1] is used here, because our simulations rely on the assumption that the cathode particle 

behaves as one electrode of a whole cell, incorporating experimental parameters from 

microelectrode studies [18], wherein a single cathode electrode and the counter electrode 

(lithium foil) comprise the electrochemical cell.  

2.1 Model of Intercalation 

   An intercalation process can ideally be modeled as a diffusion process with 

boundary flux determined by the electrochemical reaction rate. The model of the 

intercalation process presented in this section includes a Li-ion transport equation and a 

boundary condition determined by the electrochemical kinetics on the particle surface 

under potentiodynamic control. 
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2.1.1 Li-Ion Transport Equation 

Li-ion diffusion is driven by the chemical potential gradient. For a given 

concentration and stress gradients, the diffusion flux is given by [16] 

 ⎟
⎠
⎞

⎜
⎝
⎛ ∇

Ω
−∇−= hRT

ccD σJ , (1) 

where c is the concentration of Li-ion, hσ  is the hydrostatic stress, defined as 

( ) 3/332211 σσσσ ++=h  (where ijσ  is the elements in stress tensor), D  is the diffusion 

coefficient, R is the general gas constant and T is temperature. With substitution of 

Equation (1) into the mass conservation equation, we obtain the species transport 

equation as follows [16], 
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⎦
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The boundary condition for this equation is that the flux on the particle surface is 

related to the discharge/charge current density ni as 

 FRT
ccD n

h

i
J =⎟

⎠
⎞

⎜
⎝
⎛ ∇

Ω
−∇−= σ , (3) 

where F  is Faraday’s constant. 

2.1.2 Electrochemical Kinetics under Potentiodynamic Control 

   The current density on the particle surface depends on the electrochemical 

reaction rate. The reactions at the positive electrode are 

LiMn2O4 ⇔ Li1-xMn2O4+xLi++xe- 

During charge, the positive electrode is oxidized, and lithium ions are extracted from the 

positive electrode particle. During discharge, the positive electrode is reduced and lithium 
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ions are inserted into the positive electrode particle. Chemical kinetics (reaction rate) are 

described by the Butler-Volmer equation [32, 33], as 

 ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡−−⎥⎦

⎤
⎢⎣
⎡ −

== ηβηβ
RT

F
RT

F
F
i

F
i

J n exp1exp0 , (4) 

where 0i  is exchange current density, η  is surface overpotential, and β  is a symmetry 

factor which represents the fraction of the applied potential that promotes the cathodic 

reaction[33]. 

The exchange current density 0i  is given by, 

 ( ) ( ) ( )ββ
θ

β
sl cccFki −−= 11

0 , (5) 

where lc  is the concentration of lithium ion in the electrolyte, sc  is the concentration of 

lithium ion on the surface of the solid electrode, θc  is the concentration of available 

vacant sites on the surface ready for lithium intercalation (which is the difference 

between stoichiometric maximum concentration and current concentration on the surface 

of the electrode scc −max ), and k  is a reaction rate constant[32]. 

In Equation (4), the surface overpotential is the difference between the potential 

of the solid phase (compared to the electrolyte phase) V  and the open circuit potential 

(OCP) U [32] 

 UV −=η (6) 

A fit of the experimental results [34] of OCP for LiMn2O4 is illustrated in Figure 3.1 (a). 

OCP depends upon the state of charge y , i.e., the atomic ratio of lithium in the electrode 

LiyMn2O4; this is a measure of the lithium concentration in the electrode. As shown in 

Figure 3.1 (a), there are two plateaus in the potential distribution, resulting from the 

ordering of the lithium ions on one half of the tetrahedral 8a sites of LiMn2O4 [35].  



Figure 3.1: Potentials: (a) OCP of LiMn2O4 and (b) applied potential 
sweeping profile during one cycle.
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Following the numerical study [19], the potential of the solid phase is assumed, because 

of the small size of particles, to be uniform within each particle, having the value of the 

applied potential, 

 appUV = , (7) 

when under microvoltammetric study (for example, [18]). This assumption of a uniform 

potential distribution will be evaluated in Section 4.  Under potentiodynamic control, the 

applied potential changes linearly with time [18, 19] for fixed potential sweep rate v . 

Once the applied potential reaches the upper bound, the potential sweep rate changes sign 

to sweep backward. Figure 3.1(b) shows an example of the potential sweep, with 

mV/s4.0=v . Increasing applied potential, in the first half cycle, drives the charging 

process, while the decreasing applied potential, in the second half cycle, drives the 

discharging process. As the potential cycles between 3.5102V and 4.3102V [19], the 

electrode particle is thus charged and discharged.  

For this applied potential stimulus, the initial condition for the species transport 

equation (Equation (2)) is max00
996.0 ccc

t
==

=
. 

2.1.3 Parameters and Material Properties 

A reasonable way to obtain the lithium ion concentration in the electrolyte 

lc would be to solve the species transport equation in the electrolyte. However, it is 

assumed to be a constant value in this study following [19].  The values of parameters 

and material properties used in this study (unless otherwise stated) are listed in Table 3.2.  

2.2 Intercalation-Induced Stress Model 

The constitutive equation between stress and strain, including the effect of 

intercalation-induced stress by the analogy to thermal stress, is  



symbol value

β 0.5

cl 1000 mol/m3 [19]

cmax 2.37×104 mol/m3[19]

k 1.9×10-9 m5/2s-1mol-1/2 [19]

D 2.2×10-9 cm2/s [19]

V 0.4 mV/s

r0 5 μm

Table 3.2: Parameters and material properties for the intercalation 
model (where r0 is the radius of a spherical particle).
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 ( )[ ] ijijkkijij
c

E
δδνσσνε

3

~
11 Ω

+−+=  (8) 

where ijε are strain components, ijσ  are stress components, E  is Young’s modulus, ν is 

Poisson’s ratio,  0
~ ccc −=  is the concentration change of the diffusion species (lithium ion) 

from the original (stress-free) value, and  Ω  is the partial molar volume of lithium [16]. 

Stress components are subjected to the force equilibrium equation 

 )3,2,1(0, == jiijσ . (9) 

A Young’s modulus GPa10=E  and a partial molar volume /molm10497.3 36−×=Ω [16] are 

assumed here. Equation (2) and (8) are coupled through concentration c , and stress hσ . 

2.3 Heat Generation Model 

 There are four sources of heat generation inside lithium ion batteries during 

operation [1] 

 ( ) ( )∫∑∑∑ ∂

∂
−+Δ+

∂
∂

+−= v
t

c
HHrH

T
UITUVIQg d

j i

ijavg
ijij

k
k

avg
k

avg
avg  (10) 

The first term, ( )avgUVI − , is the irreversible resistive heating, where I  is the current of the 

cell, V is the cell potential, and  avgU is the volume averaged open circuit potential. 

Resistive heating is caused by the deviation of the cell potential from its equilibrium 

potential by resistance to the passage of current. The second term, TUIT ∂∂ avg , is the 

reversible entropic heat, where T is temperature. The third term, ∑Δ
k

k
avg
k rH , is the heat 

change of chemical side reactions, where avg
kHΔ is the enthalpy of reaction for chemical 

reaction k, and kr  is the rate of reaction k. The fourth term, ( )∫∑∑ ∂∂− vtcHH dij
j i

avg
ijij , is the 

heat of mixing due to the generation and relaxation of concentration gradients, where ijc  is 
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the concentration of species i in phase j, vd  is the differential volume element, and ijH  

and avg
ijH  are partial molar enthalpy of species i in phase j and the averaged partial molar 

enthalpy respectively.  

  The charge/discharge current I is obtained by the integration of current density ni  

(determined by electrochemical kinetics as shown in Equation (4)) over the particle 

surface. The potential of solid electrode V  equals to the applied potential, as in Equation 

(7).  The volume averaged OCP avgU  is determined by using the volume averaged the 

state of charge and the experimental results of OCP, as shown in Figure 3.1(a). TU ∂∂ avg is  

measured concentration, and is thus dependent upon state of charge. Experimental results 

of TU dd for LiMn2O4 in [20] are used here. The experimental results of TU d/d from [20] 

are fitted by a smoothing spline method (Matlab®), used commonly to characterize data 

with a high degree of noise [36]. Fit statistics for these data are 977.02 =R , 967.02 =adjR ; the 

fitted curve is shown in Figure 3.2(a).  

  The term ∑Δ
k

k
avg
k rH in Equation (10)  is neglected, because of the assumption of no 

side reactions. The heat of mixing term is simplified as [1] 
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⎦

⎤
⎢
⎣

⎡

∂
∂

=
∂

∂
−= ∫∫∑∑ ∞ vcc
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2
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,s
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by assuming that i) the volume change effect can be neglected such that the temporal 

derivative can be taken outside the integral; and ii) the particle is in contact with a 

thermal reservoir such that temperature is constant [1]. Equation (11) suggests that heat 

of mixing vanishes when the concentration gradient relaxes. In Equation (11), 

sHss cUFcH ∂∂∂∂ −=  where TUTUU d/dH −= is enthalpy potential. The term ss cH ∂∂ is 

obtained by numerical differentiation of enthalpy potential HU over concentration. First, 



Figure 3.2: Material properties: (a) the derivative of OCP over 
temperature: curve fitting of the measured data from Ref. 20, and (b) 
the derivative of partial molar enthalpy over concentration obtained by         

based on the curve fit in (a).( )∂ ∂ ∂∂ = − − d / dH c F U T u T c
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HU  is calculated according to TUTUU H d/d−= by taking K300=T  and the curve fitting 

results in Figure 3.2(a). Then, HU  is numerically differentiated over concentration, and 

multiplied by −F ,  to obtain cH d/d , plotted in Figure 3.2(b). 

2.4 Spherical particle simulation results 

The intercalation, stress and heat generation models described above were 

implemented on spherical particles with radius mr μ50 = using the simulation tool 

COMSOL Multiphysics®. A potential sweep rate of mV/s4.0=v was selected, giving a 

discharge/charge rate of 1.8C, falling in the range of typical rates for high-power 

applications of lithium-ion batteries.  

2.4.1 Intercalation-Induced Stress inside Spherical Particles 

The simulation results of reaction flux and stresses are shown in Figure 3.3. 

Figure 3.3(a) shows the diffusion flux, determined by electrochemical kinetics, on the 

particle surface during one cycle of voltammetry. It is positive in the first half cycle (as 

lithium ions are extracted from the cathode during charge) and negative in the second half 

cycle (as lithium ions are inserted into the cathode during discharge). This is a similar 

trend to those from simulations [19] and experiments [18]. The first principal stress 

(radial stress) is largest at the center of the particle, and the von Mises stress is largest on 

the particle surface. Figure 3.3(b) shows that radial stress, at the center of the particle, is 

negative (compressive) in the first half cycle and positive (tensile) in the second half 

cycle. In the first half cycle, lithium ions are extracted making the lattice contract in the 

particle’s outer region. Therefore, the radial stress is compressive at the center of the 

particle. In the second half, lithium ions are inserted making the lattice expand in the



Figure 3.3: Simulation results of a spherical particle with
,              : (a) diffusion flux on the particle surface, (b) radial 

stress at the center of the particle, and (c) von Mises stress on the 
ti l f

0.4mV/sv = 0 5r mμ=

particle surface..
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particle’s outer region. Therefore, the radial stress is tensile at the center of the particle in 

this half cycle.  

Figure 3.3(c) shows the time history of von Mises stress on the particle surface. 

The flux and stress of charge and discharge half cycles are symmetric. This is because the 

symmetric applied potential dominates over simulation parameters for these conditions. 

The distribution of flux and stress may be asymmetric when other parameters, such as 

potential sweep rate and symmetry factor, are dominant.  

Figures 3.3 (a)(b)(c) show that two peaks in species flux and stress time history 

arise in each half cycle. To determine the origin of these peaks, a detailed study of the 

first half cycle was conducted. The time histories of diffusion flux and von Mises stress 

on the surface in the charge half cycle are re-plotted in Figure 3.4(a) and (b). As shown in 

Figure 3.4(a), two peaks of surface flux occur at t=1202s and t=1541s. By the Butler-

Volmer equation for electrochemical kinetics on particle surface (Equation (4)), surface 

flux depends on surface over-potential η  and exchange current density 0i . Surface 

overpotential η  is the difference between the applied potential and the OCP as shown in 

Equation (6) and (7). The applied potential increases linearly with time in the charge half 

cycle of the potentiodynamic process as illustrated in Figure 1(b). The open circuit 

potential changes with the lithium content in the electrode, as shown in Figure 1(a). 

During the charging process, OCP increases as lithium concentration decreases. The 

difference between the two increasing potentials, the surface overpotential, is shown in 

Figure 3.4(c). It is shown in Figure 3.4(c) that there are two peaks in the surface 

overpotential plot mainly due to the two plateaus in the open circuit potential shown in



Figure 3.4: Simulation results of a spherical particle in the charge half 
cycle (                 ,              ): (a) reaction flux on the particle surface, 
(b) von Mises stress on the particle surface, (c) surface overpotential, 

0.4mV/sv = 0 5r mμ=

and (d) exchange current density (divided by Faraday’s constant).
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Figure 3.1(a). Because surface overpotential appears in the exponential terms in Equation 

(4), it is the dominant factor for the resulting flux. Therefore, there are two peaks in the 

flux plot as shown in Figure 3.4(a). However, a closer look at the time instants for the 

peaks in Figure 3.4(a) and Figure 3.4(c) shows that the corresponding peaks appear at 

different times. This is attributable to the temporal distribution of exchange current 

density (as plotted in Figure 3.4(d)), because the flux is actually the product of exchange 

current density and the exponential terms, including surface overpotential, as shown in 

Equation (4). To summarize, the peaks in the flux distribution originate essentially from 

the two plateauss in the OCP distribution, which is an intrinsic property of the cathode 

material LiMn2O4, and the temporal variation of the applied potential. 

  To explain the peaks in the stress plot in Figure 3.4(b), we recall the expression of 

the von Mises stress on a spherical particle surface (von Mises stress has its maximum 

value on the particle surface 0rr = ) [16] 
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⎠
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As shown in the Equation (12), the von Mises stress on the particle surface depends on 

the difference between the global average concentration 3
00

2 /d~3 0 rrrc
r

⎟
⎠
⎞⎜

⎝
⎛ ∫ and the local 

concentration of lithium ions. Figure 3.5 shows the distribution of concentrations at 

different times during charge. It may be seen that the concentration is quite uniformly 

distributed most of the time. At t=1205s and t=1544s, significant gradients are present in 

the concentration distribution (due to the two peak fluxes shown in Figure 3.4(a)), 

therefore we expect predominantly large stress at these times by Equation (12), 



Figure 3.5: Distribution of lithium-ion concentration inside a spherical 
particle at different time instants during the charge half cycle.
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explaining the two peaks shown in Figure 3.4(b). By comparing Figure 3.4(a) and (b), we 

also see that the peaks in the stress plot are a few seconds later than the corresponding 

peaks in the flux plot. This is because it takes time for the concentration distribution to 

respond to the change of the boundary flux in the diffusion process. The peaks in the 

radial stress plot in Figure 3.3(b) can be explained similarly, by considering that radial 

stress depends on the difference between the global and local average of concentrations 

[16]—in other words—the nonuniformity of the concentration distribution. 

The above analysis shows that surface flux, concentration and stress are highly 

interrelated. Surface flux by electrochemical reaction and diffusion determine the 

concentration distribution, which in turn affects the OCP, the chemical kinetics and thus 

surface flux. Concentration distribution determines stress, the gradient of which in turn 

enhances the diffusion [16] because of the effect of stress gradient on diffusion as shown 

in Equation (1). The two peaks observed in the resulting flux and stress generation are 

attributable to the material property of LiMn2O4 (two plateaus in the OCP) and the 

applied potential. 

2.4.2 Intercalation-Induced Stress inside Spherical Particles under a Higher Rate 

of Charge (20C) 

A single simulation was also conducted for a spherical particle under a very high 

charge rate, 20C. The spherical particle radius was 5μm, and the potential sweep rate was 

increased to 4.4444mV/s. The time history of simulated surface reaction flux and von 

Mises stress on the particle surface is shown in Figure 3.6.  

For this faster charge rate, the patterns of flux and stress time history in Figure 3.6 

are different from those for 1.8C as shown in Figure 4 because the kinetics differs at the



Figure 3.6: Simulation results of a spherical particle under 20C 
charge: (a) reaction flux on the particle surface, and (b) von Mises

stress on the particle surface.
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higher rate. Also, the peak value of surface reaction flux is 9.48×10-4 mol/m2-s, which is 

about five times larger than the peak flux of 2.22×10-4 mol/m2-s for 1.8C charge. Figure 

3.6 also shows that the resulting stress (peak value) increases from 14.5MPa to 54.4MPa 

when the charge rate increases from 1.8C to 20C.  

2.4.3 Heat Generation inside Spherical Particles 

The time history of each heat generation term in charge half cycle is shown in the 

Figure 3.7.  The entropic heat and heat of mixing, change signs during the charge half 

cycle, which is mainly attributable to the variation of material properties TU d/d  and 

cH d/d  from experiment measurements.  

Table 3.3 gives the time-averaged rate of each heat generation term during the 

charging process for two different potential sweep rates. The heat of mixing is negligible 

compared to resistive heat and entropic heat. Entropic heat is reversible; thus the heat 

generation due to this term is expected to cancel out during the charge and discharge half 

cycles. Therefore, the only term of interest is the resistive heat. Furthermore, resistive 

heat increases when the charge half cycle gets faster, which is expected because the 

polarization is larger for higher charge rates.  

3. SURROGATE-BASED ANALYSIS OF ELLIPSOIDAL PARTICLES UNDER 

DIFFERENT CYCLING RATES 

To understand how stress and heat generation behave with the particle geometric 

configuration and the operating condition, a surrogate-based analysis approach is used. 

Surrogate models, which are constructed using the available data generated from pre-

selected designs, offer an effective way of evaluating geometrical and physical variables. 

The key steps of surrogate modeling include design of experiments, running numerical



Figure 3.7: Simulation results of various heat generation sources 
during the charge half cycle: (a) resistive heating, (b) entropic 

h ti d ( ) h t f i iheating, and (c) heat of mixing.
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case I case II

potential sweep rate 0.4 mV/s 1 mV/s

charge time 2000 s 800 s

heat of mixing -7.55×10-14 W -2.31×10-13 W

resistive heating 2.88×10-12 W 1.63×10-11 W

entropic heat -4.88×10-12 W -1.24×10-11 W

Table 3.3: Averaged heat generation rates during charge process.
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simulations (computer experiments), constructing surrogate models, validating and 

further refining, if necessary, the models [37, 38, 39].  

The design of experiments is the sampling plan in the design variable space. 

There are several approaches available in the literature. The combination of face-centered 

composite design (FCCD) [40] and Latin hypercube sampling (LHS) [41] was used here. 

After obtaining the sampling points in the design variable space, numerical simulations 

(computer experiments) were run at selected training points, to obtain the value of 

objective variables. With simulation results for the training points, surrogate models were 

constructed to approximate the objective functions. Surrogate models available include 

polynomial regression model, krigging modeling and radial basis functions, among others 

[37]. The second order polynomial regression model was used in this study; the least 

square method was used to find the coefficients of the approximation. After constructing 

the response surface approximation, error estimations were necessary to validate the 

performance of the approximation. Common error measures used are root mean square 

(rms) error, prediction error sum of squares (PRESS), and (adjusted) coefficients of 

multiple determination adjR 2 [42]. The validated surrogate models were used for further 

analysis of the dependency between the objective functions and design variables to 

understand the underlying physics mechanisms. 

3.1 Selection of Variables and Design of Experiments 

Three design variables were selected in this study. Considering the geometric 

illustration of an ellipsoidal particle (prolate spheroid) shown in Figure 3.8, we set three 

semiaxis lengths as bac => . Two independent variables required to define the geometry, 

equivalent particle radius ( ) 3/12caR =  and aspect ratio ac /=α , were selected as design



Figure 3.8: Geometric illustration of an ellipsoidal particle.
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Table 3.4: Design variables and design space.
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variables. The third design variable was potential sweep rate v .  The range of the three 

design variables is shown in Table 3.4. A spherical particle of radius mr μ50 = was used in 

the experimental work of Uchida et al. [18], thus the range of equivalent particle radii 

was selected as a 20% perturbation around 5μm. The aspect ratio range was selected 

based on the experimental observation of particle morphology by scanning electron 

microscope (SEM). The selected potential sweep rate gave a charge/discharge rate of 

2.7C to 3.6C, which falls into the range of high-power applications.  

The two objective functions chosen in this study were the peak value of the 

cyclically varying maximum von Mises stress maxσ  (in megapascal and the time-averaged 

resistive heat generation rate avg,rQ  (in picowatts). In fatigue analysis, mean value of the 

cyclically varying stress affects the number of cycles allowed before failure as well as the 

peak value [43]. In this study, numerical simulation results showed that mean stress and 

the peak value of the stress are highly correlated (the correlation coefficient is 0.992). 

Therefore, only the peak value of stress is considered as an objective function.  Time-

averaged resistive heat generation rate is the total resistive heat generation normalized by 

the overall charge half cycle time. 

For the design of experiments, 20 points in total were selected in the design space 

defined in Table 3.4. Among these points, 15 of them are from FCCD and the remaining 

5 points are from LHS. Numerical simulations were conducted on these 20 training points 

using the models described in the previous sections to obtain intercalation-induced stress 

and resistive heat. 

3.2 Model Construction and Validation 
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   To construct the surrogate model using the obtained simulation results on the 20 

training points, a second order polynomial response surface was selected. The 

coefficients in the approximation were determined by minimizing the error of 

approximation at the training points in the least square sense. The approximations 

obtained for the two objective functions were  

222
max 05.1079.000.255.2275.0065.013.410.881.40.18- vvvRRRvR −−−+−−+++= αααασ  (13)

222
avg, 9.1809.3018.01.18816.017.20.8629.59.254.72 vvvRRRvRQr +−−+−+−+−= αααα  

 

(14)

 The statistics of the response surface approximation are listed in Table 3.5. RMS 

error is the difference between the prediction and simulation values on the training points. 

Adjusted coefficients of multiple determination adjR 2
 are a measure of how well the 

approximation explains the variation of the objective functions caused by design 

variables. For a good fit, this coefficient should be close to one. PRESS is a cross-

validation error. It is the summation of squares of all PRESS residues, each of which is 

calculated as the difference between the simulation by computer experiments and the 

prediction by the surrogate models constructed from the remaining sampling points 

excluding the point of interest itself [42]. As shown in Table 3.5, the normalized RMS 

error and PRESS are small, and the adjusted coefficients of multiple determination adjR 2  

is very close to one. Therefore, the surrogate models constructed approximate the 

objective functions quite well. 

  To further validate the accuracy of constructed surrogate models, they were tested 

by comparing the predicted and simulated values from computer experiments on four



statistic name stress resistive heat

# of training points 20 20

minimum of data 11.7 1.96

mean of data 19.9 8.86

maximum of data 27.5 23.6

RMS error (normalized *) 0.0368 0.0168

R2adj 0.984 0.996

PRESS (normalized *) 0.0498 0.0356

* Note: RMS error and PRESS are both normalized by the range of the
objective functions, that is, the difference between the maximum and the

Table 3.5: Evaluation of the response surface approximations.

minimum of data.
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testing points different from the training points. The results of the comparison show that 

the differences between the prediction and simulation results are within 6%.  

  To summarize, the surrogate models constructed (13) and  (14) not only explain 

the variation of objective functions resulting from design variables well, but also give a 

good prediction of the objective functions. Therefore, the obtained response surface 

approximations can be used with confidence to analyze dependencies among objective 

functions and design variables. 

3.3 Analysis Based on Obtained Surrogate Models 

    These dependencies are shown in Figure 3.9. We note that 1) intercalation-

induced stress maxσ  increases with both increasing equivalent radius R  and increasing 

potential sweep rate v ; however, intercalation-induced stress maxσ  increases first and then 

decreases as aspect ratio α  increases; and 2) time-averaged resistive heat generation rate 

avg,rQ  increases with both increasing equivalent radius R  and increasing potential sweep 

rate v ; however, time-averaged resistive heat generation rate avg,rQ decreases as aspect 

ratio α  increases. This surrogate-based analysis suggests that ellipsoidal particles with 

larger aspect ratios are superior to spherical particles for improving battery performance 

when stress and heat generation are the only limiting factors considered. 

    As pointed out earlier, intercalation-induced stress depends on the concentration 

distribution. When equivalent radius R  increases, the range of concentration distributions 

within the particle becomes wider, because of the longer diffusion path. Therefore, the 

intercalation-induced stress increases as equivalent radius R increases. When potential 

sweep rate v  increases, the electrochemical reaction rate driven by the surface 



Figure 3.9: The dependency between objective functions and design 
variables (a) maximum von Mises stress (in megapascal), (b) time-

averaged resistive heat rate (in picowatts).
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overpotential becomes faster, which results in large flux on the particle surface boundary. 

Therefore, one expects a larger concentration gradient inside the particle and larger 

intercalation-induced stress for larger potential sweep rate v . When aspect ratio α  

increases, there are two competing effects: the shorter semi-axis lengths a and b  decrease 

and the longer semi-axis length c  increases. The increase of the longer semi-axis leads to 

stress increase, and the decrease of the shorter semi-axis leads to stress decrease. 

Therefore, intercalation-induced stress increases first and then decreases as aspect ratio 

increases. 

    As shown in Equation (10), resistive heat rate is the product of current and 

overpotential (or polarization), and the time-averaged heat generation rate over the charge 

half cycle is 

 ( )∫ −
Δ

= tUVI
t

Qr d1 avg

charge
avg, . (15) 

As the equivalent radius increases, the surface area subjected to reaction is larger, which 

results in larger total current. Therefore, the averaged resistive heat generation rate 

increases. When the potential sweep rate increases, the electrochemical reaction on the 

surface is driven faster, which results in larger polarization, or overpotential. Therefore, 

the averaged resistive heat generation rate increases even though the time duration for the 

charge half cycle decreases. When the aspect ratio increases, the shorter semiaxis length 

decreases; this results in the decrease of average polarization or overpotential due to the 

shorter average diffusion path. Therefore, the averaged resistive heat generation rate 

decreases.  

Global sensitivity analysis, which is often used to study the importance of design 

variables, was conducted to quantify the variation of the objective functions caused by 



 100

three design variables. The importance of design variables is presented by main factor 

and total effect indices [37]. Main factor is the fraction of the total variance of the 

objective function contributed by a particular variable in isolation, while the total effect 

includes contribution of all partial variances in which the variable of interest involved 

(basically by considering those interaction terms in the response surface approximation as 

shown in Equation (13) and  (14)). The calculated total effect results are listed in Table 

3.6. It can be seen that, for the design space range selected in Table 3.4, equivalent 

particle radius contributes the most to the variation of the two objective functions, 

intercalation-induced stress and resistive heat (85 and 87% of total variation respectively). 

4. ASSUMPTION OF A UNIFORM ELECTRIC POTENTIAL 

In the current model, electric potential inside the particle is assumed to be 

uniform, though potential varies in a battery electrode particle due to electric current flow 

within the particle. From a modeling standpoint, the most important value to accurately 

estimate is the electric potential on the particle surface, because this value determines the 

electrochemical reaction rate via the Butler-Volmer equation. The simulation presented in 

this study follows an earlier microelectrode experimental work where an electric potential 

is applied through a filament in contact with a cathode particle [18].  

The potential distribution inside the particle could have been obtained numerically in 

our model by solving Poisson’s equation. Experimentally [18], potential was measured at 

a single point, but it is impractical to set up a similar boundary condition for the electric 

potential numerically, because the applied potential is applied, ideally, at a single point. 

To evaluate the significance of potential variation on the particle surface to the 



Table 3.6: Global sensitivity indices  (total effect) for stress and 
resistive heat.
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intercalation process, we use a prescribed potential variation in the numerical simulation 

to investigate the significance of this variation. 

The resistivity of LiMn2O4 is about 1.5×104Ω-cm [44]. The peak value measured 

current drawn from a 5μm (radius) particle under 4C discharge is on the order of 2nA 

[18]. The electric potential variation inside a 5μm (radius) particle under 4C discharge is 

on the order of 10mV, which is comparable to the surface overpotential obtained (Figure 

3.4). To evaluate the importance of this potential variation, we apply a prescribed electric 

potential to a 5μm (radius) particle. Figure 3.10 (a) shows the distribution of the potential 

at time instant t=1534s. The prescribed spatial potential variation follows the equation 

0.005(x2+y2+(z-r0)2)/(2r0)2, where r0 (in microns) is the radius of the particle. 

Potentiodynamic control in this case has applied potential varying linearly with time.  

Figure 3.10 (b) (c) (d) shows the simulation results of this case. The time history 

of von Mises stress (Figure 3.10 (b)) follows the same trend, when the potential is 

assumed to be uniform. The variation of electric potential results in a non-uniform 

distribution of surface overpotential and surface reaction flux, which, in turn, results in a 

shift in the concentration distribution as shown in Figure 3.10 (c). However, the 

distribution pattern of von Mises stress is not altered; it remains axisymmetric as shown 

in Figure 3.10 (d). The time instant of t=1534s is selected to present the results because 

this is the instant when von Mises stress reaches the temporal maximum value. 

To sum up, although the variation of electric potential shifts the concentration 

distribution, it does not change von Mises stress distribution pattern. For simplicity and 

due to lack of more detailed empirical guideline, we assume that the electric potential is 

uniform inside the particle. Our finding does offer scientific insight into the interplay 



Figure 3.10: Simulation with a predescribed potential variation: (a) 
potential variation on particle surface at t=1534s, (b) time history of p p , ( ) y
von Mises stress on particle surface, (c) concentration distribution 
inside the particle at t=1534s, and (d) von Mises stress distribution 

inside the particle at t=1534s.
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between stress and heat generation, particle geometry (aspect ratio and equivalent size), 

and potential sweep rate. 

5. CONCLUSIONS 

 Intercalation-induced stress and heat generation inside Li-ion battery cathode 

(LiMn2O4) particles under potentiodynamic control were simulated. It was found that Li-

ion concentration, surface flux, and intercalation-induced stress are highly correlated 

through the diffusion process, electrochemical kinetics and the intercalation-induced 

lattice expansion. The two peaks observed in the flux and stress generation plots were 

attributable to intrinsic material properties (two plateaus in the OCP) and the applied 

potential. Three major heat generation sources, resistive heating, heat of mixing and 

entropic heat, were analyzed. The heat of mixing was found to be negligible (two orders 

of magnitude smaller than the other two sources) and resistive heat was identified as the 

heating source of greatest importance.  

   The surrogate-based analysis approach was used to study the relationship among 

the two objective functions (intercalation-induced stress and resistive heat) and the 

selected design variables (particle morphology and the operating condition). It was shown 

that both intercalation-induced stress and time-averaged resistive heat generation rate 

increase with increasing equivalent particle radius and potential sweep rate; intercalation-

induced stress increases first, then decreases, as the aspect ratio of an ellipsoidal particle 

increases, while averaged resistive heat generation rate decreases as aspect ratio 

increases. A sensitivity analysis was conducted to rank the importance of each design 

variable on the stress and heat generation. It was shown that particle equivalent radius 

contributes the most to both stress and heat generation for the design space range 
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considered in this study (85 and 87% of the total variation, respectively). The observed 

variation trend from this systematic numerical study may also be explained from 

fundamental principles: intercalation-induced stress depends on the Li-ion concentration 

distribution and the resistive heat depends on a combination of total charge current and 

polarization (overpotential). The surrogate-based analysis conducted suggests that 

ellipsoidal particles with larger aspect ratios are preferred over spherical particles in 

improving battery performance, when stress and heat generation are the only factors 

considered. 

The proposed models in this study are only valid for purely active material 

(LiMn2O4) without inclusions. The obtained results are fundamental, but for 

homogeneous particles. The general methodology of surrogate-based analysis presented 

in this study is extendable to consider more variables and geometries, such as more 

complicated geometric representation (aggregates) and applied potential profiles 

controlled by more parameters, or larger scales.  In the next chapter, we will extend the 

models, developed here at the particle scale, to the whole cell scale with a volume 

averaging technique [45, 46, 47] in which a multiscale modeling methodology [48] will 

be applied to pass the information obtained on the microscopic scale to the macroscopic 

scale. 
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CHAPTER IV 

SURROGATE-BASED SCALE BRDGING AND MICROSCOPIC SCALE 
MODELING OF CATHODE ELECTRODE MATERIALS 

 

 

1. INTRODUCTION 

1.1. Challenges for Li-Ion Battery Modeling  

Modeling of Li-ion batteries is of significant importance for both understanding 

physicochemical characteristics of the electrochemical system and guiding design 

optimization of batteries. However, modeling of Li-ion batteries is a challenging problem 

due to the presence of two special characteristics of the electrochemical system, 

multiphysics processes and disparate length and time scales.  

A complicated electrochemical system like a Li-ion cell involves transport of ions 

and electrons [1], electrochemical reactions on solid active material and liquid electrolyte 

interface [1], heat generation and transfer [2], and intercalation-induced stress generation 

[3]. The corresponding governing equations for these physicochemical processes are 

coupled and the electrochemical kinetics is nonlinear. It is a nontrivial problem to solve 

this coupled nonlinear equation system.  

Modeling of Li-ion batteries also needs to deal with disparate length scales and 

time scales. A battery typically consists of several cells. A schematic diagram and 

dimensional scales for a cell and its components are shown in Figure 4.1. As can be seen 

in Figure 4.1, along the thickness direction, scales range from 0.52 mm for the thickness



(c)

Figure 4.1: Scales in Li-ion batteries: (a) dimension for a single cell, (b) 
components and their dimensions inside a single cell along the thickness 

direction, and (c) a SEM image for LiMn2O4 positive electrode.
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of a single cell to about 4 μm for the size of a single electrode particle. In this study, we 

refer to the battery scale as macroscopic scale and electrode particle scale as microscopic 

scale. It was shown in the numerical simulations of single particles [3], that solution for 

concentration has a relative 2-norm error of 1.78×10-4 and solution for intercalation-

induced stress has a relative 2-norm error of 5.03×10-3 when 131 elements are used. For 

the single cell shown in Figure 4.1, there are 6×108 electrode particles. Consequently, it 

requires 7.9×1010 elements to resolve all the microscopic scales to the electrode particle 

level assuming each particle contains 131 finite elements. Therefore, it cost tremendous 

computational power to resolve all the processes existing within each single electrode 

particle. It is also practically unfeasible to do so given the computation capability of 

existing computers. Time scales for physicochemical processes inside Li-ion batteries are 

given in Table 4.1. As shown in Table 4.1, time scale spans from seconds to hours during 

the cycling of batteries. From the modeling and numerical simulation point of view, very 

small time steps are required to resolve the process with the smallest time scale, and a 

large number of time steps are required to finish an entire discharge/charge cycle. In 

other words, the cost for the simulation of this transient process is very expensive. 

Special care has to be taken to devise a framework to tackle the disparate length and time 

scales in the modeling of Li-ion batteries. 

1.2.Review of the Existing Li-Ion Battery Modeling Work in the Literature  

 Li-ion battery models in the existing literature with different fidelity are reviewed. 

There are equivalent-circuit-based models, physics-based pseudo 2D models, single 

particle 3D models, and a mesoscale 3D model. 



T bl 4 1 Characteristic time scales for physicochemical processesTable 4.1: Characteristic time scales for physicochemical processes 
inside a Li-ion battery.
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Equivalent-circuit-based models, which originated from conventional electrochemical 

impedance spectroscopy (EIS) battery characterization techniques, use an equivalent 

electric circuit composed of resistors and capacitors to simulate cell performance and 

behavior [4, 5, 6]. This category of models does not require detailed understanding of the 

physicochemical mechanisms but requires certain parameters empirically fitted from 

experimental measurement data. Equivalent-circuit-based models are capable of rapidly 

predicting cell performance and behavior with simplified physics and adequate fidelity 

[5]. However, these models are also criticized because no detailed modeling of 

physicochemical processes is involved and they do not facilitate understanding of 

physical mechanisms. 

Pseudo 2D models were first developed from porous electrode theory [7] by 

solving continuum scale governing equations for all the physicochemical processes over 

homogeneous media along the thickness direction of a cell [8]. The required effective 

material properties are commonly modeled by the classical Bruggeman equation. The 

volumetric reaction rate is calculated using a simplified separated spherical electrode 

particle by introducing a pseudo dimension. This category of models has been very 

successful not only for predicting cell performance and behavior but also for 

understanding the physical mechanisms of Li-ion batteries [9, 10, 11]. However, these 

models use oversimplified assumptions and models for effective material properties and 

volumetric reaction rates without detailed modeling of the microstructure architecture of 

electrode materials. 

As an attempt to model the detailed 3D microstructure of electrode materials, a 

single electrode particle model was developed to model the intercalation-induced stress 
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and heat generation inside ellipsoidal cathode particles during the discharge and recharge 

cycles [3, 12]. This single particle numerical study showed that ellipsoidal particles with 

larger aspect ratios are preferred to reduce stress and heat generation. A mesoscale 

modeling approach was also proposed to implement the 3D detailed modeling of 

electrode materials consisting of regularly and randomly arranged cathode particles [13]. 

The results agreed well with experimental testing data. However, the amount of electrode 

particles included in the model was limited due to the excessive computation power 

requirement.  

In summary, it appears that the multiphysics problem has been successfully 

addressed in the literature. However, the problem of disparate length and time scales has 

not been sufficiently studied to allow for detailed microstructural modeling of electrode 

architecture. 

1.3. The Objectives of This Study 

In this study, we will focus only on the treatment of disparate length scales to 

study the effect of microstructure. We will tackle the problem of disparate time scales by 

using sufficiently small time steps, assuming that we could afford conducting many time 

steps advancing temporally. To address the disparate length scales in modeling of Li-ion 

batteries, we set up the following objectives in this study. 

(1) Develop a multiscale framework for Li-ion battery modeling to efficiently 

account for the effects of electrode microstructural architecture; 

(2) Conduct microscopic modeling of electrode particle clusters and solve the 

closure terms in macroscopic scale governing equations as a first step toward 

implementing the multiscale framework. 
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2. METHODS 

2.1. Li-Ion Cell Cycling Mechanisms and Governing Equations on Microscopic 

Scale 

2.1.1. Li-Ion Battery Fundamentals 

A Li-ion cell typically consists of the following components: positive and 

negative electrodes, a separator that isolates the two electrodes, and current collectors for 

both electrodes. Electrodes are typically made of particles glued together by binders. 

Pores inside electrodes and separator are commonly filled with liquid electrolyte that acts 

as a pathway for Li ions. Figure 1.1 shows a diagram for the components of a Li-ion cell 

and basic operation mechanisms for discharge/recharge cycling. During discharge of a 

cell, Li ions are extracted (deintercalated) from the negative electrode, transported 

through the electrolyte and finally inserted (intercalated) into the positive electrode. 

Meanwhile, electrons move from the negative electrode to the positive electrode through 

the external circuit and output work to the load. During recharge of a cell, Li ions and 

electrons are transferred in the reverse direction as opposed to the discharge process. This 

consumes work from the power supply to move the electrons. Intercalation and 

deintercalation comprise electrochemical reactions on the interface of solid active 

material and liquid electrolyte, diffusion of ions in the solid active material, and transport 

of electrons in the solid active material.  

2.1.2.Transport Processes 

  The effect of existing electrons in solid active material on the species flux of 

lithium is assumed to be negligible because electrons are much more mobile than 
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intercalated atoms [14]. The chemical potential gradient is the driving force for the 

movement of lithium ions. Li ion transport is given as [14] 

 J = cv = −Mc∇μ , (1) 

where v  is the velocity of ion movements, M is the mobility of lithium ions, c is the 

concentration of Li ions, and μ is the chemical potential. Chemical potential depends on 

concentration, temperature, and stress field. In this study, only concentration-driven 

diffusion is considered. The governing equation for Li ion transport in solid active 

materials is then given by 

 
∂c1

∂t
+ ∇ ⋅ −D1∇c1( )= 0 , (2) 

where D  is the diffusion  coefficient of Li ions in the solid active materials and subscript 

1 indicates variables for solid phase.  

For the transport of lithium ion in the electrolyte, the concentrated solution theory 

is applied. The convection effect is neglected, and the species equation reads [1] 

 ∂c2

∂t
= ∇ ⋅ D2∇c2( )−

i2 ⋅ ∇t+
0

F
, (3) 

where subscript 2 indicates variables for liquid phase, i2 is the electric current in the 

liquid phase and 0
+t  is the transference number of lithium ions in solution and is assumed 

to be constant in this study. In other words, the last term on the right hand side of 

Equation (3) can be neglected. 

The electron transport in the solid active material is governed by Poisson’s 

equation 

 ∇⋅ i1 = ∇⋅ σ1∇V1( )= 0 , (4) 
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where i1  is electric current in the solid phase, σ1  is conductivity of the solid phase, and 

  V1  is electrical potential in the solid phase.  

The electrical potential in the liquid phase is governed by [1, 8] 

 
   

∇⋅ i2 = ∇⋅ −κ∇V2 − κ RT
F

1+ ∂ ln f
∂ lnc2

⎛

⎝
⎜

⎞

⎠
⎟ 1− t+

0( )∇ lnc2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 0 , (5) 

where κ  is conductivity of liquid electrolyte, V2  is the potential of the liquid phase, R  is 

the universal gas constant, T  is absolute temperature, F  is Faraday’s constant, and f  is 

the mean molar activity coefficient of the electrolyte (it is usually assumed to be constant 

due to lack of data). In Equation (5), a concentration dependant term is used to account 

for the charge carried by ionic motion in the electrolyte. 

2.1.3.Electrochemical Kinetics 

  Chemical kinetics (reaction rate) are described by the Butler-Volmer equation [1, 

9], as 

 
( )0 1

exp expn Fi i Fj
F F RT RT

β βη η
⎧ ⎫⎡ ⎤−⎪ ⎪⎡ ⎤= = − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

, (6) 

where i0  is exchange current density, ni  is the reaction current density per unit area, η  is 

surface overpotential, and β  is a symmetry factor that represents the fraction of the 

applied potential promoting the cathodic reaction[1]. The exchange current density i0  is 

given by, 

 ( ) ( ) ( )ββ
θ

β
sl cccFki −−= 11

0 , (7)

where cl  is the concentration of lithium ion in the electrolyte, cs  is the concentration of 

lithium ion on the surface of the solid electrode, cθ  is the concentration of available 

vacant sites on the surface ready for lithium intercalation (which is the difference 
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between stoichiometric maximum concentration and current concentration on the surface 

of the electrode cmax − cs ), and k  is a reaction rate constant [9]. Surface overpotential η  

is given, without considering film resistance, by [9] 

 η = V1 − V2 − U , (8)

where V1  and V2  are electric potential for the solid and liquid phase respectively, andU  is 

the open-circuit potential, which depends on lithium ion concentration. 

2.1.4.Intercalation-induced Stress Generation 

When Li ions are intercalated into the lattice of active material in electrodes, the 

lattice is expanded accordingly. This lattice expansion causes strain inside the material. 

Non-uniform strain results in stress, the so-called intercalation-induced stress. To model 

this intercalation-induced stress, an analogy to thermal stress is proposed [3]. The 

constitutive equation between stress and strain is [3] 

 ( )1
1

3ij ij kk ij ijE
c

ε ν σ νσ δ δ= + − +
Ω

⎡ ⎤⎣ ⎦
�

 (9)

where ε ij are strain components, σ ij  are stress components, E  is Young’s modulus, ν is 

Poisson’s ratio,   �c = c − c0  is the concentration change of the diffusion species (lithium 

ion) from the original (stress-free) value, and  Ω  is the partial molar volume of lithium. 

Stress components are subjected to the force equilibrium equation 

 σ ij , i = 0 ( j = 1, 2, 3) . (10)

A Young’s modulus E = 10GPa  and a partial molar volume Ω = 3.497 × 10−6 m3 /mol [3] 

are used here.  

2.1.5.Heat Generation and Transfer 
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  There are four sources of heat generation inside lithium ion batteries during 

operation [15] 

 
 
�Qg = I V − U avg( )+ IT

∂U avg

∂T
+ ΔH k

avgrk +
k

∑ H ij − H ij
avg( )∂cij

∂ti
∑

j
∑ dv∫  (11)

The first term, I V − U avg( ), is the irreversible resistive heating, where I  is the current of 

the cell, V is the cell potential, and  avgU is the volume averaged open circuit potential. 

Resistive heating is caused when the cell potential deviates from its equilibrium because 

of resistance to the passage of current. The second term, TUIT ∂∂ avg , is the reversible 

entropic heat, where T is temperature. The third term, ∑Δ
k

k
avg
k rH , is the heat change of 

chemical side reactions, where avg
kHΔ is the enthalpy of reaction for chemical reaction k, 

and kr  is the rate of reaction k. The fourth term, ( )∫∑∑ ∂∂− vtcHH dij
j i

avg
ijij , is the heat of 

mixing due to the generation and relaxation of concentration gradients, where ijc  is the 

concentration of species i in phase j, vd  is the differential volume element, and ijH  and 

avg
ijH  are the partial molar enthalpy of species i in phase j and the averaged partial molar 

enthalpy respectively. The study conducted on single particles showed that heat of 

mixing is negligible compared to resistive heat and entropic heat [12]. Therefore, there 

are only two heat generation sources of significance, resistive heat and entropic heat, 

without considering heat change due to side reactions. 

  Heat transfer inside Li-ion batteries can be modeled by the conventional heat 

conduction equation [16, 17], 

 p x y z

T T T T
C k k k Q

t x x y y z z
ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

� , (12)
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where ρ is density, Cp  is heat capacity, and kx , ky , kz are heat conductivity along x, y and 

z directions respectively. Heat conductivity is generally anisotropic for battery materials 

due to different components inside batteries. 

2.2. Multiscale Modeling Framework 

2.2.1.Volume Averaging Technique 

  The main objective of multiscale modeling is to capture the physics to a certain 

desired accuracy in an efficient way. Microscopic models are accurate but 

computationally expensive, while macroscopic models are simplified and efficient. The 

combinational use of models on these two scales will help to achieve accuracy and 

efficiency at the same time. Microscopic and macroscopic models could be 

fundamentally different in terms of the physics principles applied. For example, one 

could apply molecular dynamics to the microscopic scale and continuum fluid dynamics 

to the macroscopic scale. Sometimes, one basic physics principle is applicable for all 

scales and scale disparity is caused by the geometric complexity, which is the case for the 

processes in porous electrode materials. For the multiscale modeling of the processes in 

porous media, there are two approaches that can be adopted to derive the macroscopic 

governing equations from their counterparts on the microscopic scale, volume averaging 

[18] and homogenization [19][20]. The volume averaging technique is used in this study. 

  In the volume averaging technique, the variable of interest is first averaged over a 

representative elementary volume (REV). The governing equations on the microscopic 

scale are then averaged over REV. In the differential equations, the volumetric averages 

of the temporal and spatial derivatives are transformed into the temporal and spatial 

derivatives of the averaged quantities by using the two theorems dealing with the 
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averages of derivatives [18]. There are additional closure terms, which require further 

modeling, appearing as the consequence of the averaging process. Volume averaging has 

been widely used for modeling fluid flow and transport in porous media [18, 21]. Volume 

averaging-like techniques have been applied for battery modeling to deal with the porous 

feature of electrode materials [8, 9, 22, 23]. However, closure terms for effective material 

properties and volumetric reaction rate have only been treated analytically using 

oversimplified assumptions instead of detailed numerical modeling of microstructural 

architecture.  

  There are two types of volume averages, defined as 

 Intrinsic volume average   

 cs
s = 1

dVs
csγ s

dV
∫ dV , (13)

where dV is the volume of REV, γ s = 1 in phase s and 0 elsewhere. 

 Volume average  

 cs = 1
dV

csγ s
dV
∫ dV , (14)

These two averages are related as 

 cs
s

= gs cs  (15)

where gs  is the volume fraction of phase s. 

When the volume averaging technique is applied to partial differential equations, 

volume averages of temporal and spatial derivatives need to be transformed into 

derivatives of volume averages of variables following these two theorems, 

 
1

dV
∂cs

∂t
⎛
⎝⎜

⎞
⎠⎟
γ s

dV
∫ dV = ∂cs

∂t
− 1

dV
csv ⋅n

As

∫ dA , (16)
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1

dV
∇⋅ Ds∇cs( )γ s

dV
∫ dV = ∇⋅ Ds∇cs( )+ 1

dV
Ds∇cs( )⋅n

As

∫ dA ,
 

(17)

where v is the velocity of the microscopic interface and n is the outward unit norm of the 

infinitesimal area element dA , if the terms in a transient diffusion equation is used for an 

example. In Li-ion battery modeling, the movement of solid active material and liquid 

electrolyte phase interface is negligible, which means the second term 1 dV csv ⋅ndA
As

∫  on 

the right side of Equation (16) vanishes. In Equation (17), two closure terms on the right 

side of the equation need special treatment. ∇⋅ Ds∇cs( ) is the gradient of the averaged 

diffusion flux. Traditionally, the average of diffusion flux resulting from the 

concentration gradient is modeled by introducing a so-called effective diffusivity, 

 Ds∇cs = Ds
eff ∇cs , (18)

and the effect diffusivity is conventionally modeled analytically using classical 

Bruggeman’s relation 

 Ds
eff = Ds

bulk gs
α , (19)

where Ds
bulk   is the bulk diffusivity of homogeneous materials without inclusions, and α  

is Bruggeman’s coefficient that is normally assumed to take the value of 1.5. However, it 

has been shown that a Bruggeman exponent of 1.5 is often invalid for real electrode 

materials [24]. In this study, we propose to calculate the volume average of the diffusion 

flux or the effective diffusivity directly from 3D microscopic scale simulations instead of 

modeling them analytically. The second term on right side of Equation (17) is the integral 

of diffusion flux over the phase interface. In Li-ion battery modeling, this term accounts 

for the flux due to electrochemical reaction on the interface of solid active material and 

liquid electrolyte. Therefore, the term of J = 1 dV Ds∇cs( )⋅ndA
As

∫ is actually the Li ion 
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production or consumption per unit volume due to electrochemical reaction, and this term 

is called the volumetric reaction rate. In the conventional pseudo 2D models, this 

volumetric reaction rate term has been modeled using a simplified geometry of an 

isolated spherical particle as [8] 

 s nJ a j= , (20)

where   as = 3gs rs is the specific interfacial area (per unit volume) of an isolated spherical 

particle with radius  rs  given the solid phase volume faction gs , and nj is the reaction flux 

per unit area calculated by Butler-Volmer equation (Equation (6)) using the volume 

averaged Li-ion concentration in the liquid electrolyte, volume averaged electrical 

potential in both liquid and solid phases, and Li ion concentration on an isolated spherical 

particle surface by solving the diffusion equation on a pseudo dimension. In other words, 

Equation (20) assumes that  

 
( )

s s
1 2 1 2

1 2 1 2 1 2 1 2

(c , c , V , V )

3d (c , c , V , V ) (c , c , V , V )
d

1 d d 1 d d

s
n n

s

s s nA A
J

gA j j
V r

V D c A V j A= =

≈ ≈

∇ ⋅∫ ∫n
, (21)

where reaction flux 1 2 1 2(c , c , V , V )nj  is calculated by Butler-Volmer equation using local 

concentrations and electric potentials, and 1 2 1 2(c , c , V , V )nj  is calculated by Butler-Volmer 

equation using local Li ion concentration in the solid phase, volume averaged Li ion 

concentration in the liquid phase, and volume averaged electric potentials in both phases. 

A trivial case where Equation (21) holds would be the case where all the concentrations 

and electrical potentials are uniformly distributed on the microscopic scale, and 

electrodes are made of isolated spherical particles. The treatment for this volume 

averaged reaction rate could be improved by direct calculation from microscopic scale 
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modeling and simulations, which is the focus of this study. Details about coupling 

between microscopic scale and macroscopic scales will be discussed in the section on 

scale bridging. 

  For the sake of clarity and completeness, the derivation of governing equations 

using the volume averaging technique will be described here even though similar 

derivations have been given in [22, 23]. The derivation of macroscopic governing 

equations using the volume averaging technique is presented as follows. 

(1) Transport of Lithium Ions inside Liquid Electrolyte Phase 

When the transference number 0
+t  is assumed to be constant, the transport 

equation for lithium ion concentration is simplified as 

 ∂c2

∂t
= ∇⋅ D2∇c2( ). (22)

Take the volume average of both sides, 

 1
dV

∂c2
∂t

⎛

⎝
⎜

⎞

⎠
⎟ γ 2

dV
∫ dV = 1

dV ∇⋅ D2∇c2( )γ 2
dV
∫ dV . (23)

With the theorems for the time derivative term and divergence term in volume averaging 

technique, Equation (23) becomes 

 
∂c2

∂t
= ∇⋅ D2∇c2( )+ 1

dV
D2∇c2( )⋅n

As

∫ dA + 1
dV

c2v ⋅n
As

∫ dA . (24)

Neglect the movement of the interface (i.e. 0=⋅ nv ), rewrite the average flux as  

D2∇c2 = D2
eff ∇c2 ,  and use Jc2

to represent volumetric rate, one transforms Equation (24) into  

 ∂c2

∂t
= ∇⋅ D2

eff ∇c2( )+ Jc2
. (25)

(2) Electrical Potential inside Liquid Electrolyte Phase 
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  The transport equation for the electric current inside the liquid electrolyte 

Equation (5) can be re-written as, 

 ∇⋅ κ∇V2 +κ D∇ lnc2( )⎡⎣ ⎤⎦ = 0 , (26)

where   
  
κ D =

κ RT
F

1+ ∂ ln f
∂ lnc2

⎛

⎝
⎜

⎞

⎠
⎟ 1− t+

0( ) . Take the volume averaging over the left side of 

Equation (26),  

 
1

dV
∇⋅ κ∇V2 +κ D∇ lnc2( )⎡⎣ ⎤⎦γ 2

dV
∫ dV = ∇⋅ κ∇V2 +κ D∇ lnc2( )( )+ 1

dV
κ∇V2 +κ D∇ lnc2( )( )⋅n

As

∫ dA , (27) 

JV2
= 1 dV( ) κ∇V2 +κ D∇ ln c2( )( )⋅n

As

∫ dA is the volume averaged reaction current at the interface, 

and κ∇V2 +κ D∇ lnc2( )could be modeled as ( )2 2lneff eff
DV cκ κ∇ + ∇ . Following [22],  2ln c  could be 

approximated using Taylor series expansion as 

 ( )
2 2

2 2 2 2 2 2 2
2

1 1 1ln ln d ln d ln
V V

c c V c c c V g c
V V c

⎡ ⎤
= ≈ + − =⎢ ⎥

⎣ ⎦
∫ ∫ , (28)

thus Equation (27) becomes 

 ( ) 22 2 2ln 0eff eff
D VV g c Jκ κ⎡ ⎤

⎢ ⎥⎣ ⎦
∇ ⋅ ∇ + ∇ + = . (29)

(3) Transport of Lithium Ions inside Solid Active Material Phase 

  Applying the volume averaging technique to Equation (2) for diffusion of Li ions 

in solid phase with a similar procedure as that done for transport in liquid phase, Equation 

(22), we have the volume averaged equation for Equation (2) as 

 ∂c1

∂t
= ∇⋅ D1

eff ∇c1( )+ Jc1
, (30)

where 
1cJ is the volume averaged reaction rate. 

(4) Transport of Electrons inside Solid Active Material Phase 
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  Apply the volume averaging technique to the electrical potential equation in solid 

phase Equation (4), and notice that  

 
1

dV
∇⋅ σ∇V1( )γ 1

dV
∫ dV = ∇⋅ σ∇V1( )+ 1

dV
σ∇V1( )⋅n

As

∫ dA , (31)

one obtains, 

 ∇⋅ σ∇V1( )+ 1
dV

σ∇V1( )⋅n
As

∫ dA = 0 , (32)

σ∇V1  could be modeled as σ eff ∇V1 where σ eff is effective conductivity. Term 

1 / dV( ) σ∇V1( )⋅n
As

∫ dA  is a volume averaged boundary reaction current that can be represented 

by JV1
. Consequently, Equation (32) turns to 

 σ eff ∇V1 + JV1
= 0 . (33)

In Equation (33), effective conductivity effσ  and volumetric reaction flux JV1
are two 

closure terms requiring special treatment.  

2.2.2.Scale Bridging  

  As shown in the previous subsection, there are some closure terms requiring 

special treatment in the volume averaged governing equations. These terms are the 

effective material properties, effD2 , effκ , eff
Dκ , effD1 , and effσ ; and volume averaged 

reaction rates, 
2cJ , JV2

, 
1cJ , and JV1

. These closure terms highly depend on the detailed 

microstructural architecture of electrode materials. In this study, we propose to calculate 

the closure terms, based on their definitions, directly from 3D microscopic scale 

simulations. 

  Following the scale bridging concept from [25, 26], a REV on the microscopic 

scale is assigned to each integration point of the macro-mesh. Appropriate boundary 
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conditions, derived from information available from the macroscopic scale, are imposed 

on REV on the microscopic scale. A separate computation is then conducted for the REV, 

and the obtained variable values are averaged over REV to provide macroscopic closure 

terms with which the governing equations on macroscopic scale are solved. This provides 

an approach to determine the macroscopic response of heterogeneous materials with 

accurate accounting of micro-structural characteristics.  

  There are two categories of approaches to couple microscopic and macroscopic 

scales, concurrent coupling and serial coupling [27]. In the concurrent coupling approach, 

microscopic and macroscopic models are conducted concurrently with simultaneous 

information exchange. In serial coupling, an effective macroscopic model is determined 

from the microscopic model in a pre-processing step. It is expensive to conduct 

microscopic and macroscopic scale simulations concurrently since microscopic scale 

simulations are generally time consuming (in the case of battery modeling, 

microstructural information of electrode materials needs to be resolved). Therefore, in 

this study we preferred to adopt the serial coupling approach. To systematically arrange 

the simulations on microscopic scale and couple the two scales efficiently, the database 

approach [28] and look up table approach [29] have been used to map the microscopic 

information and macroscopic closure terms. In this study we propose a surrogate-based 

approach to bridge the scales serially.  Surrogate-based approaches have been used for 

design optimization and analysis [30]. Surrogate models are constructed using numerical 

results obtained from simulations on carefully sampled points; they are capable of 

predicting the objective functions efficiently over the whole design space once these 

models are validated for sufficient accuracy. In applying a surrogate-based approach for 
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scale bridging in battery modeling, the input variables for the surrogate models are the 

microscopic structure information (such as volume fraction, aspect ratio of particles and 

equivalent particle radius) and boundary conditions, for microscopic scale simulations, 

from the nodes values on macroscopic scale mesh, and the output variables are those 

closure terms calculated from microscopic scale simulations, as illustrated in Figure 4.2. 

Details of surrogate-based scale bridging will be discussed in section 2.4. 

2.3. 3D Microscopic Modeling of Electrode Particle Clusters 

2.3.1.Microstructural Geometry Generation 

  To model the microstructural architecture, we use a collision-driven molecular 

dynamics algorithm [31] to generate clusters of electrode particles. A certain number of 

identical ellipsoidal particles with specified aspect ratio are packed inside a cubic box. 

Since electrolyte does not contribute to conduction of electrons, to create a continuous 

path for electron conduction the semi axes of these particles are multiplied by a 

coefficient (1.1 is used in this study) to create an artificial overlapping between particles. 

Those parts of the particles falling outside of the box are cut out. The remaining portion 

of the particle cluster consists of the solid active material phase of the electrode 

microstructure. The void space inside the cubic box not occupied by the particle cluster 

consists of the liquid electrolyte phase.  

2.3.2.Microstructural Geometry Characterization Parameters 

In this study, microstructure of the representative volume element is primarily 

characterized using volume fraction of solid phase, equivalent radius of solid particles, 

and aspect ratio of prolate solid particles. Volume fraction determines how much active 

material is available in the electrode and decides the maximum possible capacity of a 
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cell. On the other hand, volume fraction of solid phase also dictates the volume fraction 

of its counterpart, the liquid electrolyte phase. In the case of too small a volume fraction 

for liquid electrolyte, Li ions in the liquid electrolyte are depleted very quickly and cell 

performance is limited by transport of ions in the liquid electrolyte phase. Equivalent 

radius of ellipsoidal particles is defined as the radius of a sphere with the same volume. 

The equivalent particle size decides the characteristic length and time for diffusion; 

diffusion can be a limiting factor of battery performance, especially at very high cycling 

rates. In this study, we only consider ellipsoidal particles in prolate shape. The aspect 

ratio of a prolate particle is defined by the ratio between the long and short semi-axes. 

The surface area of a prolate particle with fixed volume increases as the aspect ratio 

increases. Therefore, the aspect ratio of particles actually determines the specific 

interfacial area available for electrochemical reaction and is an important characteristic 

for microstructure.  

2.3.3.Governing Equations, Boundary Conditions, Material Properties and 

Implementation 

  The governing equations solved for 3D microscopic simulations over REV are 

Equation (2), (3), (4), (5), and (6). Steady state solutions are pursued. In other words, the 

unsteady terms from temporal derivatives are not solved in Equation (2) and (3). As 

described earlier, the boundary conditions take the node value from macroscopic scale 

simulations. The interface of solid and liquid phases has diffusional and current flux 

given by the Butler-Volmer equation. All other boundaries of the cubic box are set to be 

symmetric without net flux of electrons or ions.   
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 LiMn2O4 is selected as the active material for the cathode, and LiPF6 in EC:DMC is 

selected as the electrolyte. Material properties used for simulations are summarized in 

Table 4.2. 

 The governing equations and boundary conditions are implemented in COMSOL 

Multiphysics®. Separate geometries are created for the solid and liquid phases 

respectively. The coupling between the two phases are implemented using the ‘Extrusion 

Coupling Variables’ capability in COMSOL Multiphysics®. The concentration and 

electric potential of the liquid phase at the two phase interface boundary are mapped to 

the boundary of the solid phase. This enables the calculation of reaction flux at the solid 

phase boundary by the Butler-Volmer equation. The calculated reaction flux is then 

mapped from the solid phase boundary to the liquid phase boundary, where the specified 

flux boundary condition is assigned for the transport equations of electrons and ions. This 

is a two-way coupling between the two phases; the coupling in both ways is carried out 

simultaneously when the governing equations are solved.  

2.4. Surrogate-Based Scale Bridging 

  Surrogate models are used to rapidly predict the closure terms in macroscopic 

governing equations. The input variables (design variables) for surrogate models are the 

microstructural information and boundary conditions for microscopic scale simulations; 

the output variable (objective function) is the volumetric reaction rate. Surrogate models 

are constructed based on 3D microscopic simulations as described in the previous section. 

In this study, the microstructural information (volume fraction, aspect ratio of particles 

and equivalent radius of particles) is considered as fixed to reduce the dimensionality of 

the surrogate modeling problem. The concept demonstrated in this study could be easily 
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extended to include microstructure information. The key steps of surrogate modeling 

include design of experiments, running numerical simulations (computer experiments), 

construction of surrogate models, validation and further refinement of the models if 

necessary [30, 32, 33]. 

  The design variables (boundary conditions for microscopic scale) are the 

concentration and its gradient of Li ions and the electric potential and its gradient in both 

solid and liquid phases. The ranges of the design variables are listed in Table 4.3, where 

normalized Li ion concentration 1 1 total/=�c c c in the solid active material phase is used and 

is equivalent to the state of charge y. The ranges of variables are decided based on their 

corresponding values in the possible pseudo 2D model solutions for cycling rates up to 

3C. In Table 4.3, the variables of concentration and potential themselves are assigned to 

the center of a REV; the gradients of variables that carry the information of variable 

distribution are used, along with the variable values at the center of the REV, to calculate 

the values on the top and bottom boundaries of the REV. In the ideal case, the values of 

these variables come from solving the macroscopic governing. In this study, we assign 

the values arbitrarily without considering the constraint of the macroscopic scale 

governing equations, except for a constraint for solid phase concentration and electric 

potential, 1 10.2 ( ) 0.2− ≤ − ≤�V U c , in order to avoid numerical convergence issues 

potentially caused by the exponential terms in the Butler-Volmer equation. In the 

constrained design space, 189 points are selected by Latin hypercube sampling, and 128 

points are selected at the corners of the design space to cover the boundary regions. 

Numerical simulations on microscopic scale are run on these sampled points. 

  



Table 4.3: Input variables and their range for 3D microscopic scale 
simulations.
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The obtained simulations results are used to construct surrogate models. Commonly 

available surrogate models include polynomial response surface (PRS), kriging, radial 

basis neural network (RBNN), support vector regression and weighted average surrogates. 

Polynomial response surface, kriging, and radial basis neural network models will be 

used in this study.  

 After surrogate models are constructed, their accuracy is evaluated using error 

measures such as prediction error sum of squares (PRESS) and the adjusted coefficient of 

multiple determination 2
adjR [ 34 ] for polynomial response surface. The adjusted 

coefficient of multiple determination 2
adjR  is a measure of how well the approximation 

explains variation of the objective functions caused by design variables. For a good fit, 

this coefficient should be close to one. PRESS is a cross-validation error. It is the 

summation of squares of all PRESS residues, each of which is calculated as the 

difference between the simulation by computer experiments and the prediction by 

surrogate models constructed from the remaining sampling points while excluding the 

point of interest [34].  The smaller the PRESS error, the more accurate the surrogate 

model will be. Surrogate models are also evaluated by comparing surrogate model 

prediction and actual numerical simulation results from microscopic scale modeling on 

testing points.  

2.5. Summary of the Multiscale Modeling Framework 

  The proposed multiscale modeling framework is summarized in Figure 4.3. The 

volume averaging technique is used to derive macroscopic governing equations for cell 

scale modeling. The resulted closure terms are proposed to be calculated directly from 3D 

microscopic simulations instead of analytical modeling with oversimplified assumptions.  
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Figure 4.3: Summary of the multiscale framework.
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To efficiently bridge microscopic and macroscopic scales, training data from 3D 

microscopic simulations are used to construct surrogate models to rapidly and efficiently 

predict closure terms in macroscopic scale simulations. 

 

3. RESULTS AND DISCUSSION 

3.1. Analysis of 3D Microscopic Simulation Results 

  Figure 4.4 shows the generated geometry for two phases. The specified 

parameters for the microstructure are as follows: solid phase volume fraction is 0.6, 

particle aspect ratio is 2, and equivalent particle radius is 5.34μm. There are 10 identical 

ellipsoidal particles in the solid phase. The computational domain including both phases 

is 10μm×10μm×10μm. 

  Figure 4.5 shows an example solution of Li ion concentration in both phases and 

the reaction electric current at the interface. The boundary conditions at the bottom and 

top boundaries are node values taken from a pseudo 2D model simulation solution at 

z=170μm and z=180μm in the cathode at time t=2.173min. This indicates that the REV is 

placed at z=175μm on the macroscopic mesh. In the pseudo 2D simulation set up, the cell 

is discharged at 1C, the thickness for anode, separator, and cathode is 100, 25, and 100 

μm, respectively. z axis goes from the anode to the cathode. The cathode starts from 

z=125μm to z=225μm. It is shown in Figure 4.5 (a) that Li ion concentration accumulates 

at the middle of the simulation domain for this particular case because the inserted Li 

ions could not be diffused out quickly enough due to the intrinsically low diffusivity of 

the solid active material phase. However, this is not the case for Li ion concentration 

distribution in the liquid electrolyte, as shown in Figure 4.5 (b), because liquid electrolyte  



(a)

(b)(b)

(c)

Figure 4.4: Generated microstructure: (a) liquid phase of electrolyte, 
(b) solid phase of active material, and (c) the whole simulation 

domain containing both phases.g p
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(a)

(b)(b)

(c)

Figure 4.5: Results of a 3D microscopic scale simulation: (a) Li-ion 
concentration in the solid phase (mol/m3), (b) Li-ion concentration in 

the liquid phase (mol/m3), and (c) reaction current density at the 
phase interface (A/m2).
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has much higher diffusivity. Figure 4.5 (c) shows that the reaction current flux has the 

same pattern of distribution as Li ion concentration in the solid phase. This is because the 

reaction current flux depends on the surface overpotential whose distribution in this case 

is dominantly determined by open circuit potential, a Li ion concentration dependent 

material property of the solid active material.  

  Simulation results from the pseudo 2D model and detailed 3D microscopic model 

are also compared. The REV is placed at macroscopic mesh node z=130μm. The 

solutions from pseudo 2D model at z=125 μm and z=135 μm at t=2.173min are used as 

boundary conditions for 3D microscopic modeling. Due to the stochastic feature of the 

geometry modeling in detailed 3D microscopic modeling, three realizations of the 

simulations are conducted, and the averaged results over these three realizations are used. 

The comparison of specific interfacial area, reaction current density, and volumetric 

reaction current from both pseudo 2D models and 3D microscopic models are shown in 

Table 4.4. In Table 4.4, (normalized) reaction current density i  of the 3D microscopic 

model is calculated by integrating the local reaction current density over the interfacial 

area and dividing the integral by the total area A  of the interface 

 
( )1 2 1 2, , , d

A

i c c V V A
i

A
=

∫
. 

(34)

The volumetric reaction current VJ  is calculated by multiplying the interfacial area a  

with the (normalized) reaction current density. Table 4.4 shows that simulation results 

from three different realizations are consistent. It is also shown in Table 4.4 that the 3D 

microscopic model gives large specific interfacial area for electrochemical reactions than 

the pseudo 2D model. This is because ellipsoidal particles with aspect ratio 2 used in the 
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3D microscopic model have larger surface area than spherical particles with the same 

volume used in the pseudo 2D model. Table 4.4 also shows that the (normalized) reaction 

current density i  of the 3D microscopic model is different from that of the pseudo 2D 

model, because reaction current density is calculated directly using local variables in the 

3D microscopic model and reaction current is calculated using volume averaged variables 

in the pseudo 2D model, as pointed out in Equation (21). In Table 4.4, volumetric 

reaction current from both models show different values. This implies that the source 

terms in the macroscopic governing equations derived from the volume averaging 

technique take different values from these two models. This difference eventually leads 

to different solutions of the macroscopic governing equations. In other words, the closure 

terms of volumetric reaction rate provided by pseudo 2D model and 3D microscopic 

model generate different solutions of the macroscopic governing equations. 

  To study the effect of the number of particles in the cluster, simulations were also 

conducted for 9 particle clusters. The simulation results are shown in Table 4.4. The 

particles used here have the same volume as those used in the 10 particle cluster case. All 

the other parameters (boundary conditions) used for the simulations are also the same as 

those used in 10 particle cluster simulation. It is shown in Table 4.4 that simulation 

results between 9 particle clusters and 10 particle clusters are consistent, which suggests 

that using 10 particles in the cluster might be sufficient to represent the random 

microstructure. 

  Normalized reaction current density from the pseudo 2D model and detailed 3D 

microscopic model are further compared. The REV is placed at macroscopic mesh node 

z=175μm. The temporal variations of (normalized) reaction current from two models are 
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compared as shown in Figure 4.6(a). The curves from two models show completely 

different temporal variation trends. To explain this discrepancy between two models, a 

detailed investigation is carried out for microscopic 3D simulations at t=10.77min and 

t=26.16min. Normalized reaction current densities are -0.78 A/m2 and -0.23 A/m2 for 

t=10.77min and t=26.16min, respectively. Normalized reaction current density is actually 

the averaged local reaction current density over the interfacial area. Local reaction 

current densities at the interface for both time instants are shown in Figure 4.6(b) and (c). 

It could be seen that the local current density distribution spans from -0.915 to -0.696 

A/m2 for t=10.77min, and it spans from -0.0125 to -1.024 A/m2 for t=26.16min. 

Therefore, different averaged local reaction current densities for these two time instants 

are expected. To further understand the different distribution range of local current 

density for these two time instants, one needs to start from the plateaus in the open circuit 

potential profile caused by material phase changes. Figure 4.6(d) shows the ranges of 

open circuit potential distribution for both solutions at these two time instants. Though 

t=10.77min solution has wider distribution of Li ion concentration in solid phase than 

t=26.16min solution does, t=10.77min solutions spans a smaller range of open circuit 

potential than t=26.16min solutions does because t=10.77min solution locates around the 

plateau region of open circuit potential where phases change is experienced by the active 

material. A smaller range of open circuit potential results in a smaller range of surface 

over potential and local reaction current density for t=10.77min solution. Therefore, a big 

difference is observed in normalized current densities shown in Figure 4.6(a). To 

summarize, the effect of local variable distribution is very important for the normalized 

reaction current density. The 3D microscopic model is capable of revealing the local 



(a)

(b) (c)

(d)

t=10.77min t=26.16min

Figure 4.6: Comparison of (normalized) reaction current density: (a) the 
temporal variation for pseudo 2D and 3D microscopic models, (b) distribution 

of reaction current density (A/m2) at t=10.77min by 3D microscopic model, and 
(c) distribution of reaction current density (A/m2) at t=26 16min by 3D(c) distribution of reaction current density (A/m2) at t=26.16min by 3D 

microscopic model.
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distribution of variables. This demonstrates the importance of conducting 3D microscopic 

modeling. 

3.2. Effective Material Property Calculations 

  The closure terms of effective material properties are calculated directly from 3D 

microscopic simulations. The calculated results of the ratio between effective and bulk 

(intrinsic) transport properties are shown in Table 4.5. Since effective transport properties 

effD2 , effκ , eff
Dκ , effD1 , and effσ  are all defined in the same manner ( 2 2 2 2

effD c D c∇ = ∇ , 

2 2
effV Vκ κ∇ = ∇ , ( ) ( )2 2ln lneff

D Dc cκ κ∇ = ∇ , 1 1 1 1
effD c D c∇ = ∇ , 1 1

effV Vσ σ∇ = ∇ ), they should share the same 

value of the ratio between effective and bulk properties. To calculate the effective 

materials properties, the generated 3D microstructure is scaled to a cube of 1m×1m×1m, 

and Poisson’s equation ( ) 0D c∇ ⋅ ∇ = is solved with top and bottom boundary specified as 

3( 1m) 1 mol/mc z = = , and 3( 0m) 0 mol/mc z = = , and other boundaries specified as symmetric. A 

bulk diffusion coefficient bulk 21 m /sD = is used. The effective diffusivity is calculated as 
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∫
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(35)

The ratio between the effective and bulk diffusivity is  

 ( )
eff

bulk 2
( 1)

1 d
1mol/m A z

D c A
D =

⎡ ⎤
⎢ ⎥= ∇
⎢ ⎥⎣ ⎦

∫ . (36)

For each of the three realizations of the specified geometry, this calculation is carried out 

three times by assigning the concentration difference boundary conditions along x, y and 

z directions respectively. Therefore, nine simulation results for this ratio between the 

effective and bulk diffusivity are obtained. The averaged value and deviation are 

calculated.   Table 4.5 presents the ratios between effective and bulk (intrinsic) transport 



Bruggeman’s
Equation

3D microscopic model

Average Deviation (%)

Solid phase 0.465 0.224 5.2

Liquid phase 0.253 0.276 2.5

Table 4.5: Ratio between effective and bulk (intrinsic) transport 
properties.
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properties in solid and liquid phase from the conventional Bruggeman’s equation and 3D 

microscopic simulations. It could be seen that 3D microscopic simulations give very 

different ratios those given by Bruggeman’s equation. It should be pointed out that the 

effective transport properties for the solid phase of the microstructure depend a lot on the 

overlapping specified between the particles. It was mentioned that a coefficient of 1.1 

was used to multiply the semi-axis of ellipsoids to create an artificial overlapping for a 

continuous conduction path. A better approach to determine the overlapping coefficient 

would be using experimentally measured effective and bulk (intrinsic) conductivity and 

3D numerical simulations of microstructure for an iterative fitting. 

3.3. Surrogate Model Construction for Reaction Current Density 

  3D microscopic scale simulation results of normalized reaction current density on 

317 sampling points in total are used to construct 2nd order polynomial response surface, 

kriging and radial basis neural network models. The error measures used for evaluating 

the constructed models are summarized in Table 4.6. PRESS root mean square (RMS) 

error for all three models is less than 8%. 2
adjR  for 2nd order polynomial response surface 

is 0.97, a value very close to one. The error measures suggest that the surrogate models 

constructed have sufficient accuracy for predicting the objective function, normalized 

reaction current. Among these three models, kriging has the smallest PRESS RMS, and 

will be used for further analysis. 

  To further evaluate the performance of the constructed kriging model, prediction 

results by the kriging model on 21 testing points are compared with the actual 3D 

microscopic simulation results. These 21 testing points are sampled using the Latin 

hypercube filling method to make sure that they do not overlap with any training points  



S t d l 2nd PRS K i i RBNNSurrogate model 2nd PRS Kriging RBNN

(normalized) 
PRESS RMS 0.030 0.014 0.074

R2
adj 0.97 - -

Table 4.6: Evaluation of the constructed surrogate models.
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used for surrogate model construction. The error of prediction by the kriging model on 

these 21 testing points is summarized in Figure 4.7. Figure 4.7 gives the histogram of the 

prediction error for all 21 points. The horizontal axis is the value of prediction error, and 

the vertical axis is the number of points (or cases) where the error falls into the range 

indicated by the bars. As shown in Figure 4.7, most of the testing points have prediction 

error less than 10% except for 3 points which are found to be close to boundaries of the 

design space. 16 points have prediction error less than 4.5%. Therefore, the constructed 

kriging model generally gives good prediction of normalized reaction current density 

except for some regions close to boundaries. This lack of prediction accuracy in regions 

close to boundaries can be remedied by using more training points chosen from the 

boundary regions. The implication of poor prediction for regions close to boundaries is 

that the construct surrogate model does not accurately predict the current density for 

extreme cases of very high discharge rates. The constructed kriging model is generally 

adequate to deal with moderate discharge rates in the multiscale modeling of batteries. 

 Global sensitivity analysis, which is often used to study the importance of design 

variables, is conducted to quantify variation of the objective function (normalized 

reaction current density) caused by the design variables: concentration, electric potential 

and their gradients in both solid and liquid phases. The importance of design variables is 

presented by the main factor and total effect indices [30]. The main factor is the fraction 

of the total variance of the objective function contributed by a particular variable in 

isolation, while the total effect includes contribution of all partial variances in which the 

variable of interest is involved (basically by considering those interaction terms in the 

response surface approximation). The results of calculated main factor and total effect 



Figure 4.7: Histogram of surrogate model prediction errors on 21 
testing points.
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 indices are shown in Table 4.7. It can be seen that the gradient of variables contribute 

very little to the variable of the objective function. This is because the ranges of the 

gradients of the concentration and electric potential variables are chosen based on their 

distribution on the microscopic scale, while the ranges of the variables themselves are 

chosen based on their distribution on the macroscopic scale. Table 4.7 also shows that the 

contribution of variables in the solid phase is larger than those variables in the liquid 

phase. This is because the solid phase variables dominantly affect the surface 

overpotential of the electrochemical reactions. 

 In summary, the constructed surrogate model is capable of predicting the closure 

term of normalized reaction current density, and will be used for scale bridging in the 

multiscale modeling framework. 

 

4. CONCLUSIONS 

A multiscale framework was proposed to include the electrode microstructure 

information in battery scale modeling. The resulting closure terms for macroscopic scale 

governing equations derived from the volume averaging technique were calculated 

directly from 3D microscopic scale simulations of microstructure consisting of multiple 

(ellipsoidal) electrode active material particles and liquid electrolyte phase. Comparison 

of simulation results from 3D microscopic particle clusters and the conventional pseudo 

2D models showed that 3D microscopic model (1) gives larger interfacial area for 

electrochemical reaction; (2) generates different normalized reaction current density (a 

closure term for the macroscopic scale model) because the 3D microscopic model reveals 

the local distribution of variables. The calculated effective material properties also  
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showed very different values from those by the conventional Bruggeman’s equation. 

These suggest the importance and necessity of conducting 3D microscopic modeling and 

incorporating it into battery scale modeling by the multiscale framework proposed. To 

efficiently exchange the information between microscopic and macroscopic scales, a 

surrogate-based approach was proposed for scale bridging. Surrogate models were 

constructed based on 3D microscopic scale simulation results on sampling points chosen 

by design of experiments. It was shown that the constructed surrogate models fit the 

training data of (normalized) reaction current density very well, and they can be used for 

bridging microscopic and macroscopic scale simulations. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 
 

To improve Li-ion battery performance for application in electrifying automotive 

drivetrains, this study focuses on (1) improving calendar life by reducing performance 

degradation due to stress-induced electrode particle fracture and heat generation through 

modeling and numerical simulations, and (2) creating models including electrode 

materials microstructural information for computer simulations that can lead to 

optimizing battery design for improved energy output per unit volume and mass.  

An intercalation-induced stress model with the analogy to thermal stress modeling 

was proposed to determine localized intercalation-induced stress in electrode particles. 

Intercalation-induced stress was first calculated within ellipsoidal electrode particles with 

a constant diffusion flux assumed at the particle surface. It was found that internal stress 

gradients significantly enhance diffusion. Simulation results suggest that it is desirable to 

synthesize electrode particles with smaller sizes and larger aspect ratios, to reduce 

intercalation-induced stress during cycling of lithium-ion batteries. 

 Stress and heat generation were modeled for single ellipsoidal particles under 

potentiodynamic control, in which case the flux at particle surface is determined by 

electrochemical kinetics, Butler-Volmer equation. It was found that Li-ion concentration, 

surface flux, and intercalation-induced stress are highly correlated through the diffusion 

process, electrochemical kinetics and the intercalation-induced lattice expansion. The two 
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peaks observed in the flux and stress generation plots were attributable to intrinsic 

material properties (two plateaus in the OCP) of the material studied (LiMn2O4) and the 

applied potential. The heat of mixing was found to be negligible (two orders of 

magnitude smaller than the other two sources) and resistive heat was identified as the 

heat generation source of greatest importance. To systematically investigate how 

intercalation-induced stress and resistive heat generation are affected by electrode particle 

geometric shape and cycling rate, a surrogate-based analysis was conducted. It was 

shown that smaller sizes and larger aspect ratios of (prolate) particles reduce the heat and 

stress generation inside electrode particles. 

 A multiscale framework was proposed to include the electrode microstructure 

information in battery scale modeling. The resulting closure terms for macroscopic scale 

governing equations derived from the volume averaging technique were calculated 

directly from 3D microscopic scale simulations of microstructure consisting of multiple 

(ellipsoidal) electrode particles and liquid electrolyte. Comparison of simulation results 

from 3D microscopic particle clusters and the conventional pseudo 2D models showed 

that the 3D microscopic model (1) gives larger interfacial area for electrochemical 

reaction; (2) generates different normalized reaction current density (a closure term for 

the macroscopic scale model) because the 3D microscopic model reveals the local 

distribution of variables. This suggests the importance and necessity of conducting 3D 

microscopic modeling and incorporating it into battery scale modeling by the multiscale 

framework proposed. To efficiently exchange the information between microscopic and 

macroscopic scales, a surrogate-based approach was proposed for scale bridging. 

Surrogate models were constructed based on 3D microscopic scale simulation results on 
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sampling points chosen by design of experiments. The inputs for surrogate models are 

boundary conditions for 3D microscopic scale simulations taken from the nodal values of 

macroscopic scale simulations. The output is the (normalized) reaction current density for 

closure term in macroscopic scale simulations. It was shown that the constructed 

surrogate models fit the training data very well and give good prediction of the closure 

term modeled, reaction current density. 

 Future work is proposed in the following areas: 

• Use the constructed surrogate models for the closure term of volumetric reaction 

rate to complete the multiscale modeling framework. 

• Incorporate material phase change in the diffusion and intercalation-induced 

stress modeling. It is well know that electrode active materials undergo phase 

change during intercalation and deintercalation. Different phases of the material 

have different diffusion coefficient and structural properties. It is important to 

include this phase change information into models. 

• Include stress analysis and heat generation and transfer modules into the proposed 

multiscale modeling framework. In this study, stress and heat generation were 

studied for single electrode particles. With the understanding of stress and heat 

generation mechanisms inside single particles, it is necessary to analyze stress and 

heat transfer on the cell scale to further understand the effect of electrode 

microstructure on stress generation and heat generation and transfer. 

• Further explore the effect of 3D microstructure on battery performance. A fixed 

set of microstructure characteristic parameters were used in this study. It is 

necessary to improve the robustness of the geometry modeling and meshing 
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process so that it is feasible to fully explore the effect of the 3D microstructure of 

electrode materials. 

• Further explore the application of the surrogate-based approach for modeling and 

optimization. Surrogate models are reduced order models with adequate fidelity. 

They predict the objective functions efficiently compared to physics-based 

models. For example, surrogate models can be potentially used for battery control 

algorithms where rapid prediction of state variables is required. Furthermore, 

surrogate models can also be used for design optimization purpose. Design 

adjustable parameters for a Li-ion cell include electrode thickness, volume 

fractions of active material, conductive additives, and electrolyte in the electrode, 

electrode particle size, separator thickness, and other adjustable material 

properties. The objective functions for optimization can include cost, energy and 

power output. The surrogate-based approach can be used to deal with this kind of 

high dimensional multi-objective design optimization problem based on either 

experimental or computational results.  

 


