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INTRODUCTION

This interim report presents the results obtained thus far in a program to
study the possibility of emission of partially coherent electromangetic radiation
during the formation of the shock wave associated with a hypersonic re-entry
vehicle. Probstein [1] , in a recent article, has considered qualitatively the
development of such a shock wave. He concludés that there exists a "transition
region" in which the shock wave begins to form. However, in this region, whose
altitude bounds are determined by flight conditions and the body configuration,
the concepts and equations employed in the free-molecular flow or continum flow
regimes cannot be used. Consequently, little is known about the formation of the
shock wave except that a highly nonlinear cascading process occurs. In order to
treat the problem rigorously, the use of kinetic theory is indicated. If properly
applied, this theory can form a bridge between the continuum and free-molecule
flow solutions, However, even in simple cases, the resulting equations prove
complex. One successful application is that of Lees and Liu who consider non-
linear plane Couette flow [2] |

Additional complications ensue when one studies the characteristics of the
medium surrounding the vehicle in the transition region. For example, if the

vehicle has a dimension of the order of one meter, the transition region has a



mean altitude of approximately 100 kilometers. At these heights there exists an
appreciable number of charged particles (electrons #nd ions) per cubic centimeter.
The neutral particle densify is such that the medium must be considered a weakly-
ionized gas. As a result, the Coulomb forces existing between the charged com-
ponents will alter the manner in which the shock wave is formed. Several recent
papers have studied the structure of shock waves in fully-ionized gases [3, 4,5, 6] .
In particular, Greenberg, Tréve, and Sen [5] and later Greenberg and Tréve [:6]
have discussed charge separation effects that occur; these effects manifest them-
selves in a spatially dependent electric field that is oscillatory in nature. In the
region near the vehicle, the transition from an overall macroscopically neutral
configuration to one possessing an oscillatory field structure as a result of shock
wave formation could result in the emission of electromagnetic radiation.

The purpose of this study is to investigate the formation of the shock wave
in the low-density weakly-ionized transition region with particular emphasis being
placed on determining whether or not emission of electromagnetic radiation occurs,
To attain this end, kinetic theory is employed to first determine the npnlinear
differential equations describing the formation of the shock wave. In Section II,
the Grad thirteen-moment pfocedure [7] as modified by Everett [8] is applied to
the Boltzmann equation for a plasma to determine these equations. The Grad

procedure is employed because it gives the most general picture of the process,



albeit the most complex, in the sense that no ad hoc assumptions need be made
concerning the relationships between various physical quantities. Although this
may seem needlessly complex, once the equations have been obtained any sub-
sequent assumptions can be easily inserted or, if erroneous, deleted without
disturbing the basic frémework upon which the theory rests. In Section III, the
jump conditions relating the flow field in front of the shock wave to that behind it
are developed. And, in Section IV, an application to a plane shock wave is pre-
sented,

Due to a premature termination of the program, this study has not been
completed. Certain collision terms appearing in the equations have yet to be
evaluated; also, no attempt to solve the system of equations has yet been made.

Throughout the report, the Gaussian system of units is used, and the
summation convention applies to all the equations that appear. As regards inte-
grals over velocity space, the limits, though not written explicitly, are from -
to + . And, finally, the tensor notation of Chapman and Cowling [9:] is adopted
wherein traceless tensors are denoted by a small circle above the tensor symbol

and symmetrized tensors by a double bar similarly placed. In symbols:
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For reference, the equation for a traceless symmetrized tensor in terms of its

components is given below:
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MOMENT EQUATIONS

The Boltzmann equation for the distribution function characterizing particles

of type A in a plasma is [9, l(i]

——— ———— t
— Vv + (E/+ = €5 Vi HY) Z Izp (4)

ot axi m,

The quantities represented by the symbols appearing in the above equation are as

follows:
fA (x, V, t) singlet particle density in phase space
Vi ith component of actual particle velocity
ep charge of type A particle
m, mass of type A particle
c velocity of light in vacuo
€ijk Levi-Civita density

A
The quantity ; I Ap eXPresses the change in f per unit time owing to
binary collisions of A-type particles with B-type particles. The expression for

I AB can be written [-lO]

g * % o Vo5V ®)EA(X,V 8, 1) -3, V) £ (x, Vi t )]dQ & v,

~1 (5)



where o AB(Vr’ @) dQ is the differential cross section in the center-of-mass
system for elastic scattering of a B-type with an A-type particle, V. is the rela-
tive velocity of the two pafticles, V'V andV, ¥ are the pre-—éollision and post-
collision velocities, respcctively. In the above equations and elsewhere, the
symbol z}; means a sum over all particle types, type A particles included.

If external electric or magnetic fields are absent, then E%(g,. t) and H'(x, t)

in the Boltzmann equation are the ith

components of the electric and magnetic
fields in the plasma induced solely by the charges and currents within the plasma —

the internal fields. These fields are given by Maxwell's equations:

1
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where the source terms are

q(xt) = ZS ep (g, ) &V (72)
B



J'; (x,t) = g: SeBVi fB (x, v, t) d3 Vv (Tb)

If external fields are present, then the field terms E'i and Hi in the Boltzmann
equation represent a linear superposition of the internal and external fields.
Because E' and H' are functionals of the particle distribution functions, the
Boltzmann equation is nonlinear.

The coordinate system in which the problem is most tractable is one in
which a shock wave, moving with a constant velocity U relative to a fixed observer,
appears stationary, i.e., a coordinate system moving with the shock wave. Under
the transformation to such a system, f (x, V,t) = £A (x, v,t) wherev = V-1,
the derivatives of A with respect to time and space undergo no change and the
derivative with respect to velocity becomes BfA / ov;. Let the result of the trans-
formation on the field quantities be represented symbolically by E' -+ E, H' — H.
The specific relations between E', H' and E, Hare given by the usual Lorentz
transformation formulas [llj Thus, in the transformed system, the Boltzmann
equation becomes

afh ofA e ofA

A 1 i
at ox, m, ov, ZB




The field quantities satisfy Maxwell's equations with the source terms becoming

B
alx,t) = Z Ser (x, v, t) &y (9a)
B
ij(x, t) = Z JveB \A fB (x, v, t) v (9b)
B

as a result of the transformation.

The number density and flow velocity of the type A particles are defined in

the usual way, i.e.

n = j Px v, t) dv (10)

A_ 1 A 3 .
W —nA Jvif (x, v, t)d° v (11)

In order to provide a description of the system in terms of macroscopic
variables, the '""molecular property" function ¢A(§, u, t) is introduced. Here,
the property function for a particular constituent is defined to be a function of the
particle velocity u relative to the constituent flow velocity, that is, u =y ~ V_YA.
Consequently, it will prove convenient to introduce (x, u, t) as a new set of
variables, which replace the independent set (x, v, t), prior to developing a

A
transport equation for . In terms of the new variables the Boltzmann equation

becomes
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where A = fA(_)g, u, t). If the mean value of ¢A(§, u, t) — a state variable — is

defined as

<prz > - S¢A(§:£,t)fA(§,g,t)d3u, (13)

1
ok
a transport equation for < ¢A(g<_, t)> is obtained by evaluating -:T nf< ¢A >}
with the aid of the transformed Boltzmann equation. Upon carrying out the indi-

cated manipulations and recalling that f(z, u, t) vanishes at the limits in velocity

space, the transport equation for < ¢A> is found to be
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The choice of appropriate values for ¢A leads to the moment relations.

h

A general moment equation in which the nt velocity moment is related to

the (n - 1)th and (n+ 1)th moments can be obtained. For this purpose, let

A __A _ 3
M(n)—Mil....in-mA S (uil..,. uin)fAd u (15a)
A A
=n < m, ¢(n) > . (15b)

Then the following relations are valid:

A A
Mél""i):n <mA ui ¢(n)> (16)
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n of
A
Z; 51 iM = nA<mA (n) > (17)
r-= r (n—lr) aui
A
I A A 8¢(n)
Si g Moo= < m, U, > (18)
r=1 T (n-i.+j) duy

Substitution of these equations into the transport equation for < ¢A > leads to the

generalized moment equation for a particular constituent of the system, namely

0 0 A A 0
AL L
(n+j)
ot Bxi an
n owWj awA eA A
+ L +w r (B, += ¢ jk W, Hp) M1
r=1 ot ij my r
A
8Wir eA A
+ - (=€ o H) (a-i_+])
r=1 8xJ m, r) =1l
A 3
= 9
§ SmAﬁi(n) Ly du (19)

A A_ A A _ A _ .
Note that M(O) —mAn =p , and M(l)—n <mA u; > = 0. The physical

significance of the higher moments can be deduced from like quantities appearing

in the equations of hydrodynamics. The following table, in which MZAB) is included

11



‘or completeness, serves not only to exhibit the physical interpretation of some of
ihe moments but also sets forth the notation and definitions adopted for the con-

stituent state variables:

Quantity Symbol M(n)
, A N A
density P M(O) m, n
A A_ A
stress tensor wij Mij =07 <my u >

temperature TA = —_— < === u >
P 3pAp i 3 g 11
heat flux Q. LM, =nfc—A u; uj u; >
j 9 iij 2 ]

As a consequence of the above definitions,

A A_1 A _1 A
n kT —-?;-M-i --é- wii . (20)

In hydrodynamics, the hydrostatic pressure is expressed as one-third the trace of

“he stress tensor. Hence, by analogy, let

A A
pA = -;— wll =n k TA (21)
be the hydrostatic pressure of the A—th constituent.

In order to compact the notation, the following symbols are introduced for

the collision integrals to be encountered subsequently:

12



(m ui) IAB s u (22)

1
(-2— m u, ui) L,gd u (23)

o
&

S(m uiouj) I, e (24)
S(% m u? d3 u (25)

Comparison of the collision integrals with the quantitieslisted in the above
table indicates that the collision transfer of momentum, energy, traceless stress
. . . . A A %A
and heat flux relative to the constituent flow velocity are given by Pi » K, ij s and
A )

F, respectively.

Although equation (19) is as exact as equation (12), it is also as intractable

th

since, as mentioned previously, it expresses the n moment in terms of the
(n- 1)th and (n+ 1)th moments. Its use leads to an infinite set of coupled equations,
no finite subset of which forms a determined system. Further progress can be
made, however, by employing Grad's procedure [7:] as modified by Everett [:8]
Basically, the Grad procedure utilizes an approximate expression of the distribu-
tion function developed by expanding it into a series of three-dimensional Hermite

polynomials. The series is truncated at the appropriate point to form a closed

set of moment equations with n, w;, T, ‘/’ij: and Q;, defined relative to the system

13



flow velocity, as the primary variables. Everett modified the procedure by using
as the independent variable the particle velocity relative to the flow velocity of the
constituent, i.e., the random velocity. His expansion, also a series of appro-
priate Hermite polynomials, contains terms up to and including a contraction of
the third rank polynomial. The first term of the expansion is Maxwellian relative
to the constituent flow velocity while the coefficients of the higher order terms are
the stresses and heat fluxes relative to the constituent flow velocity.

In the present notation, the approximate distribution function given by

Everett is
BA B 32 (o}
A A ‘7’3/2 exp (- —2£u2> [1 + —Z%A-wig“‘ ;0
B A 5 5 }
+ —x Q (u® - —) u, (26)
1
50 By !

where 8, = m A/kTA. Insertion of the above expression into equation (19) yields

the following determinable set of moment equations:

BnA 0 A A
= - (™ W) (27a)
ot aXi
Bw‘f ow, A 1 aw.‘."* e
i ij A A A
oW - (BT gV H)Y— BT
ot BXJ 4] axj m, (Y
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aTA oTA  , 4 owy ,aQf
"""“’iA"—'"E T ¥+ —— -K (27c)
ot 2 n k ox; M 8xi
3!2 A 8!2A awA e
ij A 9¥ k oA, A 9A
= - Wy - wl] — — €¢m Hm Iy
ot 9%y 9% mpy )
0 0
A A
oW, 4 0Q, o
A
g d A D A (27d)
ki 5 ij
axk 9x;
A A A A A
- i~ i Tz j
ot . oX, 5 0x axJ J 5 8x]. J
) (27e)
A o)
e, 1 v avh  kT® wA ok oer®
A A ji jk i A
t— o €1Jij Hy + A - ';w_wij
m, P axk m, axj m A axJ
A A
5 kp oT 1 5 A o
- = - (= p §.+uhpA+pA
2 9% A 2 ji i1 i
m A ; P
The derivation of the above equations has made use of the relation
A 3
I du=0 (28)
S ¢(0) AB

which is merely an expression of the fact that the number of particles remains

unchanged for the type of collisions under consideration.
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The complexity of the above equations for just one constituent of the
medium is evident. Furthermore, coupling of the above set to similar sets of

equations for the other constituents occurs through the collision terms — Pl_s,‘
i

A
A, Xij’ F;A — and the ficeld terms - E i and Hi' Part of the complexity stems

K
from the generality of the equations and some simplification can be expected when
an application to a specific problem is made; however, unless only {rivial prob-
lems are considered, difficulty in obtaining solutions for cases of interest should
be expected.

As yet, no explicit consideration has been given to the me dium in which
the shock wave is moving. Priméry interest is directed towards weakly-ionized
low-density gases; consequently the following assumptions pertaining to the
medium seem feasible. First, assume the medium is comprised of only three
constituents — electrons, singly-charged ions, and neutral particles characterized
by a single molecular mass value, i.e., the masses of the neutrals, irrespective
of species, are taken to be approximately equal. Second, in a weakly-ionized
medium, the number density of neutrals will be much greater than either the
number density of ions or electrons, and, also, the number of ions will equal the
number of electrons. Thus, one can assume that the frequency of close binary
encounters of electrons and ions will 5e negligible in comparison with the collision

frequency of either the ions or electrons with the neutrals. As a result, all

16



collision terms that stem from electron-ion interactions can be ignored. The
electrostatic influence of the two charged constituents upon each other is not being
completely neglected sincé the field terms account for the long-range Coulomb
interactions. The remaining collision terms involve only field-free interactions
describable in terms of elastic hard-sphere scattering. The known properties of
this scattering and the use of the approximate.distribution function, as given by
equation (26), permit the evaluation of the collision integrals in terms of the

primary variables.

17



III

JUMP CONDITIONS

For a shock wave whose thickness is negligible compared fo its extent, the
jump conditions are a set of constraints that link the values of appropriate com-
binations of the macroscopic variables that describe the medium ahead of the shock
wave to those in back [12] They arise as a result of applying the three conserva-
tion laws — the conservation of number, momentum and energy — to the moment
equations describing the entire system. In most applications the jump conditions
prove useful since the structure of the shock wave can be ignored and the shock
wave itself can be treated simply as a discontinuity. Moreover, the jump condi-
tions form an "extended" set of boundary conditions relating the values of the
variables on the two shock wave surfaces, i.e., given the conditions at one surface
the macroscopic variables which describe the shock wave structure must attain
certain values at the second surface as prescribed by the jump conditions. Since
the jump conditions take no cognizance of the shock wave structure, they are
independent of parameters which describe purely internal phenomena such as the

collision transfer of momentum or energy.

18



In order to derive the appropriate jump conditions, the moment equations
for the entire system are utilized. These are obtained by summing the constituent
equations (equations 27) over the constituents of the system.

The first equation for the system is
] : ]
A|_ A
L S PO I

which is left in this form.

The second equation for the system can be written as

0 0
A _A - A_A A
—_— [E m, n wi] Z o — [E :(mAn wj W‘jA'l' wij)]
ot A 8Xj A
A 1 A
+ EA EeAn (Ei+-c- €ijk wa;"* Hk)+Pi:] (30)

But

A 1 A - 1 .
2 l:eAn BT e Hk’] TIET gkl P (31)
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from equations (9), (10) and (11). Subsequent use of Maxwell's equations yields

9 1 9

‘ 1 . _
X, c ot

where Tij is the Maxwell stress tensor given by

1 1 2 2 l

T oew ee— . . + . R — .. +
Tij ym EIEJ HIHJ 5 31] (E© +H#4) (33)
and 8; is the Poynting vector defined as

H, (34)

Inserting these results in equation (30) yields
0 1 0
A A I AA AL A
—_— l:Z:mAn wi +Tsi] = Z(mAn Wi wj + zpij)
ot A c axj A
+ Ti]] + Z pA (35)

The third moment equation for the system can be written as

ot A 2 2 ] 1

A 8XJ aX]

aQA
-3 4xA (36)

an
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If one forms the product of w‘? and the second moment equation for a particular
constituent, i.e., equation (27b), sums over all constituents, and adds the result

to equation (36), one obtains

+ Q;.‘")] + Z(eA nAw‘f‘ Ei+wf‘piA+KA) (37)
A

Now, again from equations (9), (10), and (11),
A .
Z e,n vf;‘Ei—]iEi (38)
A
which can be written
0 1 0

o 2, .2
By = - S, —_(E1+Hi) (39)

axi 8t ot

Consequently, equation (37) becomes
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+ Q?) + sj] + zA:(wff p? + kA (40)

The conservation of momentum and energy in the collision process is

expressed by the equations

Z S(mvi) g d3v= 0 (41)

AB

2
mv?
Z S ( 2Vl ) Iap v =0 (42)

A.B

which state that the net collision transfer of momentum or energy from the Ath
constituent to the remaining constituents when summed over all constituents is
zero. The conservation of number has been already used implicitly since
equation (28), which expresses this fact, was employed in deriving the moment
relations for the individual constituents. The integrals in equation (41) and (42)

have v; as the variable of integration but their form is similar to those occurring

22



in equations (22) and (23). In fact, it can be shown that the following relations

exist between the two pairs of integrals:

> g(mvi) Iy & v=pA (43)

B
mvi g,

Consequently, the quantities ? PiA and § (KA + w‘iq PiA) which occur in

equations (35) and (40) vanish. As a result, equations (29), (35) and (40) all have

the same form which may be written symbolically as
0 0
—(A)-- — [4] (45)
ot axj

If we integrate the three equations over the volume of the shock wave, employ the

general divergence theorem, which states
]
— Ad7 = | AdS;, (46)
oX.
volume surface

assume the shock wave has a negligible thickness in comparison to its extent, and

finally assume that a stationary state exists, the jump conditions are:

[wa] ] -0

23



U:; (my 0 wh wit + w‘lf‘})+TiJ j] = 0 (47b)

A
[E (L mAnA wll.A* wA whAy 3 g8 kTA WA+W§ ..
A 2 1y 2 j i

+ Q?) + sj]] =0 (47c)
J

where the double bracket notation represents the difference in the normal com-
ponents of the enclosed quantity at the two surfaces. In effect, equations (47)
state that the normal components of the mass flow, momentum flow, and energy

flow are each conserved.
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IV

APPLICATION TO A PLANE SHOCK WAVE

As an application of the foregoing, the moment equations for a particular
constituent will be obtained for the case of a plane shock wave moving through a
field-free quiescent medium with a constant velocity U in the z-direction. Only
the stationary state is considered, i.e. all derivatives with respect to time are set
equal to zero. One-dimensional flow is assumed so that the spatial dependence of
the various factors in the equations is a function of z only. Symmetry about the
flow axis — the only preferred axis in space — exists; therefore the distribution

function must be invariant with respect to rotations about this axis. As a

consequence, it can be shown that

wh=wh=0 (48)

X y
Ve = Vi (49)
¢f3=0forani7éj (50)
Q= Q-0 (51)

25



i.e., there exists no mass or heat flow in the radial direction and the off-diagonal
elements of the stress tensor vanish while the first two diagonal elements are

equal. The flow velocity in the z-direction is given by
Ay - wA
w, (z) =W2(z) - U (52)

where W?(z) is the flow velocity relative to a fixed observer. Finally, the
assumptions of time independence, one-coordinate dependence, and the absence
of external fields, when applied to Maxwell's equations for the internal fields,
imply that no internal magnetic field exists, the internal electric field has a com-

ponent only in the z-direction, and non-trivially,

jz =0 (53)

With these introductory remarks and results, we return to equations (27)
and exhibit the explicit moment relations for the Ath constituent. From equation

(27a), we obtain

d
— @A wh) =0 (54a)

dz

26



from (27b),

Px==Py-—0
dwA 1 dap?
z z7
Wy, = - -—A— +
dz P dz
from (27¢),
dTA aw
A 2 1
w, — a
dz 3 nk dz
from (27d)
= 0fori# j
Xij ori 7& j
0 A
WA dwﬁx - d Z ‘2‘;\ + _2_ dWz A
4 xx 3 27
dz dz dz
agh aw dw?
z
2% Sty
dz dz Yy dz
OA A A
A dl//ZZ dwZ 0, 4 dw, A
Wy, - T v oo wzz
dz dz %% dz

27

(54b)

(54c¢)

(54d)

(54e)

(54f)

(54g)

(54h)



and from (27e)

A A .
F = ng =0 (54i)
(o] 0
A A A A A A
, 4@ 6 WA A ad ket ay
W .= L -
dz 5  dz A dz m, dz
A A LA
ar’ kp? dT
1 (o]
SLE sl -t P (54)
2 d a2 2 m dz A 2 zz 4 .
m, dz A p
+ ¥,
z

The jump conditions, (equations 47), become

[[Z A w‘:]i] = 0 (55a)
A
[[2 (mAnA (W‘:)z +¢1:Z ) - ...]L_. Eg]] =0 (55h)

A 8r
[0 & mpstend e bt ool o
A (55¢)
The boundary conditions at the shock wave limits are such that the ambient
conditions are realized on the appropriate surfaces. Recall, also that the proper-
ties of the medium, as discussed in Section II, restrict the form of the collision

terms appearing in equations (54).

28



A%

DISCUSSION

By starting with the Boltzmann equation and utilizing the Grad thirteen-
moment approximation with a modification by Everett, the nonlinear differential
equations governing the formation and structure of the shock wave associated with
a hypersonic vehicle moving through a weakly-ionized low-density medium have
been obtained; see equations (27) and the following discussion. The corresponding
jump conditions are also set forth; see equations (47). The shock wave equations
have been applied to the case of a plane shock wave and, after some simplification,
are exhibited explicitly; see equations (54). No definite conclusions about either
the structure of the shock wave or the possibility of the emission of electromag-
netic radiation during its formation can as yet be drawn since the study is in-
complete and has been terminated. Equations (54b, 54e, 54i) are, in a sense,
solutions for the transverse collision transfer of momentum, traceless stress,
and heat flow, respectively, in a plane shock wave. The fact that all these
quantities vanish is to be expected; however, these results do serve as a check on
the validity of the method and the assumptions employed.

In order to proceed further, the collision terms appearing in equations (54)
must be evaluated subject to the restrictions imposed by the properties of the

medium. As a consequence of this calculation, further simplification of equations

29



(54) is to be expected. Various approximation procedures can be used to solve
the final set of equations since it is very likely that they will not be amenable to
formal methods of solution. To study the stationary state, either numerical or
iterative procedures, or a combination of both, can be adopted. To study the
approach to the stationary state, the time dependent equations may be linearized

by means of a perturbation technique.
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