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Chapter 1  

Introduction 

 

Understanding the thermodynamic and kinetic properties of most materials of 

technological importance is of critical importance in both theoretical and applied research. The 

conventional approaches to investigating the thermodynamic and kinetic properties are through 

experiments or empirical simulations that are based on experimental results. Although 

experiment is the most reliable and direct method to obtain thermodynamic and kinetic 

properties, it is sometimes difficult to conduct or time consuming. Fortunately, the developments 

in statistical mechanics and density functional theory (DFT) have made it possible to predict 

thermodynamic and kinetic properties from first-principles electronic structure calculations. It is 

now possible to calculate multi-component phase diagrams and finite temperature phase stability 

to a high degree of accuracy without any experimental results [1-12].  

This thesis will demonstrate how macroscopic thermodynamic and kinetic properties of 

real materials at finite temperature can be predicted from first principles and obtain a deep 

microscopic insight into the macroscopic thermodynamic and kinetic properties. The approach 

relies on statistical mechanical techniques that link electronic structure calculations to relevant 

free energies and phenomenological kinetic constants such as diffusion coefficients. The two 

systems we are interested in are the Ti-H system, which is a representative of interstitial solids, 

and the Ni-Al system, which is a representative of substitutional solids; both play very important 

roles in industrial applications. 
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1.1 Thermodynamics in Ti-H system 

The tendency of a solid to form hydrides makes it a potential hydrogen storage material. 

This tendency also makes structural materials susceptible to hydrogen embrittlement. An 

understanding of the thermodynamics and kinetics of hydride formation is therefore required in 

the design of new hydrogen storage materials as well as alloys that are resistant to hydrogen 

embrittlement.  

The insertion of hydrogen into a host material for storage purposes is often accompanied 

by phase transformations, whereby a hydride phase consumes the original host phase [13]. In a 

good hydrogen storage material, these phase transformations proceed reversibly and with 

minimal mechanical damage that may arise from differences in volume between the various 

phases participating in the transformation.  

Hydrogen embrittlement has several origins depending on the environment and loading 

conditions. These include: (i) the formation of brittle hydrides [14-16], (ii) a hydrogen induced 

reduction in cohesive strength of the solid [17-20], and (iii) hydrogen enhanced local plasticity 

(HELP) whereby the presence of hydrogen atoms lubricate dislocation glide [21-23]. In a 

particular alloy, all three mechanisms may play a role, with hydride formation followed by 

hydride cleavage typically dominating under slow loading rates and the HELP mechanism 

dominating at high strain rates [15]. The change in mechanism with loading rate arises from 

kinetic factors that prevent the rapid formation of brittle hydride phases as the solid is strained.  

A first step to understanding hydride formation in hydrogen storage materials or during 

mechanical loading in structural materials is a determination of hydride phase stability. Often 

hydrides are compounds in which hydrogen orders over interstitial sites of the host material. Not 

all hydrides are stoichiometric, though, and can exhibit considerable configurational disorder. 
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Since hydrogen is the lightest element, zero-point vibrational energy is potentially also important 

in determining hydride phase stability. Finally, hydrides often form in the solid state, where 

coherency strains and internal stresses may alter relative stabilities of various hydride phases.  

This thesis investigates different factors that determine hydride phase stability from first 

principles. We focus on hydride formation in Ti, an important structural material that is well 

known to be susceptible to hydrogen embrittlement [15, 24-26]. Ti based alloys are used as 

structural components in aircraft and exhibit exceptional mechanical properties as well as 

corrosion resistance. Nevertheless, the unique bonding properties between Ti and hydrogen make 

Ti-alloys susceptible to hydrogen embrittlement. The mechanisms of hydrogen embrittlement in 

Ti have their origin in the interaction between Ti and hydrogen at the electronic and atomic 

scale, making their study ideally suited for a first-pinciples investigation.  

While Ti in and of itself is currently not considered a viable hydrogen storage material, 

the thermodynamic and kinetic principles that dominate hydride formation in this metal are 

similar to those occurring in well-known hydrogen storage materials such as Ni-based alloys 

(with rare-earth elements [27] or with transition metal ions [28]).  Furthermore, Ti can serve as 

an alloying element in Ni and Fe based metal hydride storage materials [29,30], while the 

addition of TiCl3 to NaAlH4, a promising hydrogen storage material, has been shown to 

significantly enhance its hydrogen (de)-sorption reactions [31].  

The hydrides that form in Ti are crystallographically identical to those that form in Zr 

[32,33], an important component in nuclear fuel rod cladding. In pure α-Ti (hcp), three hydride 

phases can form [34-37]: (i) δ-TiH2-z (where z ranges between 0 and 0.5), (ii) ε-TiH2, which is a 

tetragonally distorted form of δ and (iii) γ-TiH. We explore the role of configurational degrees of 

freedom, vibrational degrees of freedom and coherency strains in affecting hydride phase 



 4

stability with a particular focus on the relative stability of γ-TiH, as this hydride is believed to be 

metastable but is nevertheless observed experimentally in the form of coherent precipitates [35-

37]. We also explore the nature of the cubic to tetragonal phase transformation of TiH2 that 

occurs around room temperature [34]. 

 

1.2 Diffusion in Ni-Al system 

NiAl based alloys are of importance in aircraft industry. The gas turbine blades are 

coated with the functional layers that protect the structural component (Ni-based superalloy) 

from the combustion environment. This protection consists of a chemical barrier made of a thin 

layer of Al2O3 and outer thermal barrier made of a thicker layer of yttria-doped ZrO2 [150]. The 

chemical barrier protects the core against in –diffusion of deleterious elements from the 

combustion environment, while the thermal barrier keeps the structural core within an acceptable 

temperature range. In addition to the chemical and thermal barriers, a bondcoat is also required 

to both form and subsequently adhere the Al2O3 thermally grown oxide (TGO) chemical barrier 

to the super-alloy structural core. An important class of bond coats is made of B2-NiAl based 

alloys. The bond coat is expected to withstand creep and to serve as a diffusion barrier or sink to 

refractory elements such as Mo, Re, Ta and W from the superalloy core [38]. 

Since the B2-NiAl based bond coat is between a Ni-rich superalloy substrate and the Al-

rich TGO chemical barrier, large concentration gradient are present, and the system becomes 

susceptible to interdiffusion, which can lead to functional degradation. Often a thin layer of Pt is 

placed between the nickel aluminide and the TGO adding to the complexity of interdiffusion 

phenomena [39,40]. In fact, net fluxes of vacancies due to the Kirkendall effect associated with 

interdiffusion in substitutional solids can lead to local swelling. Interdiffusion also affects the 



 5

superalloy substrate, producing a diffusion-affected zone there that locally degrades its 

mechanical properties [38]. 

This thesis tries to understand the interdiffusion phenomena within the B2-NiAl 

compound from first-principles and these insights will form a solid basis from which to 

investigate ternary-alloying elements that suppress local swelling due to net fluxes of vacancies 

in the future. 

B2 NiAl is a unique intermetallic in that it can accommodate remarkably high 

concentrations of vacancies and anti-site defects. Its crystal structure is isomorphic to CsCl, 

which is a bcc based ordered compound consisting of two cubic sublattices, with Ni occupying 

one cubic sublattice and Al the other (Figure 2-1). While B2 NiAl has a simple crystal structure, 

the defects that accommodate off-stoichiometry in B2-NiAl can be quite complex [41-44]. At 

finite temperature and for off-stoichiometric compositions, intrinsic defects are created that 

include anti-site disorder (Ni on the Al sublattice and vice-versa) as well as vacancies. Excess Ni 

is realized with Ni anti-site defects on the Al sublattice while excess Al is achieved through the 

creation of vacancies on the Ni sublattice [41-44]. Experiment [41] and mean field predictions 

[42-44] have indicated a strong asymmetry in the dominant defects as a function of the alloy 

composition relative to the stoichiometric NiAl composition. Although Al atoms can occupy the 

Ni sublattice, they do so very rarely and the overwhelming majority of defects on this sublattice 

are vacancies, which can reach concentrations of several percent in Al-rich B2 compounds [41-

43]. The Al sublattice, in contrast, only accommodates vacancies at very low concentrations 

while its Ni concentration can be substantial [41-43]. The high concentrations of point defects in 

B2-NiAl can lead to the formation of a variety of long-lived defect clusters, including the triple 
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defect, which consists of a pair of vacancies on the Ni-sublattice next to a Ni antisite on the Al 

sublattice. 

Point defects and defect clusters often play an important role in mediating atomic 

diffusion [45,46]. However, the complexity of the defect structure of B2-NiAl as a function of 

alloy concentration has made a comprehensive understanding of atomic transport in this 

compound very difficult. A variety of atomic hop mechanisms have been proposed and studied 

in B2-NiAl, ranging from simple atom-vacancy exchanges to complex hop sequences that 

involve defect clusters [42,43,47-67]. As any nearest neighbor hop in B2-NiAl results in a local 

disordering of the compound, complicated hop sequences have been proposed that result in the 

net migration of atoms and vacancies without disrupting the B2-ordering. Several candidate 

diffusion mechanisms in this system include next-nearest-neighbor (NNN) vacancy jumps, six-

jump-cycle (6JC) [47,63,66] that is also called Huntington-McCombie-Elcock (HME) 

mechanism, the anti-structural-bridge (ASB) mechanism [52], and the triple-defect mechanism 

[49,67].  

Under the NNN vacancy mechanism a vacancy is jumping along one specific sublattice by 

exchanging with NNN atoms. This mechanism is equivalent to a normal vacancy mechanism on 

the simple cubic lattice formed by Ni or Al atoms. In contrast to the NNN mechanism, the six-

jump cycle mechanism involves only nearest neighbor (NN) jumps of vacancies. It includes six 

successive cycle displacements of a vacancy between the two sublattices [47,66]. After 

completing the six-jump cycle, a vacancy on Ni sublattice site exchanges its position with a Ni 

atom also on an Ni-sublattice site; at the same time two Al atoms on the Al sublattice sites 

exchange positions with each other. The degree of order in the initial and final states of the lattice 

does not change. Kao et al proposed another important diffusion mechanism, referred to as the 
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anti-structural bridge mechanism (ASM) [52], which involves the migration of a vacancy along a 

percolating network of anti-site atoms, thereby avoiding any increase in local disorder. This 

mechanism requires sufficient anti-site atoms and is only expected to become viable for alloy 

concentrations that deviate from the NiAl stoichiometry. Frank et al proposed a mechanism that 

relies on the net migration of a triple defect, causing a direct exchange of a Ni atom and an Al 

atom [49,67]. Combining with the ASB mechanism, Frank used the triple-defect mechanism to 

explain the experimental observation of Ni diffusion behavior and he also excluded the NNN 

jump from the dominant diffusion mechanism [49]. However, in a recent embedded atomic model 

(EAM) study of diffusion mechanism in NiAl, Mishin questioned Frank’s exclusion of NNN 

mechanism and pointed out that NNN jumps of a Ni vacancy have a low enough energy barrier 

and high enough rate constant to be considered as a plausible mechanism of Ni diffusion that can 

operate concurrently with other mechanisms [58]. From the above brief summary of the diffusion 

mechanisms in the NiAl system we can see that the diffusion process in this system is very 

complex and several atomic mechanisms can operate in NiAl concurrently and may depend on the 

temperature and composition. 

A first step to understanding diffusion in B2-NiAl is a characterization of the dominant 

hop mechanisms that enable atomic transport. The importance of a particular hop mechanism is 

determined by (i) its migration barrier and (ii) the concentration of point defects and defect 

complexes that are needed to mediate the hop. Previous theoretical investigations of defects in 

B2-NiAl, while using a variety of methods to calculate defect formation energies (ranging from 

empirical potential methods to first-principles methods) always relied on a mean field 

approximation to estimate finite temperature defect concentrations [42,43,44,58]. This approach 

neglects interactions among defects, and is therefore valid only when defect concentrations are 
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very low. Furthermore, it cannot provide accurate predictions for the concentration of important 

diffusion mediating defect complexes, whose existence is a result of interactions between point 

defects.  

In this thesis, we expand on previous studies of defects and atomic diffusion in B2-NiAl 

[42-44,47-67] and systematically analyze hop mechanisms from first principles to identify those 

with low migration barriers. This analysis will provide a deep understanding of proposed 

diffusion mechanism, lead to corrections of hop sequences and find possible new hop sequences. 

We have calculated the concentrations of point defects and defect complexes in B2-NiAl 

compounds at finite temperature by rigorously accounting for interactions among point defects 

with a cluster expansion in Monte Carlo simulations. The explicit inclusion of interactions 

among point defects enabled an accurate first-principles prediction of the concentrations of 

diffusion mediating complexes as a function of alloy concentration and sheds light on the relative 

importance of viable atomic hop mechanisms in B2-NiAl. Our calculations of defect cluster 

concentrations suggest the importance of different diffusion hops that are mediated by these 

defect clusters. Based on this information, we conducted kinetic Monte Carlo simulations to 

obtain the tracer diffusion coefficients, and further to calculate intrinsic diffusion coefficients 

and inter-diffusion coefficients for B2-NiAl compound.  

The thesis is structured as follows. In chapter 2, we describe the first-principles 

methodology to investigate the thermodynamic and kinetic properties of Ti-H and Ni-Al 

systems. We will describe a cluster expansion approach to rigorously account for interactions 

among point defects within Monte Carlo simulations and show how thermodynamic and kinetic 

properties can be determined with grand canonical Monte Carlo simulations and kinetic Monte 

Carlo simulation. After chapter 2, we investigate in chapter 3 the thermodynamic properties of 
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the Ti-H system, such as phase stability, the effect of vibrational degrees of freedom, the effect 

of strain on the phase stability and the site preference of hydrogen atoms within Ti host. After 

investigating an interstitial solid, we will investigate a substitutional solid, B2-NiAl in chapter 4. 

There we systematically analyze migration barriers of important atomic hop mechanisms in B2-

NiAl from first principles and conduct a comprehensive analysis of point defects and defect 

cluster concentrations at finite temperature using Monte Carlo simulations applied to a cluster 

expansion for B2-NiAl. All this information was used to conduct kinetic Monte Carlo 

simulations (chapter 5), which incorporated all well-known diffusion mechanisms, to obtain the 

tracer diffusion coefficients for B2-NiAl compound and to compare the relative importance of 

various diffusion mechanisms. Finally, in chapter 6 the calculations of self-diffusion coefficients 

and interdiffusion coefficients are presented and the link between these diffusion coefficients and 

the specific defect characteristic of B2-NiAl compound are investigated. Chapter 7 concludes the 

thesis. 
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Chapter 2 

Thermodynamics and kinetics from first-principles 

 

Thermodynamic and kinetic properties of solids are macroscopic properties that are 

collectively determined by the underlying atomic interactions. An ultimate understanding of 

these macroscopic properties should theoretically come from the understanding of the behavior 

of elementary atoms that form the solids. This means that in theory we should solve the quantum 

mechanical equations that govern the behavior of these elementary particles in the solids to 

understand the thermodynamic and kinetic properties. However, this is extremely difficult in 

practice. Fortunately, statistical mechanics serves as a bridge between the atomic-scale 

description of solids and macroscopic thermodynamic and kinetic properties and makes it 

possible to predict thermodynamic and kinetic properties from first principle. Over the past two 

decades some approaches have been developed to qualitatively or quantitatively predict 

thermodynamic and kinetic properties from first principle. This chapter will describe the 

methods and procedures employed to predict thermodynamic and kinetic properties. 

 

2.1 The general procedure to predict thermodynamic and kinetic properties. 

It is well known from statistical mechanics that the macroscopic thermodynamic and 

kinetic properties of a solid are the weighted average of values of the specific property within 

each microstate that the solid samples. Each microstate s has an energy Es associated with it 

which is an eigenvalue of the Schrodinger equation of the solid. The weight, according to 



 11

statistical mechanics then, is the probability that a system is in a particular state s, and is given by 

[68,69] 

Ps =
exp(−Es /kBT)

Z
,     (2.1) 

where kB is the Boltzmann’s constant, T is the absolute temperature and Z is the partition 

function defined as 

Z = exp(−Es /kBT)
s

∑ .     (2.2) 

Equation (2.1) represents a distribution function that assigns the relative importance of different 

microstates in determining thermodynamic averages and reflects the fraction of time that a solid 

resides in each microstate s. In this way, average thermodynamic properties can be evaluated as 

A = AsPs
s

∑ ,     (2.3) 

where A is a macroscopic thermodynamic quantity and As is the value of that quantity when the 

solid is in microstate s. Also, a prediction of phase stability requires a comparison of free 

energies of different phases at finite temperature. The free energy G of a system for example is 

formally related to the partition function Z according to [69] 

G = −kBT lnZ      (2.4) 

The full evaluation of Eq. (2.1) – (2.4) require the knowledge of Es for all excited states s 

of the solid, which includes configurational, vibrational, and electronic excitations. [First-

principles energies are usually calculated at zero pressure p, and the pVs term that should appear 

in the exponential of Eq. (2.1) and (2.2), where Vs is the volume of excited state s, can then be 

ignored.] In the system studied in this thesis, configurational degrees of freedom arise from all 

the possible ways of distributing hydrogen over the interstitial sites of the metal hosts in Ti-H 

system and all possible arrangements of Ni atoms, Al atoms and vacancies in Ni-Al system. 
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Often, vibrational and electronic excitations are neglected in first-principles investigations of 

thermodynamic and kinetic properties in multicomponent solids [2,4,6,7,11,95-98]; however, 

due to the low mass of hydrogen atoms in Ti-H system, zero-point vibrational energy can be 

important [99]. Thus, in this thesis we will neglect electronic excitations for both Ti-H system 

and investigate thermodynamic properties with and without vibration. For Ni-Al system, only 

configurational degrees of freedom are considered when evaluating thermodynamic and kinetic 

properties.  

The excitation energies Es should be calculated from first principles, but since the number 

of excitations is astronomically large, it is necessary to resort to a model that extrapolates first 

principle energies to allow the calculation of energies for any configuration. Once we can 

calculate the energies for arbitrary configurations, a statistical mechanical technique such as 

Monte Carlo simulations can be used to evaluate the thermodynamic and kinetic properties at 

finite temperature. Hence the methods used in this thesis to calculate first principles 

thermodynamic and kinetic properties in Ti-H and Ni-Al systems can be divided into three steps 

[2,70] that will be described in more detail in the next three sections and can be summarized as 

follows. 

(i) First a variety of first principles total energies are calculated for various 

arrangements of H atoms within Ti hosts and various arrangements of Ni atom, Al 

atom and vacancies in Ni-Al system. 

(ii) These energies are then used to parameterize a cluster expansion. An optimized 

cluster expansion enables an accurate and efficient calculation of the total energy of 

any configuration. 
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(iii) The cluster expansion is then used in Monte Carlo simulation to calculate 

thermodynamic and kinetic properties. 

In section 2.2 we will briefly describe density functional theory [71] used to calculate the energy 

of the solid from first-principles. These energies were then used to determine the coefficients of a 

cluster expansion [1] for a particular system, as will be reviewed in section 2.3. Once the cluster 

expansions were constructed, thermodynamic and kinetic properties were calculated with Monte 

Carlo simulations [72] that will be described in section 2.4. Finally, due to the importance of 

vibrational degree of freedom in Ti-H system, a short description of the approach to calculate 

vibrational free energy is present in section 2.5. 

 

2.2 First principle total energies 

Total energies are essential inputs for any analysis of phase stability and diffusion. These 

energies must be calculated from first principles, that is, at 0K by solving the many-body time-

independent Schrodinger equation: 

 
) 
H Ψ = EΨ,      (2.5) 

where Ψ is the many-body wavefunction for the electrons, E is the total energy for the solid, and 

  
) 
H  is the Hamiltonian operator for the system of electrons and nuclei, which is defined as: 

  

) 
H = −

h2

2me

∇ i
2

i
∑ +

ZIe
2

r 
r i −

r 
R Ii,I

∑ +
1
2

e2

r 
r i −

r 
r j

−
h2

2MI

∇ I
2 +

1
2I

∑
i≠ j
∑ ZI ZJe

2

r 
R I −

r 
R JI ≠J

∑ , (2.6) 

where e and me are the charge and mass of electrons respectively, ZI and MI are the charge and 

mass of nuclei respectively,   
r 
r i  is the position of electron i and  

r 
R I  is the position of nuclei I,  h  is 

the Plank constant/(2π)[73-75]. The first term in Eq (2.6) is the kinetic energy operator for the 

electrons, the second term is the potential energy due to the interaction between electrons and 
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nuclei, the third term is the electron-electron interaction, the fourth term is the kinetic energy 

operator for the nuclei and the final term is the classical nuclei-nuclei interaction. The fourth 

term is typically neglected according to the Born-Oppenheimer adiabatic approximation [76] 

since the inverse mass of the nuclei 1/MI is very small. The total energy then is the expectation 

value of the Hamiltonian [75], 

 
E =

Ψ
) 
H Ψ

Ψ Ψ
     (2.7) 

This many-body problem is impossible to solve for realistic solids [75,78]. Many 

approximations have been proposed to solve this problem, for example the Hartree [77] and the 

Hartree-Fock approaches [79]. However, the Hatree approach ignores both exchange and 

correlation effects [78], while the Hatree-Fock approach ignores the correlation effect [75]. The 

exchange effect is due to the Pauli exclusion principle, which indicates that around a spin-up 

(down) electron other nearby spin-up (down) electrons will be repelled. The correlation effect is 

caused simply by electrostatic repulsion between electrons [78]. In order to tackle this difficulty, 

Kohn and Sham [75,80] replaced the interacting many-body system with an independent-particle 

system where all many-body effects arising from exchange and correlation are grouped into an 

unknown exchange-correlation energy Exc. This approach leads to Kohn-Sham Schrodinger-like 

equations [75,84]: 

  
−

h2

2me

∇2 + Vext (
r 
r ) + VHartree (

r 
r ) + Vxc (

r 
r )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ψ i(

r 
r ) = εiψi(

r 
r )   (2.9) 

where ψi is the wave function of electronic state i, εi is the eigenvalue, Vext is the external 

potential due to the nuclei and any other external fields, VHatree  is the Hartree potential of the 

electrons given by 
  
e2 n(

r 
r )

r 
r −

r 
′ r 

d3r∫  [84], where n(  
r 
r ) is the electronic density given by 

 
2 ψi(

r 
r ) 2

i
∑  
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[84]. The exchange-correlation potential, Vxc, is given by the functional derivative 
 

δExc

δn(
r 
r )

 [84]. 

Vxc contains all quantum mechanical effects of the many-body problem and several well-known 

approximations for Vxc exist. Equation (2.9) has the form of independent-particle equations with 

a potential that must be found self-consistently with the resulting density. Equation (2.9) are 

independent of any approximation to the exchange-correlation functional Exc, and would result in 

the exact ground state energy and density for the interacting system provided the exact exchange-

correlation functional Exc were known.  

Although the exact form of exchange-correlation functional is unknown, it can be 

approximated as a local or nearly local functional of the electron density. Two well-known 

approximations for the exchange-correlation functional are the local density approximation 

(LDA) [80] and the generalized-gradient approximation (GGA) [80-83]. There are several 

different parameterizations of the GGA. Two widely used are the form of Perdew and Wang 

(PW91) [85] and the form of Perdew, Burke, and Enzerhof (PBE) [86]. In this thesis, we used 

PBE for Ti-H system and PW91 for Ni-Al system. 

 

2.2.1 The pseudopotential method 

The Kohn-Sham approach transfers the many-body problems into an equivalent single-

particle problem. In general, there are many approaches to solving Kohn-Sham equations. The 

most common today are linearized augmented plane wave (LAPW) [87] method and the 

pseudopotential method [84,88]. The LAPW method is the most accurate and general method for 

electronic structure calculations but it is computationally demanding. It combines localized and 

delocalized basis sets for the electronic wavefunction. In this thesis we used a pseudopotential 
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method based on the projector augmented wave (PAW) method [89], which is fast and relatively 

accurate compared to the LAPW approach.  

The pseudopotential method typically uses a plane wave basis set for the electronic 

wavefunctions and is based on the fact that physical properties of solids depend on the valence 

electrons to a much greater extent than on the core electrons [75,84,88]. Thus, the 

pseudopotential approach replaces the wavefunction near nuclei region with a smoother pseudo-

wavefunction in such a way that the valence states are reproduced, but the core states with rapid 

variations are removed. This means that ionic potential and pseudopential are identical only 

outside the core electron region [75,84,88]. This way, a much smaller number of plane-wave 

basis functions are needed to expand the electronic wave function. As a variation based on the 

pseudopotential approach, the projector augmented wave (PAW) approach retains the entire set 

of all-electron core functions along with smooth parts of the valence functions. As a result the 

PAW approach has the advantage of both pseudopotential method (fast) and full-electron method 

(accurate) [75,89]. 

In this thesis, we perform the first-principle total energy calculations with the Vienna ab 

initio simulation package (VASP) [90,91]. This code implements the PAW pseudopotentials 

[89,92], which allows for plane wave expansions with significantly lower energy cutoffs than 

traditional pseudopotentials meanwhile achieving a relatively high accuracy, making it possible 

to investigate large and complicated systems.  

 

2.3 Cluster expansion 

As we have mentioned in section 2.1, in theory the energies of all possible microstates 

should be calculated from first principle in order to obtain the thermodynamic properties of a 
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system. However, it is impossible to calculate all these energies from first principle due to the 

huge number of them. So, we first calculated the energies of some configurations from first 

principle using the method described in section 2.2, then using these energies to fit a model that 

in turn can be used to calculate the energy of any configuration. This model is called cluster 

expansion [1]. Furthermore, cluster expansion can capture the interaction among point defects 

and atoms. This is very important for a system like B2-NiAl [93], which can accommodate high 

concentration of many types of point defects and consequently the interaction among these point 

defects cannot be neglected. Previous theoretical investigations of thermodynamic properties 

such as equilibrium point defect concentration in B2-NiAl compound, while using a variety of 

methods to calculate defect formation energies (ranging from empirical potential methods to 

first-principles methods) always relied on a mean field approximation to estimate finite 

temperature defect concentrations [42-44]. This approach neglects interactions among defects, 

and is therefore valid only when defect concentrations are very low. Furthermore, it cannot 

provide accurate predictions for the concentration of important diffusion mediating defect 

complexes, whose existence is a result of interactions among point defects. Consequently, a 

cluster expansion is needed to efficiently calculate energies of any configurations and to capture 

interactions among atoms and defects.  

 

2.3.1 Conventional cluster expansion. 

We will use Ti-H system as an example to explain binary cluster expansion formalism 

[94]. Assigning H atoms to interstitial sites in Ti host forms Ti-H hydrides. This means that an 

interstitial site can be occupied by either H atom or a vacancy. It is useful to introduce the 

occupation variable σi to each interstitial site that is +1(-1) if the interstitial site is occupied by H 
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atom (a vacancy). Consequently, by assigning an occupation variable σi to each interstitial 

hydrogen site i within the Ti host, it is possible to uniquely specify a particular hydrogen-

vacancy configuration with the collection of occupation variable   
r 
σ = {σ i}. Although the 

hydrogen atoms rarely reside exactly at these rigorously defined crystallographic sites, there is a 

one-to-one correspondence between each hydrogen atom and a crystallographic site. Sanchez et 

al. [1] showed that any property that depends on configuration could be expanded in terms of 

polynomials of the discrete occupation variables σi. The dependence of the fully relaxed energy 

on configuration, for example, then takes the form [1,93,94,106,107] 

  

E(
r 
σ ) = V0 + Viσ i + Vijσ iσ j + Vijkσ iσ jσ k +L

i, j ,k
∑

i, j
∑

i
∑ ,  (2.10) 

where the indices i, j, k… correspond to a collection of interstitial sites that form a cluster such as 

a pair cluster, a triplet cluster, etc. The coefficients V0, Vij, and Vijk are called effective cluster 

interactions (ECI) and are constants. Equation (2.10) is referred to as a cluster expansion. 

Equation (2.10) can be viewed as a generalized Ising model Hamiltonian including not 

only nearest neighbor pair interactions, but also all other pair and multibody interactions beyond 

the nearest neighbors. Equation (2.10) extends over all possible clusters of sites. From a practical 

point of view, however, it must be truncated after some maximal sized cluster, i.e. (2.10) is 

useful if it converges rapidly and there exists a maximal cluster such that all ECI corresponding 

to clusters larger than the maximal cluster are negligibly small. Experience indicates that 

convergence depends on the particular system and in general, the lower order clusters such as 

points or pairs within a limited range will have larger contribution than higher order clusters. 

Although Ti host, which is fixed, does not contribute to the configurational degrees of freedom 

and consequently there is no explicit reference to them in the cluster expansion, the cluster 

expansion describes the energy of the whole crystal since in Eq. (2.10)   E(
r 
σ )  is the fully relaxed 
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energy of the whole crystal. The ECIs are simply linear expansion coefficients, which implicitly 

incorporates complicated interactions among atoms and vacancies and it is difficult to give them 

a simple physical interpretation. 

 

2.3.2 Determination of ECI 

The ECI of a cluster expansion of the configurational total energy   E(
r 
σ )  need be 

determined from first principles. This then enables the calculation of thermodynamic properties 

with, for example, Monte Carlo simulations. Several techniques have been used to determine 

ECI from first principles, and most are based on a least squares fit of a truncated cluster 

expansion to the first-principles energies of different configurations [2,70]. The ECI obtained 

with this approach depends both on the truncation of Eq. (2.32) and on the selection of 

configurations used in the fit. 

The cross-validation (CV) score is a useful criterion in selecting an optimal set of clusters 

[6]. The CV score is a measure of the ability of the cluster expansion to predict energies not 

included in the fit. There are different definitions of the CV score: the leave-one-out CV (LOO-

CV) and the leave many out in which Monte Carlo sampling is used, which is called Monte 

Carlo CV (MCCV) [100,101]. Many investigations have shown that the performance of MCCV 

is better than LOO-CV in general. Especially, Shao pointed out that LOO-CV is too conservative 

in the sense that it tends to select unnecessarily large model and the performance of Monte Carlo 

Leave-Many-Out CV (MCCV) is stable and much better than LOO-CV [101]. This indicates that 

LOO-CV tends to select much more clusters many of which are not necessary than MCCV does. 

In this thesis, we will use the Monte Carlo CV to select the optimal cluster model unless it is 

impossible to explore it in the case where we have few energies to fit the model and LOO-CV is 
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used under this situation. 

Suppose the energies of n configurations have been calculated from first principles. The 

algorithm involves the random removal of nv configurations from the sample followed by a fit of 

the ECI to the remaining nc structures. This procedure is repeated b times. The definition of the 

MCCV score is 

(MCCV)2 = 
 

1
nvb

ˆ E 
r 
σ ( )− E

r 
σ ( )( )2

r σ 

nc

∑  ,     (2.11) 

where   E
r 
σ ( ) is the calculated first-principles energy of a structure having a configuration  

r 
σ , and 

  
ˆ E 

r 
σ ( ) is the cluster expansion predicted energy of  

r 
σ . Since it is impossible to enumerate all 

possible combinations of clusters, we search for an optimal set by using a genetic algorithm 

[102]. In this algorithm, a bunch of combinations of clusters were initially randomly generated to 

form a pool (parents pool). Then the MCCV score was evaluated for each combination in the 

pool. Based on these MCCV scores, a fraction of combinations that have best MCCV were 

retained to the next generation and the rest were replaced by the same number of new 

combinations (children), which were formed by the mating of parents. In the mating process, the 

parent with better MCCV score has the higher probability of passing its gene bit (inclusion of a 

specific cluster or not) on to the child than the parent with worse MCCV score. In this way, the 

preferred transfer of better genetic information is ensured. Once the new parent pool was formed, 

the same procedure was repeated. 

The algorithm implemented in this work uses a slightly different criterion to pick clusters 

than that of Hart et al [102]: pairs are chosen in the order of their length while only triplet, 

quadruplet and larger clusters are chosen if their largest inter-site distance is less than the largest 

pair already included in the expansion. Once the optimal set of clusters is obtained, we use the 



 21

energies of all n structures to obtain the values for the optimal ECI. The resultant ECI can then 

be implemented in Monte Carlo simulations to calculate finite temperature free energies. 

 

2.3.3 Local cluster expansion 

Although in theory we can use conventional cluster expansion to evaluate the 

configurational total energy for any configuration of a multi-component solid such as ternary 

system, it sometimes becomes intractable and unnecessary. For example, While B2 NiAl is a 

binary alloy; the presence of large vacancy concentrations on the Ni sublattice suggests that it 

should be treated as a ternary system to accurately account for all relevant configurational 

degrees of freedom [103]. However, a ternary cluster expansion means we will encounter a large 

number of configurations (if there are M crystal sites, then each site can be occupied by 3 

possible elements so there are 3M possible configurations) and most of them are unnecessary for 

the B2-NiAl compound given its specific defect character (e.g. the configurations with large 

concentration of aluminum vacancies are unnecessary since aluminum vacancies are very dilute 

in B2-NiAl alloy).  

We can avoid an explicit ternary cluster expansion of the configurational energy of B2-

NiAl by taking advantage of available insight about the dominant defects of this compound. As 

we have mentioned in the chapter 1, although Al atoms can occupy the Ni sublattice, they do so 

very rarely and the overwhelming majority of defects on this sublattice are vacancies, which can 

reach concentrations of several percent in Al-rich B2 compounds [41-43]. The Al sublattice, in 

contrast, only accommodates vacancies at very low concentrations while its Ni concentration can 

be substantial [41-43]. On each sublattice, we can therefore distinguish between dominant 

components (Ni and vacancies on the Ni-sublattice, Al and Ni on the Al-sublattice) and minor 



 22

defects (Al on the Ni sublattice, vacancies on the Al sublattice). The interactions among the 

dominant components are conveniently captured with a binary cluster expansion Eq. (2.10), in 

which to each Ni-sublattice site i, we assign the occupation variable τi, which is +1 if the site is 

occupied by Ni and -1 if it is vacant; to each Al-sublattice site j, we assign the occupation 

variable δj, which is +1 if it is occupied by Ni and -1. If the concentrations of the minor defects 

are sufficiently low that they rarely if ever interact with each other, we can account for their 

configuration dependent formation energies with a local cluster expansion [97,104,105]. 

Local cluster expansions can supplement the binary coupled-sublattice cluster expansion 

to describe the configurational energy of B2-NiAl in the presence of minor defects [93]. While 

interactions among minor defects do not need to be accounted for, interactions between a minor 

defect and the dominant components of both sublattices of B2-NiAl are important, as the minor 

defect will energetically prefer particular local arrangements and concentrations of the dominant 

components over others. Consider, for example, the presence of an isolated vacancy on the Al 

sublattice [93]. A convenient quantity to parameterize with a local cluster expansion is an 

effective minor-defect formation energy [93,97]: 

  
ΔEi

VAl = Ei
VAl (

r 
σ ) −

1
2

[Ei
AlAl (

r 
σ ) + Ei

NiAl (
r 
σ )]    (2.12) 

where   Ei
VAl (

r 
σ ) is the energy of the crystal with configuration  

r 
σ  but with a vacancy, VAl, 

occupying site i of the Al sublattice. The energies  Ei
AlAl (

r 
σ )  and  Ei

NiAl (
r 
σ )  are of the crystal with 

configuration   
r 
σ  but with site i of the Al sublattice occupied by Al and Ni respectively. Both 

  Ei
AlAl (

r 
σ )  and   Ei

NiAl (
r 
σ )  can be calculated with the binary coupled-sublattice cluster expansion, 

Eq. (2.10). The effective minor-defect formation energy ΔEi
VAl  depends only on the arrangement 
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of Ni, Al and vacancies around site i and can therefore be parameterized with a local cluster 

expansion according to 

 

ΔEi
VAl (

r 
σ ) = Lo + L jσ j

j

∑ + L jkσ jσ k

j,k

∑ + ...      (2.13) 

where the sum over j, k, … extends over sites of clusters of B2-NiAl that do not include site i 

occupied by the minor defect. To calculate the energy of the B2-NiAl crystal with a vacancy on 

the Al sublattice, we can rearrange Eq. (2.12) to isolate  Ei
VAl (

r 
σ ) and evaluate   ΔEi

VAl
v σ ( ) with the 

local cluster expansion, Eq. (2.13), and 
 

1
2

[Ei
AlAl (

r 
σ ) + Ei

NiAl (
r 
σ )] with the binary coupled-sublattice 

cluster expansion, Eq. (2.10). A similar approach applies to the minor defect, Al, on the Ni-

sublattice.  

It should be noted that the cluster expansion technique is likely to fail if the magnitude of 

relaxation of many configurations is large, that is, the relaxed configuration is significantly 

deviated from the original unrelaxed structure. If this happens, the error of the fitting tends to be 

large and the cluster expansion loses its predictive ability.  

 

2.4 Monte Carlo method 

2.4.1 Conventional Monte Carlo simulation 

The first-principles parameterized cluster expansion can be used in grand canonical 

Monte Carlo simulation to predict finite temperature thermodynamic properties, including the 

phase diagram, the equilibrium concentration of point defects as well as the concentration and 

nature of defect clusters. A Monte Carlo simulation samples various configurations with 

probability given by the Eq. (2.1). However, it is not computationally feasible to sum the 

exp(−Es /kBT) so as to determine Z. Fortunately, by using the Hastings-Metropolis algorithm we 
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can generate a sequence of successive states of a Markov chain whose sample space is the set of 

all possible configurations and stationary probabilities are Ps. [72,108] In such a Markov chain, 

the transition probability from state  
r 
σ i to state  

r 
σ j  is given by 

Pij =1,    if  Ω(
r 
σ j ) < Ω(

r 
σ i)   (2.14) 

  
Pij = exp −

Ω(
r 
σ j ) − Ω(

r 
σ i)

kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    if  Ω(

r 
σ j ) > Ω(

r 
σ i)   (2.15) 

where k is the Boltzmann’s constant, T is the absolute temperature and   Ω(
r 
σ i) is the grand 

canonical energy for configuration  
r 
σ i, which is defined, for instance for Ni-Al system, as [93] 

 Ω(
r 
σ i) = E (

r 
σ i) − NNi ˜ μ Ni − NAl ˜ μ Al     (2.16) 

where NNi and NAl are the number of Ni and Al atoms in the crystal with configuration  
r 
σ  and 

Niμ~  and Alμ~  are relative chemical potentials defined as Niμ~  = μNi − μV  and Alμ~  = μAl − μV , with 

μNi, μAl  and μV  the chemical potentials of Ni, Al and vacancies respectively. Equation (2.14), 

(2.15) and (2.16) indicates that In a grand canonical Monte Carlo simulation at fixed temperature 

and chemical potentials, each Monte Carlo step involves the addition of one component at the 

expense of another if the change in the grand canonical energy ΔΩ is negative or if exp(-ΔΩ/kT) 

is greater than a random number sampled from (0,1].  

Contrary to the grand canonical Monte Carlo simulation, the canonical simulation 

conserves the number of atoms of different species and transfers the state by exchanging atoms 

at different lattice sites. The transition probability for Markov chain is similar to Eq. (2.14) and 

(2.15) with the exception that the grand canonical energies  Ω(
r 
σ i) and   Ω(

r 
σ j ) should be replaced 

by the total energies   E(
r 
σ i)  and   E(

r 
σ j ) . 

In order to guarantee that the configurations sampled in a Monte Carlo simulation occur 

with probability given by the probability mass function Eq. (2.1), the Markov chain must run a 
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relatively long time before entering stationary state. Once it enters the stationary state, the 

metropolis algorithm guarantees that the configurations sampled occur with a probability given 

by the probability mass function (2.1), which is just the limit probability of the corresponding 

Markov chain. Hence thermodynamic properties such as the equilibrium point defect 

concentration can be obtained as simple arithmetic averages over the sampled configurations. In 

practice, in order to guarantee the Markov chain enters stationary state, several thousand MC 

steps are performed before the averaging. 

The relative chemical potentials ˜ μ i in Eq. (2.16) arise from the constraint in grand 

canonical Monte Carlo simulations that the number of crystal sites, M, remains fixed (i.e. NV=M-

NNi-NAl). The relative chemical potentials Niμ~  and Alμ~  serve as thermodynamic boundary 

conditions and are explicitly controlled in grand canonical Monte Carlo simulations.  

 When relating results from grand canonical Monte Carlo simulations to experiment, it is 

necessary to use thermodynamic boundary conditions that are consistent with experiment. In 

actual samples of B2-NixAl1-x alloys, with x= NNi NNi + NAl( ), the experimentally controlled 

variables are usually NNi and NAl as opposed to fixed number of crystal sites, M and fixed Ni and 

Al chemical potentials.  Under experimental conditions, the number of crystal sites is not fixed 

and can vary through the creation or annihilation of vacancies at climbing dislocations, grain 

boundaries and surfaces. As a vacancy is a non-conserved species in a fully equilibrated solid, its 

chemical potential μV must be zero (provided vacuum is used as the vacancy reference state). 

The concentration of defects in B2-NiAl using grand canonical Monte Carlo simulations must 

therefore be calculated under the constraint that μV=0. Appendix A shows how values for Niμ~  

and Alμ~  can be determined consistent with the constraint that μV=0. 
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2.4.2 Free energy integration 

A prediction of phase stability and the construction of phase diagram require a 

comparison of free energies of different phases at finite temperature. Free energies can be 

obtained from the results of Monte Carlo simulations by integrating the chemical potential. We 

will take the example of Ni-Al system to describe the procedure, which is contained in the 

Appendix A. 

 

2.4.3 Kinetic Monte Carlo (KMC) simulation 

The Monte Carlo simulation mentioned above is used to predict the equilibrium 

thermodynamic properties. In order to investigate the kinetic properties such as tracer diffusion 

coefficient for a crystal, kinetic Monte Carlo simulation is a powerful tool.  

The statistical concept under the kinetic Monte Carlo is a continuous-time Markov chain, 

more specifically, a Poisson process. In this Poisson process the individual hop occurs 

instantaneously and the time between two successive hops is exponentially distributed with the 

mean 1/Γtot, where Γtot is defined as [109] 

Γtot = Γi
i

∑       (2.17) 

where Γi is the migration frequency of hop i and Γtot is the sum of all individual probabilities Γi.. 

For a specific hop, we can calculate the migration probability Γi within the harmonic transition 

state theory [110], which gives 

Γi = ν 0i exp −
Emi

kT
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟         (2.18) 

where ν 0i is the vibration prefactor for hop i, Emi is the activation energy for hop i required to 

move the hopping atom(s) from the initial stable state to the activated state, k is Boltzmann’s 
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constant and T is the absolute temperature in degrees Kelvin. The attempt frequency ν0 for a 

specific hop is calculated as 

ν i
i=1

3N−3

∏

ν i
*

i=1

3N−4

∏
,        (2.19) 

where N is the number of sites involved in the hop (N=2 if the hop involves one atom and one 

vacancy, N=3 if the hop involves two atoms and one vacancy), ν i is the normal vibration 

frequency at the stable state and ν i
*  is the normal vibration frequency at the activated state. 

According to the stochastic theory, each individual hop will occur with the possibility  

Pi =
Γi

Γtot

,            (2.20) 

A kinetic Monte Carlo simulation keeps track of atoms hop according to some diffusion 

mechanism specific to an interested system and the displacement of individual atom. Then the 

tracer diffusion coefficient of specie j is calculated as [111] 

 

[Δ
r 
R ξ

j (t)]2

ξ∑( )
(2d)tNξ

,       (2.21) 

where   Δ
r 
R ξ

j (t) is the vector linking the end points of the trajectory of atom ξ of specie j after time 

t, Nξ is the number of atoms of specie j, and d is the number of dimensions. In the simulation, the 

time Y between two consecutive hops can be defined as 

Y = −
ln X
Γtot

      (2.22) 
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where X is a uniformly distributed random variable between (0,1]. It ban be easily proved that Y, 

which is defined by Eq. (2.22), is an exponentially distributed random variable with the mean 

1/Γtot . 

2.5 Vibrational free energy 

As we have mentioned in section 2.1, due to the low mass of hydrogen atoms, zero-point 

vibrational energy can be important in Ti-H system. The simultaneous treatment of 

configurational and vibrational degrees of freedom is possible with a coarse graining procedure 

[112,113], where instead of cluster expanding the fully relaxed configurational energy  E
r 
σ ( ), a 

coarse grained free energy,   G
r 
σ ,T( ), is cluster expanded.  G

r 
σ ,T( ) accounts for vibrational and 

possibly electronic excitations, but is constrained to a fixed hydrogen-vacancy configuration  
r 
σ . 

Neglecting electronic excitations.  G
r 
σ ,T( ) can be calculated within the quasi-harmonic 

approximation using first-principles phonon densities of states for the solid having a configuration 

  
r 
σ  [113]. Phonon densities of states are accessible from first principles either with a linear 

response method [114] or a frozen phonon approach in which force constants are extracted from 

calculations of restoring forces on perturbed atoms within supercells [113,115]. The vibrational 

free energy at fixed volume, V, is related within the harmonic approximation to the vibrational 

density of states,   g ν,
r 
σ ,V( ), according to [113]: 

  
Fvib (

r 
σ ,T,V ) = kBT ln 2sinh hv

2kBT
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ ∫ g(v,
r 
σ ,V )dv                             (2.23) 

where ν is a vibrational frequency. Within the quasi-harmonic approximation, the coarse-grained 

free energy   G
r 
σ ,T( ) is set equal to the minimum of  Fvib

r 
σ ,T,V( ) with respect to V (i.e. the pressure 

is assumed to be zero). The ability to perform this coarse graining procedure, however, rests on 

the assumption that each arrangement of atoms is mechanically stable and exhibits minimal 
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anharmonicity with respect to vibrational degrees of freedom. It will emerge that fcc based TiH2-z 

exhibits important anharmonicity with respect to homogeneous tetragonal strain, indicating that a 

standard coarse graining scheme may not be sufficient to capture all relevant degrees of freedom 

in this system. We will argue that additional thermal excitations involving local strain fluctuations 

are likely to also contribute to the thermodynamic properties of TiH2-z. 

In this thesis, the vibrational free energies were calculated with a force-constant spring 

model. The force constants were extracted from first-principles GGA calculations of the restoring 

forces due to atomic perturbations within supercells using the FITFC code of the Alloy Theoretic 

Automated Toolkit. 
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Figure 2-1 Crystal structure of B2-NiAl compound 
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Chapter 3 

First-principles investigation of phase stability in interstitial metal-hydride: The Ti-H 
system 

 
 

In this chapter, we will investigate various factors that affect metal-hydride phase 

stability from first principles. As a particular example, we consider hydride stability in the Ti-H 

system, exploring the role of configurational degrees of freedom, zero-point vibrational energy 

as well as coherency strains. We will show that the tetragonal γ-TiH phase is predicted (within 

GGA) to be unstable relative to hcp Ti (α phase) and the fcc based δ-TiH2. Due to the light mass 

of hydrogen atom, zero point vibrational energy significantly affects the formation energies in 

this system and makes the γ phase even less stable relative to hcp Ti and δ-TiH2. The effect of 

stress and strain on the stability of the γ phase is also investigated showing that coherency strains 

between hydride precipitates and the hcp Ti matrix stabilize γ-TiH relative to α-Ti and δ-TiH2, 

explaining why it is observed experimentally. We also find that hydrogen prefers octahedral sites 

at low hydrogen concentration and tetrahedral sites at high concentration. Both harmonic 

vibrational as well as electronic origins for the cubic to tetragonal phase transformation of TiH2 

are investigated and we argue that anharmonic vibrational degrees of freedom are likely to play 

an important role in stabilizing cubic TiH2.  

A simultaneous treatment of configurational degrees of freedom and vibrational 

excitations is computationally very demanding, as it would require the first-principles calculation 
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of phonon densities of states of many different hydrogen-vacancy configurations over the 

interstitial sites of Ti to determine the coarse grained free energies   G
r 
σ ,T( ) for each 

configuration. Furthermore, as will be illustrated, the Ti-H system exhibits strong anharmonicity 

with respect to homogeneous strain indicating that long wavelength strain fluctuations may 

contribute to the thermodynamic properties of this system. Such excitations cannot be accounted 

for with the coarse graining scheme described above [112], which treats vibrational excitations 

within the quasi-harmonic approximation. We therefore investigate configurational and 

vibrational degrees of freedom independent of each other to derive qualitative insight about the 

importance of configurational entropy, zero-point vibrational energy and coherency strain on the 

stability of γ-TiH relative to hcp Ti and TiH2.  

 

3.1 Configurational degrees of freedom 

3.1.1 Formation energies and relative stability of host structures 

An investigation of phase stability in the Ti-H system must start with a consideration of 

the likely host structures that can accommodate hydrogen insertion. In this thesis, we focused on 

the hcp and fcc Ti hosts. While bcc Ti is observed at high temperature, it is predicted to be 

mechanically unstable from first-principles, raising fundamental questions about the true nature 

of this high-temperature phase [1]. Within the hcp and fcc hosts, hydrogen can reside in either 

octahedral or tetrahedral sites. For each Ti atom in the hcp and fcc structures, there are two four-

coordinated tetrahedral sites and one six-coordinated octahedral site (see Fig. 3-1). 

We calculated the energy of a variety of different hydrogen-vacancy configurations 

over the interstitial sites of both hcp Ti and fcc Ti using density functional theory within the 

generalized gradient approximation (Perdew-Burke-Ernzerhof parameterization of the exchange 
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correlation potential) as implemented in the VASP plane-wave pseudopotential code [90,91]. 

The core-electron interactions were treated with the projector augmented wave (PAW) method 

[89,92] and a plane-wave basis set cutoff energy of 400eV was used. The k point-grids were 

sampled with the Monkhorst and Pack method [116] and partial occupancy at the Fermi level 

was treated with the method of Methfessel and Paxton [117]. The ionic positions and the lattice 

parameters of each structure were fully relaxed. Convergence tests of the energy with respect to k 

point grids indicated that k-point sampling errors are less than 5 meV per TiH3x formula unit.  

Formation energies of the low energy configurations are illustrated in Fig. 3-2 in which 

fcc Ti and δ-TiH2 (all tetrahedral sites filled with hydrogen) are used as reference states and each 

formation energy, ΔE x( ), for a particular configuration having formula TiH3x is defined as  

ΔE x( )= E x( )−
3
2

x • ETiH2

δ − 1−
3
2

x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ • ETi

fcc                (3-1) 

where E x( ) is the total energy per crystal site for the same configurations of TiH3x calculated 

from first-principles (with DFT-GGA using VASP) while ETiH2

δ  and ETi
fcc  are the first-principles 

energies per atom of δ-TiH2 and fcc Ti crystal.  

For pure Ti, we find that hcp Ti is more stable than fcc Ti by 55 meV/atom and more 

stable than bcc by 109 meV/per atom. This result is consistent with the experimental observation 

that hcp α-Ti is observed at room temperature. Hydrogen insertion, though, leads to a 

stabilization of fcc relative to hcp. At the stoichiometric TiH2 composition the lowest energy 

configuration is one in which hydrogen fills all tetrahedral sites (a CaF2 structure). This structure 

corresponds to the experimentally observed δ-TiH2. The cubic TiH2 structure can further lower 

its energy by 6 meV per Ti through a tetragonal distortion, which corresponds to the 

experimentally observed low temperature ε-TiH2 phase. At intermediate concentration, an 
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ordered phase with composition TiH is energetically favored relative to fcc Ti and δ-TiH2, 

however, not stable enough to make it a ground state relative to hcp α-Ti and δ-TiH2 (i.e. its 

energy is above the dashed line in Fig. 3-2) or hcp α-Ti and ε-TiH2 (i.e. its energy is above the 

solid line in Fig. 3-2). In this low energy TiH phase, the H atoms occupy half the tetrahedral sites 

as illustrated in Fig. 3-2. This H-ordering is the same as that reported for the γ-TiH phase 

observed experimentally but believed to be metastable [35]. The particular H-ordering within γ-

TiH leads to a face center tetragonal (fct) unit cell with a calculated c/a ratio of 1.1. The 

experimental c/a ratio is 1.093 [35]. A summary of calculated lattice parameters for several 

phases is presented in Table 3-1. The consistency with experiment is satisfactory [35,37,118]. 

Several TiH3x structures with compositions close to stoichiometric TiH2 exhibit 

peculiar mechanical instabilities and a strong degree of anharmonicity with respect to 

homogeneous strains. The energy of TiH2 as a function of the c/a ratio, for example, is illustrated 

in Fig. 3-3(a). The energy curve displays two local minima, one with c/a>1 and the other with 

c/a<1. The minimum at c/a<1 has the lowest energy and corresponds to the ε phase observed 

experimentally below room temperature [34]. The difference in energy between cubic TiH2 and 

tetragonal TiH2 is predicted within GGA to be ~6meV per Ti atom. Surprisingly, the cubic form 

of TiH2 (c/a=1), which appears experimentally above ~300 K [34], is predicted to be 

mechanically unstable at zero Kelvin. Similar curves were predicted by Wolf and Herzig for 

TiH2 and ZrH2 and by Ackland for ZrH2 [119]. The calculations of Wolf and Herzig [120], 

performed with FLAPW using LDA with the Hedin and Lundquist parameterization, however, 

predicted the tetragonal variant with c/a>1 to be more stable than the c/a<1 variant. The 

discrepancy between their results and those predicted here can likely be attributed to a difference 

in the parameterization of the exchange correlation potential. Indeed, we recalculated the energy 
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versus c/a with a variety of k-point meshes ranging from 8x8x8 to 24x24x24 for the non-

primitive cubic TiH2 unit cell to rule out errors due to poor k-point sampling. For all k-point 

meshes, the c/a <1 tetragonal variant has the lowest energy. We also found that LDA based on 

the Perdew-Zunger parameterization of the exchange correlation predicts the tetragonal variant 

with c/a <1 to have the lowest energy.  

Similar mechanical instabilities with respect to a homogeneous tetragonal distortion 

were found for other H-vacancy configurations in fcc Ti with compositions close to TiH2. 

Figures 3-3(b) and 3-3(c) illustrate the energy for two off-stoichiometric compounds as a 

function of the c/a ratio. The difference between the mechanically unstable cubic form and a 

stable tetragonal variant as hydrogen vacancies are added to TiH2 was always found to be less 

than 3 meV per Ti. The mechanical instabilities of hydrogen rich cubic TiH2-z configurations 

complicate a rigorous description of the finite temperature excitations that determine the 

thermodynamic properties of this system. The strong anharmonicity with respect to 

homogeneous strain indicates that long wavelength strain fluctuations are easily excited, thereby 

contributing to finite temperature free energies that determine phase stability. Such excitations 

were not explicitly investigated in this thesis.  

 

3.1.2 Cluster expansion and statistical mechanics for the fcc and hcp hosts 

The formation energies in Fig. 3-2 show that the hcp Ti host rapidly becomes unstable 

relative to the fcc Ti host as hydrogen is inserted. This indicates that the hydrogen solubility 

within α-Ti (hcp) will be dilute and that the relevant thermodynamic properties of this phase can 

be treated with an ideal solution model in which interactions between different hydrogen atoms 

are neglected. For fcc Ti, however, non-dilute hydrogen interactions are important and a cluster 



 36

expansion is necessary to parameterize the formation energies for the different hydrogen-

vacancy configurations in this host.  

A cluster expansion for the fcc host structure was constructed by fitting Eq. 2.10 to 

formation energies of 65 different H-vacancy configurations within the fcc host with the largest 

supercell containing four TiH3x. By minimizing the MCCV using a genetic algorithm, an optimal 

set of clusters was selected from a total of 79 candidates. The set includes 1 empty cluster, 2 

points (for the tetrahedral and octahedral sites), 6 pairs, 4 triplets and 5 quadruplets and the 

values of their ECI are illustrated in Fig. 3-4. The root-mean-square (rms) error with respect to 

the structures used in the fit is 8 meV per TiH3x formula unit and the Leave-One-Out CV (LOO-

CV) is 16 meV per TiH3x formula unit. The cluster expansion correctly predicts γ−TiH and δ-

TiH2 to be ground states when considering only hydrogen-vacancy configurations over the 

interstitial sites of fcc Ti.  

It should be noted that the use of a cluster expansion for the cubic fcc based TiH3x is not 

strictly rigorous, as this phase is mechanically unstable with respect to a tetragonal distortion for 

hydrogen compositions close TiH2 (see Fig. 3-3 and section 3.1.1). However, as noted above, the 

difference in energy between the cubic phase and the mechanically stable tetragonal variants in 

TiH2-z was found to be less than 3 meV per Ti, except for TiH2, for which the difference is 6 meV 

per Ti. As these differences in energy are very small and are of the order of typical numerical 

errors due to k-point sampling, we believe that the cluster expansion of Fig. 3-4 should provide a 

sufficiently accurate description of the configurational energy of cubic TiH2-z observed 

experimentally above 300 K [34]. 

In the parameterization of the cluster expansion for fcc TiH3x, we used fully relaxed 

energies for each of the 65 H-vacancy configurations. The relaxed energies were determined 
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with an automated relaxation procedure (i.e. conjugate gradient method within VASP). We point 

out, though, that this approach is not always guaranteed to find the lowest energy (mechanically 

stable) distortion due to symmetry constraints of the prerelaxed structure. In this work, for 

example, we relaxed each configuration starting with a cubic Ti-fcc host. If the H-vacancy 

arrangement preserves this symmetry, the relaxed structure will also be cubic and will not 

spontaneously relax to a mechanically stable tetragonal variant. The H-vacancy configurations 

that do not preserve cubic symmetry will spontaneously distort, however, the relaxed distortion 

may not correspond to the lowest energy tetragonal variant for that configuration. An analysis of 

the vibrational degrees of freedom (section 3.2) of a subset of the 65 relaxed H-vacancy 

configurations used in the fit of the cluster expansion showed that several of these configurations 

are mechanically unstable with respect to a tetragonal distortion. The use of relaxed input 

energies that do not always correspond to the lowest energy distortion can contaminate the fit of 

a cluster expansion, leading to a reduction in its ability to predict the energies of configurations 

not included in the fit. However, since the difference between stable tetragonal distortions and 

cubic TiH2-z ranges between 3-6 meV per Ti, we expect only a marginal increase in accuracy if a 

more consistent set of input energies were used in the fit of the cluster expansion (obtained e.g. 

by manual relaxation of each of the 65 configurations to find the lowest energy distortion).  

The cluster expansion of the H-vacancy configurational energy in fcc Ti was 

implemented in Monte Carlo simulations in the grand canonical ensemble. A Monte Carlo cell 

containing 512 unit cells (1536 interstitial sites as there are two tetrahedral sites and one 

octahedral site per unit cell) was used. At each temperature and chemical potential, 1000 Monte 

Carlo passes per site were performed after which averaging occurred over 2000 Monte Carlo 

passes. The relative stability between fcc and hcp hosts as a function of hydrogen concentration 
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can be determined by a comparison of their free energies. For the fcc host, the free energies were 

calculated by integrating the chemical potential obtained from Monte Carlo simulations, starting 

from reference states where the free energy is known (e.g., at x=0 in TiH3x for which the 

configurational entropy is zero [4] or in ordered phases at low temperature where the free energy 

can be calculated with a low-temperature expansion [10].)  

Due to the low hydrogen solubility in hcp Ti, we can accurately describe the free energy 

of α-TiH3x with an ideal solution model (in which interactions among hydrogen atoms are 

neglected). The details can be found in Appendix B of this thesis. The change in energy upon 

adding an isolated hydrogen to either a tetrahedral or octahedral site in hcp Ti was calculated in a 

36 atom supercell (comparisons with similar calculations in a 96 atom supercell showed that the 

36 atom supercell is sufficiently large to approximate the dilute limit). The ideal solution free 

energy for interstitial occupancy in hcp Ti has one internal degree of freedom at fixed hydrogen 

concentration with respect to octahedral versus tetrahedral site occupancy. The relative hydrogen 

occupancy between octahedral and tetrahedral sites as a function of T and hydrogen 

concentration was determined by minimizing the ideal solution free energy with respect to this 

internal degree of freedom.  

 

3.1.3 Phase diagram 

Two calculated phase diagrams are illustrated in Fig. 3-5. Fig. 3-5(a) shows a metastable 

phase diagram of TiH3x over the fcc host only. Figure 3-5(b) shows the phase diagram of TiH3x 

calculated by comparing free energies over both the fcc and hcp hosts, with the vertical dash line 

representing the stoicheometric TiH2. Considering only the fcc host structure, Fig. 3-5(a) shows 

that two hydrides are stable: the γ hydride (TiH) and the δ hydride (TiH2). The γ hydride is 
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predicted to be stable only at low temperature, decomposing through a peritectoid reaction at 

around 450K.  This γ hydride corresponds to the face centered tetragonal TiH phase observed 

experimentally [35]. The δ-TiH2 hydride, in which H occupies the tetrahedral interstitial sites of 

the fcc Ti host, can tolerate a large degree of off-stoichiometry, accommodated by H-vacancies.  

When considering relative stability over both the fcc and hcp host structures (below 

~700K), as illustrated in Fig. 3-5(b), only the δ-TiH2 hydride remains stable. A large two-phase 

coexistence region exists between δ-TiH2 and α hcp Ti, the latter characterized by a very dilute 

H solubility limit. Not included in the calculated phase diagrams is the cubic to tetragonal 

transition that occurs upon cooling TiH2 to low temperatures. This transition will be discussed in 

section 3.3.  

Experiments by Numakura and Koiwa [35] demonstrated the existence of γ-TiH 

precipitates within the α phase matrix in a Ti-3 at. % H specimen. The calculated phase diagram, 

however, predicts that γ-TiH is metastable with respect to α-Ti and δ-TiH2. Figure 3-2 shows 

that the formation energy of γ-TiH lies above the common tangent to the formation energies of α 

hcp Ti and δ-TiH2. The Monte Carlo simulations show that the degree with which γ-TiH is 

unstable relative to α hcp Ti and δ TiH2 increases substantially with temperature. As the 

temperature is raised, the free energy of δ-TiH2 decreases more rapidly than that of γ-TiH as a 

result of the additional configurational entropy arising from vacancy disorder in off-

stoichiometric δ-TiH2-z. This is clearly illustrated by the calculated free energy curves of the α, 

δ, and γ phases as a function of H concentration at various temperatures (Fig. 3-6). While the 

free energy of γ at low temperature lies below the common tangent to fcc Ti and δ-TiH2, it is 

well above the common tangent to the free energies of α hcp Ti and δ-TiH2. Above 450K (the 
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peritectoid temperature in Fig. 3-5(a)), the γ-TiH phase disappears altogether. These results show 

that when considering only configurational degrees of freedom, the γ-TiH hydride is predicted 

(within the first-principles GGA approach) to be unstable at finite temperature. Other factors, 

including vibrational degrees of freedom or coherency strain may alter the stability of γ-TiH 

relative to α hcp Ti and δ-TiH2 and thus show that the observations of γ-TiH by Numakura and 

Koiwa [35] is thermodynamically driven and not due to kinetic factors. This will be explored in 

subsequent sections.  

 

3.1.4 Site occupancy 

Both the fcc and hcp hosts offer tetrahedral and octahedral interstitial sites for H-

occupancy. The first-principles GGA calculations of formation energies of the different H-

vacancy arrangements over the interstitial sites of fcc and hcp show that the preference for 

tetrahedral and octahedral sites depends on the overall hydrogen concentration.  At low H 

concentration, H prefers octahedral interstitial sites in both hcp Ti and fcc Ti, while at high 

concentration, H prefers the tetrahedral interstitial sites in the fcc host. This result persists at 

finite temperature as predicted both by the dilute solution model for the hcp host and the Monte 

Carlo simulations for the fcc host. For the hcp host with dilute H, the octahedral site is more 

stable than the tetrahedral site by 76 meV. For the fcc Ti host, the site occupancy, which is 

defined as the number of H in a particular type of interstitial site divided by the total number of 

that type of interstitial site, can be extracted from the Monte Carlo simulations. Figure 3-7 

illustrates the site occupancy as a function of H concentration at 300K and 600K for the fcc Ti 

host. As is evident from Fig. 3-7, H prefers the octahedral sites at low concentration, while it 

prefers the tetrahedral sites at high H concentration, although at 600K some octahedral 
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occupancy also exists in the H-rich δ-TiH2 phase at hydrogen compositions near the two-phase 

coexistence boundary.  

 

3.2 Vibrational degrees of freedom 

The analysis of phase stability in the Ti-H system has so far only taken account of 

configurational degrees of freedom. However, due to the low mass of hydrogen, vibrational 

degrees of freedom can be important, especially zero-point vibrational energies. To investigate 

this, we calculated the phonon densities of states of 30 different H-vacancy configurations within 

the fcc Ti host along with the phonon density of states for hcp Ti. These were calculated with a 

force constant spring model [113]. The force constants were extracted from first-principles GGA 

calculations (with the VASP code) of the restoring forces due to atomic perturbations within 

supercells using the fitfc code of the Alloy-Theoretic Automated Toolkit (ATAT) [113,121]. For 

each fcc based configuration, we used a supercell with maximal length between periodic images 

of 9 Å and extracted spring constants up to an inter-atomic distance of 4.5 Å. Convergence tests 

for several hydrogen-vacancy arrangements indicated that these supercell sizes and spring cutoff 

lengths lead to a numerical error in the zero-point vibrational energies of about 1 meV per 

formula unit of TiH3x.  

Among the 30 configurations for which phonon densities of states were calculated, 8 

exhibited unstable phonon modes. The formation energies with and without zero-point 

vibrational energy of the remaining 22 stable H-vacancy configurations are illustrated in Fig. 3-

8. The formation energies are relative to the fcc Ti and δ-TiH2 reference states (also with and 

without zero-point vibrational energies respectively). Figure 3-8 clearly shows that zero-point 

vibrational energy can have a significant effect on the formation energies of some configurations 
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in a hydrogen containing system. In fact, inclusion of zero-point vibrational energy raises the 

formation energy of γ-TiH by 19 meV, thus making this phase even less stable relative to α-Ti 

and δ-TiH2 already at zero Kelvin.  

The effect of zero-point vibrational energy on formation energies also differs 

qualitatively depending on whether hydrogen atoms occupy tetrahedral sites or octahedral sites. 

Among the 22 configurations of Fig. 3-8, 15 configurations have exclusive tetrahedral occupancy 

by hydrogen, 3 configurations with a hydrogen concentration x less than 1/6 have octahedral-

hydrogen occupancy only while the remaining 3 configurations, which have relatively high 

formation energies, have both tetrahedral- and octahedral-hydrogen (the last configuration is 

pure fcc Ti without H atoms). We found that zero-point vibrational energy raises the formation 

energies of most low energy configurations containing tetrahedral sites while it lowers the 

formation energy for configurations with octahedral hydrogen. This is presumably due to the 

larger interatomic distance between H and Ti in the octahedral sites as compared to tetrahedral 

sites. Larger interatomic distances tend to lead to softer bonds (smaller force constants) and 

therefore vibrational densities of states corresponding to lower frequencies [113]. 

Similar trends were found in hcp Ti. Inclusion of zero point vibrational energy raised the 

difference in energy between tetrahedral versus octahedral occupancy by hydrogen (in the dilute 

limit) from 76 meV to 146 meV, further destabilizing the tetrahedral site in this dilute regime. 

These energy differences were calculated in a 36-atom hcp Ti supercell containing one hydrogen 

atom. The phonon densities of states of an isolated hydrogen atom in hcp Ti were calculated with 

a force-constant spring model, fit to first-principles GGA calculations of atomic perturbations in 

the 36-atom unit cell.   

We point out that a harmonic spring model for a particular crystal can fail to predict 
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mechanical instabilities if the force constants are too short-ranged. Extending force constants to 

larger distances than used in this work, or using a linear response method to calculate the phonon 

density of states, may indicate that even more than 8 of the 30 H-vacancy configurations 

considered here are mechanically unstable. In fact, the short-ranged spring model failed to 

predict the mechanical instability of cubic TiH2 with respect to a homogeneous tetragonal 

distortion (see Fig. 3-3(a)).  

 

3.3 The cubic to tetragonal phase transformation of TiH2 

We have so far focused on hydrides in the Ti-H system that form as the result of 

hydrogen ordering over the interstitial sites of fcc Ti. However, in addition to the γ-TiH and δ-

TiH2 hydrides, a third hydride can form, denoted ε-TiH2, as a result of a structural cubic to 

tetragonal transformation from cubic δ−TiH2 around 300 K [34]. We can distinguish between 

structural transformations that involve an internal shuffle, in which atoms within a unit cell 

rearrange at a transition temperature and thereby change the symmetry of the crystal, and 

structural transformations involving a homogeneous strain of the unit cell. The cubic δ−TiH2 to 

tetragonal ε-TiH2 phase transformation falls into the second category. The first category has been 

studied extensively in the context of ferro-electric phase transformations using first-principles 

effective Hamiltonians [9,122-124]. The second category of structural phase transformations is 

less well understood from a statistical mechanical point of view.  

While the cubic form of TiH2 is observed experimentally above ~300K [34], calculations 

within density functional theory predict that this phase is mechanically unstable with respect to a 

tetragonal distortion at zero Kelvin [see Fig. 3-3(a) and ref 120]. Conventional intuition about 

structural phase transformations is typically based on a Landau interpretation in which 
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temperature dependent free energies are assumed to exist as a function of some order parameter, 

which in the case of TiH2 would be the c/a ratio. As the temperature increases, the shape of the 

free energy should change in a way that renders the high temperature phase both mechanically 

stable and as having the lowest free energy. For TiH2, this picture implies that vibrational and 

electronic excitations should make the cubic form of TiH2 mechanically stable at a finite 

temperature, as reflected by a free energy curve exhibiting a local minimum around c/a=1. Here 

we explore the extent with which electronic and harmonic-vibrational excitations at finite 

temperature affect the free energy of TiH2 as a function of the c/a ratio.  

The cubic to tetragonal phase transformation of TiH2 has been suggested to originate 

from a Jahn-Teller instability [125,126]. Experiment as well as density functional theory 

calculations [120,125,126] have demonstrated that the Fermi level of cubic TiH2 (and ZrH2 

[120,127,128]) coincides with a peak in the electronic density of states. A tetragonal distortion of 

TiH2 splits this peak [126], resulting in a minimum in the density of states at the Fermi level and 

a lowering of the total energy of the crystal. At elevated temperature, however, thermally excited 

electrons will start occupying the split off empty states above the Fermi-level of the tetragonal 

phase, thereby undoing the energy gain of the Jahn-Teller distortion. We can therefore expect a 

critical temperature above which the cubic form of TiH2 should become mechanically stable and 

have a free energy that is lower than tetragonal TiH2.  

In order to qualitatively investigate the role of electronic excitations on the cubic to 

tetragonal phase transformation, we calculated the free energy of TiH2 as a function of the c/a 

ratio due to electronic excitations by varying the degree of thermal broadening of the electron 

distribution around the Fermi level, using the Fermi smearing feature in VASP calculations with 

a smearing factor given by σ= kBT. Figure 3-9 illustrates the calculated free energies at various 
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temperatures T. In these calculations, we used a sufficiently dense k-point grid (24x24x24 mesh 

for the non-primitive fcc form of TiH2) to ensure k-point convergence for each value of σ. Figure 

3-9 clearly shows that the difference in free energy between tetragonal and cubic TiH2 decreases 

with increased broadening (due to increased temperature) of the electron distribution around the 

Fermi level. Furthermore, the c/a ratio corresponding to the minimum free energy gradually 

approaches 1 as the temperature increases. Nevertheless, the cubic phase remains mechanically 

unstable with respect to tetragonal distortion up to temperatures in excess of 800K, which is well 

above the experimentally measured cubic to tetragonal transition temperature of 300K. This 

result suggests that electronic excitations alone cannot account for the experimentally observed 

cubic to tetragonal phase transformation of TiH2 at 300K [34]. Other factors related to 

vibrational degrees of freedom must therefore also play an important role in this transformation.  

The fact that a short-ranged spring model fails to predict mechanical instabilities due to 

homogeneous strains of cubic TiH2, as described in Section 3.2, provides us with an opportunity 

to calculate a constrained free energy as a function of the c/a ratio due to harmonic vibrational 

degrees of freedom, even for the portions that are mechanically unstable with respect to a 

homogeneous tetragonal distortion. This is illustrated in Fig. 3-10 where Eq. (2-45) is evaluated 

as a function of the c/a ratio using phonon-dispersion curves calculated within the harmonic 

approximation with force constants derived from perturbations in supercells having a distance of 

11.5 Å between periodic images and spring constants extending to 5.7Å. Figure 3-10 shows that 

the mechanical instability of cubic TiH2 with respect to a homogeneous (acoustic) strain persists 

to temperatures above the experimental cubic to tetragonal transition temperature of 300 K. 

Although the free energies of Fig. 3-10 are calculated with a first-principles parameterized spring 

model, they should be viewed as phenomenological free energy curves not unlike Landau free 
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energies expressed as a function of a strain order parameter. Presumably, the free energy curves 

of Fig. 3-10, while based on a harmonic spring model that fails to capture the instability of long-

wavelength tetragonal distortions of the crystal, accurately account for optical and short 

wavelength phonon excitations, which are more easily described with short-range spring 

constants.  

The calculated free energies of Figs. 3-9 and 3-10 suggest that a conventional Landau 

interpretation of the cubic to tetragonal phase transformation, involving free energies that are 

assumed to have local minima for both the tetragonal and cubic phases as a function of c/a, does 

not apply to TiH2. Our results indicate that neither electronic excitations nor short-wavelength 

harmonic vibrations alone can explain the existence of cubic TiH2 above 300 K, implying that 

anharmonic vibrational degrees of freedom must also play an important role in stabilizing the 

cubic phase at high temperature. A more accurate treatment of the relevant finite temperature 

excitations that stabilize cubic TiH2 at finite temperature will require an explicit description of 

the anharmonic vibrational degrees of freedom with for example Monte Carlo simulations 

applied to an anharmonic strain Hamiltonian that describes the large degree of anharmonicity 

with respect to long-wave-length tetragonal distortions. 

As was noted in section 3.1.1, the mechanical instability of cubic TiH2 persists as the 

hydrogen concentration is reduced (see Fig. 3-3(b) and Fig. 3-3(c)), although the difference in 

energy between the stable tetragonal variant and the cubic form of TiH2-z reduces to around 3 

meV per TiH2-z formula unit. A rigorous characterization of the thermodynamic properties of the 

cubic form of TiH2-z, therefore, requires not only the inclusion of configurational degrees of 

freedom, but also anharmonic vibrational degrees of freedom. This could be achieved with an 

effective Hamiltonian that couples both configurational degrees of freedom with anharmonic 
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strain degrees of freedom. Due to the extra degrees of freedom that are readily excited at low 

temperature, in addition to configurational degrees of freedom, we can expect an explicit 

inclusion of strain fluctuations to lead to a further stabilization of the δ-TiH2-z phase and an 

increase in the off-stoichiometry that can be tolerated by δ-TiH2-z. An explicit inclusion of the 

anharmonic strain fluctuations, while more rigorous, is unlikely to qualitatively alter the results 

of section 3.1 with respect the off-stoichiometry predicted for δ-TiH2 or the stability of γ-TiH 

relative to α-Ti and δ-TiH2. Nevertheless, such a treatment would enable the prediction of the 

composition dependence of the δ to ε cubic to tetragonal transformation temperature and would 

shed new light on the thermodynamic properties of high temperature phases that are predicted to 

be mechanically unstable at zero Kelvin.  

 

3.4 The role of stress and coherency strains 

Crack growth in Ti within a hydrogen rich environment is often accompanied by hydride 

formation ahead of the crack tip under slow loading conditions [15]. This experimental 

observation suggests that the Ti-hydrides become thermodynamically more favored under a state 

of tensile stress. Even in the absence of external loads, internal stresses that could alter the 

relative stability of the various phases competing for stability can arise during solid-state phase 

transformations due to coherency strains and volumetric changes.  In fact, Numakura and Koiwa 

[35] observed that thin plate-like γ-TiH precipitates form coherently within the α-Ti matrix 

during the early stages of hydride formation. Their TEM analysis elucidated the crystallographic 

relationship between γ-TiH and the α-Ti matrix, showing that the coherent interface consists of a 

prismatic {01 10} plane of the hcp Ti matrix on one side and the {11 0} plane of γ-TiH 

precipitate on the other. Figure 3-11(a) schematically illustrates this coherent interface between 
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α-Ti and γ-TiH, reproduced from Numakura and Koiwa [35].  

When a thin, extended γ-TiH plate forms coherently within the α-Ti matrix, its lattice 

parameters parallel to the coherent interface will be constrained by those of the matrix phase, 

thereby leading to a state of internal stress within the precipitate. To ensure coherency between 

α-Ti and γ-TiH along the interface illustrated in Fig. 3-11(a), d220 must equal d2 1 1 0  and d002 must 

equal d0002, where dhkl and dhklm are interplanar spacings of atomic planes in the precipitate and 

matrix, respectively. The lattice parameter of γ-TiH perpendicular to the coherent interface, i.e. 

the [1 1 0] direction, can potentially relax. The degree to which this lattice parameter relaxes 

depends on the overall geometry of the specimen as well as the elastic stiffness of the matrix 

phase. Due to a volumetric increase upon hydride formation, it is likely that the precipitate will 

experience some degree of compressive stress perpendicular to the interface.  

A phase diagram can be constructed displaying the relative stability between α-Ti, γ-TiH 

and δ-TiH2 as a function of stress. While equilibrium at constant temperature, pressure and 

concentration is determined by a minimum of the Gibbs free energy, a different characteristic 

thermodynamic potential must be minimized to determine phase equilibrium if the system is 

subjected to an anisotropic state of stress resulting from an external load or from internal 

coherency strains. In its most general form, a particular state of stress can be represented with a 

stress tensor. For simplicity and for the purpose of revealing general trends, we consider only 

uniaxial stress states, represented by the scalar σ. Other external thermodynamic boundary 

conditions that are often imposed on a stressed metal susceptible to hydride formation is a 

constant temperature, T, and a constant hydrogen chemical potential, μH, which can be controlled 

experimentally by fixing the hydrogen partial pressure of the environment. At fixed T, μH and σ, 
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the characteristic thermodynamic potential to be minimized to determine phase equilibrium takes 

the form 

     Φ = E − TS − μH N H −Voσε      (3-2) 

where E is the internal energy, S the entropy, NH the number of hydrogen atoms, ε the strain and 

Vo a reference volume of the solid with respect to which the strain is measured (here we set it to 

the initial cell volume). When the above quantities are normalized per Ti atom, then NH becomes 

0 for pure Ti, 1 for TiH and 2 for TiH2. The thermodynamically stable phase at a particular T, μH 

and σ will have the lowest value for Φ among all the phases competing for stability.  

For a fixed hydrogen chemical potential μH, we can obtain from Eq. (3-2) (at 0 Kelvin) a 

free energy curve of Φ as a function of stress level σ, where the stress level as well as the stress-

strain curve (e.g. Fig. 3-12 (b) is for hcp-Ti) can be obtained from the derivative of first-principle 

energy per unit cross section area with respect to the excess elongation (difference between the 

final length and initial length) (e.g. Fig. 3-12 (a) is for hcp-Ti). Hence, under a fixed hydrogen 

chemical potential μH, we can calculate such free energy curves for α-Ti, γ-TiH and δ-TiH2 

respectively, put these three Φ-σ curves in a single plot (e.g. Fig. 3-12(c) shows free energy 

curves as a function of stress for μH = -5meV without coherency strains) and determine the stress 

region that favors a specific phase, that is find the stress region where a specific phase has the 

lowest free energy Φ. In this way we can determine the phase boundary for a fixed hydrogen 

chemical potential μH and furthermore obtain the phase boundary for the whole hydrogen 

chemical potential region we are interested in.  

Figure 3-13 illustrates two such phase diagrams showing relative stability as a function of 

μH and a uniaxial stress σ calculated by minimizing the grand force potential Φ. These phase 

diagrams were calculated at zero Kelvin, where the entropy is zero and only stoichiometric 
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compounds exist. Hence the internal energy E appearing in Eq. (3-2) is then simply equal to the 

first-principles energy (GGA) of either α-Ti, γ-TiH or δ-TiH2 as a function of the stress σ. In Eq. 

(3-2), the strain ε is also a function of the stress σ and this dependence is particular to each 

phase. Practically determining the grand force potential Φ at zero Kelvin can proceed by 

calculating E versus the strain ε and then extracting the stress σ by taking the derivative of E 

with respect to ε and dividing by Vo. 

The phase diagrams in Fig. 3-13 correspond to two particular states of lateral strain 

perpendicular to the axis of tension. The axis of tension is along the [0 1 10] direction of the hcp 

crystal and the [1 1 0] direction of the Ti fcc sublattice of γ-TiH or δ-TiH2 (Fig. 3-11(b)). If 

hydrides form coherently within the α-Ti matrix according to the crystallographic orientations 

reported by Numakura and Kaiwa [35], the tension along the [0 1 10] axis of hcp Ti would 

coincide with tension along the [11 0] direction of the fcc sublattice of γ and δ-hydrides and 

would be perpendicular to the coherent interface. The phase diagram of Fig. 3-13(a) was 

calculated for crystals in the absence of coherency strains. The phase diagram of Fig. 3-13(b) 

was calculated by fixing the hydride lattice parameters perpendicular to the axis of tension to 

coincide with those of hcp Ti in the {01 10} plane. Figure 3-13(b) is therefore a phase diagram 

describing coherent hydride phase stability. The phase diagrams neglect zero-point energies and 

therefore only provide general trends as to how hydride phase stability evolves with increasing 

stress.  

Figure 3-13(a) shows that at low hydrogen chemical potential α-Ti is stable, while at high 

chemical potential δ-TiH2 is stable. The reference state of the hydrogen chemical potential is 

arbitrarily set to the value corresponding to the transition between α-Ti and δ-TiH2 at zero stress. 

As already mentioned in section 3.1.3, bulk γ-TiH is not stable at zero pressure and therefore 
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does not appear in the phase diagram of Fig. 3-13(a) at σ=0. As stress is imposed, however, γ-

TiH becomes stable within a limited range of hydrogen chemical potential and stress. The phase 

diagram of Fig. 3-13(a) also illustrates that stress along the [0 1 10] direction of α-Ti and the 

[11 0] of the δ-TiH2 favors hydride formation as manifested by the negative slope of the phase 

boundary between α-Ti and δ-TiH2: As the tensile stress, σ, is increased, the transition from α-Ti 

to δ-TiH2 occurs at a lower hydrogen chemical potential. This result is consistent with 

experimental observations of hydride formation ahead of a crack tip [15]. 

The stability of the γ-TiH phase relative to α-Ti and δ-TiH2 is significantly enhanced 

when a strain perpendicular to the axis of tension is imposed on the hydrides to enable the 

formation of coherent interfaces with the α-Ti matrix along the (0 1 10) habit plane, as illustrated 

in Fig. 3-11(b). When coherency strains are imposed, γ-TiH even becomes stable for 

compressive stresses σ within a limited chemical potential range. For a coherent γ-TiH hydride, 

the chemical potential interval, where γ-TiH is stable, increases with increasing tensile stress 

perpendicular to the (0 1 10) habit plane.  

 

3.5 Summary 

In this chapter we investigated the thermodynamic properties of the Ti-H system from 

first-principle and it has revealed the importance of configurational and vibrational degrees of 

freedom in determining hydride phase stability. Configurational excitations are important in δ-

TiH2-x as this phase can tolerate large vacancy concentrations, while they do not contribute 

significantly to the free energy of the γ-TiH phase, which remains a stoichiometric compound at 

finite temperature. The inclusion of zero-point vibrational energy penalizes tetrahedral site 

occupancy more than octahedral site occupancy and increases the degree with which γ-TiH is 
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unstable relative to α-Ti and δ-TiH2-z. This is presumably due to the larger interatomic distance 

between H and Ti in the octahedral sites as compared to tetrahedral sites. Larger interatomic 

distances tend to lead to softer bonds (smaller force constants) and therefore vibrational densities 

of states corresponding to lower frequencies.38 This favoring of octahedral sites over tetrahedral 

sites by vibrational degrees of freedom is likely a general trend in all metallic hydrides. An 

analysis of relative stability under anisotropic stress states shows that hydrides of the Ti-H 

system are thermodynamically favored under tensile stress. Furthermore, when the hydrides are 

subjected to coherency strains, γ-TiH is predicted to be stable at zero stress as well as under 

compressive stresses. The predicted mechanical instability of cubic δ-TiH2 with respect to a 

homogeneous tetragonal distortion to ε-TiH2 raises fundamental questions about the relevant 

excitations that stabilize cubic TiH2 above 300 K and suggests the importance of anharmonic 

strain fluctuations in determining the thermodynamic properties of this phase.  
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Figure 3-1 Interstitial sites in Ti host: (a) octahedral sites in fcc Ti host, (b) tetrahedral sites in 
fcc Ti host, (c) octahedral sites in hcp Ti host, and (d) tetrahedral sites in hcp Ti host. 
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Figure 3-2 Calculated formation energies of TiH3x for fcc and hcp based hydrogen-vacancy 
configurations with respect to fcc Ti and δ-TiH2. 
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Figure 3-3 Calculated variation of the energy of TiH2-z with c/a ratio (at constant volume) for (a) 
TiH2, (b) TiH1.75, and (c) TiH1.5. A c/a = 1 corresponds to the cubic phase. 
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Figure 3-4 Effective cluster interactions for the cluster expansion of the hydrogen-vacancy 
configurational energies over the interstitial sites of fcc Ti. The clusters include an empty and 
two point clusters (not shown), six pairs, four triplets, and five quadruplets.  
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Figure 3-5 Calculated phase diagram of TiH3x: (a) considering relative stability over the fcc-Ti 
host only and (b) considering relative stability over both the hcp and fcc hosts. 
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Figure 3-6 Calculated free energy of fcc Ti, α-Ti (hcp), γ-TiH, and δ-TiH2 at (a) 300K, (b) 450K, 
and (c) 600K. 
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Figure 3-7 Calculated hydrogen concentrations within tetrahedral (solid line) and octahedral 
(dashed line) sites of the fcc-Ti host at (a) 300K and (b) 600K. 
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Figure 3-8 Calculated formation energies of various configurations of TiH3x with (squares) and 
without (circles) zero-point vibrational energies. Reference states are fcc Ti and δ-TiH2. The 
circled energies correspond to configurations with exclusively octahedral occupancy. All other 
energies in the enlarged plot (bottom) correspond to configurations with exclusively tetrahedral 
occupancy. 
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Figure 3-9 Free energies of TiH2 as a function of c/a ratio, calculated with Fermi broadening of 
the electron distribution at various temperatures.  
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Figure 3-10 Constrained free energies of TiH2 as a function of c/a ratio, calculated within the 
harmonic approximation using a first-principles parameterized spring model. The free energies at 
finite temperature are shifted to fit in one plot. 
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Figure 3-11 (a) The experimentally observed (Ref. 35) habit plane between α-Ti (hcp) and 
coherent γ-TiH precipitates. Empty and black circles are Ti atoms of successive (0001) and (001) 
planes of hcp and fcc hosts and green circles are tetrahedrally coordinated hydrogen atoms. (b) 
Schematic illustration of the orientation of the axis of tension relative to the hcp and fcc hosts 
used to investigate the role of stress on hydride phase stability. 
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Figure 3-12. (a) The energy as a function of excess elongation along [0 1 10] direction for hcp-Ti. 
(b) The traction curve for hcp-Ti obtained as the derivative of the plot in (a). (c) Free energies for 
hcp-Ti, TiH and TiH2 as a function of stress for μH = -5meV without coherency strains. 



 65

 

 

Figure 3-13 Calculated 0 K phase diagrams as a function of hydrogen chemical potential and 
stress (see Fig. 3-11 for the orientation of the applied stress relative to the various crystals). (a) 
Phase diagram in the absence of coherency strains (i.e. equilibrium lattice parameters 
perpendicular to the axis of tension). (b) Phase diagram accounting for coherency strains that 
exist across the habit plane of Fig. 3-11(b). 
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Table 3-1 Comparison of calculated lattice parameters with experimental results (see Ref. 35, 37, 
and 118). 
a. Reference 118. 
b. Reference 35. 
c. Reference 37. 
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Chapter 4 

First-principles investigation of migration barriers and point defect complexes in a 
substitution solid: B2-NiAl 

 
 

In chapter 3, we investigated the thermodynamics in an interstitial solid: Ti hydride. In 

this and the following chapters, we will apply the similar first-principle approaches to a 

substitution solid: B2-NiAl compound; the emphasis will be put on the kinetic properties in this 

compound. 

 

4.1 Important hop mechanisms in B2-NiAl 

In this chapter, we survey important hop mechanisms that have been proposed for B2-

NiAl and calculate their migration barriers from first principles. We also explore new hop 

mechanisms and further show that the migration barriers for a variety of hop mechanisms are 

sensitive to the local environment. As any nearest neighbor hop in B2-NiAl leads to a disruption 

of long-range order, several migration sequences involving a succession of hops have been 

proposed, including the various six jump cycle mechanisms (6JC) [47,63,66], the migration of 

triple defect complexes [49,67] and the anti-structural bridge mechanism (ASB) [52]. These hop 

sequences involve a combination of nearest neighbor and second nearest neighbor atom-vacancy 

exchanges as well as two atom-vacancy exchanges [58]. As the concentration and nature of point 

defects changes with alloy composition, we pay special attention to the effect of local short-range 

order on migration barriers for various hop mechanisms. 
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We used first-principles electronic structure methods based on density functional theory 

(DFT) within the generalized gradient approximation (Perdew-Wang 91 parameterization of the 

exchange correlation potential) to estimate migration barriers and to calculate defect formation 

energies in B2-NiAl. To this end, we used the VASP plane-wave pseudopotential code [90,91] 

and treated the core-electron interactions with the projector augmented wave (PAW) method 

[89,92]. For the Ni atoms, the 3p semi-core states were treated as valence states. The k point-

grids were sampled with the Monkhorst and Pack method [116] and partial occupancy at the 

Fermi level was treated with the method of Methfessel and Paxton [117]. A plane-wave basis set 

cutoff energy of 500eV was used. The ionic positions and the lattice parameters of each structure 

were fully relaxed. Convergence tests of the energy with respect to k point grids indicated that k-

point sampling errors are less than 5 meV per Ni xNiAl xAl ∅ xV  formula unit, where ∅ stands for 

a vacancy.  

As magnetism can play a role in affecting total energies of alloys containing Ni, we 

compared energies of the experimentally observed compounds in the Ni-Al system calculated 

with and without spin-polarization (ferromagnetic ordering). While spin-polarization affects the 

energies of pure Ni and L12 Ni3Al, the maximum difference between the spin-polarized and non-

spin-polarized total energies was found to be less than 0.5 meV/site for fcc Al, D011 NiAl3, D519 

Ni2Al3 and “Pt5Ga3” type Ni5Al3. No difference was found between spin polarized and non-spin 

polarized energies for B2 NiAl. We therefore neglected spin polarization in the calculation of 

migration barriers and the energies of different point defect configurations in B2-NiAl. 

We used the nudged elastic band method to calculate migration barriers. For some atomic 

hop mechanisms, though, the activated state is at a high symmetry point and there is no need to 

use the nudged elastic band method to calculate the barrier height. In these cases, we directly 
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calculated the energy of the activated state and the initial state. All calculations of migration 

barriers were performed in a 54-site supercell of B2 NiAl using a 3× 3× 3 k-point mesh, which 

ensured a k-point sampling error of less than 1.2 meV per Ni xNiAl xAl ∅ xV  formula unit. 

 

4.1.1 Nearest-neighbor hops 

The most common hop mechanism in metallic alloys is a nearest neighbor hop of an atom 

into an adjacent vacant site. If the Al-sublattice contains a vacancy, then a nearest neighbor Ni 

atom can hop into that vacant site to create a Ni-antisite defect, leaving behind a vacancy on the 

Ni sublattice. In B2-NiAl, the concentration of defects can be very high, and the migrating Ni 

atom could also be surrounded by additional defects. We calculated the migration barriers of Ni 

nearest-neighbor hops with the nudged elastic band method for three local environments. These 

are illustrated in Fig. 4-1 together with the calculated energy along the migration path. In Fig. 4-

1(a), Ni migrates into an isolated Al-vacancy, while in Fig. 4-1(b), Ni performs a nearest 

neighbor hop in the presence of an adjacent Ni vacancy and in Fig. 4-1(c), Ni performs a nearest 

neighbor hop in the presence of a second Al vacancy. Figure 4-1 shows that nearest neighbor Ni 

hops have relatively low barriers, ranging between 0.31 eV and 1.1 eV (depending on the 

direction of the hop). Furthermore, Fig. 4-1 shows that the local environment can have a 

significant influence on nearest neighbor migration barriers. The presence of a Ni vacancy will 

increase the Ni nearest neighbor migration barrier from 0.35 eV to 0.65 eV, while the presence 

of second Al vacancy has little influence on the migration barrier.  

Nearest neighbor Al-hops into an adjacent vacancy on the Ni sublattice is in principle 

also possible. However, in B2-NiAl, Mishin et al [58], while investigating the 6JC mechanism, 

showed that the endpoint of such a hop is mechanically unstable, and the Al atom will relax back 
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to its original position on the Al-sublattice. Our first-principles calculations confirm this 

prediction suggesting that Al-nearest neighbor hops to the Ni-sublattice do not occur.  

 

4.1.2 Second nearest neighbor hops 

B2-NiAl has a relatively open crystal structure (as it is a super structure ordering of bcc) 

and can therefore also accommodate second nearest neighbor hops. Second nearest neighbor 

hops do not disrupt long-range order in B2-NiAl as the migrating atoms remain on their own 

sublattice. The activated state of a second nearest neighbor hop resides on a mirror plane 

between the endpoints, enabling us to calculate the migration barrier by placing the migrating 

atom at the midpoint of the hop. Figure 4-2 illustrates the migration barriers for several possible 

second nearest neighbor hops. In the absence of any additional defects, the second nearest 

neighbor hop of an Al atom into an Al-vacancy has a migration barrier of 1.49 eV, which is close 

to half of the predicted migration barrier for a second nearest neighbor hop of a Ni atom into a 

Ni-vacancy of 2.76 eV. Hence, an Al atom exchanges more frequently with a second nearest 

neighbor vacancy (on the Al sublattice) than does a Ni atom with a second nearest neighbor (on 

the Ni sublattice). However, the overall frequency of second nearest neighbor hops is also very 

sensitive to the availability of vacancies on the Al sublattice and on the Ni sublattice. 

As with the first-nearest neighbor hops, the second nearest neighbor migration barriers 

are significantly affected by the close proximity of additional defects. If a second nearest 

neighbor Al hop occurs in the vicinity of a Ni vacancy as illustrated in Fig. 4-2 (c), the predicted 

migration barrier drops by almost half, from 1.49 eV to 0.75 eV. Hence, the presence of Ni 

vacancies will enhance Al second nearest neighbor hops (holding the number of Al-vacancies 

constant). In the opposite configuration, where a Ni second nearest neighbor hop is attempted in 
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the vicinity of an Al vacancy as illustrated in Fig. 4-2 (d), our DFT-GGA calculations show that 

the Ni placed at the activated state, simply relaxes to the vacant Al-site. Hence Ni second-nearest 

neighbor hops adjacent to an Al-vacancy do not occur as one hop, but decompose into two 

nearest neighbor hops (see Fig. 4-1 (b)) for the migration barriers for these nearest neighbor 

hops).  

Figure 4-2 (e)-(h) shows the possible next nearest neighbor hops for anti-site Al atoms 

(AlNi) and anti-site Ni atoms (NiAl). It can be seen from Fig. 4-2 (e)-(h) that the second nearest 

neighbor migration barriers for these defects are also significantly affected by the close 

proximity of additional defects. The second nearest neighbor hop of an anti-site Al atom into a 

Ni-vacancy has a migration barrier of 2.42 eV (Fig. 4-2 (e)), however, if there is a vacancy at the 

nearest neighbor Al-sublattice site, our DFT-GGA calculations show that the anti-site Al atom is 

placed at the activated state and simply relaxes to the vacant Al-site (Fig. 4-2 (g)). As for the 

second nearest neighbor hop of anti-site Ni atom, we can see from Fig. 4-2(f) that the migration 

barrier is 2.05eV if there is no additional vacancy around. On the other hand, if an anti-site Ni 

second nearest neighbor hop is attempted in the vicinity of a Ni vacancy as illustrated in Fig. 4-2 

(h), our DFT-GGA calculations show that the Ni placed at the activated state, simply relaxes to 

the vacant Ni-site. Hence anti-site Ni second-nearest neighbor hops adjacent to an Ni-vacancy do 

not occur as one hop, but decompose into two nearest neighbor hops (see Fig. 4-1 (c)) for the 

migration barriers for these nearest neighbor hops). 

 

4.1.3 Migration barriers for six-jump-cycles (6JC) migration sequence 

While nearest neighbor Al hops into vacancies on the Ni-sublattice are mechanically 

unstable, B2-NiAl alloys in thermodynamic equilibrium do contain small concentrations of Al-
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antisite defects on the Ni-sublattice. Mishin [58] et al in studying the 6JC hop sequence, 

suggested that Al can hop into vacancies on the Ni-sublattice through a collective hop 

mechanism involving the simultaneous migration of two atoms. In this thesis, we systematically 

investigated six-jump-cycles migration sequence and the simultaneous two-atom hops involved 

in it. 

There are three types of six-jump-cycle sequences, which are [110], straight [100] and 

bent [100] types. The original version of six-jump-cycle sequences involves six nearest neighbor 

hops [47,66], however, in recent years several researchers using either embedded atom model or 

DFT calculations have shown that some of these nearest neighbor hops are combined into one 

two-atom hop [58,129]. Thus the original six-jump-cycle sequence should be three- or four-

jump-cycle sequences. Using DFT-GGA calculations, we systematically investigated the six-

jump-cycles and Fig. 4-3, 4-4 and 4-5 shows the migration path and corresponding migration 

barriers for [110], straight [100] and bent [100] types respectively. 

From Fig. 4-3 we can see that the [110] six-jump-cycle sequence involves three [110] 

collective hops instead of six nearest neighbor hops. In the first [110] collective hop, an Al atom 

migrates to a nearest neighbor vacant site on the Ni sublattice, while a Ni atom along the [110] 

direction from the Ni vacancy simultaneously migrates to fill the Al site (see Fig. 4-3(a1)). The 

migration barrier for this collective hop mechanism calculated with the nudged elastic band 

method is around 2.36eV. Instead of involving one Ni atom and one Al atom, the second [110] 

collective hop involves two Al atoms. An Al atom migrates to a nearest neighbor vacant site on 

the Ni sublattice, while an anti-site Al atom along the [110] direction from the Ni vacancy 

simultaneously migrates to fill the Al site (see Fig. 4-3(a2)). The calculated migration barrier for 

the second collective hop is around 0.53eV. The third [110] collective hop follows the second 
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and is simply the reverse of the first [110] collective hop. In the third [110] collective hop, an 

anti-site Ni atom migrates to a nearest neighbor vacant site on the Ni sublattice, while an anti-site 

Al atom along the [110] direction from the Ni vacancy simultaneously migrates to fill the Al site 

(see Fig. 4-3(a3)). After these three [110] collective hops, the order of the compound has 

restored. The net result is that one Ni atom exchanges position with one vacancy on Ni sublattice 

along [110] direction, and two Al atoms exchanges positions with each other. 

The collective hop can also occur in the [100] six-jump-cycle sequence, both straight and 

bent configuration. From Fig. 4-4(a1) we can see that the first hop in the straight [100] six-jump-

cycle is a collective hop involving one Ni atom and one Al atom. The Al atom moves to a nearest 

neighbor Ni vacancy while a Ni atom along the [100] direction from the Ni vacancy 

simultaneously moves to the site originally occupied by the Al atom. The calculated migration 

barrier for this collective hop is around 2.88eV, much higher than that of the first collective hop 

in [110] six-jump-cycle sequence. The final hop in straight [100] six-jump-cycle sequence is 

simply the reverse of the first collective [100] hop (see Fig. 4-4(a4)) and we will not describe it 

in details. Also, the first and the final hops in the bent [100] six-jump-cycle sequence are the 

same as those in the straight [100] six-jump-cycle sequence and they are also collective hops (see 

Fig. 4-5(a1)(a4)). 

An interesting phenomenon occurs in the intermediate hops in both the straight [100] six-

jump-cycle and the bent [100] six-jump-cycle sequences. For instance, for the straight [100] six-

jump-cycle sequence, the calculation of previous researchers shows that the intermediate hops 

are either two consecutive nearest-neighbor hops (see Fig. 4-4(a2) and (a3)), where the middle 

configuration (see Fig. 4-4(a3)) is a stable configuration [Mishin using EAM, ref. 58], or a 

collective hop obtained by combining these two consecutive nearest-neighbor hops, where the 
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middle configuration (see Fig. 4-4(a3)) is an activated state [Emily using DFT, ref. 129]. For the 

bent six-jump-cycle sequence, these researchers make the same arguments. Our DFT-GGA 

calculations show, however, that the intermediate hop in both the straight [100] six-jump-cycle 

and the bent [100] six-jump-cycle sequences involves an anti-site Al atom exchanging with a 

next-nearest-neighbor Ni vacancy (see Fig. 4-4(a2), Fig. 4-5(a2)) instead of two consecutive 

nearest-neighbor hops of two Al atoms or a collective hop involving these two Al atoms. This 

can be seen clearly from the migration barrier plots, i.e. Fig. 4-4(b) and Fig. 4-5(b). From Fig. 4-

4(b) we can see that the overall migration barrier for the straight [100] six-jump-cycle sequence 

is at least 3.76eV if the intermediate hop consists of two consecutive nearest-neighbor hops or a 

collective hop combined by these two consecutive nearest-neighbor hops; while the overall 

barrier drops to 3.47eV if the intermediate hop involves an anti-site Al atom exchanging with a 

next-nearest-neighbor Ni vacancy. In the bent [100] six-jump-cycle sequence, the overall 

migration barrier drops from at least 3.61eV in the case of nearest-neighbor intermediate hop to 

3.47eV in the case of next-nearest-neighbor intermediated hop (see Fig. 4-5(b)). 

In summary, our DFT-GGA calculations show that the six-jump-cycle sequence is 

actually a three-jump-cycle sequence. For [110] six-jump-cycle sequence, it involves three 

consecutive collective hops, for both straight and bent [100] six-jump-cycle sequence, the first 

and the final hops are collective hops and the middle hop is a next-nearest-neighbor hop. The 

calculated migration barriers for [110] six-jump-cycle sequence, straight [100] and bent [100] 

six-jump-cycle sequences are 2.59eV, 3.47eV and 3.47eV respectively. 

 

4.1.4 Migration barriers for the triple defect migration sequence 
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Frank et al [49] proposed a diffusion mechanism involving the net migration of a triple-

defect complex, which consists of a pair of vacancies on the Ni sublattice next to a Ni-antisite 

defect on the Al sublattice. They suggested a migration sequence involving four nearest neighbor 

hops separated by three intermediate stable configurations. The net result of a triple defect 

migration sequence is the direct exchange of an Al atom with a Ni antisite atom. Simultaneously, 

a vacancy pair shifts by one lattice spacing.  

Using DFT-GGA and the nudged elastic band method to calculate the minimum energy 

path, we find that the triple defect migration mechanism in fact consists of two nearest neighbor 

hops separated by an intermediate second nearest neighbor hop of an Al atom (see Fig. 4-6(a)). 

The intermediate Al second nearest neighbor hop occurs with an adjacent vacancy on the Ni-

sublattice, resulting in a low migration barrier of 0.75eV. The calculated migration barriers for 

this triple defect hop sequence are relatively low (ranging between 1.1eV and 0.75eV). However, 

the importance of this hop mechanism will depend on the equilibrium concentration of triple 

defects.  

In addition to the previous triple-defect sequence, which we called [100] triple-defect 

sequence since the initial configuration includes a [100] type tripled defect cluster, where two Ni 

vacancies are arranged along [100] direction in the Ni sublattice and one anti-site Ni atom 

occupies the nearest-neighbor Al sublattice site, we proposed two other possible triple-defect 

sequences – [110] and [111] where two Ni vacancies lie along [110] direction and [111] 

direction respectively. The consecutive hops in [110] and [111] triple-defect sequences are 

demonstrated in the Fig. 4-7(a) and 4-8(a) and the corresponding migration barriers calculated 

are shown in the Fig. 4-7(b) and 4-8(b) respectively. Contrary to the relatively low migration 

barrier of [100] triple-defect sequence, the calculated migration barriers for [110] and [111] 
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triple-defect sequences are at least 2.68eV and 2.92eV, which is much higher than the migration 

barrier of [100] triple-defect sequence. 

 

4.1.5 Migration barriers for the anti-structural bridge (ASB) migration sequence 

The two atom collective hop does not necessarily need to occur in the six-jump-cycle 

sequence, it can also occur in other hop sequences such as anti-structural bridge hop sequence for 

Al atoms. The anti-structural-bridge hop sequence for Al atoms are illustrated in Fig.4-9 (a) and 

Fig. 4-10(a) and there are two types of them – [100] and [110] types where anti-site Al atom and 

Ni vacancy lie along [100] and [110] directions respectively. For these two paths, our 

computation has shown that instead of doing two consecutive nearest neighbor hops proposed by 

previous researchers [52], the Al atoms actually do a two-atom collective hop. That is when an 

Al atom on the Al sublattice is surrounded by a vacancy and an Al antisite, both on the Ni 

sublattice, then a pair of Al atoms could perform a collective cyclic hop with as net effect that an 

Al antisite atom has migrated by a second or third nearest neighbor distance. For this collective 

hop, the calculated migration barriers are 1.65eV and 1.01eV for [100] and [110] types 

respectively. This low barrier suggests that the collective two atom hops involving Al atoms is a 

viable transport mechanism, especially in Al-rich B2-NiAl alloys where the concentration of Ni 

vacancies and Al antisites are both at their highest value.  

The anti-structural bridge hop can also occur for Ni atoms. Just like the anti-structural-

bridge hop sequence for Al atoms, there are two types of them – [100] and [110] types where 

anti-site Ni atom and Al vacancy lie along [100] and [110] directions respectively (see Fig. 4-

11(a) and Fig. 4-12(a)). Unlike the ASB for Al, the anti-structural-bridge sequence for Ni 

involves two consecutive nearest neighbor hops of Ni atom instead of collective hop. The 
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calculated corresponding migration barriers are 0.71eV and 1.01eV (see Fig. 4-11(b) and Fig. 4-

12(b)) for [100] and [110] type respectively. This low barrier suggests that the anti-structural 

bridge hop involving Ni atoms is a viable transport mechanism for Ni atoms, especially in Ni-

rich B2-NiAl alloys where the concentration of Ni antisites is relatively high. 

 

4.2 Defect concentration at finite temperature 

B2-NiAl offers a variety of viable atomic transport mechanisms that include nearest 

neighbor hops, second nearest neighbor hops, collective two atom hops as well as complex hop 

sequences. However, the importance of these hop mechanisms is not only determined by low 

migration barriers but also by the availability of particular defects or defect complexes. In this 

section, we investigate the concentration of relevant defects and defect complexes in B2-NiAl at 

finite temperature as a function of alloy concentration using grand canonical Monte Carlo 

simulations applied to a cluster expansion. The parameters of the cluster expansion are fit to the 

first-principles energies of different defect arrangements in B2-NiAl.  

 

4.2.1 First-principles configurational energies 

Ni-Al system is a complicated system and it has many order phases, which can be seen 

from its experiment phase diagram (Fig. 4-13) [131]. From the phase diagram we can see that as 

the concentration of Ni atom is increasing, many ordered phases are present. Also, many of the 

ordered phases cannot accommodate large off-stoichiometry and some of them are even line 

compounds. However, B2-NiAl, which we are interested in, can accommodate large off-

stoichiometry. The reason for this phenomenon will be clear after we calculate the formation 

energies of various configurations in Ni-Al system. 



 78

With DFT-GGA as implemented in the VASP planewave pseudopotential code (section 

4.1) we calculated the energy of a variety of different defect configurations over the sites of the 

B2 crystal. The technical details have been described in section 4.1. We calculated the energy of 

175 configurations corresponding to different arrangements of dominant components over the 

two sublattices of B2-NiAl (dominant components are vacancies on the Ni sublattice and Ni 

antisite atoms on the Al sublattice). One configuration was in a supercell containing 128 sites, 87 

configurations had supercell sizes with 54 sites and 9 configurations had supercell sizes with 16 

sites while the remaining configurations were in supercells with 12 or less sites. All 

configurations containing a minor point defect were placed in a 54-atom supercell. For the minor 

defects, we considered 32 different defect configurations around an isolated (within a 54 atom 

supercell) Al atom on the Ni sublattice and 11 different defect configurations around an isolated 

vacancy on the Al sublattice.  

Figure 4-14 illustrates first-principles formation energies for different configurations in 

the Ni-Al system. Each formation energy, ΔE xNi,xAl( ), for a particular configuration having 

concentration xNi, xAl and xV=(1- xNi - xAl) is defined as  

ΔE xNi, xAl( )= E xNi, xAl( )− xNi • ENi
fcc − xAl • ENi

fcc − (1− xNi − xAl ) • E vacuum              (4-1) 

where E xNi,xAl( ) is the total energy per crystal site for the same configuration calculated from 

first principles (with DFT-GGA using VASP) while ENi
fcc  and EAl

fcc  are the first-principles 

energies per atom of pure Ni and Al in the fcc crystal structure. The quantity E vacuum  serves as 

the vacancy reference state and is taken as vacuum, having zero energy. Since the B2-NiAl 

compound can accommodate high concentrations of vacancies, these formation energies should 

be plotted in a three dimensional diagram with two independent concentration axes (e.g. xNi and 

xAl). However, for clarity, we project the formation energies on a binary plot with composition 
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axis x = xNi xAl + xNi( ). Also plotted in Fig. 4-14 are formation energies for other compounds 

observed experimentally in the Ni-Al system (see Fig. 4-13) [130,131]. These include D011 

NiAl3, D519 Ni2Al3, “Pt5Ga3” type Ni5Al3 and L12 Ni3Al. The formation energies of these 

experimentally observed compounds together with that of B2-NiAl form a convex hull, 

illustrating that DFT within the generalized gradient approximation correctly predicts the relative 

stability of the intermetallic compounds in the Ni-Al system at zero Kelvin. In addition, we 

found that the “Ni3Ga4” type Ni3Al4 (this is also a B2 based configuration with ordered Ni 

vacancies in a 128 site supercell with stoichiometric formula Ni48Al64∅16) also resides on the 

ternary convex hull in xNi, xAl and xV=(1- xNi - xAl) composition space, consistent with the 

experimental observations of this structure [130]. As is clear in Fig. 4-14, many of the B2-NiAl 

based configurations are close to the convex hull, suggesting that configurational disorder within 

this compound can be easily excited at finite temperature.  

 

4.2.2 Cluster expansions 

A cluster expansion for the dominant components of B2-NiAl (Ni and vacancies on the 

Ni sublattice and Ni and Al on the Al sublattice) was constructed by fitting to the first principles 

formation energies of 175 fully relaxed Ni-Al-vacancy configurations. By minimizing a leave-

many-out cross-validation score using a genetic algorithm [94,102], an optimal set of clusters 

was selected from a total of 47 candidates. The cluster expansion includes 1 empty cluster, 2 

points (for the Al and Ni sublattice sites), 14 pairs, 8 triplets and 1 quadruplet (see Fig. 4-15). As 

a measure of the accuracy of the cluster expansion, the root-mean-square (rms) error between 

first-principles energies and the cluster-expanded energies for all the structures used in the fit is 3 
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meV per site. Furthermore, as a measure of its ability to predict energies of configurations not 

included in the fit, the leave-one-out cross validation score is 4 meV per site. 

We determined the local ECI (LECI) of the local cluster expansions for minor point 

defects in B2-NiAl (Al on the Ni sublattice and V on the Al sublattice) by fitting to the effective 

minor point defect formation energies (ΔEi
VAl  for VAl and ΔE j

AlNi  for AlNi, see section 2.3.3) for 

different configurations around an isolated minor point defect within B2 (32 configurations for 

AlNi and 11 configurations for VAl, all calculated in 54 atom supercells). Due to the small number 

of configurations, a leave-one-out cross validation score was minimized using a genetic 

algorithm to select an optimal set of clusters from 42 candidates. For AlNi the optimal set 

includes the empty cluster along with 5 point and 3 pair clusters (Fig. 4-16(a)) and for VAl the 

optimal set includes the empty cluster and one point cluster (Fig. 4-16(b)). 

 By combining the local cluster expansions for ΔEi
VAl  and ΔE j

AlNi  with the binary coupled-

sublattice cluster expansion as described in section 2.3, it is possible to calculate the energy of 

any configuration of Ni, Al and vacancies within the B2 compound, provided the minor defects 

are separated far enough not to interact with each other (as measured by the largest pair cluster of 

the binary coupled-sublattice cluster expansion). The accuracy of the combined cluster 

expansions is reflected by a 2 meV per site root mean square error between the cluster expanded 

and first-principles energies of 43 configurations with one minor defect.  

 

4.2.3 Monte Carlo simulations 

The coupled-sublattice cluster expansion and local cluster expansions were implemented 

in grand canonical Monte Carlo simulations. A Monte Carlo supercell containing 12x12x12 B2-

NiAl unit cells (M=3456 sites) was used with as thermodynamic boundary conditions the 
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temperature, T, and chemical potentials, ˜ μ Ni  and ˜ μ Al . For each combination of (T, ˜ μ Ni , ˜ μ Al ), we 

calculated the average number of Ni and Al atoms, N Ni and N Al  as well as the concentration of 

point defects and defect complexes. The values of ˜ μ Ni  and ˜ μ Al  used to calculate the equilibrium 

concentration of point defects and defect complexes were determined by solving Eq. (A3) under 

the constraint that μV=0. All calculations presented here were performed at 1300 K.  

Figure 4-17 illustrates the calculated equilibrium concentration of point defects in B2 

NiAl at 1300K as a function of the alloy concentration x = xNi xAl + xNi( ). To ensure accurate 

averages in the defect concentrations, 200,000 Monte Carlo passes were performed for each 

combination of (T, ˜ μ Ni , ˜ μ Al ). The concentrations of point defects are defined with respect to the 

sublattice on which they reside. For example, the concentration of VNi is defined as the fraction 

of Ni sublattice sites that are vacant. Figure 4-17 clearly shows that Ni vacancies are the 

dominant defect for Al-rich alloy compositions and that Ni anti-site defects on the Al sublattice 

dominate in Ni-rich alloys, consistent with experimental observations [41] and previous mean 

field studies [42-44]. 

We also kept track of the concentrations of various defect complexes that are necessary to 

mediate atomic diffusion in B2-NiAl. Among the important defect complexes are different 

geometries of triple defects involving a Ni atom on the Al-sublattice next to a pair of vacancies 

on the Ni sublattice oriented along the [100], [110] or [111] directions (see Fig. 4-6(a1), 4-7(a1) 

and 4-8(a1) respectively). The probability that a cluster with two Ni-sublattice sites and an 

adjacent Al-sublattice site is occupied by a triple defect can be numerically calculated with 

Monte Carlo simulations using the following expressions 

ptriple[100] =
N triple[100]

12Ncell

 ptriple[110] =
N triple[110]

12Ncell

  ptriple[111] =
N triple[111]

4Ncell

 (4-2) 
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where N triple[100], N triple[110] and N triple[111]  are the ensemble averages of the total number of [100], 

[110] and [111] triple defects respectively within the Monte Carlo cell and Ncell  is the number of 

B2 unit cells equal to M/2. Each cubic unit cell can potentially accommodate 12 [100] triple 

defects, 12 [110] triple defects and 4 [111] triple defects. In the absence of any interactions 

among vacancies and Ni anti-site atoms, this probability reduces to the product of site 

concentrations pmeanfield= xNiAl
⋅ xVNi

2 , where xNiAl
 and xVNi

 are the equilibrium concentrations of 

NiAl and VNi respectively. Calculated triple defect probabilities ptriple[100], ptriple[110] and ptriple[111] as 

well as the mean field triple defect concentration pmeanfieldare illustrated in Fig. 4-18. As is 

evident from Fig. 4-18, the more compact [100] triple defect (where vacancies are at a second 

nearest neighbor distance from each other) has a lower concentration than the more extended 

triple defect.  

 As described in section 4.1.4, the migration of a triple defect involves two symmetrically 

equivalent intermediate states consisting of a vacancy on the Al sublattice next to a vacancy on 

the Ni sublattice. We can gain insight about the importance of the [100] triple defect migration 

sequence in mediating diffusion by a calculation of the frequency of its intermediate states as 

reflected by the probability of VAl-VNi-AlAl triplets. Calculated probabilities of VAl-VNi-AlAl 

occupancies on three-point clusters consisting of neighboring Al sites and an adjacent Ni site are 

illustrated in Fig. 4-19(a). The probability of VAl-VNi-AlAl triplets varies negligibly with alloy 

concentration suggesting that the contribution of the triple defect migration mechanism to atomic 

transport is similar for both Al rich and Ni rich B2-NiAl alloys. 

A final set of defect complexes that we tracked in the grand canonical Monte Carlo 

simulations are pairs consisting of an anti-site atom and a vacancy at second and third nearest 

neighbor distances from each other (i.e. the pair of defects reside on the same sublattice). The 
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existence of these pairs is of importance in mediating the anti-structural bridge mechanisms of 

diffusion in off-stoichiometric alloys in which vacancies diffuse along percolating networks of 

anti-site atoms. Figure 4-19(b) illustrates probabilities that second nearest and third nearest 

neighbor clusters are occupied by a Ni-vacancy and an Al anti site, while Fig. 4-19(c) illustrates 

the probabilities that such clusters are occupied by an Al vacancy and a Ni anti-site atom. The 

higher these probabilities, the more likely an anti-structural bridge diffusion mechanism can 

contribute to atomic transport. As is clear from Fig. 4-19(c), the probability that a pair 

connecting Al-sublattice sites is occupied by a Ni anti-site atom and an Al vacancy increases as 

B2-NiAl becomes more Ni rich. The probability that a pair connecting Ni-sublattice sites is 

occupied by an Al anti-site atom and a Ni-vacancy has a more complex dependence on alloy 

concentration, Fig. 4-19(b), showing a minimum at the stoichiometric composition and increase 

both for Al-rich and Ni-rich alloys.  

 

4.3 Discussion 

Measured interdiffusion coefficients in B2-NiAl show a strong dependence on alloy 

concentration, exhibiting a minimum around the NiAl stoichiometry [49,50,59,62,132]. This 

dependence on concentration is undoubtedly due to a variation in the equilibrium concentration 

of the different point defects and defect clusters that mediate atomic diffusion. Recent 

measurements of Paul et al [59] showed that the mobility of Al and Ni, as reflected by self-

diffusion coefficients, are similar around the stoichiometric composition but differ substantially 

away from stoichiometry. In Al-rich alloys of B2-NiAl, the Al self-diffusion coefficient is 

significantly larger than the Ni self-diffusion coefficient, while in Ni-rich alloys the trend is 

reversed, albeit that the Ni self-diffusion coefficient is only slightly larger than that of Al [59]. 
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Our first-principles analysis of atomic hop mechanisms in B2-NiAl of section 4.1 sheds 

light on those mechanisms that are likely to contribute significantly to macroscopic transport. We 

find for example that nearest neighbor Ni-vacancy exchanges have relatively low migration 

barriers (ranging from 0.31-1.1 eV, see Fig. 4-1) and confirm that nearest neighbor Al-vacancy 

exchanges cannot occur in B2-NiAl as was first discovered by Mishin et al [58]. We also predict 

that the migration barrier for Al second nearest neighbor hops (1.49 eV) is about half that for Ni 

second nearest neighbor hops (2.76 eV, see Fig. 4-2). As Al cannot perform nearest neighbor 

hops in B2-NiAl, Mishin et al [58] proposed a collective two-atom hop mechanism to enable Al 

atoms to migrate from the Al-sublattice to the Ni-sublattice. This mechanism, involving an Al 

and a Ni atom, has a relatively high migration barrier (~2.5eV, see Fig. 4-3). In the present work, 

however, we found that if the collective two-atom hop involves a pair of Al atoms, one from the 

Al sublattice and the other an Al anti-site atom on the Ni sublattice, the migration barrier is 

significantly lower, having a value of approximately 1eV (see Fig. 4-10). This result suggests 

that the anti-structural bridge mechanism is likely to be very important in mediating diffusion in 

Al-rich alloys. 

We also showed in section 4-1 that the presence of additional defects in the vicinity of the 

hopping atom can have a significant influence on migration barriers. For example, the Ni nearest 

neighbor hop barrier is almost doubled in the presence of an adjacent Ni-vacancy (compare Fig. 

4-1(a) with Fig. 4-1(b)). The Al second nearest neighbor hop barrier, on the other hand, is 

reduced from 1.49 eV to 0.75 eV when it occurs next to a Ni-vacancy (Fig. 4-2). The low nearest 

neighbor Ni migration barriers coupled with the low Al second nearest neighbor barrier in the 

presence of Ni vacancies renders the triple defect migration sequence of Fig. 4-6 quite favorable 

from an energetic point of view. The triple defect migration mechanism predicted in section 4-1 
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(Fig. 4-6) differs from that proposed by Frank et al in that it occurs with only two intermediate 

states instead of three and proceeds with a combination of nearest and second nearest neighbor 

hops instead of only nearest neighbor hops. 

The predicted migration barriers show that there are a variety of migration mechanisms 

with relatively low barriers (ranging around 1 eV) and a subset characterized by high migration 

barriers (exceeding 2 eV). The migration mechanisms with low barriers, such as the Ni nearest 

neighbor hop, the Al second nearest neighbor hop in the presence of a Ni vacancy and the 

collective hop involving a pair of Al atoms are likely to dominate in mediating transport, 

provided the concentration of defects necessary for these mechanisms are sufficiently high. We 

point out that the use of a finite sized supercell for the calculation of migration barriers from first 

principles introduces numerical uncertainty on predicted barriers. To estimate the accuracy of 

our calculated migration barriers, we calculated the barrier for the Ni-vacancy next-nearest 

neighbor hop in both a 3 x 3 x 3 supercell (containing 54 sites) and a 4 x 4 x 4 supercell 

containing (128 sites). The predicted barriers are 2.76 eV and 2.53 eV respectively, suggesting a 

numerical error of approximately 0.25 eV. While this error is not negligible, it is sufficiently 

small to allow us to distinguish between low barrier hop mechanisms (~1 eV) and high barrier 

hop mechanisms (~2.5 eV). 

Whether or not any of the low barrier migration mechanisms dominate in mediating 

atomic diffusion in B2–NiAl depends on the concentration of defects and defect complexes 

needed to facilitate those migration mechanisms. To this end, we also investigated the 

equilibrium defect concentrations in B2–NiAl by applying Monte Carlo simulations to first-

principles parameterized cluster expansions, thereby rigorously accounting for important 

interactions among the various defects in B2–NiAl. Previous investigations of defect 
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concentrations in B2–NiAl relied on a mean field approximation in which interactions among 

different defects were neglected [42-44]. 

A comparison of the defect concentrations calculated in this work (Fig. 4-17) with mean 

field predictions [42,43] shows that while the concentrations of NiAl, VNi and VAl are 

qualitatively similar in both approaches, they differ for the predicted concentration of AlNi 

defects in Ni rich B2-NixAl1-x compounds. For the AlNi defects, our results show an increase in 

the AlNi concentration with alloy concentration x above 0.5, while previous mean field analyses 

predicted a decrease in the AlNi concentration [42,43]. The increase in the AlNi concentration in 

Fig. 4-17 arises from a local attraction between AlNi and NiAl defect pairs. Figure 4-20 shows the 

change in energy of a B2-NiAl crystal containing a NiAl – AlNi pair at increasing distance from 

each other. The configuration with a first nearest neighbor NiAl – AlNi pair is used as reference 

(its energy is arbitrarily set to zero). The solid line shows the energies calculated with GGA in a 

3x3x3 B2 NiAl supercell (54 sites) using an energy cutoff of 500 eV and fully relaxing all atoms, 

while the dashed line shows the energy of a NiAl – AlNi pair as a function of increasing distance 

as calculated with the cluster expansions. Figure 4-20 shows an energetic attraction between NiAl 

and AlNi point defects. To ensure that the predicted attraction is not an artifact of the supercell 

size, we also calculated the energy dependence on the NiAl – AlNi pair distance in a 4x4x4 B2 

NiAl supercell (128 sites) using an energy cutoff of 375 eV and allowing only internal 

relaxations (dotted line in Fig. 4-20). The larger supercell calculations predict the same attraction 

between a NiAl – AlNi pair. While the formation energy of an Al anti-site defect on the Ni 

sublattice is energetically very costly, the results of Fig. 4-20 clearly show that it is reduced in 

the immediate vicinity of a NiAl defect. Hence, any increase in the fraction of NiAl defects will 

lead to an increase in the fraction of AlNi defects due to short-range attractive interactions, as is 
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predicted with Monte Carlo simulations applied to cluster expansions that accurately capture 

these short-range interactions. 

The inclusion of interactions among defects in B2-NiAl is also essential to accurately 

predict the concentration of defect complexes. Important defect complexes include various triple 

defects as illustrated in Fig. 4-18, which clearly illustrates a large difference between the 

probability of occurrence of [100] triple defects and [110] and [111] triple defects, with the 

former much less probable than the two triple defects having the vacancy pair aligned along 

[110] and [111] directions. While vacancies on the Ni sublattice are attracted to a Ni anti-site 

defect on the Al-sublattice, the vacancies themselves repel each other. Hence the more extended 

[110] and [111] triple defects are energetically favored over the [100] triple defect in which 

vacancies occupy nearest neighbor sites on the cubic Ni-sublattice. The probabilities of 

occurrence of the various triple defects also differ significantly from the mean field estimate 

pmeanfield= xNiAl
⋅ xVNi

2 , which neglects interactions. Figure 4-18 shows that the more compact [100] 

triple defect has a lower probability of occurrence than pmeanfield while the more extended [110] 

and [111] triple defects have a higher probability of occurrence than pmeanfield. 

The net migration of a triple defect results in the direct exchange between a Ni and an Al 

atom. Hence diffusion mediated exclusively by the triple defect mechanism will lead to identical 

mobilities for both Al and Ni atoms. Although the [110] and [111] triple defects are predicted to 

be more numerous than the [100] triple defects (Fig. 4-18), we found that their migration 

requires significantly higher energy intermediate states. In fact, DFT-GGA calculations predict 

the intermediate states of the [110] and [111] triple defect migration mechanism to have an 

energy that is more than 2.5 eV above that of the initial triple defect arrangement, while the 

maximum barrier along the [100] triple defect migration mechanism is not more than 1.2 eV (see 
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Fig. 4-6). This suggests that the [100] triple defect is more important than the [110] and [111] 

triple defects in mediating diffusion. While the number of triple defects diminishes slightly as 

B2-NiAl becomes Al-rich (Fig. 4-18), the concentration of the intermediate states of the triple 

defect migration mechanism remains essentially constant with alloy concentration (Fig. 4-19(a)), 

suggesting that the contribution of triple defects to atomic diffusion should be more or less 

independent of alloy concentration, diminishing somewhat in Al-rich B2-NiAl. 

The anti-structural bridge diffusion mechanism becomes viable for alloy concentrations 

that are sufficiently off-stoichiometric to enable percolating networks of antisite atoms to form. 

This allows vacancies to migrate along the percolating networks without introducing additional 

disorder within the compound. In Ni-rich alloys, vacancies can migrate through the crystal by 

performing nearest-neighbor hops along chains consisting of Ni atoms on the Ni sublattice and 

Ni antisite atoms on the Al sublattice. As found in Section 4.1.1, these nearest neighbor Ni-

vacancy exchanges have relatively low migration barriers. Furthermore, the Monte Carlo 

simulations indicate a high concentration of Ni antisite atoms (see Fig. 4-17) in Ni-rich alloys. A 

prerequisite for the anti-structural bridge mechanism for Ni-diffusion is the existence of 

sufficient second and third nearest neighbor pairs occupied by a Ni antisite atom and an Al-

vacancy. Figure 4-19(c) shows that the concentration of NiAl–VAl increases rapidly as B2–NiAl 

becomes Ni rich, suggesting that the anti-structural bridge mechanism should be important in 

mediating Ni diffusion in Ni-rich alloys. 

In Al rich alloys, interconnected networks of Al-anti-site atoms are also possible, 

however, the concentration of Al anti-sites is significantly lower than that of Ni anti-site atoms in 

Ni rich alloys (see Fig. 4-17). Nevertheless, the concentration of vacancies on the Ni sublattice 

achieves very large values and percolating networks of Al atoms and Ni vacancies are possible.  
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As shown in section 4.1, the migration of Al along these percolating networks cannot occur 

through nearest neighbor Al-vacancy exchanges, but rather through collective two atom hops 

involving an Al antisite atom as illustrated in Fig. 4-10. These collective two atom hops also 

have relatively low migration barriers ranging between 1 and 1.6 eV. For the anti-structural 

bridge mechanism to be important in mediating Al diffusion, second nearest and third nearest 

neighbor pairs must be occupied by an AlNi and a VNi. As is clear from Fig. 4-19(b), the 

probability that second and third nearest neighbor pairs are occupied by AlNi and VNi increases 

dramatically as B2-NiAl becomes Al-rich, suggesting that the anti-structural bridge mechanism 

is very likely an important mechanism for Al-diffusion in Al-rich B2-NiAl. Contrary to 

expectation, the probability AlNi and VNi pairs also increases as B2-NiAl becomes Ni-rich, 

indicating that Al transport may also be mediated by the anti-structural bridge mechanism in Ni-

rich alloys. The increase in AlNi and VNi pairs with x>0.5 in NixAl1-x can be attributed to the 

increase in AlNi defects with x due to its short-range attraction with NiAl defects.  

 

4.4 Summary 

B2-NiAl compounds exhibit a variety of complex atomic hop mechanisms and can 

accommodate high concentrations of diffusion mediating defects. In this paper, we 

systematically investigated important hop mechanism in B2-NiAl from first principles and 

discovered a low barrier collective hop involving a pair of Al atoms that can mediate the anti-

structural bridge mechanism for Al diffusion. We also investigated the defect structure in B2-

NiAl with Monte Carlo simulations, accounting for interactions among defects with a first-

principles parameterized cluster expansion. An energetic attraction between Ni anti-site atoms 

and Al anti-site atoms leads to an increase in the Al anti-site concentration for Ni-rich B2-NiAl 



 90

compounds, which is opposite to that predicted by mean field treatments. The inclusion of 

interactions among defects is also essential to predict the concentration of triple defects. We also 

predict a dramatic increase in the number of second and third nearest neighbor pairs occupied by 

an Al anti-site and a Ni-vacancy as the B2-NiAl alloy becomes Al rich and Ni rich. These pairs 

are essential for the anti-structural bridge mechanism for Al-diffusion. 
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Figure 4-1 Energy along the diffusion path for Ni nearest neighbor hops (NiNi-VAl exchange) 
under various local environments in the B2-NiAl based compound. (a) without any additional 
defects. (b) with a neighboring Ni vacancy and (c) with a neighboring Al vacancy. 
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Figure 4-2 Calculated migration barriers for the next nearest neighbor hops of Ni and Al atoms 
under various local environments in B2-NiAl. (a) An Al atom hops to an Al vacancy without any 
additional defects, (b) a Ni atom hops to a Ni vacancy without any additional defects, (c) an Al 
atom hops to an Al vacancy with an adjacent Ni vacancy and (d) failure of a Ni second nearest 
neighbor hop to a Ni vacancy due to the presence of an adjacent Al vacancy, (e) an antisite Al 
atom hops to a Ni vacancy without any additional defects, (f) an antisite Ni atom hops to an Al 
vacancy without any additional defects, (g) failure of an antisite Al second nearest neighbor hop 
to a Ni vacancy due to the presence of an adjacent Al vacancy, (h) failure of an antisite Ni 
second nearest neighbor hop to an Al vacancy due to the presence of an adjacent Ni vacancy. 
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Figure 4-3 (a) The [110] six-jump-cycle sequences (a1)-(a4) in B2-NiAl, (b) variation of the 
energy along the [110] six-jump-cycle migration paths. The energy is relative to the 
initial configuration a1. The migration barriers were calculated with the nudged 
elastic band method. 
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Figure 4-4 (a) The straight [100] six-jump-cycle sequences (a1)-(a5) in B2-NiAl In (a2), the 
antisite Al atom does second nearest neighbor hop (red line) instead of doing 2 nearest neighbor 
hops (green lines), so (a3) does not exist. (b) Calculated variation of the energy along the straight 
[100] six-jump-cycle migration paths. The energy is relative to the initial configuration (a1). 
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Figure 4-5 (a) The bent [100] six-jump-cycle sequences (a1)-(a5) in B2-NiAl In (a2), the antisite 
Al atom does second nearest neighbor hop (red line) instead of doing 2 nearest neighbor hops 
(green lines), so (a3) does not exist. (b) Calculated variation of the energy along the bent [110] 
six-jump-cycle migration paths. The energy is relative to the initial configuration (a1). 
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Figure 4-6 (a) The [100] triple-defect migration sequence (a1)-(a4) in B2-NiAl, and (b) The 
calculated variation of the energy along the [100] triple defect migration paths. The energy is 
relative to the initial configuration of a [100] triple defect (a1). 
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Figure 4-7 (a) The [110] triple-defect migration sequence (a1)-(a5) in B2-NiAl, and (b) The 
calculated variation of the energy along the [110] triple defect migration paths. The energy is 
relative to the initial configuration of a [110] triple defect (a1). 
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Figure 4-8 (a) The [111] triple-defect migration sequence (a1)-(a5) in B2-NiAl, and (b) The 
calculated variation of the energy along the [111] triple defect migration paths. The energy is 
relative to the initial configuration of a [111] triple defect (a1). 
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Figure 4-9 (a) The [100] anti-structural-bridge migration sequence for Al atoms in B2-NiAl, and 
(b) The calculated variation of the energy along the [100] anti-structural-bridge migration paths 
for Al atoms in B2-NiAl. The energy is relative to the initial configuration (a1).  
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Figure 4-10 (a) The [110] anti-structural-bridge migration sequence for Al atoms in B2-NiAl, 
and (b) The calculated variation of the energy along the [110] anti-structural-bridge migration 
paths for Al atoms in B2-NiAl. The energy is relative to the initial configuration (a1). 
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Figure 4-11 (a) The [100] anti-structural-bridge migration sequence for Ni atoms in B2-NiAl, 
and (b) The calculated variation of the energy along the [100] anti-structural-bridge migration 
paths for Ni atoms in B2-NiAl. The energy is relative to the configuration (a2). 
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Figure 4-12 (a) The [110] anti-structural-bridge migration sequence for Ni atoms in B2-NiAl, 
and (b) The calculated variation of the energy along the [110] anti-structural-bridge migration 
paths for Ni atoms in B2-NiAl. The energy is relative to the configuration (a2). 
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Figure 4-13 The experimental phase diagram of Ni-Al system (see Ref. 131). 
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Figure 4-14 Formaiton energies (relative to fcc Ni and fcc Al) of various Ni-Al-vacancy 
arrangements in B2-NiAl based compound (green circles). Also shown are formation energies of 
experimentally observed compounds in the Ni-Al system. 
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Figure 4-15 Effective cluster interactions of the coupled-sublattice cluster expansion describing 
the configurational energy of the dominant components on the two sublattices of B2-NiAl. The 
cluster expansion includes 1 empty cluster, 2 points (for the Al and Ni sublattice sites), [not 
shown in the figure], 14 pairs, 8 triplets and 1 quadruplet. 

 

 

 

 

 



 106

 

 

Figure 4-16 Effective cluster interactions for local cluster expansion for (a) anti-site Al, 
including the empty cluster (not shown in the figure) along with 5 point and 3 pair clusters, and 
(b) Al vacancy, including the empty cluster (not shown in the figure) and one point cluster. 
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Figure 4-17 Calculated equilibrium point defect concentrations (per sublattice site) in B2-NiAl as 
a function of composition at 1300K. Green squares are the Ni antisite concentrations, red 
diamonds are Ni-vacancy concentrations, filled circles are Al vacancies and yellow triangles are 
Al antisite concentrations. 
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Figure 4-18 Calculated equilibrium triple-defect probabilities as a function of composition in B2-
NiAl compound at 1300K. 
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Figure 4-19 Calculated equilibrium defect complex probabilities as a function of composition in 
B2-NiAl compound at 1300K. (a) Intermediate state of the triple defect migration mechanism 
consisting of a VNi-AlAl-VAl cluster, (b) AlNi-VNi second nearest neighbor pair and third nearest 
neighbor pair, (c) NiAl-VAl second nearest neighbor pair and third nearest neighbor pair.  
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Figure 4-20 Calculated energy as a function of distance between an antisite Ni and an antisite Al. 
The energy is relative to that of the configuration with a nearest NiAl – AlNi pair and the distance 
is relative to the nearest pair distance, a is the lattice parameter. 
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Chapter 5 

Tracer diffusion and diffusion mechanisms in B2-NiAl compound 

 

In chapter 4, we investigated the migration barriers for various diffusion paths and the 

point defect complexes that are important to mediate these hops in B2-NiAl compound. Based on 

these information we will further investigate the tracer diffusion and relative importance of 

various diffusion mechanism for B2-NiAl compound from first-principles in this chapter. 

Diffusion in alloys can be a complex kinetic process that depends on the nature of 

intrinsic point defects, the energy barriers of different hop mechanisms and the degree of short 

and long-range order among the constituents of the alloy. B2-NiAl, in spite of its simple CsCl 

crystal structure, epitomizes this complexity. While many hop mechanisms and intricate hop 

cycles have been proposed, no comprehensive picture of the dominant atomic transport 

mechanisms in B2-NiAl has been established. Here we perform a first-principles study of 

diffusion in B2-NiAl, simultaneously considering all relevant hop mechanisms. The approach 

couples a first-principles cluster expansion description of the configurational energy with kinetic 

Monte Carlo simulations to predict tracer diffusion coefficients in B2-NiAl and rigorously 

accounts for the equilibrium degree of short-range order among point defects as a function of 

alloy concentration. We find that the dominant transport mechanisms are very sensitive to the 

bulk alloy concentration. 

 

5.1 Simple structure and complicated diffusion mechanisms 
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Diffusion in typical metallic alloys is mediated by a dilute concentration of vacancies that 

stochastically wander through the crystal, in the process rearranging the various components of 

the alloy. B2-NiAl, however, is an ordered compound, deviating far from thermodynamic 

ideality and exhibiting an unusually high concentration of vacancies. In fact, the high vacancy 

concentration on the Ni-sublattice of Al-rich B2-NiAl is reminiscent of intercalation compounds 

used as electrodes in Li-ion batteries, whereby Li can fill interstitial sites of a crystalline host 

during discharge of the battery. Li diffusion in these compounds occurs in the non-dilute regime 

by exchanging with neighboring vacant interstitial sites and is restricted to exchanges on the 

same sublattice. Although Ni second nearest neighbor hops restrict Ni diffusion to the Ni-

sublattice, several viable hop-cycles proposed in past decades involve exchanges between Al and 

Ni of the two sublattices. Furthermore, experiment indicates that Al mobility is also sizable in B2 

NiAl in spite of the fact that the concentration of vacancies on the Al sublattice is very low. 

Diffusion in B2-NiAl, is therefore quite distinct from what is known to occur in metallic solid 

solutions and in more complex systems such as intercalation compounds.  

The NiAl intermetallic compound has B2 structure shown in the Fig. 2-1. This is a very 

simple structure with Al atom at the center and Ni atom at the corner of a cubic cell. Even in a 

system with such a simple structure, the diffusion process could be very complicated due to the 

complex defects. As we have mentioned in chapter 4 compared to other compounds in Ni-Al 

system, which cannot sustain large off-stoichiometry, the B2 NiAl compound can accommodate 

large off-stoichiometry at finite temperature because it can contain high concentration of point 

defects. The well-known point defects in this compound are Ni vacancies (vacancy at Ni 

sublattice, denoted by VNi), anti-site Ni (Ni atom at Al sublattice, denoted by NiAl), Al vacancies 

(vacancy at Al sublattice, denoted by VAl) and anti-site Al (Al atom at Ni sublattice, denoted by 
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AlNi). The calculated equilibrium concentrations of these point defects at 1300K are shown in 

Fig. 4-17. Consistent with experiment results [41,134] Figure 4-17 shows that antisite Ni and Ni 

vacancies are dominant point defects in Ni-rich side and Al-rich side respectively, while antisite 

Al and Al vacancy are minor point defects. From Figure 4-17 we can see how complicated point 

defects could be in a multi-component compound with nevertheless simple structure such as B2 

NiAl. First, several types of point defects could be present simultaneously. Second, the defect 

concentrations could depend on the bulk composition of the compound instead of being constant. 

Finally, the concentration of vacancies could be non-dilute. For example, the Ni vacancy 

concentration in B2 NiAl could be as high as around 15% in Al-rich side. The complex point 

defects in real material systems make the diffusion process complicated and make the classic 

assumptions such as dilute and uniform vacancy concentration invalid. These point defects can 

also form various defect clusters such as triple-defects, Al anti-site clusters and Ni anti-site 

clusters shown in the Fig. 4-6 to Fig. 4-10, which makes the situation more complicated. 

Over the past several decades, many diffusion mechanisms have been proposed through 

experimental and theoretical researches, however, no consensus has been reached as to the 

dominant hop mechanisms responsible for atomic transport in B2 NiAl. One impediment to 

achieving a fundamental understanding of diffusion in this compound is the fact that no Al 

isotopes are readily available, preventing a direct measurement of Al tracer diffusion coefficients 

in B2-NiAl. In chapter 4, we have investigated the migration barriers for the nearest neighbor 

(NN) hop, the next nearest neighbor hop (NNN), the six-jump-cycle (6JC) sequence [47,63,66], 

the triple-defect (TD) sequence [49,67], and the anti-structural bridge (ASB) sequence [52]. 

Our DFT calculations have shown that Al atom cannot perform nearest-neighbor hops 

because it will disrupt the order of the configuration and the resulting structure is mechanically 
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unstable; instead, they do two-atom collective hops. For example, for the anti-structural-bridge 

hop for Al demonstrated in Fig. 4-10, instead of doing two consecutive nearest neighbor hops 

proposed by previous researchers [52], the Al atoms actually perform a two-atom simultaneous 

hop. For the triple-defect sequence, DFT computation by us and other researchers shows that it is 

a three-step sequence [129] instead of four-step sequence proposed by S. Frank et al [49]. The 

first and third sub-hops of triple-defect hops involve Ni atom hopping into the nearest neighbor 

vacancy, while the second sub-hop involves Al atom hopping into the second nearest neighbor 

vacancy (Fig. 4-6) instead of two consecutive nearest-neighbor hops. For the six-jump-cycle 

sequence, the DFT computations by us and previous researchers shows that instead of involving 

six consecutive nearest neighbor hops, it does three two-atom simultaneous hops (Fig. 4-

3)[58,129]. 

While the classic treatment in diffusion simulation makes assumption that only single 

atom nearest neighbor hops and second nearest neighbor hops are allowed, B2-NiAl compound 

exhibits more diffusion paths other than nearest neighbor and next nearest neighbor hops. It is 

not surprising that many other real materials, which have more complex structures than B2 

structure, could have much more complicated diffusion paths than sequence of single atom 

nearest neighbor and second nearest neighbor hops. Due to the complexity of the diffusion paths 

in B2 NiAl compound, no one has ever systematically investigated and incorporated all these 

diffusion paths mentioned above in a kinetic Monte Carlo simulation. In this thesis, we will 

simultaneously incorporate the most important hop mechanisms of B2-NiAl within a kinetic 

Monte Carlo framework and predict tracer diffusion coefficients from first principles. 

 

5.2 Tracer diffusion in B2-NiAl compound 
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To thoroughly investigate the diffusion in multi-component solids with significant 

configurational disorder as exhibited by B2-NiAl from first-principle, we use cluster expansion 

techniques described in section 2.3 combined with grand canonical Monte Carlo and kinetic 

Monte Carlo simulations described in section 2.4. Compared to the mean field techniques that 

neglect the interactions among various defects and atoms [42-44], the cluster expansion of the 

configurational energy can rigorously account for interactions among defects through an accurate 

description of the energy of the compound as a function of the arrangement of Ni, Al and 

vacancies over the two cubic sublattices. As common prerequisite steps for both grand canonical 

or kinetic Monte Carlo simulations, the energies of a number of various Ni-Al-vacancy 

configurations were firstly calculated from first-principle, then, these energies were used to fit a 

cluster expansion (see chapter 4). Finally, the first-principles parameterized cluster expansions 

can be used in grand canonical Monte Carlo and kinetic Monte Carlo simulations to predict finite 

temperature thermodynamic properties and kinetic properties, such as tracer diffusion 

coefficients.  

In section 2.4 we have described the kinetic Monte Carlo framework and here we will 

recall some key points of our kinetic Monte Carlo simulation procedure. The KMC algorithm is 

based on the n-fold way method in which each hop is picked with the possibility Γi / Γtot, where 

Γi is the migration frequency of hop i and Γtot is the sum of all individual probabilities Γi. [109] 

The time is updated after each hop by –lnρ/Γtot, where ρ is a random number between (0,1] 

[109]. For each Ni vacancy, there are 86 possible hops and for each Al vacancy there are 38 

possible hops. For a specific hop, we calculated the migration probability Γ within the harmonic 

transition state theory with local harmonic approximation [110], which gives Γ = ν0 exp (-Em / 

kT), where ν0 is a vibration prefactor, Em is the activation energy required to move the hopping 
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atom(s) from the initial stable state to the activated state, k is Boltzmann’s constant and T is the 

absolute temperature in degrees Kelvin. The attempt frequency ν0 for a specific hop is calculated 

as ν i
i=1

3N

∏  / ν i
*

i=1

3N−1

∏ , where N is the total number of atoms, the ν i’s are normal mode vibrational 

frequencies at the stable state and the ν i
*’s are normal mode vibrational frequencies at the 

activated state. The numerator in the above expression for ν0 has one frequency more than the 

denominator. Instead of calculating normal vibration frequencies for all atoms, we calculate the 

prefactor within the local harmonic approximation to get an order of magnitude estimate of the 

prefactor. That is we calculate the normal vibration frequencies for atoms involved in the hop 

assuming that all other frequencies cancel out. For example, if the hop involves two atoms then 

the numerator (corresponding to stable state) has 6 real frequencies while the denominator 

(corresponding to saddle point) has 5 real frequencies and 1 imaginary frequency; if the hop 

involves one atom then the numerator has 3 real frequencies while the denominator has 2 real 

frequencies and 1 imaginary frequency. All the calculations for vibrational frequencies of stable 

state and saddle point of a specific hop are conducted from first-principles by using the VASP 

software package within a 3x3x3 superecell that contains 27 B2-NiAl cells, i.e., 54 crystal sites. 

In the calculation, the atoms involved in the hop are displaced in the direction of each Cartesian 

coordinate, and the Hessian matrix consisting of second derivatives of the energy with respect to 

atom displacement, is determined from the forces. The eigenvalues of the Hessian matrix are the 

squares of the normal vibration angular frequencies ω (ν = ω / 2π). If the Hessian matrix has one 

negative eigenvalue, then the corresponding structure is an activated state [153]. Figure 5-1 

shows the calculated attempt frequency ν0 for various diffusion paths, which shows that there is 
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no big difference among attempt frequencies for various diffusion paths and all of them are of 

1012 Hz degree of magnitude. 

To account for the environment dependence of the migration barriers, we used an 

approach described in ref [148], in which a kinetically resolved activation (KRA) barrier is 

introduced for each hop, defined as an averaged barrier over a back and forth hop. The actual 

barrier for a particular hop can then be reconstructed by adding the KRA barrier to the average 

energy of the end states of the hop, calculated with the cluster expansion, minus the energy of the 

initial state [148]. The KRA barriers are sensitive to any local disorder that may be present. For 

example, a NNN Al hop has a migration barrier of 1.5 eV, which is reduced to 0.75 eV if the hop 

occurs in the immediate vicinity of a Ni vacancy. Within our kinetic Monte Carlo simulations we 

tabulated KRA barriers for each elementary hop and for different local environments 

(determined by the occupancy in the nearest neighbor shell).  This approach ensures that the 

concentrations of point defects and defect clusters within the kinetic Monte Carlo simulations are 

representative of those in thermal equilibrium (since the energies of the end states of the hop are 

calculated with the cluster expansion) and that the effect of any variations in composition and 

order on hop mechanisms and barriers are accurately accounted for. If important, cyclic hops, 

which are made up of sequences of elementary hops, will therefore spontaneously occur within 

the kinetic Monte Carlo simulations.  

Having incorporated all possible diffusion hops in B2 NiAl compound, our kinetic Monte 

Carlo program will calculate the tracer diffusion coefficients for Ni and Al atoms since the tracer 

diffusion coefficients provides us with the most direct way to understand the physical 

mechanism under diffusion in multi-component compounds. The tracer diffusion coefficient of 

specie j is calculated as 
  

[Δ
r 
R ξ

j (t)]2

ξ∑( )  / (2d)tNξ [111] at each composition within KMC 
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simulations by averaging over trajectories,  Δ
r 
R ξ

j (t) (the vector linking the end points of the 

trajectory of atom ξ of specie j after time t, Nξ is the number of atoms of specie j, and d is the 

number of dimensions), at different times and over simulations that started from different initial 

configurations (obtained with canonical Monte Carlo. 

A variety of alloy compositions were determined with grand canonical Monte Carlo 

simulations corresponding to an equilibrium vacancy concentration [93]. In the Ni-rich alloys, 

the Monte Carlo (MC) cell contained 123 B2-NiAl unit cells (3456 sites) and 1000 kMC passes 

were performed (one kMC pass corresponds to each atom on average having performed a hop), 

starting from 100 initial configurations. In the Al-rich alloy an MC cell with 443 B2-NiAl unit 

cells (170,368 sites) was used and 60 kMC passes were performed starting from 8 initial 

configurations. A significantly larger MC cell was required in the Al-rich alloy to obtain the 

correct equilibrium concentrations for antisite Al atoms, antisite Ni atoms and Al vacancies.  

Figure 5-2 illustrates predicted tracer diffusion coefficients for both Ni and Al as a 

function of bulk alloy concentration (defined as xNi xNi + xAl( ) where xi refers to the fraction of 

bcc sites occupied by specie i) calculated at 1300 K. As is clearly evident from Fig. 5-2(a), the 

predicted tracer diffusion coefficients depend strongly on composition, exhibiting a minimum at 

stoichiometric NiAl. In Ni-rich alloys, the Ni tracer diffusion coefficient is larger than that of Al 

indicating a higher Ni mobility there. In Al-rich alloys, however, the tracer diffusion coefficients 

of Ni and Al are very similar, in spite of the fact that the Ni sublattice consists of a very high 

concentration of vacancies.  While experimental measurements of Al tracer diffusion coefficients 

in B2-NiAl are not available, several measurements of Ni tracer diffusion coefficients have been 

performed [49,50]. The measurements of Hancock et al. [50] and Frank et al. [49] qualitatively 

exhibit similar trends with alloy composition as predicted here, however, quantitatively differ 
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from each other by as much as an order of magnitude in Al and Ni rich alloys (see Fig. 5-2b). 

Both measured an increase in the Ni tracer diffusion coefficient with increasing Ni concentration 

above stoichiometric NiAl. The Ni tracer diffusion coefficient measured by Hancock et al [50] 

exhibits a pronounced minimum at stoichiometric NiAl composition, while that measured by 

Frank [49] remains constant, as the alloy becomes Al rich. We emphasize that our predicted 

tracer diffusion coefficients are for a perfect crystal without dislocations and grain boundaries, 

while experimentally measured tracer diffusion coefficients are always performed on samples 

that will contain some extended defects that can act as short-circuit diffusion paths. The samples 

of Frank et al [49] were performed on single crystals such that grain boundary diffusion did not 

play a role in their measurements.  

There are several sources of inaccuracies in the calculated tracer diffusion coefficients, 

which arise from the first-principle calculations, from the cluster expansion and from the kinetic 

Monte Carlo simulations. 

First, there is an error due to the use of the generalized-gradient approximation in density 

functional theory, which is difficult to quantify and requires experimental information about a 

particular hop mechanism to enable a direct comparison with a calculated migration barrier.  

In DFT calculations the energy cutoff, the k-point sampling and the size of the supercell 

are also sources of inaccuracies. In this thesis, a plane-wave basis set cutoff energy of 500eV was 

used, which is much higher than the required value for the Ni and Al. Convergence tests of the 

energy with respect to k-point grids indicated that k-point sampling errors are less than 5meV per 

Ni xNiAl xAl ∅ xV  formula unit, where ∅ stands for a vacancy. In section 4.3 we have shown that 

the estimated numerical error in calculated activation barriers due to the supercell size is of the 

order of 100-200meV.  
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In addition to the errors arising from first-principle calculations, an error can also come 

from the cluster expansion. We have checked the difference in activation energy between first-

principles calculation and cluster expansion prediction for some of hops and found an error of 

the order of 40meV. 

Finally, kinetic Monte Carlo will also introduce inaccuracies due to the averaging over a 

finite number of atomic trajectories. From Fig. 5-2 illustrates scatters in the calculated tracer 

diffusion coefficients. This scatter comes from kinetic Monte Carlo simulations and is of the 

order of a factor of 2.5. The scatter will decrease if averaging were performed aver more kinetic 

Monte Carlo runs starting from different initial states. However, to do this is not feasible based 

on our calculation capacity. 

Although there are many types of numerical errors in the calculated migration barriers, 

they are unlikely to be completely correlated in a positive sense. Some error cancellation can be 

expected. Furthermore, systematic errors in the calculated activation barrier of 150meV will 

produce an error of factor three in the diffusion coefficient at 1300K since hopping rates depend 

exponentially on the activation barrier. This error in tracer diffusion coefficient is comparable to 

the magnitude of the scatter in calculated results from kinetic Monte Carlo and within the scatter 

in the experimental results. Furthermore, because these are systematic errors, they will not 

change the trend of the tracer diffusion coefficients over the bulk composition range.  

 

5.3 Relative importance of various diffusion mechanisms in B2-NiAl compound 

A unique advantage of the kinetic Monte Carlo simulations is that it allows us to track the 

frequency with which the various hops occur as a function of alloy composition, thereby 

providing insight about the dominant diffusion mechanisms responsible for atomic transport in 
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B2-NiAl. These relative frequencies are illustrated in Figure 5-3. It should be noted that the 

fractions for the cyclic hop mechanisms (i.e. 6JC, triple-defect) and hop sequences plotted in Fig. 

5-3 do not correspond to the frequency with which the sequence itself occurs, but rather to the 

sum of the total number of sub-hops making up the sequence. Furthermore the plotted 

frequencies are upper bounds for the various hop sequences, as not all hop sequences come to 

completion, retracing steps before reaching the end of a sequence.  

Around stoichiometry, the most frequent hop sequence is Ni-anti-site/Ni-vacancy back 

and forth hops, due to its relatively low migration barrier (~0.7 eV averaged over the back and 

forth hop directions [93]). These hops, however, do not contribute to macroscopic transport (and 

therefore the tracer diffusion coefficient) since a back and forth hop restores the Ni atom to its 

initial position.  The next most frequent hop mechanism at stoichiometry is the triple-defect hop 

sequence in which a Ni anti-site next to a pair of Ni-vacancies perform a sequence of three hops 

that results in a net migration of the triple defect by a cubic lattice parameter. As the Ni 

concentration of the alloy is increased above stoichiometry, the dominant hop mechanism 

changes to the anti-structure-bridge (ASB) mechanism [52], whereby vacancies, which 

energetically prefer the Ni-sublattice, can migrate along percolating networks of nearest neighbor 

Ni-chains connected by Ni-anti-site atoms. Since the existence of the percolating networks 

requires Ni-anti-site atoms, the ASB sequence is only viable in Ni-rich alloys where off-

stoichiometry is accommodated by Ni-anti-site atoms [52]. The average migration barrier for Ni-

NN hops is comparatively low (~0.7 eV) and the migration of a vacancy along a percolating 

network of Ni-anti-site atoms does not result in any increased disorder, thereby making the ASB 

sequence a very effective mechanism to transport Ni ions. As a result, while Al predominantly 

migrates by means of the triple-defect mechanism, the Ni atoms can migrate via both the triple-
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defect and the ASB mechanisms resulting in a Ni tracer diffusion coefficient exceeding that of 

Al above a threshold composition upon which the percolating NN Ni-pairs consisting of Ni anti-

site atoms are formed.  

In Al-rich alloys (only one concentration was considered in Al-rich B2-NiAl as very 

large Monte Carlo cells are required to ensure that equilibrium concentration for Al antisite, Ni 

antisite and Al vacancies present), the dominant diffusion mechanisms change again, with the 

triple-defect mechanism becoming less important and the ASB sequence involving Ni no longer 

viable. Instead Ni and Al transport is mediated by the 6JC (which as described above is in fact a 

sequence of three pair-atom hops) and what we will refer to as the Al-ASB sequence. The 6JC, 

while having high migration barriers for the first hop (above 2.3 eV) [93,58,129], become a 

dominant mechanism in Al-rich alloys due to the large concentration of Ni-vacancies. Its high 

frequency has an entropic origin since for a given Ni-vacancy there are 48 symmetrically 

equivalent pair-atom hops that can initiate the 6JC sequence. An important result in Fig. 5-3 is 

that Ni NNN hops are not significant at any composition, even in Al-rich alloys where the Ni 

vacancy concentration is very high, in large part due to its high migration barrier (~2.7eV) and 

since only six NNN hops are possible for a Ni vacancy.  

The other dominant diffusion mechanism in Al-rich alloys involves pair-atom hops in 

which an Al on the Al sublattice and an anti-site Al simultaneously hop into a Ni vacancy. This 

hop mechanism, which is characterized by a low migration barrier (~1 eV) [93], can be 

compared to the Ni-ASB mechanism in that Al transport by this mechanism is greatly enhanced 

once a percolating network of Ni vacancies is established. We, therefore, refer to it as an Al ASB 

mechanism. While the kinetic Monte Carlo simulations predict a high frequency for this 

mechanism, the alloy composition is likely not Al-rich enough to result in a sufficiently high Ni-
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vacancy concentration to form percolating networks [149]. Most of the pair-atom hops involving 

two Al atoms are therefore back and forth hops and do not contribute much to macroscopic Al 

transport. Hence at the Al-rich composition considered here, the Ni and Al tracer diffusion 

coefficients are similar in magnitude, relying for the most part on the 6JC mechanism for long-

range transport [63]. 

 

5.4 Summary 

In this chapter we have shown the technique and complexity of investigating diffusion 

mechanisms and predicting diffusion coefficients in a real material system – B2 NiAl compound. 

Combining diffusion theory, cluster expansion and kinetic Monte Carlo simulation, we 

systematically investigated various diffusion mechanisms and the calculated tracer diffusion 

coefficients for Ni and Al are in good agreement with the experiment results. For the first time, 

the relevant importance of various diffusion mechanisms is revealed in B2 NiAl. The above 

results clearly demonstrate a remarkable complexity of atomic diffusion in metallic alloys even 

for compounds such as B2-NiAl with its simple crystal structure. The decomposition of atomic 

transport into various hop mechanisms, as illustrated in Fig. 5-3, shows the tremendous 

sensitivity of the dominant diffusion mechanism to small changes in bulk alloy concentration. 

This understanding is not only intriguing from a scientific point of view, but is also of great 

relevance from an engineering standpoint as strategies to alter diffusion behavior in B2-NiAl 

through alloying will depend sensitively on composition. A ternary alloying addition that may, 

for example, have a tendency to pin down triple defects will only suppress diffusion in 

stoichiometric alloys, but will be less effective in diminishing transport in Ni-rich alloys where 

diffusion is dominated by the ASB-Ni mechanism. This has important implications in graded 
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multi-layer structures such as bond coats on turbine blades where interdiffusion can result in a 

change of the alloy composition. The approach used here, combining first-principles cluster 

expansion techniques with kinetic Monte Carlo simulations, will enable the study of diffusion in 

other complex alloys, oxides and semiconductors, unraveling unexpected atomic transport 

mechanisms that arise from varying degrees of short and long-range order at non-dilute 

concentrations.  
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Figure 5-1 Calculated attempt frequencies for various diffusion hops in B2-NiAl compound.  
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Figure 5-2 (a) Calculated tracer diffusion coefficients for Ni and Al at 1300K. Solid blue circles 
are Ni tracer diffusion coefficients and solid red squares are Al tracer diffusion coefficients. (b) 
Comparison of calculated Ni tracer diffusion coefficient (blue circles) at 1300K with 
experimental measurements of Ni tracer diffusion coefficients by Frank et al. (at 1300K, white 
circle) [49] and Hancock et al. (at ~1273K, white square) [50]. 
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Figure 5-3 Calculated relative percentages of various diffusion hops in B2 NiAl compound as a 
function of composition at 1300K. Solid blue diamonds are percentages of Ni next-nearest-
neighbor (NNN) hops; solid red squares are percentages of triple-defect (TD) hops; solid gray 
triangles are percentages of six-jump-cycle (6jc) hops; solid green circles are percentages of anti-
bridge-structure hops for Al (ASB_Al); purple circles are percentages of anti-bridge-structure 
hops for Ni (ASB_Ni) and solid orange circles are percentages of back-and-forth hops involving 
Ni antisite (NiAl) and Ni vacancy (VNi). Brown diamonds are for back forth 6JC 1st and 3rd sub 
hops. 
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Chapter 6 

Self-diffusion and interdiffusion in B2-NiAl compound 

 

In chapter 5, we investigated the tracer diffusion coefficients for Ni and Al atoms in B2-

NiAl compound. Based on the results we obtained from chapter 5, in this chapter we will further 

investigate self-diffusion and interdiffusion in the B2-NiAl compound at high temperature. 

Going beyond the mean field approximation, we investigated the system with a cluster expansion 

model to capture interactions among various defects. All well-known diffusion mechanisms and 

new mechanisms discovered from first principles were incorporated in the kinetic Monte Carlo 

simulation.  

In this chapter we also investigate the thermodynamic factors in B2-NiAl compound and 

show that in Al-rich alloys the thermodynamic factor of Al is much greater than that of Ni while 

in Ni-rich alloys they are similar. This difference in thermodynamic factors results in a much 

higher self-diffusion coefficient of Al compared to that of Ni in Al-rich alloys given similar 

kinetic factors calculated in this region. This difference also results in two different interdiffusion 

coefficients depending on whether Ni or Al concentration gradient is used in Fick’s first law. We 

will demonstrate that this difference in thermodynamic factors has its root in the specific 

characteristic of defects in B2 NiAl, i.e., the high vacancy concentration and asymmetric 

distribution of vacancies, between the Ni sublattice and Al sublattice. 
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6.1 Violation of one thermodynamic factor assumption 

Interdiffusion is a very important phenomenon in solids and attracts attentions from both 

application area and theoretical research. For instance, as we have mentioned in chapter 1, the 

interdiffusion can lead to functional degradation in B2-NiAl compound, which serves as a bond 

coat between the Ni-rich superalloy substrate and the Al-rich TGO chemical barrier in gas 

turbine blades [38]. Although the crystal structure of B2-NiAl compound is simple, this 

compound has very complex defect type and structure [41], making it challenging to investigate 

interdiffusion in this system. There are many types of point defects and defect clusters that 

simultaneously exist in the B2-NiAl compound at finite temperature and the interaction among 

them cannot be simply ignored.  

Due to the complex defects in B2-NiAl compound, the diffusion mechanism is not clear 

although many diffusion mechanisms have been proposed in last several decades [42,43,47-67], 

including nearest neighbor hop, next nearest neighbor hop, six-jump-cycle hop [47,63,66], anti-

structural-bridge hop [52] and triple defect hop [49,67]. In chapter 5, we evaluated all these 

possible mechanisms as well as new mechanisms and our kinetic Monte Carlo simulations 

showed that Ni anti-structural bridge hop is the dominant hop in Ni-rich region and Al anti-

structural hop is the dominant one in Al-rich region. Despite this clear understanding of diffusion 

hops in B2-NiAl compound, the effect of specific defect characteristic on the self-diffusion and 

interdiffusion coefficients of B2-NiAl at high temperature is not clear because the self-diffusion 

and interdiffusion coefficients depend on not only kinetic factors but also thermodynamic factors 

[135]. 

In previous analyses of self-diffusion and interdiffusion in most solids, equations derived 

within the assumption of a small vacancy concentration have always been used, which leads to a 
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single thermodynamic factor for both Ni and Al. This assumption is not appropriate for B2-NiAl 

compound because (i) the vacancy concentration can be as high as 15% in Al rich region; (ii) 

vacancies do not randomly distributed among the Ni sublattice and Al sublattice (most vacancies 

are on the Ni sublattice) and (iii) the concentration of vacancy depends on the bulk concentration 

of the compound [41-43]. All these specific characteristic of defects in B2-NiAl compound 

invalidate the conventional assumptions concerning vacancies and thermodynamic factors and 

have significant effects on self-diffusion and interdiffusion coefficients in B2-NiAl compound.  

Some researchers have questioned this conventional assumption when studying chemical 

diffusion in alloys that have high vacancy concentration. For instance, using an model Ising 

binary ordered alloy Qin [136] argued from computer simulation that whenever the vacancy 

concentration is greater than 1%, the thermodynamic factors for chemical diffusion of the 

component A and B are different. Without knowing the vacancy concentration as a function of 

alloy composition, Bencze [137] roughly evaluated two different thermodynamic factors for Ni 

and Al in B2-NiAl compound from activity measurements while he admitted that there are 

problems in obtaining the thermodynamic factors from activity measurements in B2-NiAl 

compound due to the high vacancy concentration and the absence of the vacancy concentration 

profile as a function of bulk alloy composition. Thus, we will abandon the conventional 

assumption regarding vacancy concentration and thermodynamic factor in the present thesis and 

investigate the effect of specific defect characteristic on the intrinsic diffusion and interdiffusion 

in B2-NiAl compound from first-principle taking account of the defect concentration as a 

function of bulk alloy composition. 

 

6.2. Self-diffusion coefficients in B2-NiAl compound 
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In a system such as B2-NiAl where the crystal sites are conserved, the atomic fluxes for 

substitutional diffusion mediated by vacancies can be written as the following phenomenological 

equations [138,139]: 

JNi = −LNiNi∇μNi −LNiAl∇μAl −LNiV∇μV    (6-1a) 

JAl = −LAlNii∇μNi −LAlAl∇μAl −LAlV∇μV    (6-1b) 

where Ji(i = Ni, Al or vacancy) is the fluxes of component i that is defined as the number of 

atoms crossing a unit area per unit time, Lij’s are kinetic coefficients and ∇μi(i = Ni, Al or 

vacancy) is the chemical potential gradient of component i, As we have mentioned in section 2.4 

that we take μV= 0 in our simulation since a vacancy is a non-conserved species in a fully 

equilibrated solid, its chemical potential μV  must be zero, equations (6-1a) and (6-1b) becomes 

JNi = −LNiNi∇μNi −LNiAl∇μAl    (6-2a) 

JAl = −LAlNii∇μNi −LAlAl∇μAl    (6-2b) 

The atomic fluxes can also be expressed as the following equations according to Fick’s first law 

within the assumption that μV = 0 (μV is the chemical potential of vacancy, see Chapter 4 for 

explaination): 

JNi = −DNi∇CNi      (6-3a) 

JAl = −DAl∇CAl       (6-3b) 

where Di (i=Ni, Al or vacancy) is the self-diffusion coefficient and ∇Ci (i =Ni, Al or vacancy 

and CNi + CAl + CV = 1) is the gradient of volume based concentration of component i. The 

volume-based concentration can be converted to crystal site based concentration according  

xi=CiΩ,      (6-4)  

where Ω is the volume per crystal site and xi is the site based concentration of component i (i=Ni, 

Al or vacancy) defined as the number of sites occupied by component i as a fraction of total 
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crystal sites M, that is xi = Ni/M, where Ni is the number of sites occupied by component i and M 

is the total number of crystal sites. It should be noted that xNi + xAl + xV = 1. The concentration 

and chemical potential of Ni, Al and vacancy V satisfy the Gibbs-Duhem relation, 

namely, xNidμNi + xAldμAl + xV dμV = 0. Since μV=0, the relation becomes 

xNidμNi + xAldμAl = 0     (6-5) 

Combining equations (6-2) through (6-5) we can get the following well-known equations for 

self-diffusion coefficients [135,138]: 

DNi =
˜ L NiNi

xNi

−
˜ L NiAl

xAl

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

xNi

kBT
dμNi

dxNi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

μV = 0

    (6-6a) 

DAl =
˜ L AlAl

xAl

−
˜ L AlNi

xNi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

xAl

kBT
dμAl

dxAl

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

μV = 0

    (6-6b) 

where ˜ L ij = ΩkBTLij , kB is the Boltzmann constant and T is the absolute temperature. It can be 

seen from equations (6-6) that the self-diffusion coefficient depends on two parts, one, 

˜ L NiNi

xNi

−
˜ L NiAl

xAl

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  for DNi, is related to kinetic coefficients and the other, xNi

kBT
dμNi

dxNi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

μV = 0

for DNi, is 

related to thermodynamic factor. We will define thermodynamic factors φ for Ni and Al by the 

following two equations: 

φNi = xNi

kBT
dμNi

dxNi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

μV = 0

     (6-7a) 

φAl = xAl

kBT
dμAl

dxAl

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

μV = 0

     (6-7b) 

Allnatt has shown that the kinetic coefficients can be expressed as the following equation 

[140,141]: 
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˜ L ij =
Δ

r 
R ς

i (t)
ς∑( ) Δ

r 
R ξ

j (t)
ξ∑( )

(2d)tM
     (6-8) 

where   Δ
r 
R ς

i (t) is the vector linking the end points of the trajectory of atom ς of specie i ( i = Ni or 

Al) after time t and it can be kept track of in the kinetic Monte Carlo simulation. M is the number 

of crystal sites and d is the dimension of the substitutional crystal structure (d=3 in our 

simulation to represent the 3-dimensional crystal). The brackets mean an ensemble average 

conducted at equilibrium. The ˜ L ij  coefficients have the same units as a diffusion coefficient.  

As for the thermodynamic factor φ, it has been shown [135] that the thermodynamic 

factor can be related to the variances of the number of Ni and Al atoms by the following 

equations: 

φNi = xNixAl
θNiNiθAlAl −θNiAl

2

xNiθNiAl + xAlθAlAl

    (6-9a) 

φAl = xAl xNi
θAlAlθNiNi −θAlNi

2

xAlθAlNi + xNiθNiNi

    (6-9b) 

where θij  is defined in terms of the variances of Ni atoms (NNi) and Al atoms (NAl) by 

θNiNi = M
kBTQ

NAl
2 − NAl

2( ),     (6-10a) 

θNiAl = θAlNi = −
M

kBTQ
NNiNAl − NNi NAl( ),    (6-10b) 

θAlAl =
M

kBTQ
NNi

2 − NNi
2( ),     (6-10c) 

where Q = NNi
2 − NNi

2( ) NAl
2 − NAl

2( )− NNiNAl − NNi NAl( )2
 and M is the total number of 

crystal sites. Using equations (6-9) and (6-10) we can calculate the thermodynamic factors by 
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keeping track of the number of Ni and Al atoms in the grand canonical Monte Carlo simulation 

[135,142]. 

Based on Monte Carlo simulation data we calculated the self-diffusion coefficients as a 

function of bulk composition of B2-NiAl. Figure 6-1 shows the calculated self-diffusion 

coefficients for Ni and Al atoms in B2-NiAl at 1300K. In Al-rich region, only one composition 

was investigated, as it is extremely difficult to get good statistics in reasonable time period in this 

region. A primary reason is that the concentration of point defects or defect clusters necessary to 

mediate diffusion hops are very dilute in this region so requiring large Monte Carlo supercells to 

reproduce the equilibrium defect concentration in the kinetic Monte Carlo simulation. 

Furthermore, the concentration of vacancies is very high in the Al-rich region so the number of 

hops is much larger than that in Ni-rich region. In a kinetic Monte Carlo simulation, all hops 

must be considered simultaneously during each hop event. 

From Fig. 6-1 we can see that the Ni has a higher self-diffusion coefficient than Al in the 

Ni-rich region while Al has a higher self-diffusion coefficient than Ni in the Al-rich region with 

the cross at the composition of around 52%. As we have demonstrated in chapter 5 Ni has a 

higher tracer diffusion coefficient than Al in the Ni-rich region due to the anti-structural bridge 

mechanism while Al and Ni atom have similar tracer diffusion coefficients in Al-rich region. 

Compared with the tracer diffusion coefficients the self-diffusion coefficients exhibit a very 

different profile in the Al-rich region. This is a result of a difference in thermodynamic factors 

between Ni and Al. 

As we have mentioned above in equation (6-6), the intrinsic diffusion coefficient depends 

on two parts, one is related to kinetic coefficients and the other is related to thermodynamic 

factor. We calculated the thermodynamic factors (Eq. (6-7a) and (6-7b)) using Monte Carlo 
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simulations. Figure 6-2 shows the results for Ni and Al at 1300K in B2-NiAl. From Fig. 6-2 we 

can see that Ni and Al have identical thermodynamic factors in Ni-rich region while they have 

very different values in the Al-rich region. In the Al-rich region, the thermodynamic factor of Al 

is much larger than that of Ni by several orders of magnitude. It is this large difference in 

thermodynamic factors that results in self-diffusion coefficients that differ qualitively from the 

tracer diffusion coefficients in Al-rich region. While Ni and Al have similar tracer diffusion 

coefficients, Al has a much larger self-diffusion coefficient than Ni in the Al-rich region.  

 

6.3 Two thermodynamic factors in B2-NiAl compound 

The reason for two thermodynamic factors in B2-NiAl compound can be shown as 

follows. The Gibbs-Duhem equation (6-5), which is under the restriction that μV = 0, can be 

rewritten as  

xNidμNi

kBTdxNi

+
xAldμAl

kBTdxAl

dxAl

dxNi

= 0.    (6-11) 

According to the definition of thermodynamic factors for Ni and Al (equation (6-7a) and (6-7b)), 

equation (6-11) is equivalent to φNi + φAl
dxAl

dxNi

= 0, which indicates that 

φAl

φNi

= −
dxNi

dxAl

.     (6-12) 

In a binary system where vacancies are so dilute that their composition can be neglected, 1 = xNi 

+ xAl + xV ≈ xNi + xAl. This indicates that as the bulk composition changes, the increase of one 

component is achieved by the decrease of the other component and consequently, dxA

dxB

= −1, 

leading to φA = φB by equation (6-12). In such a system, the thermodynamic factors of the two 

components are equal. However, in the B2-NiAl compound this is not the case. Our previous 
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investigation has shown that the equilibrium concentration of vacancy in B2-NiAl can reach up 

to 15% in Al-rich region at 1300K and as the bulk composition of B2-NiAl changes, the decrease 

in Ni concentration, xNi, is not achieved by the means of an increase in the Al concentration, xAl. 

As a result, dxA

dxB

= −1 does not hold any longer in the B2-NiAl compound and two different 

thermodynamic factors are necessary for calculating intrinsic diffusion coefficients.  

A detailed analysis can be achieved by keeping track of the Ni concentration xNi and Al 

concentration xAl in the Monte Carlo simulation and Fig. 6-3 shows the relationship between the 

Ni concentration xNi and the Al concentration xAl as the bulk composition of B2-NiAl changes at 

1300K. From Fig. 6-3 we can see that in the Ni-rich region dxNi

dxAl

 is almost -1 indicating that φNi 

is almost identical to φAl. The reason for this is that in Ni-rich region (as demonstrated in our 

previous investigation) the major point defects are antisite Ni atoms and vacancies are dilute (Ni 

vacancy is at the 10-3 level and Al vacancy is at the 10-7~10-6 level). Consequently as the bulk 

composition changes in the Ni-rich region the increase (decrease) in xNi is achieved by a decrease 

(increase) in xAl, causing dxNi

dxAl

 equal to -1. We can also see from Fig. 6-3 that in the Al-rich 

region the absolute value of dxNi

dxAl

 is very large, indicating that φAl is much larger than φNi. This is 

because in the Al-rich region (see chapter 4) the major point defect are Ni vacancies and its 

concentration is too high to be neglected (10-2 ~ 10-1 level). Consequently as the bulk 

composition changes in the Al-rich region the increase (decrease) in xNi is achieved by the 

decrease (increase) in the concentration of Ni vacancies while xAl remains almost constant. This 
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results in a large negative value of dxNi

dxAl

 and explains the much larger thermodynamic factor of 

Al in Al-rich region (Fig. 6-2). 

From the above simulation result and analysis we can see that it is the high vacancy 

concentration and asymmetric distribution of vacancies between the Ni sublattice and Al 

sublattice that results in two different thermodynamic factors in the Al-rich region in the B2-

NiAl compound. Much larger thermodynamic factors of Al than that of Ni in the Al-rich region 

leads to much larger self-diffusion coefficient of Al than that of Ni in this region. In addition to 

having a significant effect on self-diffusion coefficients, these two different thermodynamic 

factors also affect the interdiffusion coefficients in B2-NiAl compound, as we will demonstrate 

in the next section. 

 

6.4 Two interdiffusion coefficients in B2-NiAl compound 

In the previous section we have shown that there are two different thermodynamic factors for 

Ni and Al respectively in the B2-NiAl compound and this has a significant effect on the self-

diffusion coefficients in this compound. In this section we will demonstrate that two different 

thermodynamic factors also have consequences for the interdiffusion coefficients in B2-NiAl. 

The flux of atoms A relative to the laboratory frame is called the interdiffusion flux of A and 

it can be shown that in a binary system such as B2-NiAl this definition of the interdiffusion flux 

results in following identity [143,144]: 

˜ J Ni + ˜ J Al = 0      (6-13) 

where ˜ J i  (i = Ni or Al) is the interdiffusion flux of component i. The interdiffusion flux can also 

be expressed as the following equations according to Fick’s first law: 

˜ J Ni = − ˜ D Ni∇CNi     (6-14a) 
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˜ J Al = − ˜ D Al∇CAl      (6-14b) 

where ˜ D i (i = Ni or Al) is the interdiffusion coefficient of component i. Also from equation (6-4) 

and (6-12) it is clear that the following relationship holds: (assuming an equilibrium vacancy 

concentration) 

∇CNi

∇CAl

= −
φAl

φNi

     (6-15) 

Combining equations (6-13), (6-14) and (6-15) it is straightforward to obtain the following 

relationship between ˜ D Ni  and ˜ D Al : 

˜ D Al
˜ D Ni

=
φAl

φNi

      (6-16) 

Equation (6-16) indicates that the interdiffusion coefficients in B2-NiAl expressed as ˜ D Ni  or ˜ D Al  

are not necessarily same. Instead, the ratio between ˜ D Ni  and ˜ D Al  is equal to that between 

thermodynamic factors φNi and φAl. As we have demonstrated in the previous section, the 

thermodynamic factor of Al is much larger that of Ni in Al-rich region in B2-NiAl. This 

therefore results in different interdiffusion coefficients depending on whether an Al 

concentration gradient ∇CAl or a Ni concentration gradient ∇CNi is used in Fick’s first law (Eq. 

6-14). This phenomenon is intuitively understandable because in Al-rich region almost all 

vacancies are distributed on Ni sublattice and the concentration of Al vacancy is so dilute, 

yielding an almost constant concentration of Al in Al-rich region in the B2-NiAl compound. 

Consequently, typical gradients in the concentration of Al, ∇CAl , will be much smaller than that 

of Ni, ∇CNi . At the same time, the absolute value of the interdiffusion flux of Ni, ˜ J Ni, should be 

equal to that of Al, ˜ J Al . Thus from equation (6-14a) and (6-14b) we can see that the 

interdiffusion coefficient ˜ D Al  should be much larger than ˜ D Ni  in Al-rich region. 
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In order to confirm the above analysis, we directly calculated the interdiffusion 

coefficients ˜ D Al  and ˜ D Ni  using our Monte Carlo simulation data. Since the interdiffusion flux ˜ J i  

of component i (i =Ni or Al) is measured relative to the laboratory frame while the intrinsic 

diffusion flux Ji  of component i is measured relative to the moving crystal frame, the following 

relationship should hold [138,140,145,146]: 

˜ J Ni = JNi + CNiv      (6-17a) 

˜ J Al = JAl + CAlv      (6-17b) 

where v is the velocity of the crystal lattice frame relative to the laboratory frame defined by 

[138,140,145,146]  

v = −Ω(JNi + JAl )     (6-18) 

Combining equations (6-17) and (6-18) with equations (6-3), (6-4), (6-6), (6-7) and (6-15) it is 

not difficult to obtain the following expressions for interdiffusion coefficients of Ni and Al in 

B2-NiAl compound: 

˜ D Ni = xNi

˜ L AlAl

xAl

−
˜ L AlNi

xNi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + (1− xNi)

˜ L NiNi

xNi

−
˜ L AlNi

xAl

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ φNi   (6-19a) 

˜ D Al = xAl

˜ L NiNi

xNi

−
˜ L NiAl

xAl

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + (1− xAl )

˜ L AlAl

xAl

−
˜ L NiAl

xNi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ φAl   (6-19b) 

All the quantities on the right-hand side of equation (6-19) can be obtained from Monte 

Carlo simulations. Figure 6-4 shows the calculated interdiffuson coefficients of Ni and Al in the 

B2-NiAl compound at 1300K. From Fig. 6-4 we can see that ˜ D Al  and ˜ D Ni  are almost identical in 

the Ni-rich region, which is consistent with the identical thermodynamic factors of Ni and Al in 

this region. On the other hand, in the Al-rich region ˜ D Al  is much larger than ˜ D Ni , which is 
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consistent with the fact that the thermodynamic factor of Al is much larger than that of Ni in the 

Al-rich region.  

From the above we can see that two interdiffusion coefficients exist for B2-NiAl 

depending on whether an Al concentration gradient ∇CAl or a Ni concentration gradient ∇CNi is 

used in Fick’s first law. Figure 6-5 shows some experimentally measured [53,59,60,147] 

interdiffusion coefficients in B2-NiAl compound. All experiments report just one interdiffusion 

coefficient in Al-rich alloys, contrary to our prediction that two different interdiffusion 

coefficients emerge when the vacancy concentration becomes large. Comparing Fig. 6-4 to Fig. 

6-5 we can see that our calculated interdiffusion coefficients are in satisfactory agreement with 

the experiment results in Ni rich alloys. However, in Al-rich alloys, neither of the calculated 

interdiffusion coefficients agrees with experiments. The experimental studies determined the 

interdiffusion coefficient ˜ D  by the Sauer-Freise treatment [151] adopted by Wagner [152]. The 

definition of ˜ D  according to the treatment of Wagner is [152] 

˜ D = Vm (yAlJNi − yNiJAl )
∇yAl

    (6-20) 

where Vm is the molar volume without considering vacancies, yi is the mole fraction of 

component i without considering vacancies (that is, yNi + yAl = 1), such that, 

Vm = Ω /(1− xV )     (6-21) 

yNi = xNi /(1− xV )     (6-22a) 

yAl = xAl /(1− xV )      (6-22b) 

By using Eq. (6-3), (6-15), (6-21) and (6-22), it can be shown that Eq. (6-20) becomes 

˜ D =
xAl

DNi

φNi

+ xNi
DAl

φAl

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ φAl

1− xV + xAl
φAl

φNi

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

    (6-23) 
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Because the definition (6-20) is symmetric with respect to Ni and Al, it is also true that 

˜ D =
xNi

DAl

φAl

+ xAl
DNi

φNi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ φNi

1− xV + xNi
φNi

φAl

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

    (6-24) 

Hence, the right-hand sides of Eq. (6-23) and Eq. (6-24) are equal to each other. By Eq. (6-6), we 

can compare the numerator of the right-hand side of Eq. (6-23) with Eq. (6-19b) and it can be 

seen that this numerator is just an approximation of ˜ D Al . Similarly, the numerator of the right-

hand side of Eq. (6-24) is an approximation of ˜ D Ni . Figure 6-4 also shows the calculated ˜ D  along 

with ˜ D Al  and ˜ D Ni .  

 Thus, what the experiments measured, based on the Sauer-Freise treatment which starts 

from Eq. (6-20), ( ˜ D ) is different from ˜ D Ni  and ˜ D Al  which are the diffusion coefficients that 

appear in Fick’s first law. In Ni-rich alloys, the vacancy is very dilute and the theromodynamic 

factors of Al and Ni are very similar, such that the denominators of the right-hand sides of Eq. 

(6-23) and (6-24) are almost 1. Consequently, ˜ D ≈ ˜ D Ni ≈ ˜ D Al  holds in Ni-rich alloys. However, in 

Al-rich alloys, the thermodynamic factors of Al and Ni are very different and thus denominators 

of the right-hand sides of Eq. (6-23) and (6-24) deviate significantly from 1. As a result, the 

value of ˜ D  is not equal to ˜ D Ni  and ˜ D Al . 

From the above analysis we can see that we should compare the calculated value of ˜ D  

instead of ˜ D Ni  and ˜ D Al  with the experimental results [53,59,60,147]. This comparison shows that 

in Ni-rich alloys the calculated ˜ D  agrees well with experimental results, however, in Al-rich 

alloys the calculated value is smaller than experimental results. This discrepancy could have two 

explainations. First, all experiments [53,59,60,147] measured the interdiffusion coefficients 

using polycrystalline sample while our simulation does not take account of the role of grain 
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boundary diffusion. It has been shown by the experiments that the tracer diffusion coefficient of 

Ni in polycrystalline B2-NiAl [50] is much larger than that in single crystal samples [49] (Fig. 5-

2(b)). Another possible explanation for this disagreement may have its origin in the standard 

textbook assumption that the chemical potential of vacancies is zero since the dislocations and 

grain boundaries act as vacancy sources and sinks. However, in Al-rich B2-NiAl compound the 

concentration of vacancies is so high that it may locally deviate from its equilibrium value 

because insufficient dislocation and grain boundaries cannot effectively regulate an equilibrium 

concentration, leading to a vacancy chemical potential that is not zero. 

 

6.5 Summary 

In this chapter we have systematically investigated the self-diffusion and interdiffusion 

coefficients in the B2-NiAl compound from first-principles  

Our investigation has shown that there are two different thermodynamic factors for Ni 

and Al in the Al-rich region while they are almost identical in Ni-rich region. In the Al-rich 

region the thermodynamic factor of Al is much larger than that of Ni resulting in a much larger 

self-diffusion coefficient for Al than for Ni. We have also shown that, due to the high vacancy 

concentration in Al rich B2-NiAl, there are two interdiffusion coefficients depending on whether 

interdiffusion is treated in terms of Al concentration gradients or Ni concentration gradients. 

However, the definition of interdiffusion coefficient measured from experiments is different 

from those in Fick’s first law; these two types of definitions give similar values of interdiffusion 

coefficients in compounds with dilute vacancy while very different values in materials with high 

vacancy concentration. 
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Our investigation also shows that the specific characteristic of defect in B2-NiAl 

compounds, i.e. the high vacancy concentration and asymmetric distribution of vacancies 

between Ni sublattice and Al sublattice, is the reason for two different thermodynamic factors in 

Al-rich region and the resulting self-diffusion and interdiffusion coefficients in this composition 

region of B2-NiAl compound. 
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Figure 6-1 Calculated intrinsic diffusion coefficients for Ni (blue empty circles) and Al (red solid 
circles) in B2-NiAl at 1300K. 
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Figure 6-2 Calculated thermodynamic factors for Ni (green solid circles) and Al (red solid 
squares) in B2-NiAl at 1300K. 
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Figure 6-3. Relationship obtained from Monte Carlo simulation between Ni concentration, xNi, 
and Al concentration, xAl, in B2-NiAl at 1300K. 
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Figure 6-4 Interdiffusion coefficients calculated for Ni (blue squares), Al (red diamonds) and 
Wagner’s definition (green circles) in B2-NiAl at 1300K.  
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Figure 6-5. Experimental interdiffusion coefficients for B2-NiAl: (a) 1273K; (b) 1323K and 
1423K. Data reported by Paul, Shankar, Kim, and Watanabe (see Ref. 59, 60, 53, and 147).  
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Chapter 7 

Conclusion 

 

In this thesis, we systematically investigated the thermodynamic and kinetic properties in 

an interstitial solid, the Ti-H system, and a substitutional solid, the Ni-Al system, from first-

principles.  

For the Ti-H system, the phase stability was investigated by accounting for the 

configurational degree of freedom, vibrational degrees of freedom and anisotropic states of 

stress. We find that:  

(1) The tetragonal γ-TiH phase is predicted (within GGA) to be unstable relative to hcp 

Ti (α phase) and the fcc based δ-TiH2. Zero point vibrational energy significantly affects the 

formation energies in this system and makes the γ phase even less stable relative to hcp Ti and δ-

TiH2. The coherency strains between hydride precipitates and the hcp Ti matrix stabilize γ-TiH 

relative to α-Ti and δ-TiH2, explaining why it is observed experimentally. We also find that 

hydrogen prefers octahedral sites at low hydrogen concentration and tetrahedral sites at high 

concentration. Both harmonic vibrational as well as electronic origins for the cubic to tetragonal 

phase transformation of TiH2 were investigated and we argue that anharmonic vibrational 

degrees of freedom are likely to play an important role in stabilizing cubic TiH2.  

For the Ni-Al system, we investigated the equilibrium defect concentration, interaction 

among defects, migration barriers for various diffusion mechanisms. We find that:  
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(2) The B2-NiAl compounds exhibits a variety of complex atomic hop mechanisms and 

can accommodate high concentrations of diffusion mediating defects. In this thesis, we 

systematically investigated important hop mechanism in B2-NiAl from first principles and 

discovered a low barrier collective hop involving a pair of Al atoms that can mediate the anti-

structural bridge mechanism for Al diffusion. We also investigated the defect structure in B2-

NiAl with Monte Carlo simulations, accounting for interactions among defects with a first-

principles parameterized cluster expansion. An energetic attraction between Ni anti-site atoms 

and Al anti-site atoms leads to an increase in the Al anti-site concentration for Ni-rich B2-NiAl 

compounds, which is opposite to that predicted by mean field treatments. The inclusion of 

interactions among defects is also essential to predict the concentration of triple defects. We also 

predict a dramatic increase in the number of second and third nearest neighbor pairs occupied by 

an Al anti-site and a Ni-vacancy as the B2-NiAl alloy becomes Al rich and Ni rich. These pairs 

are essential for the anti-structural bridge mechanism for Al-diffusion. 

To reveal the relative importance of various diffusion mechanisms for B2-NiAl, we 

performed a comprehensive kinetic Monte Carlo simulation of diffusion in B2-NiAl. Our model 

avoids the simple assumptions such as only allowing single atom nearest- and next-nearest-

neighbor hops, non-interaction among defects, dilute vacancy and uniform vacancy 

concentration. These assumptions do not hold in B2 NiAl in which the vacancy concentration 

can reach 15%. From our simulations we find that: 

(3) The Ni-anti-structural-bridge hop is the dominant hop for Ni diffusion in Ni-rich 

alloys and the Al-anti-structural-bridge hop is the dominant hop for Al diffusion in Al-rich 

alloys. Combined with ASB-Al, the six-jump-cycle is also a major type of hop in Al-rich side 

due to the relative high concentration of Ni vacancies in spite of the high migration barrier. 
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Compared to the hops mentioned above, the triple-defect hop mechanism has a relatively 

constant effect over the whole composition range contributing to both Ni and Al diffusion. 

Furthermore, we have demonstrated the importance of simultaneous multi-atom hops in 

mediating atomic transport. These are very important in understanding the diffusion phenomenon 

in a compound with such a simple structure – B2 NiAl. It can be reasonably thought that in a real 

material system having a much more complicated structure than B2, the simplified textbook 

assumptions about diffusion are also likely to break down. In such a system, collective hops 

involving many atoms are likely to happen; vacancy concentrations may depend strongly on bulk 

composition and might not be dilute. Furthermore, interactions among defects are complicated 

and too important to neglect. Our model provides a tool to study diffusion process with much 

more realistic assumptions and lays a solid foundation for further investigation. 

In analyzing macroscopic metrics of diffusion in B2-NiAl, we find that: 

(4) There are two different thermodynamic factors for Ni and Al in Al-rich alloys while 

they are almost identical in Ni-rich alloys. In Al-rich alloys the thermodynamic factor of Al is 

much larger than that of Ni causing the self-diffusion coefficient and interdiffusion coefficient of 

Al to be much larger than those of Ni. On the other hand, in Ni-rich region the interdiffusion 

coefficients of Al and Ni are identical and the self-diffusion coefficient of Ni is higher than that 

of Al due to the kinetic factors. The definition of interdiffusion coefficient measured from 

experiments is different from those in Fick’s first law; these two types of definitions give similar 

values of interdiffusion coefficients in compounds with dilute vacancy while very different 

values in materials with high vacancy concentration. Our investigation also shows that the 

specific characteristic of defects in the B2-NiAl compound, i.e. the high vacancy concentration 

and asymmetric distribution of vacancies between Ni sublattice and Al sublattice, is the reason 
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for two different thermodynamic factors in Al-rich region and the resulting self-diffusion and 

interdiffusion coefficients in this composition region of B2-NiAl compound.
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Appendix A 

 

Here we describe a method to determine values for the relative chemical potentials, Niμ~  

and Alμ~ , corresponding to an equilibrium vacancy concentration determined by μV=0. The 

chemical potentials, μi (i=Ni, Al or vacancies), are related to the Gibbs free energy of the solid at 

fixed temperature T according to  

    μi = g(T, xNi, xAl ) + (δiNi − xNi)
∂g

∂xNi

+ (δiAl − xAl )
∂g

∂xAl

  (A1) 

where g(T, xNi, xAl )  is the free energy of a B2 NiAl crystal normalized by the number of crystal 

sites, xi=Ni/M is the fraction of crystal sites occupied by component i (Ni, Al or vacancies) and 

δij is the Kronecker delta (the free energy per crystal site depends only on xNi and xAl since xNi + 

xAl + xV = 1). Using Eq. (A1), it is possible to write the relative chemical potentials ˜ μ i as the 

partial derivative of g with respect to xi according to  

      ˜ μ i = μi − μV =
∂g
∂xi

    (A2) 

showing that this quantity is a measure of the change in free energy as component i is added at 

the expense of a vacancy (keeping the number of crystal sites constant). Combining Eq. (A1) for 

the vacancy chemical potential μV and Eq. (A2) for i=Ni and Al, yields  

     μV = g(T, xNi, xAl ) − xNi ˜ μ Ni − xAl ˜ μ Al    (A3) 

By setting μV=0, we obtain a constraint between Niμ~  and Alμ~  that defines a path in chemical 

potential space corresponding to an equilibrium vacancy concentration. It is along this path in 
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Niμ~  and Alμ~  space for which μV=0 that we must calculate the equilibrium concentrations 

xNi ˜ μ Ni, ˜ μ Al( ) and xAl ˜ μ Ni, ˜ μ Al( ) as well as the equilibrium defect concentrations for the B2 NiAl 

compound within grand canonical Monte Carlo simulations.  

Before we can determine the path in Niμ~  and Alμ~  space satisfying μV=0, we must know 

g(T, xNi, xAl ) . This crystal free energy is accessible with free energy integration of grand 

canonical Monte Carlo results. To this end, we introduce a grand canonical free energy of a B2-

NiAl crystal with M sites as  

    Φ T, ˜ μ Ni, ˜ μ Al( )= G T,N Ni,N Al( )− N Ni ˜ μ Ni − N Al ˜ μ Al  (A4) 

where N Ni and N Al  are average concentrations calculated within the grand canonical ensemble 

(fixed M, T, Niμ~  and Alμ~ ) and G T,N Ni,N Al( ) is the total free energy of the crystal with M sites 

(i.e., G T,N Ni,N Al( )= M ⋅ g(T,xNi,xAl ) ). The differential of Φ can be conveniently written as 

     d(βΦ) = Ω dβ − βN Nid ˜ μ Ni − βN Ald ˜ μ Al    (A5) 

where β=1/kBT and Ω  is the average grand canonical energy. By numerically integrating Eq. 

(A5) along a particular trajectory in β, ˜ μ Ni, ˜ μ Al  space, it is possible to relate the grand canonical 

free energy at one set of thermodynamic boundary conditions (To, 0

~
Niμ , 

0

~
Alμ ) to another (T, ˜ μ Ni , 

˜ μ Al ). At various increments along the trajectory, values for Ω , N Ni and N Al  of Eq. (A5) can be 

calculated with grand canonical Monte Carlo simulations. A convenient reference state to use as 

starting point for the integration of Eq. (A5) is one in which the grand canonical free energy can 

easily be calculated. For B2-NiAl such a reference state could correspond to the perfectly 

ordered alloy at a temperature close to zero Kelvin where Φ can be calculated with a low 

temperature expansion [10,133]. The free energy G T,N Ni,N Al( ) can then be calculated using Eq. 



 155

(A4), which when normalized by M yields g(T, xNi, xAl ) = G(T,NNi,NAl ) / M , to be used in Eq. 

(A3) to determine the path in Niμ~  and Alμ~  space for which μV=0. 
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Appendix B 

 

Here we describe an ideal solution model to calculate the free energy of dilute hcp Ti-H 

system. Due to the fact that the hcp host is stable only at very dilute hydrogen concentration, we 

applied an ideal dilute solution model to the hcp host structures. Energy for adding an isolated H 

atom in either a tetrahedral interstitial site or an octahedral interstitial site within hcp Ti host was 

calculated in a 36-atoms unit cell. Comparison with the calculations within a 96-atoms cell 

indicates that this is well converged with supercell size.  

Suppose that our hcp Ti host has M Ti atoms, so this crystal will have Nt = 2M tetrahedral 

interstitial sites and No = M octahedral interstitial sites. If we insert n H atoms into interstitial 

sites of hcp Ti, with nt H atoms at the tetrahedral interstitial sites and no H atoms at the 

octahedral interstitial sites (the dilute concentration of H atoms insures that nt+ no = n << M), 

then the formation energy of this resulting dilute solution is  

E = E
~

 + ntΔEt + noΔEo,      (B1) 

 where E
~

 is the formation energy of hcp Ti (with reference state of fcc Ti and δ-TiH2). ΔEt, the 

energy change due to inserting one H atom into a tetrahedral interstitial site in hcp Ti host, is 

defined as 

 ΔEt =Et - E
~

,       (B2) 

where Et is the formation energy of hcp Ti with one H atom inserted into a tetrahedral interstitial 

site; similarly, ΔEo, the energy change due to inserting one H atom into an octahedral interstitial 



 157

site in hcp Ti host, is defined as  

ΔEo =Eo - E
~

,       (B3) 

where Eo is the formation energy of hcp Ti with one H atom inserted into an octahedral 

interstitial site. The partition function of this Ti-H dilute solution can be derived as 

Q = Nt

ntC No

noC exp(−βE)
nt= 0

n

∑ ,      (B4) 

where β = 1
kBT

 with kB the Boltzmann constant and T absolute temperature. Hence the free 

energy of the dilute solution is 

 G = − 1
β

 lnQ.        (B5) 

Applying the maximum term method and Sterling’s approximation, we can obtain the expression 

for G: 

G = E
~

−
1
β

{(NtlnNt − Nt) − (nt
*lnnt

* − nt
*) − [(Nt − nt

*)ln(Nt − nt
*) − (Nt − nt

*)]+ 

                            (NolnNo − No) − [(n − nt
*)ln(n − nt

*) − (n − nt
*)] −  

                            [(No − n + nt
*)ln(No − n + nt

*) − (No − n + nt
*)] −  

                  β [nt
*ΔEt +(n −  nt

*)ΔEo]},                                                                            (B6) 

where  

nt
*= −(cn − cNo − Nt − n) − (cn − cNo − Nt − n)2 − 4(1− c)Ntn

2(1− c)
    (B7) 

with c = exp[β(ΔEt − ΔEo)] and n =3Mx, where x is the H concentration in TiH3x. 

Thermodynamic properties such as Gibbs free energy G, chemical potential μ = ∂G
∂n

 

were calculated as a function of H concentration x and temperature T using Eq. (B6). The 
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calculated free energies were used to compete with those of fcc host structures to construct the 

whole phase diagram of TiH3x system. 
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