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Chapter 1

Introduction

Transcending its more tactical beginnings in vertically integrated firms, today the procure-

ment function serves as a vital gatekeeper to low-cost and low-risk inputs for a firm. My

research focuses on theoretical and practical insights for strategic procurement. Globalization

has made supply chains longer and more heterogeneous, making procurement increasingly

complex. Strategic procurement involves identifying operationally capable suppliers, while

also managing total-cost risks. The procurement function must also negotiate terms and

prices with suppliers, involving economic concepts of incentives and private information.

Reflecting these multifaceted challenges, my dissertation research combines operational pro-

cesses such as supplier qualification screening with economic processes such as auctions and

mechanism design for price discovery. This dissertation consists of three essays on two types

of procurement risks: Two essays focus on supplier non-performance risks and the third one

examines regional procurement cost risks.

A. Supplier Non-performance Risks

The procurement function must negotiate reasonable prices with suppliers and — equally

important — ensure that contracts are awarded only to qualified suppliers. Contracting with

unqualified suppliers can have dire consequences for the buyer, illustrated most recently by

widespread recalls of products manufactured abroad . In the essay “RFQ Auctions with Sup-

plier Qualification Screening” (Chapter 2), I use an optimal mechanism analysis to study
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how a buyer can best use a reverse auction in combination with supplier qualification screen-

ing processes to determine which qualified supplier will be awarded a contract. The main

takeaway for procurement managers is that the standard industrial practice of fully qualify-

ing all suppliers before the auction can be improved upon by judiciously delaying all or part

of the qualification screening process until after the auction. To my knowledge, this is the

first paper that models and analyzes an auction setting in which contracting is contingent

upon suppliers’ passing costly qualification screening, a feature that is virtually ubiquitous

in practice. The second essay, “Procurement Auctions with an Incumbent and Partially

Qualified Entrant” (Chapter 3), motivated by observations at a Fortune 100 manufacturer

I interacted with, extends the main insights from the first essay to a setting where a buyer

conducts an auction with her incumbent supplier and an entrant supplier. While the in-

cumbent is known to be qualified for contract award, the entrant can get the contract only

if he passes the buyer’s qualification screening. My analysis finds that if the buyer delays

the entrant’s qualification screening until after the auction, the incumbent will strategically

drop out of the auction early to forestall a bidding war, depending on his cost, degree of risk

aversion, and the likelihood that the entrant would pass qualification screening. This work

will contribute to the auction literature as the first study with bidders possessing asymmetric

probabilities of passing qualification screening, a feature common in practice.

B. Regional Cost Risks

Buyers practicing global sourcing are increasingly aware of “non-price costs” covering

logistics, shipping insurance and commissions . Such “non-price costs” are subject to cost

shocks (e.g., port strikes, regulatory changes) in the region where suppliers are located. The

third essay, “Bargaining Power and Supply Base Diversification” (Chapter 4), examines the

following strategic decision of the buyer: Facing potential regional cost shocks, should the

supply base include similar suppliers (selected from the same geographic region) or diversified

suppliers (selected from different geographic regions)? Idealistically, diversifying hedges the

buyer’s risk by improving the chances that she can transact with a low-regional-cost supplier.
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However, my study finds that diversification provides regional cost hedging at the peril of

losing so much price parity across suppliers that suppliers with a regional cost advantage

can opportunistically take a windfall profit by escalating the contract price. As a result, the

buyer’s optimal supply base design depends on her degree of bargaining clout, i.e., her ability

to impose auction mechanisms to curtail suppliers’ windfall profit-taking. The main message

is that the more bargaining power the buyer has, the more she prefers a diversified supply

base. To my knowledge, this work is the first study of supply base design to mitigate regional

cost shocks. It contributes to the literature especially in that it exemplifies a principle that

is often neglected in the operations literature, namely, a firm needs to carefully evaluate its

bargaining (channel) clout when choosing its operational strategies.
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Chapter 2

RFQ Auctions with Supply Qualification Screening

2.1. Introduction

The average U.S. manufacturer spends 40-60% of its revenue income to purchase goods

and services (U.S. Department of Commerce 2005). Vital for most companies, the procure-

ment function must negotiate reasonable prices with suppliers and — equally important —

it must make reasonable efforts to ensure that contracts are made with qualified suppliers

who are indeed able to fulfill the contract.

Contracting with unqualified suppliers can have dire consequences for the buyer. Numer-

ous media reports recently exposing product safety issues in the U.S. have traced problems

to suppliers failing to meet a buyer’s requirements, resulting in dangerous lead paint in toys

(Spencer and Casey 2007), tires lacking proper safety features (Welch 2007), and pet food

containing noxious chemicals (Myers 2007). Recalls of faulty products produced by noncom-

pliant suppliers have cost downstream firms millions of dollars and inflicted untold damage

on their reputations. Menu Foods’ market capitalization was slashed in half soon after the

firm recalled over 60 million packages of dog and cat food in March 2007; contaminants were

found to have originated in a supplier’s raw ingredients (Myers 2007). Welch (2007) reports

that New Jersey-based tire importer Foreign Tire Sales traced its consumers’ complaints of

faulty tires to an unauthorized design change made by its supplier, whose design engineer

decided to omit gum strips, apparently unaware of their role in preventing tread separa-

tion. A surprised Foreign Tire Sales was forced to recall half a million tires, and may go
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bankrupt as a result. Vulnerabilities to supplier non-performance deepen for lengthly global

supply chains, while price pressures and a multitude of global supply options compounds

the procurement manager’s challenge of discerning who is an able supplier and who is a

charlatan.

To verify a supplier’s qualification and thereby reduce the likelihood of non-performance,

the procurement function must spend time and money vetting suppliers with qualification

screening. Screening often involves references checks, financial status checks, surge capacity

verification, and even site visits to supplier production facilities. Supplier employees might

be interviewed and assessed, for example, to ensure that they understand all the engineering

and safety requirements of the product in their charge. Checks can even reach back into

the supplier’s supply chain; to avoid mistakes like those uncovered in the recent pet food

contamination scandal, Procter & Gamble now vets its suppliers’ raw ingredients sources to

ensure that they are reputable (Myers 2007).

Typically, qualification screening precedes price negotiations with suppliers. This is par-

ticularly common when buyers use qualification screening before a Request For Quotes (RFQ)

auction for a well-defined good or service, a prototypical procurement setting on which this

chapter focuses. (For details on procurement auctions in practice, see, for example, Jap

2003.) To convince the suppliers to bid aggressively, the buyer touts the fact that only the

lowest price will win the contract when all participants in the auction are absolutely qualified

to win the contract.

Yet committing to award business to the lowest bidder requires the buyer to spend

significant time and resources screening all suppliers entering the auction. This chapter

analyzes how much costly supplier qualification screening should be performed before the

auction. At one extreme the buyer uses pre-qualification only, in which she fully screens all

suppliers entering the auction and commits to awarding the contract directly to the lowest

bidder, so suppliers in an open-descending auction (were this the format used) would bid

down to their true cost (but, they may not have to), and the buyer directly awards the

5



contract to the lowest bidder. At the other extreme the buyer uses post-qualification only, in

which she screens suppliers only after seeing their bids in the auction; instead of screening all

suppliers, the buyer homes in on the most promising bidders and screens them in sequence

until finding one who is qualified. But, this comes with a tradeoff: during the post-auction

screening process, a bid will have to be discarded if the bidder is found to be unqualified for

the contract, hence the winner will be the lowest qualified bidder, if any. In this chapter,

these two extremes and mixtures of the two in which suppliers are partially screened before

the auction are considered.

Our study appears to be the first to model and analyze an auction setting in which con-

tracting is contingent upon passing costly supplier qualification screening, a common feature

of RFQs in practice. The central tradeoff of the research problem is this: while delaying

some or all qualification screening until after the auction saves the buyer qualification screen-

ing costs, doing so increases contract payments and also risks non-transaction (turning to

a costly option outside of the auction, such as internal production) if all suppliers in the

auction turn out to be unqualified. By optimally balancing these tradeoffs, the buyer can

significantly reduce total procurement cost (qualification cost plus contract payment) by

judiciously delaying all or part of supplier qualification screening until after the auction,

provided the qualification screening is not too costly (prompting defection to the outside

option) nor too cheap (making total pre-qualification the best option). Our analysis endo-

genizes the level of pre- and post-qualification as well as the negotiation mechanism chosen

by the buyer.

Section 3.2 provides a literature review, and §3.3 introduces the model and assumptions.

Through a mechanism design approach, the optimal auction and post-qualification structure

is derived in §2.4.2. Behavior of the optimal balance between pre- and post-qualification

is characterized in §2.4.3. Section 2.5 provides numerical illustrations, and §2.6 discusses

practical considerations and extensions. Proofs are provided in §2.8.
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2.2. Literature Review

Many practical decisions faced by procurement managers have been addressed by aca-

demic research: contract type, such as fixed price versus cost plus; negotiation framework

such as auction versus face-to-face; and competition type such as sole versus dual sourcing.

See Elmaghraby (2000) for a detailed survey on procurement studies in economics and op-

erations management. The present chapter focuses on a procurement situation in which a

buyer holds an auction to award a contract to one of several potential suppliers. There is

a sizeable literature on auctions — books by Krishna (2002) and Milgrom (2004) provide

excellent treatments and detailed references — but only a handful of such studies include the

processes which occur before and after an auction. Typically these processes seek to mitigate

the risk of consummating a transaction in which one or more parties does not obtain what

it expected, called non-performance risk. Note that non-performance could describe, for ex-

ample, an item falling short of the winner’s expectations, or a winner failing his obligations

to the auctioneer. The supplier qualification process central to this chapter — and to our

knowledge novel in the literature — is one such process meant to mitigate the risk of supplier

non-performance in a procurement auction.

One type of non-performance in forward auctions is the winner’s failure to pay. Papers

dealing with this issue have looked at the ability of bidders to borrow money and the ensuing

possibility of broke winners (Zheng 2001), and the use of deposits or fees forfeited to the

auctioneer in the event a winning bid is reneged (Rothkopf 1991, Waehrer 1995). In a

procurement auction context, surety bonds (analogous to a bid deposit) to partially offset

non-performance costs are examined by Calveras et al. (2004), while Braynov and Sandholm

(2003) study a buyer who is unable to directly verify the “trustworthiness” of suppliers, but

knowing the form of the suppliers’ cost functions can design bidding options which cause

each supplier to reveal themselves as either a high or low trustworthy type, allowing the

buyer to estimate the expected utility of contracting with that supplier. In contrast, this

research assumes that the buyer verifies (at a cost) that a supplier is qualified up to some
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threshold prior to contracting (she will not contract with unqualified types). Practitioners

we have spoken with use qualification and surety bonds in tandem, the former to proactively

avoid problems (the focus and main contribution area of this chapter), the latter to partially

recoup costs if problems arise.

A second type of non-performance is misevaluation of the item. For example, costly bid

preparation (or costly entry, or due diligence) plays a central role in forward auctions for non-

standard, complex items such as an entire company or its assets. To encourage participation

in auctions where bidders trade off their bid preparation costs (possibly millions of dollars)

against their anticipated likelihood of winning the item, Ye (2007) suggests inviting only

bidders whose bid in an initial, assumed costless round of bidding signals that they stand a

good chance of winning the item. While Ye finds that screening out low value bidders can

promote competition in a complex item auction by limiting bidders’ unnecessary bid prepa-

ration costs, this chapter examines screening costs borne by the auctioneer (buyer) and find

that screening out unqualified suppliers promotes competition by increasing the likelihood

that each bid in an RFQ auction will be qualified and therefore eligible for contracting.

In our context of relatively well-specified RFQ auctions this chapter assumes that a sup-

plier’s bid indicates the value offered to the buyer should that supplier be deemed qualified.

This allows the buyer to delay all or part of the qualification process until after the auc-

tion, at which point — with bids in hand — she can home in on the suppliers offering the

highest value (who may or may not turn out to be qualified). Other auction theoretic pa-

pers have focused on situations where it is costly for the auctioneer to estimate even the

value offered in the suppliers’ bids. In such situations, the buyer could employ a sequential

search model whereby suppliers are communicated with and their bids evaluated until either

finding a supplier whose cost is sufficiently low or exhausting the supply pool (McAfee and

McMillan 1988). In an effort to explain unconsummated Request For Proposals auctions

documented by Snir and Hitt (2003), Carr (2003) models an auction for professional services

where proposals (bids) are difficult to compare; in his model, faced with high evaluation
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costs after the auction, the auctioneer might simply forgo evaluating any proposals in favor

of an outside option. The buyer sometimes turns to an outside option in our model, but for

different reasons — either due to reserve prices, or after disqualifying all suppliers invited to

the auction.

Methodologically, our study is also related to the screening literature, in particular stud-

ies such as Feinberg and Huber (1996) which assume that some form of screening can be

performed cheaply (e.g., bids can be observed) relative to more costly forms of screening

(e.g., qualification). In our context, partial qualification screening impacts the extent to

which bidders compete in the auction, by creating randomness in the number of qualified

bidders in the auction. For auctions with an uncertain number of bidders, optimal mecha-

nisms and equilibrium bid functions have been respectively derived by McAfee and McMillan

(1987) and Harstad et al. (1990), but neither studies qualification processes or the attendant

possibility of having to turn to an outside option.

Our study is related in spirit to multiple dimensional auctions (Che 1993, Beil and Wein

2003, Chen 2007) in that both seek to take non-price factors into account. Although the

goals of a multiple dimension auction and qualification processes are related, they are distinct:

multiple dimension auctions serve as tools to better express the value of non-price abilities

of suppliers, such as quality. Qualification processes seek to verify the ability of a supplier

to deliver on the promises expressed by his bid, be they promises on price or any other

dimensions.

2.3. Model

Consider a risk-neutral, cost-minimizing buyer seeking to award an indivisible contract

to a qualified supplier. A supplier is called qualified if the buyer is willing to transact

with the supplier without performing additional due diligence to verify this supplier satis-

fies all pre-award requirements. These requirements vary widely in practice depending on

the buyer’s needs and the contract type (see Leenders and Fearon 1997 for a discussion of

purchasing processes). The constituent requirements themselves exhibit varying degrees of
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standardization. Among the more standard requirements are the need to verify the supplier’s

reputability (e.g., through published ratings) and ability to ramp up production. Not all

requirements are so transparent, as qualification can encompass relational aspects that are

difficult to codify; e.g., a just in time manufacturer we spoke with visits supplier manage-

ment to ensure they and the supplier “see eye to eye on lean principles” before awarding

contracts. These verification processes take time and can be costly, particularly if involving

visits to distant supplier facilities. As is common in industry, this verification is referred to

as the qualification process, or the act of qualifying a supplier. A supplier is described as

qualified once he successfully passes the qualification process.1

To begin formalizing the model, we imagine a continuum of qualification requirements,

with zero representing requirements that every supplier satisfies and one representing require-

ments that virtually no supplier satisfies. We let q0 be the buyer’s qualification threshold, a

scalar between zero and one representing the pre-award requirements. For each supplier i,

we will define his qualification level qi as the maximum qualification threshold that supplier i

can pass. Due to opaque requirements set by the buyer, such as needing to see eye to eye on

lean principles, or to create rapport with the buyer’s internal customer (e.g., the engineering

department), supplier i does not precisely know its true qualification level qi, but the buyer

and supplier share the common belief that qi is distributed according to distribution H on

domain [0, 1]. This setup could model, for instance, a buyer deciding to outsource a portion

of its production currently done in-house, facing new suppliers she knows little about and

who in turn know little about her (possibly idiosyncratic) qualification requirements. The

strictness of the buyer’s pre-award requirements is captured by 1 − H(q0), the probability

that qi ≥ q0.

The buyer and each supplier responding to the RFQ are equally unsure of the supplier’s

qualification until costly qualification verification is undertaken by the buyer. If qi ≥ q0,

1Because the entire notion of being “qualified” is based on the buyer’s specific requirements for the contract
up for bid, being deemed qualified does not necessarily imply absolutely zero risk of non-performance. For
instance, when purchasing a simple, cheap, and non-critical indirect good (such as office supplies), a buyer
might be satisfied with relatively light screening of the supplier’s status and abilities prior to contracting.
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the buyer’s qualification process on supplier i would reveal that supplier i is qualified. The

qualification cost the buyer would incur to do so is denoted by K, the total cost to the

buyer of verifying that an individual supplier meets all requirements to be deemed qualified.

For example, K may include the cost of purchasing and testing supplier products, travel to

supplier facilities abroad, etc. For simplicity, this chapter assumes that K is the same for

all suppliers. This assumption is most appropriate when suppliers are similar, at least in

terms of the cost drivers of qualification, such as distance from the buyer or number of units

that the buyer must purchase to run a test sample. A more general model would allow all

the qualification verification cost to differ for different suppliers. This ex ante asymmetric

suppliers extension is left for future research.

On the other hand, if qi < q0, supplier i would be rejected during the buyer’s qualification

process after failing to meet a requirement. In this latter case, how much cost would the buyer

incur? Assuming that the requirements are nested (passing a larger threshold implies passing

a smaller threshold, but not vice-versa), the cost strictly increases with qi and approaches

K as qi approaches q0. To streamline the exposition, this chapter further assumes that the

cost is linear and normalized such that a threshold of zero costs zero to verify, implying

that weeding out an unqualified supplier i costs the buyer qi

q0
K. This is without loss of

generality, because any nonlinear and strictly increasing cost function of qi over [0, q0] can be

renormalized to be linear by redefining qi and renormalizing the distribution H. Note that

in this dissertation the terms “increase” and “decrease” are used in their weak sense.

Each supplier i privately knows his cost to fulfill the contract, xi, which he observes per-

fectly prior to the auction. Cost xi is distributed according to a commonly known distribution

F with density f on domain [0, 1], which for simplicity is assumed statistically independent

of other suppliers’ costs (§2.6.1 relaxes this assumption) and i’s own qualification level. In

reality, a supplier who is likely to be qualified might be expected to have relatively high costs

if qualification requires that costly spare capacity be kept on hand for an ability to ramp

up production in the face of surge orders from the buyer; on the other hand, lower costs
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might prevail if qualification includes lean principles which impart efficiency. Such issues are

left for future research. For simplicity this chapter will assume that all distributions have

positive and continuous densities over their domains.

The buyer utilizes an auction to extract private cost information from the risk-neutral

suppliers, who — as is standard in the auction literature — are assumed to be fully rational

players following a Bayesian Nash bidding equilibrium in which bidding is assumed to be

costless. To capture practical demands on the buyer’s resources such as auction participant

training and technical support, this chapter assume that the buyer will have a finite number

of bidders in the auction, denoted by n, which is treated as fixed and exogenous in our

analysis.

We now describe the three-stage procurement process the buyer uses for supplier quali-

fication screening (qualification checks) and supplier cost screening (competitive auction).

Pre-qualification stage. The buyer announces n pre-qualification thresholds qi ≤ q0

(i = 1, . . . n), where qi represents the requirements the ith auction participant must meet

to participate in the auction. Each pre-qualification threshold qi represents part (qi < q0)

or all (qi = q0) of the requirements that a supplier must satisfy in order for the buyer to

consider them qualified for contract award. The pre-qualification thresholds are not assumed

to be identical, and can be different for different auction participants (the less general but

perhaps more equitable case of symmetric pre-qualification thresholds is analyzed in §2.4.4).

The buyer faces a pool of ex ante symmetric suppliers. To find its ith auction participant,

the buyer verifies requirements of supply pool members one at a time until finding one who

passes pre-qualification threshold qi. (For simplicity this chapter assume an infinite supplier

pool.) After doing so for each i = 1, . . . , n, the buyer has n pre-qualified suppliers, where

the ith participant (say bidder i) has qualification level qi ≥ qi.

Auction stage. The n pre-qualified bidders participate in a price-only auction. When

bidding, bidder i, who passed pre-qualification level qi, is estimated to be qualified with
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probability

βi =
1−H(q0)

1−H(qi)
.

This probability, referred as bidder i’s qualification probability, is strictly increasing in qi.

In particular, βi equals its upper bound 1 when qi = q0, and equals its lower bound β ,

1 − H(q0) when qi = 0. In the sequel, the βi’s figure prominently in the analysis and are,

for convenience, directly used as the buyer’s pre-qualification threshold decisions. This is

without loss of generality: since H is strictly increasing, there is a one-to-one correspondence

between qi and βi, and we define function q : [β, 1] → [0, q0] such that

qi = q(βi) , H−1[1− 1−H(q0)

βi

] .

We primarily use notation q(βi) in lieu of qi. We use the bold notation β for the vector

of qualification probabilities (β1, β2, ..., βn), and use β for the vector having βi = β for all

i = 1, . . . n. Unlike a traditional auction where bidding is directly followed by a contract

award decision, this auction yields a post-qualification sequence, which specifies (based on

auction bids and bidder qualification probabilities) an ordered subset of bidders who will be

post-qualified in the next and final stage of procurement, the post-qualification stage.

Post-qualification stage. After the auction the buyer post-qualifies suppliers up to qual-

ification threshold q0 according to the post-qualification sequence, until finding a qualified

bidder to contract with, or disqualifying all bidders included in the post-qualification se-

quence. In the latter case, the buyer turns to her “outside option” at a cost of Co. Cost

Co describes an option outside the auction, but could, for example, correspond to in-house

production.

The buyer faces two key decisions in the above procurement process: what pre-qualification

thresholds to set; and what auction and post-qualification mechanism to use to find (if pos-

sible) a desirable, qualified bidder to contract with. Our analysis first finds the optimal
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auction and post-qualification mechanism, and then works backwards to characterize the

optimal pre-qualification thresholds. Before moving to this analysis, we conclude this sec-

tion by discussing the main tradeoffs involved.

The choice of pre-qualification thresholds affects the balance between qualification costs

on the one hand, and contract payment on the other. If β = (1, . . . , 1), the buyer performs

all due diligence prior to the auction — the situation tacitly assumed in traditional auction

theory. In such a case the buyer incurs qualification costs for at least n (possibly more if

some are rejected en-route to being qualified) suppliers prior to the auction, and awards the

contract directly to the most attractive bidder after the auction. On the other hand, β = β

models postponement of all due diligence; after the auction, the buyer only pays qualification

costs until finding the first qualified bidder or turning to her outside option. Clearly the

expected total cost of qualifying suppliers is greater in the case where β = (1, . . . , 1). But

the buyer also must consider the expected costs of contracting and non-transaction, for

which the cost relationship can be reversed — consider the following toy example with two

bidders showing why more pre-qualification reduces the expected costs of contract payment

and non-transaction.

Suppose that bidder 1’s and bidder 2’s true costs are $100,000 and $125,000, respectively,

and the auction reserve price is $150,000. For simplicity, suppose that the auction mechanism

induces truthful bidding. If bidder 1 has been fully qualified (q1 = q0), he is the obvious

candidate for contract award. However, to ensure truthful bidding, the mechanism’s award

and payment rules must be designed taking bidder incentives into account. An interesting

dynamic arises regarding payment to bidder 1. Should the mechanism pay bidder 1 precisely

$125,000, the cost of the losing bidder? If q2 = q0, the answer — according to the incentive

compatibility of the Vickrey auction — is yes, which is based on the buyer’s next best

alternative being bidder 2. However, things are different if q2 < q0. Intuitively the mechanism

must compensate bidder 1 for the fact that bidder 2 might be unqualified for the contract,

and hence possibly a non-viable alternative for the buyer. Thus, the fact that the buyer
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delayed qualification on bidder 2 means that she must pay bidder 1 more than $125,000 for

the contract. On the other hand, if bidder 2’s true cost had been less, say $80,000 instead

of $125,000, the buyer might find it worthwhile to first post-qualify bidder 2, which may

or may not turn out favorably for the buyer — during post-qualification she might discover

that bidder 2 is unqualified (q2 ≤ q2 < q0), at which point she has wasted post-qualification

money on bidder 2 and her next best option will be bidder 1, whose payment is then the

reserve price. The optimal mechanism analysis of the next section determines how the buyer

should run an auction and post-qualification process when suppliers are possibly unqualified,

where clearly the buyer’s expected payment increases with the amount of qualification that

is delayed until after the auction.

2.4. Analysis

In this section we first fix the qualification screening strategy (equivalently, fix the qualifi-

cation probabilities β1, . . . , βn) and compute the buyer’s total (contracting plus qualification)

expected costs. We begin by deriving PRE, the expected pre-qualification cost, in §2.4.1.

In §2.4.2 we derive PAY, POST, and NT, respectively the expected payment to the auction

winner, the expected post-qualification cost, and the expected non-transaction cost. These

costs are derived via an optimal mechanism analysis. Having derived the total expected cost

as a function of the qualification screening policy, we then characterize the optimal qualifica-

tion screening strategy in §2.4.3. Following this general analysis, §2.4.4 discusses the special

(but more “fair”) case of symmetric pre-qualification thresholds.

2.4.1 Expected Pre-Qualification Cost

As explained in §3.3, we assume an infinite supply pool from which the buyer samples

until finding n suppliers that pass their respective pre-qualification thresholds. The buyer

begins by sampling suppliers one at a time until finding a supplier whose qualification level

is at least q(β1). This “successful” supplier is admitted to the auction as bidder 1. This

process is then repeated for i = 2, . . . , n. The ordering of the βi’s is not important, because
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“failures”, i.e., suppliers found to have a qualification level below q(βi), are permanently

discarded for being unqualified for the contract, and the supply pool population is infinite

and samples (supplier qualification levels) are independent. The expected pre-qualification

cost is comprised of n pre-qualification “successes” plus geometrically distributed numbers

of pre-qualification “failures” before each success. Because the qualification cost is linear in

the amount of qualification performed, for each success the buyer pays q(βi)
q0

K to pre-qualify

a supplier with qualification level y ≥ q(βi) up to the pre-qualification threshold q(βi). For

each failed pre-qualification on a supplier with qualification level y < q(βi), the buyer pays

y
q0

K. Since y is a random variable and meets or exceeds the pre-qualification level q(βi) with

probability 1−H(q(βi)), the buyer expects to pay

PRE =
n∑

i=1

{q(βi)

q0

K +

[
1

1−H(q(βi))
− 1

] ∫ q(βi)

y=0

y

q0H(q(βi))
KdH(y)}. (2.1)

2.4.2 Expected Costs in Auction and Post-Qualification

The auction and post-qualification stages together comprise a mechanism of awarding a

contract to one of n bidders or to the buyer’s outside option. The buyer designs this mecha-

nism to minimize her expected auction and post-qualification cost PAY + POST + NT. The

mechanism extracts private cost information from the suppliers, as is common in traditional

mechanism design, but also involves post-qualification screening, which is not traditional in

the mechanism design literature. The auction and post-qualification mechanism has three

components: a set of possible messages (or “bids”) for each bidder; a rule that describes how

the buyer sequences the bidders for post-qualification; and a payment rule that maps bids

to an amount transferred between the buyer and bidders. The post-qualification sequencing

rule is the analogue of the allocation rule in standard mechanism design problems absent

post-qualification; it captures the fact that the allocation decision itself is not entirely in the

buyer’s hands, as post-qualification outcomes (the realization of qi’s) affect whether or not

a bidder will actually be qualified for contract award.
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Both rules (sequencing and payment) are functions of the messages sent by bidders.

Thanks to the revelation principle (e.g., Gibbard 1973, Green and Laffont 1977, Dasgupta

et al. 1979), given any mechanism and an equilibrium for that mechanism, there exists an

outcome equivalent “direct” mechanism in which it is an equilibrium for each bidder to bid

his true cost. This allows us to restrict our optimal mechanism search to direct mechanisms;

in what follows the set of messages sent is assumed without loss of generality to be just

the bidder cost vector x , (x1, x2, . . . , xn). The remainder of this subsection formalizes the

mechanism design problem.

We will let Q(x) denote the post-qualification sequencing rule, an ordered subset of

{1, . . . , n} representing the bidders that will be post-qualified in a determined sequence. For

example, a post-qualification sequence (3, 1, 5, 2) for n = 5 means that the buyer would post-

qualify bidder 3, bidder 1, bidder 5, and bidder 2 in sequence until finding the first qualified

bidder or disqualifying all these four bidders, without post-qualifying bidder 4 at all. For a

given vector of costs x, using Q and β we can compute ∆i the probability that bidder i wins

the contract as

∆i(x) = βi

∏

j ranks ahead
of i in Q(x)

(1− βj), if i ∈ Q(x); ∆i(x) = 0, if i /∈ Q(x). (2.2)

This assumes that the buyer uses a deterministic sequencing rule, although this is without

loss of generality; see the proof of Proposition 1. The mechanism’s payment rule, which we

will denote as M(x) ∈ Rn, is the expected monetary transfer from the buyer to the bidders.

Of course, in order to constitute a viable direct mechanism, Q and M must satisfy con-

straints ensuring both incentive compatibility (truthful bidding in equilibrium) and individ-

ual rationality (bidders expect non-negative profits by participating). To write down these

constraints for bidder i, first define x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn), and let F−i be the

joint distribution of x−i. Define mi(zi) ,
∫

x−i
Mi(zi,x−i)dF−i(x−i) to be the expected pay-

ment to bidder i when i reports cost zi and all others report their true costs, and likewise
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define δi(zi) ,
∫

x−i
∆i(zi,x−i)dF−i(x−i) to be the probability bidder i is awarded the con-

tract when i reports zi to the auctioneer and all others report their true costs. Under truthful

bidding, if all bidders j 6= i report their true costs, bidder i’s expected profit from reporting

zi is given by mi(zi)− δi(zi)xi. Thus, incentive compatibility and individual rationality can

be expressed as

Ui(xi) , mi(xi)− δi(xi)xi = max
zi∈[0,1]

mi(zi)− δi(zi)xi, (2.3)

Ui(xi) ≥ 0. (2.4)

Ui(xi) is the expected profit of bidder i in equilibrium. Constraint (2.3) is called the incentive

compatibility constraint, and constraint (2.4) is called the incentive compatibility constraint.

For Q and M satisfying (2.3)-(2.4), we now compute NT, POST, and PAY.

Expected non-transaction cost. If no bidder wins the contract, the buyer must turn to

the outside option at cost Co. Letting F denote the joint distribution of x, from (2.2) it is

easy to see that NT =
∫

x
[1−∑n

i=1 ∆i(x)]CodF(x).

Expected post-qualification cost. Because ∆i(x) is the probability that i wins the

contract, ∆i(x)/βi must be the probability that bidder i undergoes post-qualification. Taking

the expected cost of post-qualifying bidder i, and dividing this cost by βi and calling the

result a(βi), yields

a(βi) , 1

1−H(q0)

∫ q0

qi=q(βi)

qi − q(βi)

q0

KdH(qi) +
q0 − q(βi)

q0

K. (2.5)

Thus, the expected post-qualification cost is POST =
∫

x

∑n
i=1 ∆i(x)a(βi)dF(x).

Expected payment. Finding the optimal mechanism is aided by expressing the buyer’s

expected payment (up to an additive constant) as a function of award probabilities (as

is standard in mechanism design analyses). Applying the envelope theorem (see Milgrom
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2004, p67) to (2.3) implies that U ′
i(xi) = −δi(xi) for xi ∈ [0, 1]. Treating this as a differential

equation and using the expected profit at xi = 1 as an integration constant yields an equation

for bidder i’s equilibrium expected profit:

mi(xi)− δi(xi)xi = mi(1)− δi(1) +

∫ 1

xi

δi(zi)dzi. (2.6)

Solving for mi, the buyer’s expected payment to bidder i given the reported cost xi, and

then integrating over x and summing over n yields

PAY =
n∑

i=1

[mi(1)− δi(1)] +
n∑

i=1

∫

x

[∆i(x)ψ(xi)] dF(x), where ψ(xi) , xi +
F (xi)

f(xi)
.

(2.7)

The value ψ(xi), which equals bidder i’s true cost, xi, plus F (xi)
f(xi)

, the informational rent

accruing to bidder i’s private knowledge of his cost xi, is commonly referred to as i’s virtual

cost in the mechanism design literature.

Mechanism design program. If (2.6) holds, it is easy to check that incentive compatibility

constraint (2.3) is guaranteed if the post-qualification sequencing rule is such that δi(zi) is

decreasing in zi ∈ [0, 1]. (See, for example, Myerson 1981 Lemma 2 for a similar result.)

Furthermore, from (2.6), we have that individual rationality constraint (2.4) holds as long

as the payment and post-qualification sequencing rules satisfy mi(1) − δi(1) ≥ 0. Clearly,

equation (2.7) implies that a cost-minimizing buyer will set mi(1)− δi(1) = 0. Thus, to find

the cost-minimizing direct mechanism (Q∗, M∗) employed by the buyer in the auction and

post-qualification stage, it is sufficient to solve the following program,

min
Q,M

n∑
i=1

∫

x

∆i(x) [ψ(xi) + a(βi)− Co] dF(x) + Co

︸ ︷︷ ︸
PAY + POST + NT

(2.8a)
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Subject to mi(xi) = δi(xi)xi +

∫ 1

xi

δi(zi)dzi ∀i, (2.8b)

and verify that at this solution δi(zi) is decreasing in zi ∈ [0, 1] for all i. Program (2.8) ignores

the pre-qualification cost, which is considered sunk by the auction and post-qualification

mechanism. Note that if the buyer selects the pre-qualification thresholds to be qi = q0 for

all i — i.e., she performs all qualification screening prior to the auction — then βi = 1 for

all i and the above program devolves into the standard optimal auction analysis of Myerson

(1981).

The Optimal Auction and Post-Qualification Mechanism

We now find an optimal solution (Q∗, M∗) to program (2.8). To ensure that δi(zi) is decreas-

ing, we will assume that the virtual cost ψ(xi) is strictly increasing in the true cost xi (see

the proof of Proposition 1). This standard, technical assumption is satisfied, for example, if

F is logconcave; see Bagnoli and Bergstrom (2005) for details about logconcave functions,

which include uniform, normal, logistic and exponential distributions.

Proposition 1 An optimal direct, individually rational, and incentive compatible auction

and post-qualification mechanism (Q∗,M∗) that minimizes PAY + POST + NT is as follows.

• Set Q∗(x) such that the buyer only post-qualifies those bidders whose xi and βi are such

that ψ(xi) + a(βi) ≤ Co, and sequence all such bidders for post-qualification according

to ascending value of ψ(xi) + a(βi), breaking ties randomly.

• Set M∗(x) such that the buyer pays the contract winner, i.e., the first bidder (if any)

deemed qualified by post-qualification, a payment of

xi +

∫ 1

xi

∆∗
i (zi,x−i)

∆∗
i (x)

dzi, (2.9)

and pays nothing to all other bidders, where ∆∗
i (x) is calculated via equation (2.2)

given Q∗(x).
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Note that Proposition 1 implies that the buyer should set bidder-specific reserve prices

ri, i = 1 . . . n, such that ri = max{min{ψ−1[Co − a(βi)], 1}, 0}, and promise not to post-

qualify any bidder whose bid falls beyond the reserve price for that bidder. When bidders

have equal βi’s (symmetric pre-qualification), a common reserve price for all bidders is opti-

mal; see §2.4.4.

Adjusted virtual costs account for post-qualification. Proposition 1 indicates that

the buyer should sequence bidders for post-qualification according to adjusted virtual cost,

which we define to be ψ(xi) + a(βi). The added adjustment a(βi) captures both the cost

of post-qualifying bidder i and the risk that bidder i fails post-qualification. Intuitively,

this adjustment should be lower if i already survived very strict pre-qualification, and in-

deed a(βi) does decrease in βi. Thus, the optimal sequencing rule takes into account not

only virtual cost, but also favors bidders who are more likely to be qualified by applying

adjustments when sequencing the bids for post-qualification. If the buyer uses an identical

pre-qualification hurdle for all bidders (identical βi’s), the optimal sequencing rule simply

post-qualifies bidders according to cost xi (bidders’ identical a(βi)’s wash out, and ψ is

increasing); see §2.4.4, where the case of symmetric pre-qualification is discussed.

Payment to winner depends on competitors’ virtual costs and qualification prob-

abilities. Proposition 1 implies that to induce all bidders to bid their true costs, the buyer

finds it optimal to commit to pay zero to all bidders save the contract winner, say bidder i,

who is paid his cost xi plus a markup
∫ 1

xi

∆∗i (zi,x−i)

∆∗i (x)
dzi. This payment can be rewritten (see

the proof of Proposition 1) as

t∑
j=1

ψ−1[ψ(xij)+a(βij)−a(βi)]βij

j−1∏

k=1

(1−βik)+ri

t∏

k=1

(1−βik) (if t ≥ 1) or ri (if t = 0), (2.10)

where ij (j = 1, ..., t) is the index of the jth bidder out of t bidders sequenced after bidder i

for post-qualification according to the optimal sequencing rule such that ψ(xij) + a(βij) ≤
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ψ(ri)+a(βi). When the buyer reaches bidder i in the post-qualification stage, she has at least

t+1 options available to her besides bidder i, namely the t bidders described above, plus the

outside option. Bidder i could have increased his bid and still been preferred by the buyer

to each of these t + 1 options. When computing the payment to bidder i, the buyer rewards

bidder i for this. In particular, the value ψ−1[ψ(xij) + a(βij)− a(βi)] is exactly the amount

that bidder i could have bid and still been preferred to bidder ij. This value is weighted

by βij

∏j−1
k=1(1− βik), exactly the probability that the buyer would end up contracting with

bidder ij if the buyer were to, upon reaching bidder i in the qualification list, forgo qualifying

bidder i. Similarly, the reserve price ri is the maximum amount bidder i could have bid and

still been preferred to the outside option, which is weighted by
∏t

k=1(1 − βik) (if t ≥ 1) or

1 (if t = 0), exactly the probability that the buyer would end up using the outside option

if the buyer were to, upon reaching bidder i in the qualification list, forgo qualifying bidder

i. As a check, when βi = 1 for all i the payment reduces to the smallest rejected bid xi1 (or

the reserve price, whichever is smaller), which is exactly the payment rule of the traditional

second-price auction with a reserve price.

Optimal Mechanism Implementations

Auction formats differ in the amount of visibility bidders have on competitors’ bids. At

one extreme is the sealed-bid format, where bidders submit a single bid known only to the

bidder and auctioneer. At the other extreme is an open-bid format, where bidders can see

competing bids and respond by updating their own bid. In the following, we show that the

optimal auction can be implemented in either of these two format types.

Sealed-bid format. As is straightforward to see given Proposition 1, the buyer can conduct

a sealed-bid auction after directly announcing the optimal sequencing rule as specified in

Proposition 1 and the payment rule per (2.10) above; this will lead to an equilibrium where

all bidders truthfully bid their costs.
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Open-bid format. In our open-bid format, bidding proceeds as follows. The buyer starts

the auction by setting the current bid at Co. All those bidders who wish to remain in the

auction at the current bid signal their willingness to do so. The buyer then lowers the current

bid by some decrement, and all those bidders still willing to remain in the auction at this new

current bid again signal their willingness to do so. We assume this decrement is arbitrarily

small, ensuring that bidders can bid down to any value they wish to. For simplicity, we

assume that re-entry is disallowed: once a bidder fails to signal willingness to remain in

the auction, they cannot resume bidding at a lower price (the equilibrium remains if this

assumption is relaxed). We let bi denote bidder i’s dropout bid, that is, bidder i remains in

the auction up to bid bi, but drops out when the buyer lowers the current bid below bi. The

buyer keeps lowering the current bid until at most one bidder remains in the auction. After

the auction, the buyer discards bidders who did not participate in the auction (i.e., those

who never signalled a willingness to remain in the auction), and post-qualifies the remaining

bidders in order of ascending dropout bids (the bi’s), breaking ties randomly.

This setup resembles a traditional clock auction (e.g., Ausubel and Cramton 2006),

with the crucial difference that bids can be interpreted as bids for positions in the post-

qualification sequence. The dropout bids are used to compute the contract payment in the

following manner. Suppose that bidder i is awarded the contract, that is, i is the first bidder

that successfully passes post-qualification. Let ij and t be as defined immediately following

(2.10). The payment awarded to bidder i is precisely that given in (2.10), with one small

change: bij is used in lieu of ψ(xij)+a(βij) within the bracketed term of the first summation.

Because this is an open-bid format, during the auction, in addition to the current bid,

bidders are able to see competing bids remaining in the auction. In equilibrium, each bidder

i will simply remain in the auction unless the current bid dips below his true adjusted virtual

cost ψ(xi)+a(βi), at which point he drops out. It is easy to check that in equilibrium bidders

are sequenced and paid exactly as Proposition 1 specifies. In summary, we have

Proposition 2 Under the open-auction format described above, the strategy of dropping out
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of the auction at one’s true adjusted virtual cost constitutes a Bayesian Nash equilibrium

under which the optimal mechanism from Proposition 1 is implemented.

2.4.3 Optimal Qualification Screening Strategy

The buyer seeks the overall optimal mechanism that minimizes the expected total cost

PRE + PAY + POST + NT. For a given set of pre-qualification thresholds, the previous

subsection derived the buyer’s optimal auction and post-qualification mechanism, minimizing

PAY+POST+NT. Hence, it remains only to proceed one layer up and investigate the optimal

selection of the pre-qualification thresholds (equivalently βi’s). The buyer faces four practical

concerns: uncertain supplier costs, uncertain supplier qualification levels, costs associated to

verifying the qualification of a supplier, and an outside option cost. Comparisons of the latter

two costs determine the buyer’s optimal pre-qualification thresholds, for given uncertainties

over supplier costs and qualification levels. We first identify the central tradeoff involved in

the qualification strategy decision, followed by Proposition 3 which characterizes the buyer’s

optimal qualification screening strategy via three switching thresholds for qualification cost.

Central tradeoff of qualification screening decision. Under the optimal auction and

post-qualification mechanisms described in §2.4.2, the more qualification due diligence the

buyer performs before the auction, the more she pays before the auction but the less she

pays after the auction. That is,

PRE increases in βi, while PAY + POST + NT decreases in βi, for all i = 1, . . . , n. (2.11)

(This result is proved formally in §2.8.) Therefore, in an optimal qualification screening

strategy the buyer trades off the pre-qualification cost against the total post-auction cost.

Hereafter we call this the central tradeoff of the qualification decision.

Optimal qualification screening strategy thresholds. Although the central tradeoff

reveals the buyer’s key consideration when deciding the pre-qualification thresholds, solving
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for the optimal β∗ which minimizes PRE + PAY + POST + NT for fixed K and Co is

precluded by the complexity of the total cost expression (see, for example, equation (2.10)).

Instead, we wish to describe the optimal qualification screening strategy more qualitatively

by characterizing when various possible types of qualification strategies will be used. For

any fixed outside option cost Co, we seek to show that there exist three qualification cost

thresholds defined as follows. Let Knt be the smallest qualification cost such that, for any

qualification cost K ≥ Knt, forgoing the auction in favor of the outside option is optimal.

Let Kpost be the smallest qualification cost such that, for any qualification cost K such that

Kpost ≤ K < Knt, delaying all qualification screening until after the auction (referred to

as post-only for shorthand) is optimal, that is, βi = β for all i. Let Kpre be the largest

qualification cost such that, for any qualification cost K ≤ Kpre, doing all qualification

screening before the auction (referred to as pre-only for shorthand) is optimal, that is, βi = 1

for all i.

Proposition 3 Fix the outside option cost Co. Under the buyer’s optimal (total-cost mini-

mizing) qualification screening strategy, Knt, Kpost, and Kpre all exist, are positive, and are

finite. In other words,

(i) pre-qualification only, that is βi = 1 for all i, is optimal if K ≤ Kpre,

(ii) a mix of pre- and post-qualification is optimal only if Kpre < K < Kpost,

(iii) post-qualification only, that is βi = β for all i, is optimal if Kpost ≤ K < Knt, and

(iv) it is optimal to forgo the auction in favor of the outside option if and only if Knt ≤ K.

Moreover, the thresholds Knt, Kpost, and Kpre all increase in the outside option Co.

Part (i) of Proposition 3 shows that there exists a threshold Kpre, separating the de-

cision between complete versus partial pre-qualification. Keeping the outside option cost

constant, if the qualification cost is below this threshold, the buyer prefers to completely

pre-qualify suppliers before the auction; furthermore, any increase in the outside option cost

while holding the qualification cost fixed will result in the buyer still preferring complete pre-
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qualification. Part (iii) of Proposition 3 shows that a similar threshold Kpost exists between

the partial pre-qualification versus the post-qualification only decision. Parts (i), (ii), and

(iii) of the proposition together indicate that, keeping the outside option cost fixed, as qual-

ification cost increases from zero the buyer’s decision shifts from complete pre-qualification,

to a mixture of pre and post-qualification, and then to the complete post-qualification deci-

sion. Finally, the buyer prefers to forgo the auction altogether if the cost of qualification is

too high, as shown in Part (iv) of Proposition 3.

Proposition 3 indicates that despite the risk of non-transaction and larger contract pay-

ment, the buyer sometimes finds it profitable to postpone some or all qualification screening

until after the auction. The decision of how much qualification to postpone depends on the

qualification cost, as the buyer has more incentive to risk non-transaction and higher pay-

ments with qualification postponement if doing so avoids high qualification expenses before

the auction.2

2.4.4 Symmetric Pre-Qualification Levels

While it can be in the buyer’s interests to set unequal βi’s for different bidders when

Kpre < K < Kpost, doing so may raise fairness concerns about the procurement process.

Under the optimal mechanisms described in §2.4.2, bidders who are more thoroughly pre-

qualified are advantaged: first, they are more likely to win the contract, since they are more

likely to be ranked at the top of the post-qualification sequence given that their virtual costs

require less upward adjustment to capture post-qualification costs (i.e., a(βi) decreases in

βi); second, they will be paid more upon winning the contract, given that the payment to any

winning bidder i per formula (2.10) increases in βi. In a symmetric environment with no a

priori differences among suppliers, the buyer may wish to pre-qualify suppliers equally, even

though this might technically not be optimal, in order to avoid ill-will created by arbitrarily

2While our analyses assume that the outside option cost is finite, if Co were instead allowed to be infinite
(to capture a case in which the buyer absolutely must transact), it is straightforward to see that the buyer
would find it optimal to fully qualify at least one bidder in the auction, in order to eliminate the possibility
of non-transaction.
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choosing one supplier to be more pre-qualified than the others.

Symmetric pre-qualification also simplifies the buyer’s optimal auction and post-qualification

mechanism. When bidders are equally pre-qualified, the optimal mechanisms of §2.4.2 use a

common reserve price for all bidders. If β is the probability that any bidder in the auction is

truly qualified, this optimal reserve price is r = max{min{ψ−1[Co − a(β)], 1}, 0}. Moreover,

because a common qualification cost adjustment a(β) is applied to all bidders, the optimal

post-qualification sequencing rule reduces to simply ranking bidders according to ascending

virtual costs, and in turn this is equivalent to simply ranking bidders according to true costs

(by the virtual cost function increasing in true cost). In the following, we discuss a modified

version of a standard sealed-bid first-price auction, where the contract winner is paid what

he bids.

Sealed-bid first-qualified-price auction. When bidders are equally pre-qualified, the

buyer can conduct a sealed-bid “first-qualified-price” auction to implement the optimal auc-

tion and post-qualification mechanism. In such an auction, the buyer sequences all bidders

(who bid below the common reserve price r) according to ascending bid values, and awards

the contract to the first qualified bidder (if any) with a payment equaling the bidder’s bid.

Proposition 4 Under symmetric pre-qualification, the sealed-bid first-qualified-price auc-

tion with reserve price r = max{min{ψ−1[Co − a(β)], 1}, 0} implements the optimal mech-

anism from Proposition 1. In this auction, it is a Bayesian Nash equilibrium for a bidder

with cost xi ≤ r to bid xi +
∫ r

xi
[ 1−βF (zi)
1−βF (xi)

]n−1dzi.

It is intuitive that bidders react to the competitors’ qualification probability β in equilibrium.

This reaction is captured by the size of their price markup: for a fixed reserve price r (which

is set by the buyer), the markup
∫ r

xi
[ 1−βF (zi)
1−βF (xi)

]n−1dzi decreases in β.

Threshold policy for symmetric pre-qualification levels. With a restriction to sym-

metric pre-qualification levels, Proposition 3 still holds. We omit the proof of this; however,

the intuition is that the central tradeoff (captured by equation (4.5)) remains with this
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restriction.

2.5. Numerical Illustrations

In this section we illustrate the optimal qualification screening strategy and show cost

savings for a straightforward case in which the cost distribution is uniform and the quali-

fication level distribution has decreasing density. This models a setting in which supplier

cost types are evenly dispersed and the buyer has an increasing marginal cost to screen out

each additional percent of unqualified suppliers. We normalize the cost distribution F to

U [$500,000, $1,000,000] to reflect dollar values, and take H(q) =
√

q for tractability. We

suppose that the buyer would like to hold an auction with three bidders, and that the buyer

has a strict qualification requirement (q0 = 0.80) such that only about eleven percent of all

suppliers are truly qualified (β = 1−H(q0) = 11%, e.g., this could model the case in which

foreign suppliers are extremely unlikely to meet rigorous qualification requirements set by

the buyer). We say that an asymmetric strategy allows bidders’ qualification probabilities to

differ, while a symmetric strategy requires that bidders have equal qualification probabilities.

2.5.1 Optimal Qualification Probabilities

Asymmetric strategy. Figure 2.1(a) illustrates Proposition 3: three thresholds Kpre,

Kpost, and Knt exist and are increasing in the outside option cost Co. This figure depicts

the optimal qualification screening strategy: pre-only is optimal in region A, a mix of pre-

and post-qualification is optimal in region B, post-only is optimal in region C, and forgoing

the auction is optimal in region D.

To further examine the optimal asymmetric qualification screening strategy, we consider

a specific outside option cost of $1,200,000, which is 20% higher than the worst possible

supplier cost (e.g., this could model procurement with low cost foreign suppliers). Figure

2.1(b) illustrates the switching behavior of the optimal asymmetric qualification screening

strategy for this outside option cost. When $17,500 < K < $30,500, the optimal qualification

screening strategy entails partially pre-qualifying one bidder but fully pre-qualifying the
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Figure 2.1: Illustration of regions where it is optimal to use pre-only (A); a mix of pre- and
post-qualification (B); post-only (C); or forgo the auction (D). Plots assume n = 3 bidders,
qualification threshold q0 = 0.80, and supplier cost and qualification level distributions
F ∼ U [$500,000, $1,000,000] and H(q) =

√
q, respectively. Panel (a) depicts regions in the

(K, Co) plane, and panel (b) shows optimal bidder qualification probabilities assuming the
outside option cost is fixed at Co = $1,200,000. In panel (b), Kpre = $17,500, Kpost =
$170,000, Knt = $183,000; furthermore, the buyer prefers to fully pre-qualify three, two,
or one bidder(s) if the qualification cost is between zero and $17,500, between $17,500 and
$30,500, or between $30,500 and $56,000, respectively.

other two. Such a strategy balances the pre-qualification cost with the total post-auction

cost, given that it saves pre-qualification cost (by postponing some qualification due diligence

for one bidder) while guaranteeing that the buyer finds a qualified bidder to contract with

(by having two bidders fully pre-qualified). As the qualification cost increases, it is optimal

to postpone more due diligence to save pre-qualification cost upfront. This explains why the

pre-qualification level for the partially pre-qualified bidder, β∗1 , decreases as K increases from

$17,500 to $30,500. However, when K exceeds $30,500, having two bidders fully pre-qualified

is too expensive to be optimal. Instead, it is optimal to fully pre-qualify only one bidder

and partially pre-qualify the other two when $30,500 < K < $56,000, and it is optimal to

partially pre-qualify all three bidders when $56,000 < K < $170,000.

Symmetric strategy. Figure 2.2(a) plots the optimal bidder qualification probability
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qualification requirement q0 = 0.8, and supplier cost and qualification level distributions
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√
q, respectively.

under symmetric qualification (β∗). Threshold Kpre in Figure 2.2(a) ($19,500) is larger than

that in Figure 2.1(b) ($17,500) and the other two thresholds Kpost and Knt equal those in

Figure 2.1(b), since the optimal qualification strategy without restriction is not symmetric

for $17,500 < K < $19,500 while the optimal qualification strategy without restriction is

symmetric for K near Kpost ($170,000) and Knt ($183,000). Figure 2.2(a) assumes the buyer

invites n = 3 bidders to the auction. With asymmetric pre-qualification thresholds, the

buyer always finds it optimal to invite up to n bidders; however, it turns out that a buyer

who is restricted to use symmetric pre-qualification might choose to invite n∗ < n bidders to

her auction. Figure 2.2(b) describes such a case: when $20,000 < K < $44,000, the optimal

number of bidders under symmetric pre-qualification, n∗ = 2, is less than n = 3. In other

words, fully pre-qualifying two bidders is desirable, but fully pre-qualifying a third bidder

does not sufficiently reduce expected total costs to warrant the additional pre-qualification

costs spent on the third bidder. Without the symmetric pre-qualification restriction, the

buyer could simply use post-qualification on the third bidder; however, the buyer forgoes
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the third bidder if this bidder cannot be invited without being pre-qualified to the same

level as the other two bidders, as is the case when restricting to symmetric pre-qualification.

In summary, inviting fewer bidders is a realistic way in which a buyer might cope with a

symmetric pre-qualification strategy restriction.

2.5.2 Cost Comparisons

Optimal asymmetric strategy versus pre-only. Fully pre-qualifying all bidders before

the auction (pre-only) is generally standard in practice. Let

pre-only strategy

optimality gap
= 1− total cost with optimal asymmetric qualification screening

total cost with pre-only
.

(2.12)

In Figure 2.3(a), in addition to the previous scenario where the buyer has a strict qualification

requirement (q0 = 0.80), we also examine the optimality gap for a scenario where the buyer

has a more lenient qualification requirement (q0 = 0.20). The maximal optimality gap is

around 16% when q0 = 0.80, and 30% when q0 = 0.20. For both qualification requirement

scenarios, the optimality gap peaks when qualification screening becomes too costly to make

the auction with pre-only worthwhile. To the left of this peak, the rate of cost savings is

small when K is small because the pre-only strategy is (or is close to) optimal. To the right

of this peak, the rate diminishes as K increases to Knt because the optimal qualification

strategy’s total cost increases to Co while the pre-only strategy’s cost is fixed at Co for K

exceeding $40,500 (when q0 = 0.8), or $120,000 (when q0 = 0.2).

When the qualification cost is not too expensive ($17,500 < K < $40,500), the opti-

mality gap is greater under the stricter qualification requirement. For example, if supplier

qualification costs $40,000 (perhaps $20,000 is spent to purchase and test supplier products,

$15,000 to send buyer employees to inspect supplier facilities abroad, and $5,000 on time-

intensive meetings with stakeholders throughout the buyer’s company), about 15.4% of total

procurement costs are saved by postponing qualification checks when q0 = 0.80, compared
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Figure 2.3: Panel (a) compares the optimal asymmetric and pre-only qualification strate-
gies’ costs (per equation (2.12)). Panel (b) compares the optimal asymmetric and opti-
mal symmetric qualification strategies’ costs (per equation (2.13)). All graphs are plot-
ted against qualification cost, and assume supplier cost and qualification level distributions
F ∼ U [$500,000, $1,000,000] and H(q) =

√
q, respectively.

to about 3.4% when q0 = 0.20. When q0 = 0.8, only about eleven percent of all suppliers are

truly qualified, making the full pre-qualification policy very costly. Consequently, optimally

postponing a portion of qualification can be very beneficial.

A more lenient qualification requirement of q0 = 0.20 makes pre-qualification more af-

fordable and hence mitigates the relative benefits of aggressive post-qualification. However,

under the more lenient qualification requirement, the affordability of pre-only allows the rel-

ative cost savings of the optimal qualification strategy to be sustained for larger qualification

costs K, eventually reaching 30%. The relative cost savings are more quickly capped in the

stricter requirement case, because pre-qualification becomes prohibitively expensive for the

buyer, who abandons the auction and resorts to the outside option at a smaller K.

Symmetric versus asymmetric strategies. Given that a symmetric pre-qualification

strategy is “fairer” and “simpler”, a buyer might prefer it if it can well approximate the
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optimal asymmetric strategy. Let

symmetric strategy

optimality gap
= 1− total cost with optimal asymmetric strategy

total cost with optimal symmetric strategy
. (2.13)

From Figure 2.3(b), we see that the optimal symmetric strategy approximates the optimal

asymmetric strategy well when the outside option cost Co, the number of bidders n, and

the qualification requirement q0 are small.3 In the range of qualification cost K considered,

this rate is no more than 0.2% when Co = $1,200,000, n = 3, and q0 = 0.2. The maximal

rate observed is about 5% ∼ 7% when q0 increases to 0.8. However, the symmetric strategy

approximates the optimal asymmetric strategy poorly when the outside option cost is large

and qualification is expensive but not prohibitively so (making an auction still worthwhile).

Intuitively, a buyer will always find it prudent to heavily use pre-qualification to avoid the

downside risk of an onerous outside option. However, a buyer who can employ asymmetric

pre-qualification can also enjoy the upside benefit of potentially reduced contracting costs

from speculatively inviting “long-shots” to the auction, bidders admitted with much or all

of their qualification screening postponed. For example, the optimality gap can reach about

32% when Co increases to $5,000,000 in Figure 2.3(b). Therefore, in a scenario where the

buyer cannot produce in-house and the contract is extremely important — for example,

flu vaccine procurement by a government, the buyer could be much better off with the

flexibility to apply asymmetric pre-qualification thresholds to bidders, to simultaneously

avoid the downside risk of non-transaction while still enjoying speculative benefits from

casting a wider net for bids.

In summary, regardless of whether the buyer uses asymmetric or symmetric pre-qualification,

these results suggest that the buyer should seriously consider postponing some or all of the

supplier qualification process, especially when the outside option cost is high, and either the

qualification requirement is strict and the qualification cost is moderate, or the qualification

3Note that in calculating the optimality gap in Figure 2.3(b) we have included the symmetric strategy’s
flexibility to optimally invite fewer than n bidders.
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requirement is lenient but qualification is expensive.

2.6. Practical Considerations and Extensions

2.6.1 A More General Supplier Cost Model

Our analyses up to this point have assumed that suppliers can privately and perfectly

observe their own costs prior to the auction and that these costs are statistically independent.

However, one can easily imagine a situation in which suppliers’ costs are related due to similar

or shared cost drivers. Moreover, suppliers might form a rough estimate of their cost on their

own, and utilize information from competing suppliers’ bids during the auction to update

this estimate. In this subsection we discuss how §4.4’s results can be adapted to a more

general cost model that allows for these possibilities, culminating in Proposition 5.

Suppose that each supplier i possesses private information about his idiosyncratic sta-

tus, for example, production technology, inventory level, order backlog, etc. which is de-

noted by θi ∈ [0, 1]. Supplier i’s cost to fulfill the contract is then modelled by a function

xi(θ, ξ) , X(θi, c(θ), ξ), where θ , (θ1, . . . , θn) represents the collection of all bidders’

private information, c(θ) characterizes common cost factors that depend on θ, and ξ char-

acterizes exogenous and publicly observable factors that could impact costs directly (via X)

and/or indirectly through affecting the distribution of bidders’ private information (the θi’s).

We assume that xi is strictly increasing in θi.

As an illustration, consider the following simple model in which costs are correlated and

suppliers adjust their cost estimates after seeing competitors’ bids. Let X(θi, c(θ), ξ) =

θi +
∑

j e(θj) + ξ, where e : [0, 1] → R is an increasing function. This model is essentially

that which appears in Myerson (1981) without the term ξ. The summation
∑

j e(θj) could

represent cost estimate revisions based on anticipated demand in the supply base for spe-

cialized components, with suppliers’ private information (the θi’s) incorporating their own

anticipated component demand based on their on-hand component inventory and current

order backlog. In a similar vein, ξ could reflect prevailing market prices for commodity in-

puts whose prices are unaffected by the suppliers’ aggregate usage, being only a negligible
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fraction of the commodities’ overall demand. Although this illustrative example includes the

exogenous factor ξ in a simple additive fashion, the general cost model can handle richer

structures; for example, suppliers’ costs can depend on ξ in a non-additive way in order to

model heterogeneous efficiencies in using commodity inputs. We now return to describing

the general model.

So that suppliers are ex ante symmetric, we assume that c(θ) is exchangeable in all ele-

ments of θ, and θi has a commonly known conditional distribution F (·|ξ) with a positive and

continuous density f(·|ξ). Furthermore, we assume that θi’s are conditionally independent

given any fixed publicly observable ξ. Hereafter, for notational simplicity, we will suppress

the variable ξ when writing F , f , X and xi’s. By treating ξ as implicit, the general supplier

cost formulation introduced two paragraphs above reduces to the formulation of correlated

bidder costs in Branco (1997).

With this cost model, our analysis of the optimal auction and post-qualification mech-

anism needs one key modification, which is to redefine the virtual cost as a function of the

collection of all bidders’ private information and the exogenous factor, that is,

ψ̂i(θ) , xi(θ) +
F (θi)

f(θi)

∂xi(θ)

∂θi

.

In §2.8, we derive the optimal mechanism assuming that (i) ∂ψ̂i(θ)
∂θi

> 0 for all i at all θ; and

(ii) ∂ψ̂i(θ)
∂θi

>
∂ψ̂j(θ)

∂θi
for all i and j 6= i at all θ. While (i) ensures that bidder i’s virtual cost

ψ̂i(θ) strictly increases in his type, (ii) ensures that, although increases in i’s type can also

increase the virtual costs of j 6= i, such increases are smaller than the increase caused to i’s

own virtual cost. Condition (i) is satisfied, for example, if xi(θ) is increasing and convex in

θi, and F (θi)
f(θi)

is increasing in θi. Condition (ii) is then satisfied, for example, if ∂xi(θ)
∂θi

>
∂xj(θ)

∂θi

and ∂2xi(θ)
∂θi∂θj

≤ 0. The insight is that under conditions (i) and (ii) the redefined virtual cost

ψ̂i(θ) under the general cost model inherits a key property of the virtual cost ψ(xi) under the

independent private cost model, that is, any increase (decrease) of bidder i’s report to the

buyer encourages the buyer to demote (promote) bidder i in the post-qualification sequence.
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Under conditions (i) and (ii) on the general cost model, it remains optimal to sequence

bidders for post-qualification according to ascending value of their adjusted virtual costs

ψ̂i(θ) + a(βi), as we show in Proposition 5 below. As before, the contract winner is the first

bidder (if any) deemed qualified by post-qualification. Furthermore, echoing equation (2.10),

incentive compatibility can again be ensured by paying the contract winner, say bidder i,

according to the amounts i could have increased his bid by and still been preferred to the

t bidders sequenced after him for post-qualification, and the reserve price. Yet there is

one slight difference when actually computing the payment under the general cost model:

Because an increase in i’s bid can affect other bidders’ virtual costs, when computing the

payment for bidder i, the buyer must take into account how the post-qualification sequence

of the t bidders would have been reshuffled if i had increased his bid.

We now define notation needed to generalize equation (2.10). Let θ−i be the vector θ

excluding the ith element, and define ri = max{min{z, 1}, 0} where z is such that ψ̂i(z, θ−i)+

a(βi) = Co. Let zij be such that ψ̂i(zij , θ−i) + a(βi) = ψ̂ij(zij ,θ−i) + a(βij) and zi1 ≤ zi2 ≤
· · · ≤ zit , where ij (j = 1, ..., t) are the indices of the t bidders such that ψ̂i(θ) + a(βi) ≤
ψ̂ij(θ) + a(βij) and zij ∈ [θi, ri]. Note that zij and ri, representing the maximal amount

that bidder i could have bid and still been preferred to bidder ij and the outside option,

respectively, are well defined due to conditions (i) and (ii).

Proposition 5 Under the general cost model described above, the optimal auction and post-

qualification mechanism proceeds as follows: only post-qualify a bidder i if ψ̂i(θ)+a(βi) ≤ Co;

sequence all such bidders for post-qualification according to ascending value of ψ̂i(θ)+ a(βi),

breaking ties randomly; award the contract to the first bidder i (if any) deemed qualified by

post-qualification with a payment of

t−1∑
j=1

xi(zij ,θ−i)βij

j−1∏

k=1

(1− βik) + xi(ri, θ−i)
t∏

k=1

(1− βik) (if t ≥ 1) or xi(ri,θ−i) (if t = 0),

and pay nothing to all other bidders. Additionally, Proposition 3 characterizing the optimal
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qualification strategy continues to hold.

The key reason that Proposition 3 continues to hold under the general cost model is that

the central tradeoff described in equation (4.5) does not rely on the format of the bidder’s

cost function xi. In summary, Proposition 5 implies that the main results of §4.4 — the

optimal mechanism (Proposition 1) and qualification thresholds (Proposition 3) — continue

to hold under the general cost model described above, albeit with a bit more care needed

when calculating the contract winner’s payment in order to account for correlation among

bidders’ costs.

2.6.2 Value of Credible Reserve Price

Our optimal mechanism derivation in §2.4.2 assumed that the buyer could credibly com-

mit to not awarding the contract to any bidder bidding above the reserve price set for him.

As Milgrom (1987) points out, an auctioneer who cannot credibly commit to throwing away

bids between the reserve price and the auctioneer’s own valuation is disadvantaged: the

auctioneer cannot achieve the optimal ex-ante expected profits because bidders will ignore

the announced reserve price.

Post-qualification of bidders places additional importance on reserve price credibility.

Proposition 1 characterizes the optimal reserve price for bidder i as ri = max{min{ψ−1(bmax
i ), 1}, 0},

where bmax
i , Co − a(βi) is the maximum bid from bidder i that the buyer would find prof-

itable to post-qualify. Since ψ(x) > x, we can have ri < bmax
i ; i.e., in the optimal mechanism

the buyer promises to ignore bidder i’s bid if it is in (ri, b
max
i ], even though she actually

would find it profitable to post-qualify such a bid after the auction.

If this promise is uncredible, the buyer is forced to set bmax
i as the reserve price for bidder

i and cannot apply an optimal mechanism (optimal reserve prices). This is particularly

problematic when bmax
i is greater than 1, the upper bound of supplier cost. If all other bidders

fail post-qualification and bidder i is the last remaining bidder, bidder i can make a take-it-

or-leave-it offer of bmax
i to the buyer. For example, suppose that all bidders have a symmetric

qualification probability equal to β. Per Proposition 4, a fully credible buyer would find it
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optimal to run a sealed-bid first-qualified-price auction with an optimal reserve price r (recall

1 ≥ r). If the buyer’s lack of credibility forces her to instead use bmax = Co − a(β) > 1 as a

reserve price, a cost type 1 bidder i expects to earn (bmax − 1)β(1− β)n−1 from the auction.

In contrast, note that when β = 1 for all bidders, as is assumed in classical auction theory,

cost type 1 bidders expect to earn zero profits in the auction provided the auction has at

least two bidders.

Thus, two factors inflate the costs of an uncredible buyer in our setting: forgone “price

discrimination” opportunities, as seen in classical auction theory; and the “being held hostage

by the last remaining bidder” effect, which allows even a worst-type bidder to expect positive

profits from the auction and is a consequence of post-qualification which to our knowledge is

new to the literature. Continuing the symmetric β’s example above, when Co−a(β) > 1 = r

only the “being held hostage” effect exists; when 1 ≥ Co − a(β) > r, only the “price

discrimination” effect exists; and when Co − a(β) > 1 > r both effects exist.

These observations suggest that post-qualification should be used carefully when the

buyer has little or no negotiating clout with suppliers and must rely solely on competition

among suppliers for price concessions. In such situations a supplier can command a very

high price in a one-on-one negotiation with the buyer, a damaging scenario for the buyer

that is risked by post-qualification. Intuitively, this can push the buyer to employ more

stringent pre-qualification screening. On the other hand, the buyer is between a rock and a

hard place if qualification screening is prohibitively expensive, in which case she might find

it too costly to pre-qualify extensively enough to avoid getting squeezed by the suppliers.

For a simple illustration of both of these possibilities, consider the setup of Figure 2.2. For

qualification cost $30,000, the optimal symmetric qualification probability for a credible

buyer is 0.66, which is lower than 0.93, the symmetric qualification probability that can be

(using numerical analysis) shown to be optimal for an uncredible buyer (who uses a sealed-bid

first-qualified-price auction with reserve price Co− a(β)). However, at a higher qualification

cost of $45,000 the opposite happens: the credible buyer’s optimal symmetric qualification
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probability of 0.27 exceeds 0.11, the optimal probability for the uncredible buyer. While we

will leave a more complete exploration of credibility and qualification screening interactions

to future work, the above suggests that despite the importance of credibility in avoiding

cost inflation under post-qualification, even an uncredible buyer might prefer heavy use of

post-qualification if qualification is very expensive.

2.7. Conclusions

When issuing an RFQ for competitive bid, finding a supplier truly qualified to fulfill

the contract is often as important as price concerns. Costly supplier qualification processes

are virtually ubiquitous in industry to help buyers proactively avoid problems and expenses

associated with supplier non-performance, e.g., recalls and product liability issues. This

chapter explicitly models and suggests optimal policies for both the supplier qualification

and competitive price negotiation processes together, and to our knowledge is the first study

of optimal supplier qualification processes in the operations management and auction the-

oretic literatures. To save on total supplier qualification and contracting costs we allow

the buyer to delay all or part of the qualification process until after the competitive price

negotiation (an auction) and then home in on the lowest (virtual adjusted cost) bidders.

While delaying qualification is not to our knowledge common practice in industry, our study

provides a mathematical framework which suggest such a post-qualification stage can indeed

be beneficial.

In particular, we find that the pre-qualification only strategy is optimal solely when

supplier qualification is relatively cheap. Because postponing qualification means that some

attractive bids in the auction may be disqualified, it makes sense to completely pre-qualify

suppliers if doing so is cheap. However, for moderate sized qualification costs the buyer can

do much better if some costly qualification is delayed until after the auction, because reduced

qualification costs with judicious post-qualification can more than offset expected increases

in the contracting costs (as determined by our auction theoretic analysis). Figure 2.3(a)

shows total (qualification plus procurement) cost savings of about 3% ∼ 15% for a contract
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worth $1.2M to the buyer when qualifying a supplier costs $40,000, supplier cost types are

evenly dispersed, and the qualification level distribution has a decreasing density. More

generally, Proposition 3 partitions the two-dimensional qualification cost (K) and outside

option cost (Co) plane into regions where either traditional pre-qualification only, our novel

post-qualification only, or our novel mix of the two are optimal (illustrated in Figure 2.1).

While operations management analyses such as ours may merely galvanize a reconsider-

ation of current procurement policies, as supply chains lengthen and supply sources become

globalized and more varied, the increase in potential new suppliers and the growing num-

ber of RFQ events could make the standard pre-qualification only strategy prohibitive for

resource-constrained procurement departments that cannot possibly fully pre-qualify all sup-

pliers invited to all bidding events. Post-qualification might eventually be used out of sheer

necessity to accommodate constrained qualification resources, but fortunately our study

shows that post-qualification can be part of an optimally balanced supplier qualification

strategy even without such resource constraints.

Our study is built on classical auction theory, and extends the auction theory literature

by developing an optimal auction and post-qualification mechanism. We characterize the

optimal mechanism in Proposition 1 and propose both sealed-bid and open-bid formats to

implement it, including Proposition 4 showing that a simple variant of a standard sealed-bid

auction — a sealed-bid, first-qualified-price auction — implements the optimal mechanism

when all bidders are pre-qualified up to the same level.

The spirit of our results are broad in the sense that they characterize the tradeoff between

costly pre-qualification and increased likelihood that an attractive bid will be tenable (the

bidder is truly qualified for the contract). For general auction formats not studied in the

present chapter, we expect that our main insight that post-qualification can be an effective

cost-reduction strategy for the buyer will continue to hold. However, for auction mechanisms

with extremely rich strategy spaces, post-qualification can add additional complexities to the

bidding equilibrium analysis. For instance, were post-qualification used in conjunction with
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a standard reverse English auction, bidders may find it optimal to drop out of the auction

before reaching their true costs in a way that intricately depends on all previous bids in the

auction up to that point. Introducing post-qualification in various auction formats presents

many opportunities for research on competitive bidding.

Section 2.6 discusses several possible extensions to our model, which while fairly general

does make some important assumptions in order to keep the analyses focused and tractable.

Other extensions are also possible. The present chapter shows that the buyer can profitably

postpone qualification and employ asymmetric pre-qualification policies, even under our

assumption that suppliers are ex ante symmetric. The ex ante asymmetric suppliers case, in

which H, K, and F are allowed to be supplier-specific, is an interesting possible direction for

future work; while the analysis would be more complex, we suspect that the main insights

of this chapter would be preserved, as ex ante supplier asymmetry would likely make our

asymmetric pre-qualification screening policies even more fitting.

In this chapter we also assume that suppliers are privately informed about their costs,

and the buyer and each supplier are equally unsure of the supplier’s likelihood of meeting the

buyer’s qualification requirements. One interesting and challenging direction for future work

is the multidimensional asymmetric information case in which superior prior knowledge of the

qualification level is held on the supplier side. The ensuing optimal procurement mechanism

analysis would involve information asymmetry that is multidimensional, a setting which is

generally seen (e.g., Rochet and Stole 2003) as a current challenge in mechanism design

research.

Our analysis assumes an infinite supplier pool, which ensures that the buyer is able to

fill the auction. However, in practice the number of suppliers who show interest in the

RFQ is finite and could be small for specialized purchases. With a finite supplier pool,

the number of suppliers passing pre-qualification and entering the auction could be non-

deterministic. Presumably the buyer could dynamically adjust the pre-qualification threshold

per the remaining supplier pool size. We leave such extensions to our future work.
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2.8. Proofs

2.8.1 Proof of Proposition 1

An optimal Q should minimize (2.8a), which we rewrite as
∫

x
S(Q)dF−i(x), where

S(Q) = Co +
n∑

i=1

∆i(x)[ψ(xi) + a(βi)− Co]. (2.14)

We first show that an optimal sequencing rule Q∗(x) should not include any i such that

ψ(xi) + a(βi) > Co, and then show that it should include all i such that ψ(xi) + a(βi) ≤ Co.

Let Q∗(x) = (i1, . . . , iL), where L ≤ n is the number of elements in the sequence. Suppose

there exists ik ∈ {i1, . . . , iL} such that ψ(xik) + a(βik) > Co, and without loss of generality

suppose ik is the largest such element, so that j > k implies ψ(xij) + a(βij) ≤ Co. Consider

Q̂(x) = (i1, . . . , ik−1, ik+1, . . . , iL), which is obtained by removing ik from Q∗(x) without

changing the sequence of other elements. Using equation (2.2), calculate ∆∗
i (x) and ∆̂i(x),

the winning probabilities derived from the squences Q∗ and Q̂. It turns out that ∆∗
i (x) =

∆̂i(x) for i = i1, . . . , ik−1 while ∆∗
i (x) < ∆̂i(x) =

∆∗i (x)

1−βik
for i = ik+1, . . . , iL. This implies

S(Q̂) − S(Q∗) < 0 (as can be easily checked), which contradicts the assumption that Q∗

minimizes (2.14). This contradiction indicates that Q∗(x) should not include any i such

that ψ(xi) + a(βi) > Co.

If Q∗(x) = (i1, . . . , iL) does not include an element ik ∈ {1, . . . , n}\{i1, . . . , iL} such that

ψ(xik) + a(βik) ≤ Co, we consider Q̂(x) = (i1, . . . , iL, ik), which is obtained by appending ik

to the end of Q∗(x) without changing the sequence of the other elements. Calculating ∆∗
i (x)

and ∆̂i(x) via equation (2.2) reveals that ∆∗
i (x) = ∆̂i(x) for i = i1, . . . , iL while ∆̂ik(x) ≥ 0.

This implies S(Q̂)−S(Q∗) = ∆̂ik(x)[ψ(xik)+a(βik)−Co] ≤ 0. Thus, Q̂ performs as good or

better than Q∗, and we conclude that Q∗(x) should include all i such that ψ(xi)+a(βi) ≤ Co.

We next show that any optimal Q∗(x) should sequence the elements in ascending value

of ψ(xi) + a(βi). Otherwise, if Q∗(x) = (i1, . . . , iL) includes an element ik ∈ {i1, . . . , iL}
such that ψ(xik) + a(βik) > ψ(xik+1

) + a(βik+1
), we consider Q̂(x) = (i1, . . . , ik+1, ik . . . , iL),
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which is obtained by switching ik and ik+1 without changing the sequence of the other

elements. Calculating ∆∗
i (x) and ∆̂i(x) via equation (2.2) reveals that ∆∗

i (x) = ∆̂i(x) for i =

i1, . . . , ik−1, ik+2 . . . , iL while ∆∗
ik

(x) = βik

∏k−1
j=1(1− βij), ∆∗

ik+1
(x) = βik+1

(1− βik)
∏k−1

j=1(1−
βij), ∆̂ik(x) = βik(1−βik+1

)
∏k−1

j=1(1−βij), and ∆̂ik+1
(x) = βik+1

∏k−1
j=1(1−βij). This implies

S(Q̂)−S(Q∗) = βik+1
βik

∏k−1
j=1(1−βij){[ψ(xik+1

)+a(βik+1
)−Co]− [ψ(xik)+a(βik)−Co]} < 0,

which contradicts the assumption that Q∗ minimizes (2.14). This contradiction indicates that

Q∗(x) should sequence the elements in ascending value of ψ(xi) + a(βi).

Given that Q∗(x) sequences the elements in ascending value of ψ(xi) + a(βi) and that

ψ(xi) increases in xi, ∆i(x) is decreasing in xi and hence δi(xi) is also decreasing in xi. To

find a payment rule M∗(x) satisfying (2.8b) with the proposed Q∗(x) so that all bidders bid

their true costs in equilibrium, we consider

M∗
i (x) = ∆∗

i (x)xi +

∫ 1

xi

∆∗
i (zi,x−i)dzi. (2.15)

This payment rule satisfies (2.8b), as (2.8b) can be obtained by integrating both sides of

(2.15) over x−i with distribution F−i. Given (2.15), if i /∈ Q∗(x), we have ∆∗
i (x) = 0

and hence M∗
i (x) = 0; if i ∈ Q∗(x), we have ∆∗

i (x) > 0 and hence M∗
i (x) = ∆∗

i (x)[xi +
∫ 1

xi

∆∗i (zi,x−i)

∆∗i (x)
dzi].

Finally, we justify our restriction to Q’s that deterministically (as opposed to randomly)

map x to a post-qualification sequence. Consider a Q̂ that randomizes over post-qualification

sequences. Note that all the arguments in §2.4.2 to derive program (2.8) continue to hold if

we replace Q by Q̂ and change equation (2.2) to

∆i(x) = EQ̂








βi

∏
j ranks ahead

of i∈Q̂(x)

(1− βj), if i ∈ Q̂(x)

0, if i /∈ Q̂(x)


 .

(The derivations of PAY go through because the probability of winning with a given report

enters bidder i’s payoff function linearly.) Finally, because under Q̂ the buyer’s expected
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payoff function (2.8a) is a weighted average of payoffs under the post-qualification sequences

that are possible under Q̂, she can do no better than simply using with probability 1 the

best post-qualification sequence Q∗ as defined above.

We now derive equation (2.7). Let ij (j = 1, ..., t) be the index of the jth bidder

sequenced after bidder i for post-qualification according to the optimal sequencing rule

such that ψ(xij) + a(βij) ≤ ψ(ri) + a(βi), where t is the number of such bidders, and

ri = max{min{ψ−1[Co − a(βi)], 1}, 0} denotes the reserve price for bidder i. Note that

xi +

∫ 1

xi

∆∗
i (zi,x−i)

∆∗
i (x)

dzi

= xi +

∫ ψ−1[ψ(xi1
)+a(βi1

)−a(βi)]

xi

∆∗
i (zi,x−i)

∆∗
i (x)

dzi

+
t−1∑
j=1

∫ ψ−1[ψ(xij+1
)+a(βij+1

)−a(βi)]

ψ−1[ψ(xij
)+a(βij

)−a(βi)]

∆∗
i (zi,x−i)

∆∗
i (x)

dzi

+

∫ ri

ψ−1[ψ(xit )+a(βit )−a(βi)]

∆∗
i (zi,x−i)

∆∗
i (x)

dzi +

∫ 1

ri

∆∗
i (zi,x−i)

∆∗
i (x)

dzi,

= xi +

∫ ψ−1[ψ(xi1
)+a(βi1

)−a(βi)]

xi

1 · dzi +
t−1∑
j=1

∫ ψ−1[ψ(xij+1
)+a(βij+1

)−a(βi)]

ψ−1[ψ(xij
)+a(βij

)−a(βi)]

j∏

k=1

(1− βik)dzi

+

∫ ri

ψ−1[ψ(xit )+a(βit )−a(βi)]

t∏

k=1

(1− βik)dzi +

∫ 1

ri

0 · dzi,

=
t∑

j=1

ψ−1[ψ(xij) + a(βij)− a(βi)]βij

j−1∏

k=1

(1− βik) + ri

t∏

k=1

(1− βik), if t ≥ 1; or = ri, if t = 0.

2.8.2 Proof of Proposition 2

Suppose all bidders j 6= i drop out of the auction at their true adjusted virtual cost, and

i is active at current bid b. Without loss generality, the sequence of bidders who dropped

out by bid b are denoted by 1, 2, ..., i(b), where bidder 1 dropped out earliest and bidder i(b)

dropped out latest. The set of bidders besides bidder i who have not dropped out by bid b

is denoted by ζ(b). Since bj = ψ(xj) + a(βj) for all j ∈ {1, 2, ..., i(b)}, the expected profit
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from dropping out at b is given by

∏

l∈ζ(b)

(1− βl){
i(b)∑
j=1

ψ−1[bj − a(βi)]βj

i(b)∏

k=j+1

(1− βk) + ri

i(b)∏

k=1

(1− βk)− xi}

=

i(b)∑
j=1

{ψ−1[bj − a(βi)]− xi}βj

∏

l∈ζ(bj)

(1− βl) + (ri − xi)
∏

l∈ζ(Co)

(1− βl),

which decreases in b when b > ψ(xi) + a(βi) and increases in b when b < ψ(xi) + a(βi), since

ψ−1[bj − a(βi)] ≥ xi for all j ∈ {1, 2, ..., i(ψ(xi) + a(βi))}, ψ−1[bj − a(βi)] ≤ xi for all j ∈
ζ(ψ(xi)+a(βi)), and the weights βj

∏
l∈ζ(bj)

(1−βl) and the term (ri−xi)
∏

l∈ζ(Co)(1−βl) do

not change with b. Therefore, it is optimal for bidder i to remain in the auction unless the

current bid dips below his true adjusted virtual cost ψ(xi) + a(βi), at which point he drops

out, given that all other bidders do the same.

2.8.3 Proof of Equation (4.5)

Given (2.1), it is easy to see that PRE strictly increases in βi for all i, since q(βi) strictly

increases in βi (recall that H has a continuous and positive density).

From the proof of Proposition 1, the expected total auction and post-qualification cost

under the optimal mechanism is

PAY + POST + NT =

∫

x

{
Co +

n∑
i=1

∆i(x)[ψ(xi) + a(βi)− Co]

}
dF(x),

where ∆i(x) is bidder i’s probability of winning derived from the optimal sequencing rule

via equation (2.2) given (β1, . . . , βn) and a realization of x. Consider (β̂1, . . . , β̂n) such that

β̂k > βk for some k ∈ {1, . . . , n} and β̂i = βi for all i 6= k, and let ∆̂i(x) be i’s probability

of winning corresponding to the realization of x and the optimal sequencing rule given

(β̂1, . . . , β̂n). We show that PAY+POST+NT decreases in βk by showing PAY+POST+NT
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with (β1, . . . , βn) is no less than that with (β̂1, . . . , β̂n). In particular,

Co +
n∑

i=1

∆i(x)[ψ(xi) + a(βi)− Co] ≥ Co +
n∑

i=1

∆i(x)[ψ(xi) + a(β̂i)− Co]

≥ Co +
n∑

i=1

∆̂i(x)[ψ(xi) + a(β̂i)− Co].

The first inequality (which is strict when ∆k(x) > 0) results from the fact that a(β̂i) = a(βi)

for all i 6= k, while a(βk) > a(β̂k) since a(βk) strictly decreases in βk (by equation (2.5)

and the fact that q(βk) strictly increases in βk). The second inequality results from the fact

that the ∆̂i(x)’s are derived from the optimal sequencing rule which minimizes the expected

total auction and post-qualification cost given x and (β̂1, . . . , β̂n). As the first inequality

is strict when ∆k(x) > 0, we conclude that PAY + POST + NT strictly decreases in βk if
∫

x
1{ψ(xk)+a(βk)≤Co}dF(x) > 0.

2.8.4 Proof of Proposition 3

In the following, Step 1 derives the unique Knt < ∞ and shows the existence of Kpost;

Step 2 shows the existence of Kpre > 0. As Kpre ≤ Kpost < Knt is straightforward by

definition, we then conclude that 0 < Kpre ≤ Kpost < Knt < ∞. Finally, Step 3 shows

that Knt is increasing in Co, and that the largest of all such thresholds Kpre and the smallest

of all such thresholds Kpost are both increasing in Co.

Step 1. Given that a(β) = 1
1−H(q0)

∫ q0

qi=0
qi

q0
KdH(qi)+K is linearly increasing in K, it is

easy to check that Co − a(β) = 0 only when K equals Co/[
1

1−H(q0)

∫ q0

qi=0
qi

q0
dH(qi) + 1] < ∞.

We show that this value, denoted as Knt hereafter, is exactly the unique threshold defined

in the proposition, such that running the auction with post-only is better than the outside

option whenever K < Knt, while it is optimal to forgo the auction in favor of the outside

option whenever K > Knt. We first prove the following lemma, which helps establish Knt

as well as Kpost.
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Lemma 1 It is optimal to run the auction with post-only when K is close enough to Knt

from below.

Proof. Let TOTAL , PRE + PAY + POST + NT denote the total ex ante expected cost

of the buyer. Let TOTAL|K, β denote the expected total cost with K and pre-qualification

probabilities β = (β1, . . . , βn), given a fixed Co. We can construct an ε > 0 such that

TOTAL|K, β > TOTAL|K, β, ∀K ∈ [Knt − ε,Knt], ∀β Â β, where β Â β means βj ≥ β ∀ j

and βi > β for some i. The construction is based on two facts.

Fact (i): ∂TOTAL
∂βi

|Knt, β > 0 for all i. It suffices to show ∂[PAY+POST+NT]
∂βi

|Knt, β = 0, given

that ∂PRE
∂βi

|Knt, β > 0 by the proof of equation (4.5) (Section 2.8.3).

∂[PAY + POST + NT]

∂βi

|Knt, β = lim
βi↓β

∂
∫

x
{Co + ∆i(x)[ψ(xi) + a(βi)− Co]} dF(x)

∂βi

|Knt ,

= lim
βi↓β

∂
∫ ψ−1[Co−a(βi)]

0
βi[ψ(xi) + a(βi)− Co]dF (xi)

∂βi

|Knt ,

= lim
βi↓β

∫ ψ−1[Co−a(βi)]

0

∂

∂βi

{βi[ψ(xi) + a(βi)− Co]}dF (xi)|Knt

+ lim
βi↓β

∂ψ−1[Co − a(βi)]

∂βi

f(ψ−1(Co − a(βi)))βi[ψ(ψ−1(Co − a(βi))) + a(βi)− Co]|Knt = 0.

The first equality holds because ∆j(x) = 0 for all j 6= i when K = Knt and βj = β; the

second equality holds because ∆i(x) = 0 when ψ(xi) + a(βi) > Co and ∆i(x) = βi when

ψ(xi) + a(βi) ≤ Co; the third equality is by Leibniz’s integral rule; and the fourth equality

holds because both terms before the fourth equality sign equal zero.

Fact (ii): TOTAL|Knt, β > PRE|Knt, β + POST|Knt, β + NT|Knt, β

≥
∫

x

n∑
i=1

∆i(x)CodF(x) +

∫

x

[1−
n∑

i=1

∆i(x)]CodF(x) = Co = TOTAL|Knt, β.

The first inequality follows from PAY|Knt, β > 0, which holds due to Proposition 1 and

because the probability of contracting with a qualified bidder is positive when K = Knt and

β Â β (since f(x) > 0 for all x ∈ [0, 1]). The final equality follows because PRE|Knt, β = 0
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by equation (2.1) and [PAY + POST + NT]|Knt, β = Co by Proposition 1. The second

inequality is from the expression for NT|Knt, β on page 18, and PRE|Knt, β + POST|Knt, β ≥
∫

x

∑n
i=1 ∆i(x)CodF(x), which is true by the expression for POST|Knt, β on page 18 and

PRE|Knt, β =
n∑

i=1

{q(βi)K
nt

q0

+

[
1

1−H(q(βi))
− 1

] ∫ q(βi)

y=0

yKntdH(y)

q0H(q(βi))
} by (2.1),

=
n∑

i=1

βi[a(β)− a(βi)]|K=Knt ≥
∫

x

n∑
i=1

∆i(x)[Co − a(βi)]dF(x)|K=Knt .

We can now construct the ε > 0 as follows. We can write PAY + POST + NT =

n∑
i=1

∫

{xi|ψ(xi)+a(βi)≤Co}
βi

∏

j 6=i

[
1− βjF (ψ−1[ψ(xi) + a(βi)− a(βj)])

]

︸ ︷︷ ︸
probability that iwins contract, given xi

(ψ(xi) + a(βi))dF (xi)

+ Co

n∏
j=1

[
1− βjF (ψ−1[Co − a(βj)])

]

︸ ︷︷ ︸
probability that no bidder wins the contract

. (2.16)

With (2.16) and the expression (2.1) for PRE, we can conclude that TOTAL is continuously

differentiable in βi, a fact which is useful in finding ε.

Given that ∂TOTAL
∂βi

|Knt is continuous in β and positive at β by Fact (i), there exists δ > 0

such that η(1) , min{∂TOTAL
∂βi

|Knt, β : ∀i,∀β ∈ [β, β + δ]n} > 0. Given that ∂TOTAL
∂βi

|K,β is

continuous in (K, β) and hence uniformly continuous on [0, Knt] × [β, β + δ]n, there exists

an ε(1) > 0 such that |∂TOTAL
∂βi

|K,β − ∂TOTAL
∂βi

|Knt,β| < η(1)

2
for all K ∈ [Knt − ε(1), Knt]

and all β ∈ [β, β + δ]n. Therefore, ∂TOTAL
∂βi

|K,β > 0 for all K ∈ [Knt − ε(1), Knt] and all

β ∈ [β, β + δ]n, and hence TOTAL|K, β > TOTAL|K, β for all K ∈ [Knt − ε(1), Knt] and all

β ∈ [β, β + δ]n\{β}.
Next, we address the result over the complement set [β, 1]n\[β, β + δ]n; to enable our

argument, we will actually prove the result over a slightly larger set, [β, 1]n\[β, β+δ)n, which

is compact. Given that TOTAL|Knt, β−TOTAL|Knt, β is positive by Fact (ii) and continuous

in β on [β, 1]n\[β, β + δ)n, there exists η(2) , min{TOTAL|Knt, β − TOTAL|Knt, β : β ∈
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[β, 1]n\[β, β + δ)n} > 0. Given that TOTAL|K, β − TOTAL|K, β is continuous in (K, β)

and hence uniformly continuous on [0, Knt] × {[β, 1]n\[β, β + δ)n}, there exists an ε(2) > 0

such that |[TOTAL|K, β − TOTAL|K, β] − [TOTAL|Knt, β − TOTAL|Knt, β]| < η(2)

2
for all

K ∈ [Knt − ε(2), Knt] and β ∈ [β, 1]n\[β, β + δ)n. It is easy to check that TOTAL|K, β −
TOTAL|K, β > 0 for all K ∈ [Knt − ε(2), Knt] and β ∈ [β, 1]n\[β, β + δ)n.

Therefore, TOTAL|K, β > TOTAL|K, β for all K ∈ [Knt − ε,Knt] and all β Â β, where

ε = min{ε(1), ε(2)}. That is, post-only is optimal for K ∈ [Knt − ε,Knt].

We now show that Knt is indeed the threshold sought. We can write TOTAL = PRE +

Co+
∫

x
{∑n

i=1 ∆i(x)[ψ(xi) + a(βi)− Co]} dF(x). For x such that ∂∆i(x)
∂K

= 0, we have that the

derivative of ∆i(x)[ψ(xi)+a(βi)−Co] with respect to K is ∆i(x)∂a(βi)
∂K

, which is nonnegative

and strictly positive if ∆i(x) > 0 and β 6= (1, . . . , 1). Furthermore, because ∆i(x) only

changes at a finite number of K’s for which the buyer is indifferent between the post-

qualification sequence of one or more bidders, we have that ∆i(x)[ψ(xi) + a(βi) − Co] is

continuous in K. Together with ∂PRE
∂K

nonnegative and strictly positive if β Â β, we conclude

that TOTAL|K,β increases in K and increases strictly for K < Knt (for which the probability

of award to a bidder is non-negative).

Running the auction with post-only is better than the outside option when K < Knt

because TOTAL|K, β < TOTAL|Knt, β = Co, where the inequality is due to the fact that the

expected total cost strictly increases in K < Knt, and the equality was established in Fact

(ii) in the proof of Lemma 1.

It is optimal to forgo the auction in favor of the outside option when K > Knt because

TOTAL|K, β ≥ TOTAL|Knt, β ≥ Co, where the first inequality holds because expected total

cost increases in K, and the second inequality follows from arguments analogous to those

used to establish Fact (ii) in the proof of Lemma 1.

To complete Step 1, note that Lemma 1 automatically implies the existence of Kpost.

Step 2. The existence of Kpre is due to the existence of Knt and the fact that it is always

optimal to do pre-only when K = 0, true because ∂TOTAL
∂βi

|K=0 < 0. We omit the proof of
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this, which is straightforward since when K = 0 increasing βi towards 1 is costless and only

increases the chance of transacting with an attractive bid. Given that ∂TOTAL
∂βi

is uniformly

continuous in (K, βi) on [0, Knt]× [β, 1], TOTAL strictly decreases in βi on the full support

of [β, 1] when K is positive and close enough to zero. This implies that Kpre > 0.

Step 3. By the definition of Knt, we can conclude that Knt is increasing in Co. The

following lemma implies that the largest threshold Kpre defined above and the smallest

threshold Kpost defined above are both increasing in Co.

Lemma 2 Suppose Ĉo > C̃o > 0. Let β̂
∗

= (β̂∗1 , . . . , β̂
∗
n) and β̃

∗
= (β̃∗1 , . . . , β̃

∗
n) be the

optimal pre-qualification probabilities corresponding to Ĉo and C̃o, respectively for a fixed

K < Knt|C̃o
. It is impossible that β̃

∗ Â β̂
∗
.

Proof. First we show that if Ĉo > C̃o and β̂i < β̃i, then for fixed K < Knt|C̃o
and

(β1, . . . , βi−1, βi+1, . . . , βn),

TOTAL|Ĉo,β̃i
− TOTAL|C̃o,β̃i

< TOTAL|Ĉo,β̂i
− TOTAL|C̃o,β̂i

. (2.17)

Recall that TOTAL = PRE + Co +
∫

x
{∑n

i=1 ∆i(x)[ψ(xi) + a(βi)− Co]} dF(x). As Co

increases, PRE remains constant. For x such that ∂∆i(x)
∂Co

= 0, we have that the derivative of

Co +
∑n

i=1 ∆i(x)[ψ(xi)+a(βi)−Co] with respect to Co is 1−∑n
i=1 ∆i. Furthermore, because

∆i(x) only changes at a finite number of Co’s for which the buyer is indifferent between the

post-qualification sequence of one or more bidders, we have that Co +
∑n

i=1 ∆i(x)[ψ(xi) +

a(βi)−Co] is continuous in Co, and piecewise linearly increases with a slope 1−∑n
i=1 ∆i(x).

Given fixed x, K, C̃o, β̃i, β̂i, and (β1, . . . , βi−1, βi+1, . . . , βn), both sides of inequality

(2.17) (evaluated at x rather than in expectation) are continuous and piecewise linearly

increasing in Ĉo. Therefore, it suffices to prove inequality (2.17) by showing, for fixed

x, the left hand side always has a larger slope than the right hand side. This is true

as 1 − ∑n
i=1 ∆i(x) =

∏
{k∈{1,...,n}| ψ(xk)+a(βk)≤Co}(1 − βk) is decreasing in βi. As the slope

1 −∑n
i=1 ∆i(x) is strictly decreasing in βi if ψ(xi) + a(βi) ≤ Co, and K < Knt|C̃o

implies
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∫
x

1{ψ(xi)+a(βi)≤Co}dF(x) > 0 for all Co ∈ [C̃o, Ĉo] and βi ∈ [β̂i, β̃i], we have that the inequality

in (2.17) is strict.

By definition of β̂
∗

and β̃
∗
, it must be true that TOTAL|Ĉo,β̂

∗ ≤ TOTAL|Ĉo,β̃
∗ , and

TOTAL|C̃o,β̃
∗ ≤ TOTAL|C̃o,β̂

∗ , which together imply that

TOTAL|Ĉo,β̂
∗ − TOTAL|C̃o,β̂

∗ ≤ TOTAL|Ĉo,β̃
∗ − TOTAL|C̃o,β̃

∗ .

It is impossible that (β̃∗1 , . . . , β̃
∗
n) Â (β̂∗1 , . . . , β̂

∗
n), given that inequality (2.17) holds.

2.8.5 Proof of Proposition 4

Proof of the equilibrium bidding strategy is similar to the classical proof of the symmetric

first-price forward auction bidding strategy; readers can refer to Krishna (2002), pp16–19,

aware of the fact that a bidder bidding zi will win the contract (be the lowest qualified bidder)

with probability β[1− βF (zi)]
n−1. With this bidding strategy, it is straightforward to verify

that the sealed-bid first-qualified-price auction with reserve price r satisfies the conditions

of Proposition 1.

2.8.6 Proof of Proposition 5

With the general cost model, our analysis of the optimal mechanism involves changes as

follows. The sequencing rule Q, the payment rule M , and the winning probabilities ∆i’s

should be redefined as functions of the collection of private information θ. Let F−i and F be

the joint distributions of θ−i and θ, respectively. Let χi(zi, θi) ,
∫

θ−i
∆i(zi, θ−i)xi(θ)dF−i(θ−i)

be the expected cost bidder i incurs in the contract allocation when i reports his pri-

vate information as zi and all others report their true private information. Let mi(zi) ,
∫

θ−i
Mi(zi, θ−i)dF−i(θ−i) be the expected payment to bidder i when i reports his private

information as zi and all others report their true private information. Equations (2.3) and
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(2.4) become

Ui(θi) , mi(θi)− χi(θi, θi) = max
zi∈[0,1]

mi(zi)− χi(zi, θi), (2.18)

Ui(θi) ≥ 0. (2.19)

Since the envelope theorem implies U ′
i(θi) = −∂χi(θi,θ̂i)

∂θ̂i
|θ̂i=θi

, equation (2.6) becomes

mi(θi)− χi(θi, θi) = mi(1)− χi(1, 1) +

∫ 1

θi

∂χi(zi, θ̂i)

∂θ̂i

|θ̂i=zi
dzi. (2.20)

Consequently, equation (2.7) changes to

PAY =
n∑

i=1

[mi(1)− χi(1, 1)] +
n∑

i=1

∫

θ

[
∆i(θ)ψ̂i(θ)

]
dF(θ), (2.21)

where

ψ̂i(θ) = xi(θ) +
F (θi)

f(θi)

∂xi(θ)

∂θi

.

If (2.20) holds, incentive compatibility constraint (2.18) is guaranteed if the post-qualification

sequencing rule is such that ∆i(θ) is decreasing in θi. (For the moment, we postpone the proof

of this.) Furthermore, from (2.20), we have that individual rationality constraint (2.19) holds

as long as the payment and post-qualification sequencing rules satisfy mi(1)− χi(1, 1) ≥ 0.

Clearly, equation (2.21) implies that a cost-minimizing buyer will set mi(1) − χi(1, 1) = 0.

Because POST and NT are computed as in §2.4.2, to find the cost-minimizing direct mecha-

nism (Q∗, M∗) employed by the buyer in the auction and post-qualification stage, it suffices

to solve the following program,

min
Q,M

n∑
i=1

∫

θ

∆i(θ)
[
ψ̂i(θ) + a(βi)− Co

]
dF(θ) + Co (2.22a)
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Subject to mi(θi) = χi(θi, θi) +

∫ 1

θi

∂χi(zi, θ̂i)

∂θ̂i

|θ̂i=zi
dzi ∀i, (2.22b)

and verify that at the solution ∆i(θ) decreases in θi ∈ [0, 1]. We now explain why (2.22b)

(i.e, (2.20)) and that ∆i(θ) decreases in θi, together imply that (2.18) holds. First, define

g(zi, θi) , mi(zi) − χi(zi, θi). For a given function v, define Dkv(r, t) to be the derivative

of v with respect to its kth argument, evaluated at (r, t). For example, D1xi(θi,θ−i) =

∂xi(zi,θ−i)
∂zi

|zi=θi
. We have

D1D2g(zi, θi) = − ∂

∂zi

∫

θ−i

∆i(zi,θ−i)D1xi(θi,θ−i)dF−i(θ−i) ≥ 0, (2.23)

where the inequality holds since ∆i decreases in θi, and xi increases in θi. Furthermore,

D1g(zi, θ̂i) = D1χi(zi, zi)−D1χi(zi, θ̂i) by using (2.22b) to express mi(zi),

=
∂

∂zi

∫

θ−i

∆i(zi,θ−i)[xi(zi, θ−i)− xi(θ̂i, θ−i)]dF−i(θ−i). (2.24)

We now show that D1g(zi, θ̂i) increases in θ̂i. For θi < θ̂i, (2.24) implies

D1g(zi, θ̂i)−D1g(zi, θi) =
∂

∂zi

∫

θ−i

∆i(zi,θ−i)[xi(θi,θ−i)− xi(θ̂i,θ−i)]dF−i(θ−i) ≥ 0,

where the inequality holds because ∆i decreases in θi, and xi increases in θi. Thus, θi < θ̂i

and D1g(zi, θi) = 0 together imply D1g(zi, θ̂i) ≥ 0, while θi > θ̂i and D1g(zi, θi) = 0

together imply D1g(zi, θ̂i) ≤ 0. This together with (2.23) establishes that g satisfies the

smooth single crossing differences property (see Milgrom 2004 p101). Furthermore, g(θi, θi) =
∫ 1

θi
D2g(zi, zi)dzi by (2.22b). Hence, by Theorem 4.2 of Milgrom (2004) (where, in Milgrom’s

notation, we have t = θi and set x̄(t) , t = θi), we have that θi = arg maxzi∈[0,1] g(zi, θi),

that is, incentive compatibility constraint (2.18) holds.

Having established the mechanism design program (2.22), it is straightforward to see

that Proposition 1 holds with ψ(xi) replaced by ψ̂i(θ), remembering that Q, M , and ∆
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are now functions of θ. Finally, as they do not rely on the format of the bidder’s cost

function xi, proofs of the central tradeoff (equation (4.5)) and Proposition 3 continue to

hold under the general cost model. The original proofs can be duplicated with notation

changes, remembering that ψ̂i is now a function of θ.
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Chapter 3

Procurement Auctions with An Incumbent and Partially
Qualified Entrant

3.1. Introduction

We study a procurement problem for a buyer who has an expiring contract with her

incumbent supplier. Instead of directly renewing the contract with the incumbent, the buyer,

approached by a new entrant supplier, wishes to conduct an open-descending procurement

auction between the incumbent and the entrant, seeking either price concessions from the

incumbent or a better price from the entrant. While the contract price is a concern for

the buyer, she will not contract with the entrant unless the entrant is verified to be fully

qualified for the business. As is common in industry, we will refer to performing qualification

screening on a supplier as the act of verifying that a supplier is indeed able to comply with

all the contract specifications (e.g., on product, delivery, packaging, etc.) with a reasonable

degree of certainty. The qualification process is costly, which can include testing the entrant’s

products, visiting the entrant’s production facilities, verifying the entrant’s surge capacity

availability, auditing the entrant’s financial status, etc.

The buyer faces a strategic decision regarding the timing of performing qualification

screening on the entrant. The buyer can choose to screen the entrant before conducting

the auction, called “pre-qualification.” If the entrant successfully passes pre-qualification

an auction is held in which the low bid wins the contract. However, pre-qualification may

backfire on the buyer if the entrant fails pre-qualification and must be discarded — in such

a case the buyer not only wastes the qualification cost but also loses the opportunity to run
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the auction, forcing her to renew the incumbent’s contract without any reduction in price.

Alternatively, the buyer can choose to delay screening the entrant until after the auction,

at which point she screens the entrant only if the entrant wins the auction, called “pre-

qualification.” In this case the incumbent knows that he could lose the auction but still

win the contract if the entrant fails post-qualification. We study the following research

questions:

1. What is the incumbent’s optimal bidding strategy under post-qualification? Will the

incumbent boycott the auction (drop out at the reserve price), and if not, how aggres-

sively will he bid?

2. How does the answer to question 1 depend on the probability that the entrant is truly

qualified, the buyer’s qualification cost, and the auction reserve price?

3. Under what circumstances will the buyer prefer to use post-qualification?

In answering research question 1, we find that under post-qualification the incumbent

deploys one of three types of strategies: “boycott the auction,” “test-the-water,” and “bid-to-

win.” Under the boycott strategy, the incumbent drops out of the auction at the reserve price,

and simply hopes that the entrant fails post-qualification. This strategy is used when the

incumbent knows he is unlikely to beat the entrant on price alone, i.e., when the incumbent’s

cost is quite high. When the incumbent’s true cost is moderate he uses the test-the-water

strategy: he bids against the entrant in the hopes of clinching the contract on price alone,

but does so only half-heartedly — if the entrant stays in the auction long enough, eventually

the incumbent will abandon the effort and drop out before reaching his true cost. Only

when the incumbent is certain he can beat the entrant on price alone will he deploy the

bid-to-win strategy in which he lowers his bid until the entrant drops out. This novel result

holds under quite general assumptions, and its predictions are markedly different from the

canonical open-descending auction analysis (e.g., Krishna 2002 Chapter 2) in which there is
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no post-qualification stage and therefore all bidders have a dominant strategy to bid down

to their true cost.

In addressing research question 2, we find that the incumbent bids less aggressively when

the reserve price is large, since he finds boycotting the auction more tempting. Thus, high

profit potential for the incumbent may, ironically, cause it to short-circuit competition rather

than compete harder to retain the contract. Continuing to address research question 2, as

the buyer’s qualification cost increases, we find two countervailing effects on the incumbent’s

bidding strategy. On one hand, a higher qualification cost implies the buyer adds a higher

“switching cost” to the entrant’s bid, making it easier for the incumbent to beat the en-

trant on price alone as the qualification cost increases; however, on the other hand, a higher

qualification cost makes the low-cost incumbent types who use the bid-to-win strategy ef-

fectively drop out at a higher price as the lowest possible entrant cost is higher. Thus,

the incumbent may bid more, or less aggressively, when the buyer’s cost of qualifying the

entrant is higher, depending on which of two countervailing effects prevails. Analogously,

as the entrant’s probability of surviving qualification increases, the incumbent bids more,

or less aggressively, depending on which of two effect prevails, and in general the effect is

non-monotonic. On one hand, the entrant is more likely to survive post-qualification, en-

couraging the incumbent to try to win the auction. On the other hand, the buyer is more

willing to post-qualify the entrant (who is more likely to survive the post-qualification) so

the “switching cost” shrinks, scaring the incumbent away from trying to compete on price.

The managerial implication is again that when the incumbent can lose the auction but win

the contract, a tougher competitor — namely an entrant that is more likely to be qualified

— might actually forestall competition.

Turning to research question 3, we prove that the buyer’s decision follows a threshold: If

the cost of qualifying the entrant becomes large enough, eventually the buyer will prefer the

post-qualification strategy.

Key features of our novel incumbent bidding equilibrium are qualitatively consistent with
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the empirical findings. Zhong (2007) analyzes incumbent and entrant behavior in multi-item

procurement auctions held by a large high-tech company. Relative to entrants, she finds

that incumbents using what she calls “early- and mid-evaluator” strategies (roughly akin

to our boycott and test-the-water strategies) have higher final bids, while incumbents using

more aggressive strategies tend to have lower final bids. Similar to our equilibrium analysis

of a stylized and simplified setting, this empirical data suggests incumbents seem to choose

between timid testing and all-out competing for the contract. Moreover, Zhong (2007) finds

that incumbents very often win the contract without being the lowest bidder, which is also

consistent with our stylized post-qualification model.

The next section reviews related literature, followed by a discussion of the model in §3.3.

Section 3.4 provides theoretical analyses of the model. Concluding remarks are provided in

§3.5. Proofs of propositions are in §3.6.

3.2. Literature Review

Elmaghraby (2000) provides a detailed review of work on procurement in the operations

and economics literature. Many such papers, including ours, apply auctions as the means

of price discovery during the procurement process. Books by Krishna (2002) and Milgrom

(2004) provide excellent treatments and detailed references on auctions.

This chapter studies how supplier qualification screening manifests itself in the auction

bidding behavior of entrants and incumbents. Supplier qualification screening is a process

by which the buyer performs due diligence to avoid consummating a transaction with a

supplier who will not fulfill its obligations. As such, our work is related to other auction

papers examining measures taken to redress non-performance by a counterparty. In the

context of procurement auctions, Calveras et al. (2004) study how the buyer can require

surety bonds to partially offset its cost if the supplier does not perform. In a forward auction

context, Rothkopf (1991) and Waehrer (1995) study the use of deposits that are forfeited to

the auctioneer in the event a winning bid is reneged. However, unlike surety bonds or bid

deposits, which are measures imposed on bidders to reactively recoup losses in the event of
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non-performance, supplier qualification screening is a proactive measure employed upfront

(at a cost to the buyer) to reduce the risk of supplier non-performance.

In this chapter, the incumbent, who is known to the buyer, has already passed qualifica-

tion screening. The entrant, who is unknown to the buyer, has not yet been qualified. The

existing literature has studied different features which make incumbent and entrant unalike.

Zhong (2007) is an empirical analysis of incumbent and entrant behavior in procurement

auctions, and hypothesizes that the differences between incumbent and entrant bidding be-

havior she observes could be due to non-price factors (such as quality) that differ between

them. More generically, incumbent or entrant status can be used as motivation for studying

bidders with asymmetric cost distributions; see Chapter 4.3 of Krishna (2002). In our anal-

ysis, in addition to the asymmetry over qualification, we allow the incumbent and entrant

costs to follow different distributions.

While supplier qualification is common in practice, surprisingly little has been written

about it in the procurement auction literature. To our knowledge, only one other paper

studies supplier qualification in the context of procurement auctions. The paper (Chapter 2

of this dissertation), Wan and Beil (2008), focuses on the buyer’s optimal auction design

problem and studies how to optimally combine two separate phases of supplier qualification

screening when suppliers are ex ante symmetric. In contrast, the present chapter focuses

the suppliers’ strategic bidding under the more common open-descending auction format,

and studies the buyer’s qualification timing decision when facing a finite supply pool (in this

case, consisting of two suppliers who, as an incumbent and entrant, are ex ante asymmetric).

In summary, the present chapter contributes new theory to the nascent auctions with qual-

ification screening literature and provides the first experimental analysis of auctions with a

possibly unqualified bidder.

3.3. Model

We consider a procurement manager, or buyer, who seeks to award a single, indivisible

contract for goods or services. The buyer already has a pre-existing incumbent supplier,
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denoted by i, who currently performs the contract. As is common in practice, we assume

that the contract covers a finite period of time (e.g., one to two years), after which point

it must be reinstated. To this end we assume that the buyer becomes aware of an entrant,

denoted by e, a new supplier who approaches the buyer seeking out new business. The

buyer is interested in leveraging supply-side competition for the contract by conducting an

auction in which she solicits competing bids from both the incumbent and the entrant. We

let R denote the price the incumbent currently charges the buyer for the contract; thus,

the incumbent’s true cost to perform the contract, denoted by xi, is assumed to be at most

R. We assume that xi is distributed according to a c.d.f. Fi (with p.d.f. fi > 0) on the

support [l, R] where l < 1 ≤ R, and that the entrant’s true cost xe follows a c.d.f Fe (with

p.d.f. fe > 0) on the support [0, 1]. We assume that xi and xe are privately known and

independently distributed, and the distributions Fi and Fe are common knowledge. We

assume that both suppliers seek to maximize their expected utility. We let U(·) denote the

incumbent’s utility function. Thus, the utility of an incumbent with true cost xi is U(p−xi)

if he wins the contract and receives payment p from the buyer, or is U(0) if he does not

win the contract. We assume that U(·) is concave (i.e., the incumbent is risk-neutral or

risk-averse) and U ′(p−xi)
U(p−xi)−U(0)

goes to zero as p− xi goes to infinity. In our model setting, the

entrant will have a dominant bidding strategy (see §3.4); thus, we do not explicitly specify

the entrant’s utility function. Our theoretical analyses of the suppliers’ strategic bidding

behavior utilizes the Bayesian Nash equilibrium concept, which is standard in the auction

literature.

Due to its incumbency status, the incumbent is already qualified for the contract; due to

opaque requirements set by the buyer, we assume that both the buyer and the suppliers only

know that the probability that the entrant is indeed qualified equals 0 < β < 1, the entrant’s

qualification probability. For instance, β close to one corresponds to very light qualification

checks that any entrant supplier is very likely to pass, while β close to zero corresponds to

very strict qualification requirements that relatively few entrant suppliers would be able to
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pass. Qualification screening checks can be costly, involving tests of supplier products, trips

to the supplier’s production facilities, etc. We let K ≥ 0 denote the qualification cost, that

is, the cost that would be incurred by the buyer to verify whether the entrant is, or is not,

qualified for the contract.

The buyer seeks to minimize her expected total procurement cost, that is, the contract

price plus any supplier qualification costs. The buyer strategically chooses either “post-

qualification” or “pre-qualification”, describing the timing of performing qualification screen-

ing on the entrant.

Post-qualification. Under post-qualification, the buyer directly conducts a typical reverse

clock auction between the entrant and incumbent, but without attempting to qualify the

entrant ahead of time; see Ausubel and Cramton (2006) for discussion about clock auctions

in practice. For simplicity, we assume the auction kicks off with a calling price p equal to

R and the calling price p continuously drops as the auction progresses. The auction ends

when either or both bidders drop out. Suppose the auction ends at a calling price p = b.

If it was the entrant that dropped out first, the incumbent wins the contract and gets paid

b; otherwise, the buyer performs qualification screening on the entrant, and awards the

contract to the entrant with a payment b − K
β

if the entrant passes, but contracts with the

incumbent and pays the incumbent b if the entrant fails. The buyer can reasonably implement

such payment rules when she can commit to making take-or-leave-it offers to suppliers. In

particular, she takes the incumbent’s bid b as a signal that his cost is lower than b so she is

surely informed that the incumbent will accept the payment offer if she credibly commit to

pay the incumbent no more than b. By subtracting K
β

when computing the entrant’s contract

payment, the buyer accounts for the need to post-qualify the entrant. The buyer essentially

runs a total-cost auction, where she computes the total cost bid from a supplier to be the

supplier’s price offer plus a markup to account for qualification expenses. This markup is

assumed to be zero for the incumbent, capturing the fact that the incumbent is already

qualified for the contract. For the entrant, the markup is equal to K
β

which accounts for the
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fact that prior to accepting an entrant’s bid, the buyer would have to perform K dollars

worth of qualification checks on the entrant, which the entrant would pass with probability

β. Note that the buyer would be indifferent between post-qualifying a price offer of b − K
β

from the entrant and directly accepting a price offer of b from the incumbent, since

K + (b− K

β
)β + b(1− β) = b.

The left hand side equals the expected total procurement cost if the entrant is post-qualified:

Checking the entrant’s qualification status costs the buyer K, the entrant passes post-

qualification with probability β, and the incumbent is awarded the contract at price b if

the entrant fails post-qualification. The right hand side equals the total procurement cost if

the contract is directly awarded to the incumbent (who is already qualified) at price b. This

markup K
β

can be thought of as a “switching cost” related to the need to perform costly

qualification screening on the entrant. Intuitively, as the cost of qualification (K) increases

or the entrant’s qualification probability (β) decreases, the entrant becomes less attractive to

the buyer, which is reflected by a larger markup K
β
. In effect, the markup shifts the entrant’s

cost distribution to the right, making the entrant less competitive. Because the entrant’s

true cost xe is distributed between zero and one, the effective cost (i.e., true cost plus the

markup) of the entrant is distributed between [K
β
, 1 + K

β
]. Of course, additional switching

costs that are unrelated to qualification — such as the need to change order processing pro-

cedures — could also be incorporated into the model by simply shifting Fe to the right. We

assume R > K
β
; otherwise, no entrant cost type would ever win a positive profit.

Pre-qualification. Under pre-qualification, the buyer pays K to screen the incumbent

before the auction. With probability 1 − β, the entrant is found to be unqualified and is

discarded, and without any competitive threat to the incumbent the contract is defacto

renewed with the incumbent at prevailing price R. This captures a situation in which the

buyer must rely on supplier competition for price concessions. However, with probability
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β the pre-qualification establishes that the entrant is qualified, at which point an auction

is conducted between the entrant and the incumbent. The auction details are exactly as

before, save the need to use post-qualification: Whichever bidder drops out first loses (ties

are broken randomly), and the other wins and is paid the loser’s dropout bid. In other words,

the auction is essentially the well-known open-descending reverse English auction.

3.4. Theoretical Analyses

If the buyer has chosen pre-qualification and the entrant has passed pre-qualification, it

is apparent that both suppliers have a dominant strategy to bid down to their true costs

before dropping out. If the buyer has chosen post-qualification, it is apparent that the

entrant must win the auction in order to possibly win the contract; therefore, the entrant’s

dominant strategy is to bid down to xe + K
β

before dropping out. However, if the buyer

chooses post-qualification, it is less apparent how exactly the incumbent will bid against

a partially qualified entrant because the incumbent can lose the auction but still win the

contract if the entrant wins the auction but fails post-qualification screening — an important

feature of the auction with post-qualification screening. In such a case, the incumbent is

paid his drop out bid. Thus, when β < 1 the incumbent has an incentive to hold back on

bidding by dropping out of the auction before reaching his true cost xi, in order to preserve

his profit margin. In contrast, if the entrant were already fully qualified (β = 1), the

incumbent would have a dominant strategy to bid down to its true cost xi before dropping

out; this is the case that is assumed in classical auction theory (all bidders fully qualified,

hence the auction winner is automatically the contract winner). In the following §3.4.1, we

analyze the incumbent’s Bayesian Nash equilibrium bidding behavior in the auction with

post-qualification, addressing research questions 1 and 2.

In comparing the post- and pre-qualification strategies, the buyer faces the following

tradeoffs. If she uses post-qualification, she avoids wasting money qualifying an entrant

whose price in the auction might not turn out to be competitive, and also avoids losing the

opportunity to run an auction in case the entrant is actually unqualified. However, post-
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qualification causes the incumbent to hold back on bidding in the auction. Pre-qualification

can induce more aggressive bidding by the incumbent, but pre-qualification backfires on the

buyer if the entrant fails pre-qualification and must be discarded. Thus, the buyer’s decision

depends on how the incumbent will bid in an auction with post-qualification. If the buyer

thinks the incumbent will bid very aggressively even if the entrant might be unqualified,

post-qualification can be an attractive strategy. On the other hand, if the incumbent will

only bid aggressively if the buyer can tout the fact that the entrant is fully qualified and

only the low bid will win the contract, the buyer may be forced to use pre-qualification. In

the following §3.4.2, we characterize theoretical predictions for the buyer’s optimal strategy,

addressing research question 3.

3.4.1 Incumbent Bidding Strategy Under Post-Qualification

Proposition 6 For an incumbent with cost xi, there exists a static optimal bid-down-to level

p(xi) ∈ [K
β
, R] such that the incumbent should stay in the auction if the auction price is above

p(xi) and drop out of the auction at the price p(xi) if the entrant has not dropped out. There

exist two thresholds xB and xW such that

• xW ≤ xB, xB < R, and xW ≤ K
β
,

• p(xi) = R if and only if xi ≥ xB,

• p(xi) = K
β

if and only if xi ≤ xW ,

• xi < p(xi),
K
β

< p(xi) < R, and p(xi) strictly increases in xi if xW < xi < xB.

In words, Proposition 6 says that the incumbent uses three types of strategies, depending

on its cost xi: boycott the auction; participate in the auction until price drops too low, then

drop out; participate in the auction until the entrant drops out. The incumbent uses the

first strategy when his cost is so high (i.e., xi ≥ xW ) that he is unlikely to beat the entrant

on price alone. In such cases, the incumbent prefers to retain his profit margin by boycotting

the auction (i.e., p(xi) = R) and simply hopes the entrant is disqualified. On the other hand,
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the incumbent uses the third strategy when he is absolutely certain that he can defeat the

entrant on price alone. To see this, note that this strategy is only used when the incumbent’s

cost is sufficiently small, that is, xi ≤ xW ; furthermore, we prove that the threshold xW is

always less than or equal to K
β
, which in turn is no greater than the entrant’s total cost

xe + K
β
. In such cases, the incumbent prefers to win the auction to avoid any chance of

losing the contract (i.e., p(xi) = K
β
). The second strategy is a mixture of these approaches:

when the incumbent thinks he stands a reasonable chance of defeating the entrant on price

alone (i.e., xW < xi < xB), he prefers to “test the waters” by staying in the auction, at least

initially. He hopes the entrant will drop out quickly, but if the auction price gets too low

the incumbent abandons the effort and drops out of the auction before the price dropping to

his true cost (i.e., p(xi) > xi). Rather than seeking to beat the entrant on price, he changes

tactics and instead hopes the entrant will be disqualified.

Proposition 7 The optimal bid-down-to level p(xi) is increasing in R for all xi; however,

p(xi) is generally not monotone in K or β.

Intuitively, a higher current contract price R implies a larger potential profit margin

available to the incumbent, making him more willing to attempt to retain such profit margin

by dropping out the auction early or even boycotting the auction. However, the qualifica-

tion cost K and the qualification probability β in general do not monotonically affect the

incumbent’s bidding. Technically, this is because the incumbent’s marginal benefit from a

lower bid is not monotone in K or β. More intuitively, an increase of K or β can yield two

competing effects on the incumbent’s bidding tradeoffs. To see this, as K increases, on one

hand, the incumbent is encouraged to use a lower bid (so as to win the contract by winning

the auction directly) because the entrant is less competitive in cost (due to a larger markup

K
β
) and hence the incumbent finds it easier to beat the entrant on price alone; however,

on the other hand, as K increases, a low-cost incumbent who uses a bid-to-win strategy

will effectively drop out at a higher bid K
β
. Analogously, as β increases, on one hand, the

incumbent is encouraged to try and win the auction because the entrant is more likely to
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survive post-qualification screening (which means that it is less attractive for the incumbent

to give up winning the auction and bet on the entrant’s failing post-qualification screening);

however, on the other hand, the incumbent is discouraged to try and win the auction because

the entrant is more competitive in cost (due to a lower markup K
β
) and hence the incumbent

finds it more difficult to beat the entrant on price alone but more attractive to simply let

the entrant win the auction rather than risk his profit margin by bidding low.

Special case 1: risk-neutral incumbent

To illustrate Propositions 6-7, in the following we consider a risk-neutral incumbent, i.e.,

U(p− xi) = p− xi, and assume the entrant’s cost distribution is uniformly distributed, that

is, Fe ∼ U [0, 1]. For given K, β, and R, let x̂(K, β, R) be the xi ∈ (−∞, 2β−1
β

+ K
β
) solving

the following equation:

0 =





(βxi−K)2

2(2β−1)
− βxi + K

β
+ 1

2
− (1− β)R , if K

β
< xi ≤ 2β−1

β
+ K

β
;

−βxi + K
β

+ 1
2
− (1− β)R , if xi ≤ K

β
.

Note that x̂(K, β,R) is well defined because the right hand side of the equation is continuous

and convex on (−∞, 2β−1
β

+ K
β
], is negative at xi = 2β−1

β
+ K

β
and goes to positive infinity as

xi goes to negative infinity.

Proposition 8 Assume Fe ∼ U [0, 1]. For a risk-neutral incumbent, the optimal bid-down-to

level p(xi) = βxi

2β−1
− (1−β)K

β(2β−1)
when xW < xi < xB. The thresholds xB and xW , depending on

R, K, and β, are given in the following table.

0 < β ≤ 1
2

1
2

< β < 1

R ≤ 1 + K
β

R > 1 + K
β

R ≤ 1 + K
β

R > 1 + K
β

xB
K

2β2 − R
2β

+ R K
β2 + 1

2β
− R

β
+ R 2β−1

β
R + (1−β)K

β2 x̂(K, β,R)

xW
K

2β2 − R
2β

+ R K
β2 + 1

2β
− R

β
+ R K

β
min{x̂(K, β, R), K

β
}

Proposition 8 illustrates Proposition 6 by presenting the exact expressions of the optimal

“test-the-water” level and the thresholds xW and xB. Demonstrations of the incumbent’s
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Figure 3.1: A risk-neutral incumbent’s bidding functions when K = 2 and K = 20. Assume
Fi ∼ U [0.1, 1.1], Fe ∼ U [0, 1], and β = 0.7 (left panel) or β = 0.3 (right panel).

optimal bidding functions are provided in Figure 3.1. It is easy to see that the optimal

bid-down-to level p(xi) is never lower than and increases in the incumbent’s cost xi. It is

interesting to notice that the “test-the-water” strategy is employed only when 1
2

< β < 1.

The intuition is that, as β decreases and approaches 1
2

from above, more and more incumbent

types with medium cost find the entrant less credible a threat and hence would choose

boycotting over testing-the-water.

The exact expressions of the bidding functions provided by Proposition 8 enable us to

further explore the effect of the qualification cost K and the entrant’s qualification probability

β on the aggressiveness of the incumbent’s bidding behavior. An incumbent can win a

contract in two different ways: i) win the auction outright, which happens when p(xi) ≤
xe + K

β
; ii) lose the auction but win the contract because the entrant fails post-qualification,

which happens only when xe + K
β
≤ p(xi). Only in case (i) does the incumbent’s aggressive

bidding actually drive the entrant to drop out and lose the auction. Thus, in exploring

how is the aggressiveness of the incumbent’s bidding affected by the qualification cost K

and the entrant’s qualification probability β, we choose to examine how K and β affect the

probability that the incumbent wins the auction, which is defined to be the probability that
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p(xi) ≤ xe + K
β
, corresponding to the case i) discussed as above.

Proposition 9 Assume Fe ∼ U [0, 1], Fi ∼ U [l, R] and the incumbent is risk-neutral. The

probability that the incumbent wins the auction increases in K; it increases in β if K is close

to zero, and it decreases in β if K is large and close to βR.

Proposition 9 shows that, although the incumbent’s optimal bid-down-to level is not

monotone in K, the probability that the incumbent wins the auction outright increases in

K. In other words, on average, the incumbent bids more aggressively when K is larger.

Intuitively, this is because the entrant’s effective cost is larger. However, the effect of β on

the probability that the incumbent wins the auction depends on the value of K. When K

is small, the effect that the entrant’s cost is less advantaged with larger β is dominated;

therefore, the incumbent is encouraged to bid more aggressively, because the entrant is more

likely to be truly qualified and hence it is less likely to win the contract if the entrant wins

the auction. However, when K is large, the effect that the entrant’s cost is less advantaged

with larger β dominates; therefore, the incumbent is encouraged to bid less aggressively if β

is larger (and hence the entrant’s effective cost is lower).

Special case 2: incumbent with constant absolute risk aversion

Assume the incumbent has a constant absolute risk aversion (CARA) with a utility function

U(p− xi) = − 1
γ
e−γ(p−xi). To facilitate characterization of the incumbent’s bidding strategy,

we introduce some notation. For given γ > 0, K ≥ 0, 0 < β < 1, and y ≥ K
β
, define

x(y) , y − 1
γ

ln[1 + γ (1−β)
β

(y − K
β
)] and x(y) , y − 1

γ
ln[

e
γ(y−K

β
)−1−γ(1−β)(y−K

β
)

γ(yβ−K)
]. Consider a

term eγ(y−xi) − 1− γ(y − K
β
)1−β

β
, which is convex in y and approaches +∞ as y approaches

either −∞ or +∞. This term, when xi > 1−2β
γ(1−β)

− 1
γ

ln(1−β
β

) + K
β
, has two solutions on

y ∈ (−∞, +∞), of which we let p(xi) denote the larger one. Let x̃ be the xi solving

xi = x(p(xi)).

Proposition 10 Assume Fe ∼ U [0, 1] and U(p−xi) = − 1
γ
e−γ(p−xi). The optimal bid-down-

to level p(xi) = p(xi) when xW < xi < xB. When 1 ≤ R ≤ 1+ K
β
, the thresholds xB and xW ,
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Figure 3.2: Incumbent’s optimal bidding strategy given his cost xi, the current calling price
p, and his risk preference. K = 0.06, β = 0.6, l = 0, R = 1.

depending on R, K, and β, are given in the following table.

0 < β < 1
2

1
2
≤ β < 1

R ≤ 1 + K
β
; x(R) ≤ x(R) R ≤ 1 + K

β
; x(R) > x(R) R ≤ 1 + K

β

xB(R) x(R) x(R) x(R)

xW (R) x(R) x̃ K
β

When R > 1+K
β
, the thresholds xB(R) = min{xB(1+K

β
), x̂(R)} and xW (R) = min{xW (1+

K
β
), x̂(R)}, where x̂(R) is the unique xi such that

∫ R

p̂(xi)
{β[U(y− xi)−U(0)]fe(y− K

β
)− (1−

β)Fe(y − K
β
)d U(y−xi)

dy
}dy = 0, and p̂(xi) is the bid-down-to level when R = 1 + K

β
.

3.4.2 Buyer’s Optimal Qualification Screening Strategy

As discussed in §3.3, under the pre-qualification strategy, the buyer spends qualification

cost K on qualifying the entrant, which yields one of two outcomes: with probability β the

entrant is found to be qualified and a typical reverse English auction is subsequently run with

two fully qualified bidders thus resulting in an expected contract payment of E max{xi, xe};
and with probability 1 − β the entrant is found to be unqualified and is discarded, and
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consequently the contract is renewed with the incumbent at price R. In summary, under

pre-qualification the buyer’s expected total (payment plus qualification) cost is

βE max{xi, xe}+ (1− β)R + K. (3.1)

Per our analysis in §3.4.1, if the buyer uses the post-qualification strategy, an incumbent’s

bidding strategy can be described as a bid-down-to level p(xi). The entrant wins the auction

if p(xi) > min{xe+
K
β
, R}; if so, the buyer incurs a qualification cost K to vet the entrant and

pays p(xi)− K
β

to the entrant if the entrant survives post-qualification (which happens with

probability β), but pays p(xi) to the incumbent if the entrant fails post-qualification (which

happens with probability 1− β). Otherwise, if p(xi) ≤ min{xe + K
β
, R}, the incumbent wins

the auction, and thus keeps the contract with a payment from the buyer equal to either the

entrant’s dropout bid or the reserve price (whichever is smaller), min{xe + K
β
, R}. Therefore,

under the post-qualification strategy, the buyer’s expected total cost is

E max{min{xe +
K

β
,R}, K + β[p(xi)− K

β
] + (1− β)p(xi)},

= E max{min{xe +
K

β
,R}, p(xi)}. (3.2)

The buyer finds the optimal qualification strategy by comparing (3.1) with (3.2). The fol-

lowing proposition says that the buyer prefers post-qualification screening if the qualification

cost K is large enough.

Proposition 11 Given any Fi, Fe, U(·), β ∈ (0, 1), l and R, there exists a threshold K

such that it is optimal for the buyer to choose post-qualification if K > K.

The intuition to Proposition 11 is that when the qualification cost is high enough post-

qualification screening is preferred because it helps the buyer avoid wasting money qualifying

an entrant whose price in the auction might not turn out to be competitive. Although

Proposition 11 shows that the buyer’s optimal strategy can be characterized by a threshold
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Figure 3.3: Buyer’s optimal qualification strategy given the qualification cost K, the entrant’s
qualification probability β. Plot assumes Fe ∼ U [0, 1], Fi ∼ [0.1, 1.1], and that the incumbent
is risk-neutral.

of qualification cost K, there in general does not exist a similar threshold of qualification

probability β; for example, a buyer can prefer post-qualification either when β is small enough

or large enough, as we will show in the following Figure 3.3. This is because the incumbent’s

bidding behavior under post-qualification is in general not monotone in β (Proposition 7)

and hence the buyer’s expected total cost under post-qualification is in general not monotone

in β (per (3.2)), although the buyer’s expected total cost under pre-qualification is monotone

in β (per (3.1)).

To illustrate Proposition 11, we assume l = 0.1, R = 1.1, Fe ∼ U [0, 1], Fi ∼ U [0.1, 1.1],

and that the incumbent is risk-neutral. Figure 3.3 characterizes the buyer’s optimal qualifica-

tion strategy given various qualification costs K and entrant qualification probabilities β. In

the figure, the hill-shaped line corresponds to the cases where the buyer is indifferent between

the pre-qualification and post-qualification strategies and it divides the plane into upper and

lower parts, such that it is optimal for the buyer to choose the post-qualification strategy in

the upper part, but to choose the pre-qualification strategy in the lower part. Figure 3.3,

on one hand, illustrates Proposition 11: The buyer prefers pre-qualification only when the
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qualification cost K is small (making pre-qualification cheap); on the other hand, it shows

the non-monotone effect of qualification probability β: The buyer prefers pre-qualification

when β is not too small (in which case pre-qualification is very likely to disqualify the bid-

der), nor too large (in which case the incumbent is inclined to bid aggressively even under

post-qualification because he knows the entrant would stand only a small chance of failing

post-qualification).

3.5. Conclusions

We consider a buyer who uses a procurement auction to structure contract negotiation

between an incumbent and an entrant supplier, seeking either price concessions from the

incumbent or a low-price contract from the entrant. To make sure that the entrant is a truly

qualified supplier for the contract, the buyer needs to perform qualification screening process

on the entrant – a process that is costly and time-consuming for the buyer. The buyer is

faced a strategic decision on the timing of screening the entrant, choosing either screening

the entrant before holding the auction, so-called pre-qualification screening, or delaying the

qualification screening until after the auction only if the entrant bids wins the auction, so-

called post-qualification screening. The buyer has to incur the qualification screening cost

upfront and may be backfired if the entrant fails the screening process — in such case, the

buyer has to discard the entrant and forego the opportunity to run the auction for a low

contract price. Whereas the buyer can avoid wasting qualification screening cost and losing

the opportunity to run an auction by delaying the entrant’s screening until after the auction

(i.e., by using post-qualification), the buyer needs to take into account the incumbent’s

strategic hold-back in bidding against a partially qualified entrant because in such case the

incumbent can possibly win the contract even if loses the auction — this happens if the

entrant fails the post-qualification process and the buyer comes back to the incumbent for

contract renewal.

We analytically examine the incumbent’s bidding strategy against an entrant who is par-

tially qualified, i.e., who can survive the qualification screening process with probability less
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than one. We find that the incumbent may use three types of bidding strategies, depending

on his cost. On one extreme, when the incumbent’s cost is very high and hence it is very

unlikely to beat the entrant on price alone, the incumbent finds it optimal to drop out of

the auction as soon as the auction starts, i.e., to effectively boycott the auction so as to

retain a profit margin as large as possible and simply hope the entrant would fail the post-

qualification screening. On the other extreme, when the incumbent’s cost is very low, the

buyer has a large profit margin to retain and possess a for-sure winning opportunity if he

will to take. In such cases, he prefers to guarantee winning the contract to directly win the

auction, and hence finds it optimal to stay in the auction until the entrant drops out. Be-

tween the two extremes are the cases where the incumbent has medium cost and reasonable

chance to beat the entrant on price. In such cases, the incumbent finds it optimal to test

the water: He stays in the auction for a while, seeing if he can directly win the auction (i.e.,

the entrant drops out the auction), but he drops out before the auction price gets too low so

as to retain a reasonable profit margin. The incumbent’s bidding behavior is also affected

by the auction reserve price, the buyer’s qualification screening cost, and the probability

that the entrant can survive the qualification screening process. In general, the incumbent

bids less aggressively with a higher reserve price, but may bid less or more aggressively with

higher screening cost or qualification probability.

With characterizations of the incumbent’s bidding strategy under post-qualification screen-

ing, we examine the buyer’s optimal qualification screening strategy. We find that the buyer

prefers pre-qualification only when the qualification cost is small because the buyer is pushed

away from pre-qualification by high qualification screening in avoidance of wasting money on

an unqualified entrant. On the other hand, we find the non-monotone effect of the qualifi-

cation probability: The buyer prefers pre-qualification when the probability is not too small

nor too large. Intuitively, a small qualification probability implies that had the buyer chosen

pre-qualification screening, it would be very likely that the entrant is unqualified and she

would have to waste the qualification cost and the auction opportunity; a large qualifica-
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tion probability implies that the incumbent will be inclined to bid aggressively even under

post-qualification because he knows the entrant would stand only a small chance of failing

post-qualification.

3.6. Proofs

3.6.1 Proof of Proposition 6

Existence of static bid-down-to level

The optimal strategy of the incumbent is characterized by a static bid-down-to level because

we can show that dynamically choosing between drop-out and stay-in as time goes forward

yields the same outcome as if the buyer has chosen a fixed bid-down-to level at the outset

of the auction.

Let Y (p) be the maximum utility the incumbent can expect to gain by optimally choosing

his strategy given the current calling price p. At any calling price p, the incumbent can choose

to drop out or stay in. If drops out at p, he obtains an expected utility given by

(1− β)U(p− xi) + βU(0); (3.3)

however, if he chooses to remain in the auction the incumbent’s maximum expected utility

is given by

sup
max{xi,

K
β
}≤t<p

∫ p

t

U(y − xi)g(y|p)dy + G(t|p)Y (t), (3.4)

where g(y|p) =
fe(y−K

β
)

Fe(p−K
β

)
is the density of conditional probability that the entrant drops out at

y given that the entrant has not dropped out by p and G(t|p) = [1− ∫ p

t
g(y|p)dy] =

Fe(y−K
β

)

Fe(p−K
β

)
.

Therefore, we have

Y (p) = max{(3.3), (3.4)}.

In words, the above states that the incumbent’s optimal bidding strategy (drop-out de-

cision) can be characterized as a stopping problem over the (continuous) state p, the calling

price in the auction. At state p, the incumbent makes the following tradeoff calculation. He
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first calculates his expected utility of dropping out of the auction (equation (3.3)), which is a

function of the calling price, his true cost xi, and the probability that the entrant would fail

post-qualification, 1− β. Second, he calculates the expected utility of remaining in the auc-

tion, in the hopes of beating the entrant and winning the contract outright (equation (3.4).

This expected utility depends on the price at which the incumbent predicts the entrant will

drop out (the variable y in equation (3.4)), which in turn depends on g, itself a function of

the entrant’s cost distribution (Fe), markup (K
β
), and the current auction calling price. If

the expected utility of dropping out of the auction is greater than that of staying in, the

incumbent drops out.

In the following we show that (3.4) equals

sup
max{xi,

K
β
}≤t<p

∫ p

t

U(y − xi)g(y|p)dy + G(t|p)[(1− β)U(t− xi) + βU(0)]. (3.5)

Let V1(p) = sup
max{xi,

K
β
}≤t<p

v1(p, t) and V2(p) = sup
max{xi,

K
β
}≤t<p

v2(p, t), where

v1(p, t) =

∫ p

t

U(y − xi)g(y|p)dy + G(t|p)Y (t),

Y (t) = max{(1− β)U(t− xi) + βU(0), V1(t)}

and

v2(p, t) =

∫ p

t

U(y − xi)g(y|p)dy + G(t|p)[(1− β)U(t− xi) + βU(0)].

Given that Y (t) ≥ [(1− β)U(t− xi) + βU(0)] by definition, we have V1(p) ≥ V2(p). Thus, it

suffices to show V1(p) ≤ V2(p).

• If V1(p) ≤ [(1− β)U(p− xi) + βU(0)], then V1(p) ≤ V2(p) because [(1− β)U(p− xi) +

βU(0)] = v2(p, p) ≤ V2(p).

• If V1(p) > [(1− β)U(p− xi) + βU(0)], then there exists tinf(p) ∈ [max{xi,
K
β
}, p) such
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that

tinf(p) = inf arg max
max{xi,

K
β
}≤t<p

v1(p, t).

We establish V1(p) ≤ V2(p) by showing V2(p) ≥ v2(p, tinf(p)) = v1(p, tinf(p)) = V1(p),

where the inequality is by the definition of V2(p), the last equality is by the definition

of tinf(p), and the first equality is true because Y (tinf(p)) = [(1 − β)U(tinf(p) − xi) +

βU(0)]. That Y (tinf(p)) = [(1− β)U(tinf(p)− xi) + βU(0)] is proved by contradiction.

Suppose otherwise, i.e., Y (tinf(p)) > [(1 − β)U(tinf(p) − xi) + βU(0)]. This implies

max
max{xi,

K
β
}≤t<tinf(p)

v1(tinf(p), t) attains at some t̂ ∈ max{xi,
K
β
} ≤ t < tinf(p), i.e.,

Y (tinf(p)) = v1(tinf(p), t̂). (3.6)

Note that

max
max{xi,

K
β
}≤t<p

v1(p, t) = v1(p, tinf(p))

=

∫ p

tinf(p)

U(y − xi)g(y|p)dy + G(tinf(p)|p)Y (tinf(p))

=

∫ p

tinf(p)

U(y − xi)g(y|p)dy + G(tinf(p)|p)v1(tinf(p), t̂)

=

∫ p

t̂

U(y − xi)g(y|p)dy + G(t̂|p)Y (t̂) = v1(p, t̂),

where the first equality is given by the definition of tinf(p) and tinf(p) < p, the second

equality is by the definition of v1(p, tinf(p)), the third equality is due to equation (3.6),

and the last two equalities follow algebra. However, that v1(p, t̂) = v1(p, tinf(p)) and

t̂ < tinf(p) contradicts that tinf(p) is defined as the infimum.

The fact that (3.4) equals (3.5) implies that the optimal dynamic bidding strategy yields

the same payoff to the bidder as using the static bid-down-to level.
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Optimal static bid-down-to level

When the incumbent chooses a fixed bid-down-to level at the outset of the auction, the

existence of the optimal bid-down-to level is guaranteed because the the incumbent optimizes

a continuous objective function over a compact set. In particular, the static optimal bid-

down-to level p(xi) is such that p(xi) = arg max
t∈[max{xi,

K
β
},R]

Π(t), where

Π(t) ,
∫ R

t

U(y − xi)fe(y − K

β
)dy

+Fe(t− K

β
)[(1− β)U(t− xi) + βU(0)] + U(R− xi)[1− Fe(R− K

β
)].

(3.7)

The decision set is t ∈ [max{xi,
K
β
}, R] because the auction price can never be beyond

[K
β
, R] and bidding below the true cost xi can never be profitable for the incumbent. The

incumbent’s expected utility as a function of the chosen bid-down-to level t, Π(t), has the

first term
∫ R

t
U(y − xi)fe(y − K

β
)dy corresponding to the cases in which the incumbent

wins the auction outright because the entrant drops out at y ∈ (t, R), the second term

Fe(t − K
β
)[(1 − β)U(t − xi) + βU(0)] corresponding to the cases in which the entrant wins

the auction, and the last term U(R−xi)[1−Fe(R− K
β
)] corresponding to the cases in which

the entrant loses because his effective cost is above the reserve price.

Existence of thresholds xW and xB

Note that

dΠ(t)

dt
= Fe(t− K

β
)(1− β)U ′(t− xi)− βfe(t− K

β
)[U(t− xi)− U(0)]

= Fe(t− K

β
)(1− β)U ′(t− xi)

[
1− β

1− β

fe(t− K
β
)

Fe(t− K
β
)

U(t− xi)− U(0)

U ′(t− xi)

]
,

(3.8)

which strictly increases in xi (i.e., we have ∂2Π(t)
∂xi∂t

> 0) because U ′(t − xi) increases in xi
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(i.e., because U(·) is concave) and [U(t− xi)− U(0)] strictly decreases in xi. The fact that

dΠ(t)
dt

strictly increases in xi implies that p(xi) increases in xi and moreover strictly increases

when max{xi,
K
β
} < p(xi) < R. To see this, suppose p(xi) does not increase in xi, then it

must exist x
(1)
i < x

(2)
i such that p(x

(1)
i ) > p(x

(2)
i ). With a bit abuse of notation, let Π(t; xi)

denote the incumbent’s expected utility if the incumbent’s cost is xi and it chooses t as the

bid-down-to level. On one hand, by definition of p(x
(1)
i ) and p(x

(2)
i ), we have

Π(p(x
(1)
i ); x

(1)
i )− Π(p(x

(2)
i ); x

(1)
i ) ≥ 0, and Π(p(x

(2)
i ); x

(2)
i )− Π(p(x

(1)
i ); x

(2)
i ) ≥ 0. (3.9)

On the other hand, we notice that

Π(p(x
(1)
i ); x

(1)
i )− Π(p(x

(2)
i ); x

(1)
i ) + Π(p(x

(2)
i ); x

(2)
i )− Π(p(x

(1)
i ); x

(2)
i )

=

∫ p(x
(1)
i )

p(x
(2)
i )

−dΠ(t; x
(1)
i )

dt
dt +

∫ p(x
(1)
i )

p(x
(2)
i )

dΠ(t; x
(2)
i )

dt
dt > 0 (3.10)

where the inequality holds because p(x
(1)
i ) > p(x

(2)
i ) and

dΠ(t;x
(2)
i )

dt
>

dΠ(t;x
(1)
i )

dt
. However,

(3.9) contradicts with (3.10), which implies that p(xi) must increase in xi. Moreover, if

max{x(1)
i , K

β
} < p(x

(1)
i ) < R, then it must be

dΠ(t;x
(1)
i )

dt
|
t=p(x

(1)
i )

= 0; this implies that p(x
(1)
i ) <

p(x
(2)
i ) — Otherwise, if p(x

(1)
i ) = p(x

(2)
i ), we have

dΠ(t;x
(2)
i )

dt
|
t=p(x

(2)
i )

>
dΠ(t;x

(1)
i )

dt
|
t=p(x

(2)
i )

=

dΠ(t;x
(1)
i )

dt
|
t=p(x

(1)
i )

= 0, which contracts to the optimality of p(x
(2)
i ).

Given any xi ∈ (K
β
, R), we have dΠ(t)

dt
|t↓xi

= Fe(xi − K
β
)(1 − β)U ′(0) > 0, which has two

implications. First, p(xi) > xi for all xi ∈ (K
β
, R). Second, dΠ(t)

dt
> 0 for all t ∈ [xi, R] if

xi < R is close enough to R, which in turn implies that p(xi) = R if xi < R is close enough

to R. The fact that p(xi) is increasing implies that there exists a unique threshold xB < R

such that p(xi) = R if and only if xi ≥ xB.

If U(·) is such that U ′(t)
U(t)−U(0)

goes to zero as t goes to infinity, then per (3.8) we have that

dΠ(t)
dt

is negative for all t ∈ [K
β
, R] when xi is small enough. In other words, there exists a

largest threshold xW such that p(xi) = max{xi,
K
β
} for all xi ≤ xW . The fact that p(xi) > xi
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for all xi ∈ (K
β
, R) implies that xW ≤ K

β
and hence p(xi) = K

β
for all xi ≤ xW . The fact that

p(xi) is increasing implies xW ≤ xR < R and that p(xi) = K
β

if and only if xi ≤ xW .

When xW < xi < xB, we have K
β

< p(xi) < R, which is implied by the existence and the

uniqueness of the thresholds xW and xB, and we have p(xi) > xi, which holds for xi > K
β

because we have proved that p(xi) > xi for all xi ∈ (K
β
, R) and holds for xW < xi ≤ K

β
(when

xW < K
β
) because p(xi) > K

β
≥ xi. Finally, that p(xi) strictly increases when xW < xi < xB

is implied by d2Π(t)
dxidt

> 0, which was proved earlier on.

3.6.2 Proof of Proposition 7

Consider any R(1) < R(2) and any t(1) < t(2) < R(1). For a given xi, when R = R(1) we

have Π(t(2)) − Π(t(1)) =
∫ t(2)

t(1)
dΠ(t)

dt
dt, which does not change as R(1) increases because dΠ(t)

dt

does not change with R per (3.8). This implies that the optimal bid-down-to levels when

R = R(1) and R(2), denoted by p(xi)|R=R(1) and p(xi)|R=R(2) , respectively, should be such that

either p(xi)|R=R(2) = p(xi)|R=R(1) or p(xi)|R=R(2) > R(1) > p(xi)|R=R(1) . Namely, the optimal

bid-down-to level increases in R.

3.6.3 Proof of Proposition 8

When U(t− xi) = t− xi and Fe ∼ U [0, 1], per (3.7) and (3.8), we have for t ∈ [K
β
, R]

Π(t) =

∫ R

t

(y − xi)dy + (t− K

β
)(1− β)(t− xi) + (R− xi)(1 +

K

β
−R),

if 1 +
K

β
≥ R,

=

∫ 1+K
β

t

(y − xi)dy + (t− K

β
)(1− β)(t− xi), if 1 +

K

β
< R and t ≤ 1 +

K

β
,

= (1− β)(t− xi), if 1 +
K

β
< R and t > 1 +

K

β
,
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and
dΠ(t)

dt
= βxi + (1− 2β)t− K(1− β)

β
,

if 1 +
K

β
≥ R, or if 1 +

K

β
< R and t ≤ 1 +

K

β
,

= 1− β, if 1 +
K

β
< R and t > 1 +

K

β
.

Let t∗(xi) ≡ βxi

2β−1
− (1−β)K

β(2β−1)
, that is, dΠ(t)

dt
|t=t∗(xi) = 0 if 1 + K

β
≥ R, or if 1 + K

β
< R and t ≤

1 + K
β
.

Cases with R ≤ 1 + K
β
. Note that Π(t) is convex in t when 0 < β < 1

2
, is linear in t when

β = 1
2
, and is concave in t when 1

2
< β < 1.

• When 0 < β ≤ 1
2
, the convexity of Π(t) implies that the optimal solution p(xi) equals

either t = max{xi,
K
β
} or t = R; this together with the fact that p(xi) > xi for all

xi ∈ (K
β
, R) (which was proved in the proof of Proposition 6) further imply that the

optimal solution p(xi) equals either t = K
β

or t = R. Note that Π(R) = (R − K
β
)(1 −

β)(R − xi) + (R − xi)(1 + K
β
− R) and Π(K

β
) =

∫ R
K
β
(y − xi)dy + (R − xi)(1 + K

β
− R).

It is easy to check that Π(R) > Π(K
β
) if and only if xi > K

2β2 − R
2β

+ R. Namely,

xW = xB = K
2β2 − R

2β
+ R.

• When 1
2

< β < 1, the concavity of Π(t) implies that p(xi) = max{K
β
, min{t∗(xi), R}}.

That is, p(xi) = K
β

if xi ≤ K
β

(because t∗(xi) ≤ K
β

when xi ≤ K
β
), p(xi) = R if

xi ≥ 2β−1
β

R+ (1−β)K
β2 (because t∗(xi) ≥ R when xi ≥ 2β−1

β
R+ (1−β)K

β2 ), and p(xi) = t∗(xi)

if K
β

< xi < 2β−1
β

R + (1−β)K
β2 . Namely, xW = K

β
and xB = 2β−1

β
R + (1−β)K

β2 .

Cases with R > 1 + K
β
.

• When 0 < β ≤ 1
2
, the convexity of Π(t) over t ∈ [K

β
, 1 + K

β
] and the fact that Π(t)

increases when t ∈ [1+ K
β
, R] together imply that Π(t) is quasiconvex, and hence imply

that the optimal solution p(xi) equals either t = max{xi,
K
β
} or t = R. Again, the fact

that p(xi) > xi for all xi ∈ (K
β
, R) (which was proved in the proof of Proposition 6)
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further imply that the optimal solution p(xi) equals either t = K
β

or t = R. It is easy

to check that Π(R) = (1− β)(R− xi) and Π(K
β
) = 1

2
+ K

β
− xi, and that Π(R) > Π(K

β
)

if and only if xi > K
2β2 + 1

2β
− R

β
+ R. Namely, xW = xB = K

2β2 + 1
2β
− R

β
+ R.

• When 1
2

< β < 1, the concavity of Π(t) over t ∈ [K
β
, 1 + K

β
] and the fact that Π(t)

increases when t ∈ [1 + K
β
, R] together imply that p(xi) equals either R or t̂(xi) ≡

max{K
β
, min{t∗(xi), 1 + K

β
}}. Note that Π(R) = (1 − β)(R − xi) and Π(t̂(xi)) =

∫ 1+K
β

t̂(xi)
(y− xi)dy + [t̂(xi)− K

β
](1− β)[t̂(xi)− xi]. Thus, for 2β−1

β
+ K

β
≤ xi < R, we have

t̂(xi) = 1 + K
β

and hence Π(t̂(xi)) = (1− β)[1 + K
β
− xi] < Π(R); for xi < K

β
, we have

t̂(xi) = K
β

and hence Π(xi) =
∫ 1+K

β
K
β

(y − xi)dy = 1
2

+ K
β
− xi, which is less than Π(R)

for xi small enough. Therefore, the continuity of Π(t̂(xi)) implies that there exists a

threshold x̂i < 2β−1
β

+ K
β

such that Π(x̂i) = Π(R) and Π(t̂(xi)) < Π(R) if and only if

xi < x̂i; namely, xB = x̂i. In particular, x̂i solves

∫ 1+K
β

t̂(x̂i)

(y − x̂i)dy + [t̂(x̂i)− K

β
](1− β)[t̂(x̂i)− x̂i] = Π(x̂i) = Π(R) = (1− β)(R− x̂i);

using simplification, we have for given K, β, and R, xB = x̂(K, β, R) be the xi ∈
(−∞, 2β−1

β
+ K

β
) solving the following equation:

0 =





(βxi−K)2

2(2β−1)
− βxi + K

β
+ 1

2
− (1− β)R , if K

β
< xi ≤ 2β−1

β
+ K

β
;

−βxi + K
β

+ 1
2
− (1− β)R , if xi ≤ K

β
.

Finally, if x̂(K, β,R) > K
β
, we have p(xi) = t̂(xi) for xi < x̂(K, β, R) (i.e., p(xi) = t∗(xi)

for K
β

< xi < x̂(K, β, R) and p(xi) = t∗(xi) for xi ≤ K
β
), which implies that xW = K

β
;

if x̂(K, β, R) ≤ K
β
, we have p(xi) = K

β
, which implies that xW = xB. To summarize,

xW = min{K
β
, xB}.
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3.6.4 Proof of Proposition 9

The probability that the incumbent wins the auction outright equals

1− Prob

[
xe +

K

β
≤ p(xi)

]
=

∫ R

l

max{1 +
K

β
− p(xi), 0}dxi.

It increases in K because 1 + K
β
− p(xi) increase in K per Proposition 8.

We then study the effect of β. The probability is in general not monotone in β since

1 + K
β
− p(xi) is general non-monotone in β. To prove the proposition, we first consider the

case with K = 0.

• When 0 < β ≤ 1
2
, Prob

[
xe + K

β
≤ p(xi)

]
equals (R−xB)min{R,1}

R−l
. It decreases in β

because xB increases in β. To see this, dxB

dβ
= R

2β2 (if R ≤ 1) or − 1
2β2 + R

β2 (if R > 1),

which is positive. Thus, the winning probability increases in β.

• When 1
2

< β < 1, R ≤ 1 and l < 0, Prob
[
xe + K

β
≤ p(xi)

]
equals R

2(R−l)
(R + R− xB),

which decreases in β because xB = (2 − 1
β
)R increases in β. Thus, the winning

probability increases in β.

• When 1
2

< β < 1, R ≤ 1 and 0 < l ≤ xB, Prob
[
xe + K

β
≤ p(xi)

]
equals [R

2
(R +

R− xB)− l2

2
β

2β−1
= R2

2β
− l2β

2(2β−1)
] 1
R−l

, which decreases in β, because its derivative with

respect to β equals [− R2

2β2 + l2

2(2β−1)2
] 1
R−l

, which is non-positive because l ≤ xB = 2β−1
β

R.

Thus, the winning probability increases in β.

• When 1
2

< β < 1, R ≤ 1 and l > xB, Prob
[
xe + K

β
≤ p(xi)

]
equals R. It is constant

as β changes.

• When 1
2

< β < 1, R > 1, xB ≤ 0, the winning probability equals max{xB − l, 0} 1
R−l

,

which increases in β because xB increases in β. To see that, per Proposition 8 we know

if xB ≤ 0 then xB = 1
2β
− R

β
+ R, with its first order derivative with respect to β equal

to R−0.5
β2 > 0.
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• When 1
2

< β < 1, R > 1, xB > 0 and l ≤ 0, the winning probability equals [(xB − l)−
(xB)2 β

2(2β−1)
] 1
R−l

, equal to [ 1
2β
− R

β
+ R− l] 1

R−l
per Proposition 8, which increases in β.

• When 1
2

< β < 1, R > 1, xB > 0 and 0 < l ≤ xB, the winning probability equals

[(xB − l)− (xB)2 β
2(2β−1)

− l
2
(1 + 1− βl

2β−1
)] 1

R−l
, equal to [ 1

2β
− R

β
+ R− 2l + βl2

2(2β−1)
] 1
R−l

(per Proposition 8), with the first order derivative with respect to β equal to [2R−1
2β2 −

l2

2(2β−1)2
] 1
R−l

, which is positive because l ≤ xB < 2β−1
β

per Proposition 8. Hence, the

probability increases in β.

• When 1
2

< β < 1, R > 1, xB > 0 and l > xB, the winning probability equals zero.

Thus, it must increase in β.

We next consider K approaches βR.

• When 0 < β ≤ 1
2
, since R ≤ 1 + K

β
we have xB = xW = K

2β2 − R
2β

+ R and

Prob
[
xe + K

β
≤ p(xi)

]
= (R− K

β
)(R−xB) 1

R−l
, which increases in β because d(K/β)

dβ
< 0

and dxB

dβ
= 1

β2 (
R
2
− K

β
) < 0 when K approaches βR. Thus, the winning probability

decreases in β.

• When 1
2

< β < 1, since R ≤ 1 + K
β

and l < K
β

we have Prob
[
xe + K

β
≤ p(xi)

]
=

(R − K
β
)2 1

2β
1

R−l
, which increases in β when K is close to βR, because its derivative

with respective β equals
R−K

β

β2 (K
β
− 1

2
(R− K

β
)) 1

R−l
, which is positive if K is close enough

to βR. Thus, the winning probability decreases in β as K approaches βR.

3.6.5 Proof of Proposition 10

We find it more convenient to characterize the optimal bidding strategy by studying the

equivalent dynamic bidding problem. Note that equation (3.5) minus equation (3.3) is given

by

sup
max{xi,

K
β
}≤t<p

∫ p

t

{β[U(y − xi)− U(0)]g(y|p)− (1− β)G(y|p)
∂U(y − xi)

∂y
}dy. (3.11)
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Given K, β, xi, and p, define

DF (y|p) , β[U(y − xi)− U(0)]g(y|p)− (1− β)G(y|p)
∂U(y − xi)

∂y
. (3.12)

Thus, for given Fe, K, β, and xi, the incumbent’s optimal dynamic bidding strategy at a

current calling price p is given in the following lemma.

Lemma 3 For given Fe, K, β, xi, and p, it is optimal for the incumbent to

• Drop out at the current calling price p, if
∫ p

t
DF (y|p)dy ≤ 0 for all t ∈ [max{xi,

K
β
}, p],

and to

• Stay in the auction, if
∫ p

t
DF (y|p)dy > 0 for some t ∈ [max{xi,

K
β
}, p].

We first study cases where 1 ≤ R ≤ 1 + K
β

and then study cases where R > 1 + K
β
.

Cases with 1 ≤ R ≤ 1 + K
β
. In these cases, g(y|p) = 1 and G(y|p) =

y−K
β

p−K
β

; applying

equation (3.12) with U(p− xi) = − 1
γ
e−γ(p−xi), we get

DF (y|p) =
βe−γ(y−xi)

γ(p− K
β
)
[eγ(y−xi) − 1− γ(y − K

β
)
1− β

β
]. (3.13)

Fixing K, β, γ, y, and p, it is easy to check that DF (y|p) is strictly decreasing in xi and its

sign is the same as that of s(y, xi) , eγ(y−xi) − 1 − γ(y − K
β
)1−β

β
. It is easy to check that

s(y, xi) is strictly decreasing in xi. Thus, fixing y, s(y, xi) (and hence DF (y|p)) is greater

than, or equal to, or less than 0, if and only if xi is less than, or equal to, or greater than

x(y) , y − 1
γ

ln[1 + γ(y − K
β
)1−β

β
], respectively. Furthermore, s(y, xi) is strictly convex in y,

and thus has at most two roots. We will let p̄(xi) and p̃(xi) denote the larger and smaller

roots, respectively, if they exist.

Cases with 1 ≤ R ≤ 1+ K
β

and 1
2
≤ β < 1. For these cases, we find the following about

the sign of DF (y|p).
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• If xi ≤ K
β
, then max{K

β
, xi} = K

β
and the interval of interest is y ∈ [K

β
, p]. Since one can

show that DF (K
β
|p) ≥ 0 and ∂

∂y
DF (y|p) is non-negative at y = K

β
, the strict concavity

of DF (y|p) in y implies that DF (y|p) > 0 for y ∈ (K
β
, p] (and hence it is optimal to

bid until the entrant drops out or the price reaches K
β
).

• If xi > K
β
, then max{K

β
, xi} = xi and the interval of interest is y ∈ [xi, p]. For a fixed

xi ≤ K
β
, s(y, xi) is convex in y and is negative at y = xi and goes to infinity as y goes

to infinity. Thus, p(xi) exists and is strictly greater than xi. In other words, DF (y|p)

is negative, zero, or positive, if and only if y ∈ [xi, p(xi)), y = p(xi), or y ∈ (p(xi), p],

respectively. This implies that, if xi ≥ x(p) then DF (y|p) ≤ 0 for y ∈ [K
β
, p] (and hence

it is optimal to drop out at p), if K
β

< xi < x(p) then DF (y|p) ≤ 0 for y ∈ [K
β
, p(xi)]

and DF (y|p) > 0 for y ∈ (p(xi), p] (and hence it is optimal to bid until the entrant

drops out or the price reaches p̄(xi)).

Because the auction starts at reserve price R, we can describe the incumbent’s strategy

by examining the case p = R. One can check that R > K
β

and 1
2
≤ β < 1 together imply

x̄(R) > K
β
. To summarize, when 1 ≤ R ≤ 1 + K

β
and 1

2
≤ β < 1 the incumbent’s strategy is

the following:

• If xi ≥ x(R), boycott the auction by dropping out immediately at R;

• Otherwise, if K
β

< xi < x(R), bid until the entrant either drops out or the price reaches

p(xi);

• Otherwise, bid until the entrant drops out.

Cases with 1 ≤ R ≤ 1 + K
β

and 0 < β < 1
2
. For these cases, the sign of DF (y|p) over

the whole interval y ∈ [K
β
, p] falls into one of the following five patterns, illustrated by Figure

3.4, depending on the value of xi. This is because, for fixed xi, s(y, xi) is convex in y.

• Pattern 1: DF (y|p) ≤ 0 for all y ∈ [K
β
, p]. With pattern 1, it is optimal to drop out at

p.
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Figure 3.4: Five patterns of DF (y|p).

• Pattern 2: DF (y|p) ≤ 0 for all y ∈ [K
β
, p(xi)] and DF (y|p) > 0 for all y ∈ (p(xi), p].

With pattern 2, it is optimal to bid down to p(xi).

• Pattern 3: DF (y|p) > 0 for all y ∈ [K
β
, p̃(xi)) and DF (y|p) ≤ 0 for all y ∈ [p̃(xi), p].

With pattern 3, it is optimal to bid until the entrant drops out if
∫ p

K
β

DF (y|p)dy > 0,

or otherwise, it is optimal to drop out at p.

• Pattern 4: DF (y|p) > 0 for all y ∈ [K
β
, p̃(xi)) ∪ (p(xi), p] and DF (y|p) < 0 for all

y ∈ (p̃(xi), p(xi)). With pattern 4, it is optimal to bid until the entrant drops out if
∫ p(xi)

K
β

DF (y|p(xi))dy > 0, or otherwise, it is optimal to bid down to p(xi).

• Pattern 5: DF (y|p) ≥ 0 for all y ∈ (K
β
, p). With pattern 5, it is optimal to bid until

the entrant drops out.

We now simplify the incumbent’s optimal bidding strategy when 1 ≤ R ≤ 1 + K
β

and

0 < β < 1
2
. Let x(p) , p − 1

γ
ln[

e
γ(p−K

β
)−1−γ(1−β)(p−K

β
)

γ(pβ−K)
]. It is easy to check that x(p) is the

unique xi such that
∫ p

K
β

DF (y|p)dy = 0. In other words,
∫ p

K
β

DF (y|p)dy is positive, zero, or

negative, if and only if xi is less than, or equal to, or greater than x(p), respectively.
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Case x(R) ≥ x(R). The pattern of the sign of DF (y|p) must be pattern 3 when xi =

x(R). This is because s(R, x(R)) ≤ s(R, x(R)) = 0 (given that s(y, xi) is strictly decreasing

in xi) and s(K
β
, x(R)) > 0 (given that

∫ R
K
β

DF (y|R)dy = 0 when xi = x(R)). Thus, if

xi ≥ x(R) (and hence
∫ R

K
β

DF (y|R)dy ≤ 0 ) the pattern of the sign of DF (y|p) must be

pattern 3 or pattern 1; this is because DF (y|R) is strictly decreasing in xi with y and R

fixed. With either pattern 3 or pattern 1, it is optimal to drop out at R, given that Given

that
∫ R

K
β

DF (y|R)dy ≤ 0. Otherwise, if xi < x(R) (and hence
∫ R

K
β

DF (y|R)dy > 0 ) the

pattern of the sign of DF (y|p) must be pattern 3, or pattern 4, or pattern 5; again this is

because DF (y|R) is strictly decreasing in xi with y and R fixed. With either pattern 3, or

pattern 4, or pattern 5, it is optimal to bid until the entrant drops out.

Case x(R) < x(R). The pattern of the sign of DF (y|p) must be pattern 2 or 4 when

xi = x(R). This is because s(R, x(R)) > s(R, x(R)) = 0 (given that s(y, xi) is strictly

decreasing in xi) and
∫ R

K
β

DF (y|R)dy = 0 when xi = x(R). With either pattern 2 or 4, there

exists p(x(R)) ∈ (K
β
, R) such that when xi = x(R) we have DF (y|R) = 0 for y = p(x(R)) and

DF (y|R) > 0 for all y ∈ (p(x(R)), R]. Given that
∫ p(x(R))

K
β

DF (y|R)dy <
∫ R

K
β

DF (y|R)dy = 0,

there must exist a unique xi < x(R) such that
∫ p(xi)

K
β

DF (y|R)dy = 0; this is because DF (y|R)

is strictly decreasing in xi with y and R fixed and DF (y|R) goes to infinity for all y as xi

goes to negative infinity. Denote such unique xi by x̃. Thus, when xi ≥ x(R) (and hence

xi > x(R), i.e.,
∫ R

K
β

DF (y|R)dy < 0) the pattern of the sign of DF (y|p) must be pattern 3 or

pattern 1, which implies that it is optimal to drop out at R; when x̃ < xi < x(R) (and hence
∫ p(xi)

K
β

DF (y|p(xi))dy < 0) the pattern of the sign of DF (y|p) must be pattern 2 or pattern

4, which implies that it is optimal to bid down to p(xi); when xi ≤ x̃ the pattern of the sign

of DF (y|p) must be pattern 4 or pattern 5, which implies that it is optimal to bid until the

entrant drops out.

Cases with R > 1+K
β
. In these cases, g(y|p) = 0, G(y|p) = 1 when y > 1+K

β
and g(y|p) = 1

and G(y|p) = y− K
β

when y ≤ 1+ K
β
; applying equation (3.12) with U(p−xi) = − 1

γ
e−γ(p−xi),

we get
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DF (y|p) =





−(1− β)e−γ(y−xi) , if y > 1 + K
β
;

βe−γ(y−xi)

γ
[eγ(y−xi) − 1− γ(y − K

β
)1−β

β
] , if y ≤ 1 + K

β
.

Let p̂(xi) be the bid-down-to level when R = 1 + K
β
. The incumbent chooses to drop at

R, if
∫ R

p̂(xi)
DF (y|R)dy ≤ 0, or to bid down to p̂(xi), otherwise. Given that p̂(xi) increases

in xi, DF (y|R) strictly decreases in xi, and
∫ R

p̂(xi)
DF (y|R)dy goes to infinity as xi goes to

negative infinity (since p̂(xi) goes to negative infinity and DF (y|R) > 0 when xi is small

enough),
∫ R

p̂(xi)
DF (y|R)dy strictly decreases in xi and hence there must exist an x̂(R) such

that
∫ R

p̂(xi)
DF (y|R)dy ≤ 0 if and only if xi ≥ x̂(R). Therefore, when R > 1 + K

β
the

incumbent’s strategy is the following:

• If xi ≥ xB, drop out immediately at R, i.e., boycott the bidding process;

• Otherwise, if xW < xi < xB, bid down to p(xi);

• Otherwise, bid until the entrant drops out.

The thresholds xB = min{xB(1 + K
β
), x̂(R)} and xW = min{xW (1 + K

β
), x̂(R)}, where

xB(1 + K
β
) and xW (1 + K

β
) correspond to the two thresholds when R = 1 + K

β
.

3.6.6 Proof of Proposition 11

For any 0 < β < 1, the expected total cost under pre-qualification linearly increases in

qualification cost K (per (3.1)), whereas the expected total cost under post-qualification is

bounded by R from above (per (3.2)). Thus, post-qualification yields a lower expected total

cost when K is large enough; namely, it must exist a K ≥ 0 such that the buyer prefers

post-qualification whenever K > K.
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Chapter 4

Bargaining Power and Supply Base Diversification

4.1. Introduction

It is common for buyers (procurement managers) responsible for procuring an item to

identify a supply base, a group of qualified suppliers that are capable of producing the item. A

supply base is a well-known tool for managing risks. For specialized items where availability is

the main objective, buyers can place orders with multiple suppliers to manage non-delivery

risks (e.g., Anupindi and Akella 1993). But, as is our focus in this paper, a supply base

can also be a crucial strategic tool for purchasing commodity-type items where cost, not

availability, is the central issue.

Buyers typically do not know the true costs of suppliers, who possess private information

about their cost drivers (inventory level, capacity utilization, financial status, etc.). To find

a low price, buyers increasingly employ procurement auctions aimed at price discovery (Jap

2003). As the practitioner survey Beall et al. (2003) page 49 points out, “If a qualified supply

base is identified, and the market for a particular commodity/purchase family group changes

rapidly, [procurement auctions] are an excellent tool to award business for short duration

and re-auction regularly. For example, one company interviewed purchases highly engineered

printed circuit boards quarterly through [procurement auctions].” In a procurement auction,

competition between suppliers can come down to cents or fractions of a cent, yet these small

differences can translate into millions of dollars of savings to the buyer given large volumes

— a high tech firm we interacted with runs quarterly auctions in which commodity (cables,
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connectors, etc.) suppliers compete on unit prices in increments of one tenth of a cent.

When margins are razor-thin, factors such as transportation costs, taxes and commissions

become non-negligible (Pederson 2004). Buyers are increasingly aware of the need to make

sourcing decisions based on total cost, which from the buyer’s perspective measures the total

cost of procuring from the supplier. In addition to the supplier’s price, total cost includes

non-price costs such as duties, transportation costs, shipping insurance and commissions

(Ariba 2005). In this paper we introduce the idea of strategic supply base design to mitigate

total procurement cost shocks, and examine how the buyer’s optimal supply base design

is affected by the buyer’s bargaining clout. We now motivate and introduce both these

concepts.

Supply base design to mitigate cost shocks. The “non-price costs” associated with

a supplier can be closely related to the supplier’s geographic region, and thus subject to cost

shocks affecting that region. For example, shipping costs associated with procuring from a

supplier are largely affected by local logistics markets and regulations within the supplier’s

region, and can be dramatically increased by labor strikes or regulation changes. In February

2007, the CN Railway strike disabled almost three quarters of Canada’s rail capacity, forcing

companies such as Ford to look for much more expensive alternatives like truck freight for

shipments from its Canadian suppliers. Seeking heightened security for the Olympics in

the summer of 2008, the Chinese government forbade a wide range of hazardous materials

at six major ports; affected buyers incurred significant rerouting costs. Other examples of

regional cost shocks include ocean shipping insurance rates (which are based on geopolitical

and geosecurity elements along shipping routes1).

Ideally, a buyer could respond to regional cost shocks by instantly augmenting her supply

base with new suppliers from unaffected regions. However, for some buyers this can be

impractical (for all but the most catastrophic scenarios), because finding and qualifying a

1A recent example is the thousand-percent increase in shipping insurance premiums for Asia to Europe
ocean transport, as freighters funneling through the Suez canal face a gauntlet of pirates and kidnappers
based in an increasingly destabilized Somalia (Costello 2008).
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new supplier is usually time-consuming and costly. The process of vetting suppliers, called

supplier qualification screening, typically involves reference checks, financial audits, site visits

to supplier facilities abroad, approval and buy-in from the buyers’ internal customers, etc;

see Chapter 2 of this dissertation. At a Fortune 100 manufacturer we interacted with it takes

an average of 8 to 26 weeks to find and qualify a new supplier — even for commodity parts.

Instead of frequently finding and qualifying totally new suppliers, buyers, including the

large manufacturer we interacted with, build their supply base as a long-term strategic

decision, and then frequently auction off short-term supply contracts among them to find

the current lowest-total-cost supplier. For such buyers, therefore, an important strategic

decision arises when forming their supply base: Facing potential regional cost shocks, should

the buyer’s supply base include similar suppliers (selected from the same region) or diversified

suppliers (selected from different regions)?

Intuitively, geographically diversifying the supply base, i.e., selecting suppliers from dif-

ferent regions, can mitigate regional cost shocks. For example, once a prolonged labor strike

at the ports in region A drives up the cost of transporting goods from the supplier in re-

gion A, a buyer who sources a large and expensive-to-transport component can avoid a high

transportation cost if she has a supplier in an unaffected region B. However, a buyer seeking

to minimize total procurement cost needs to take into account the impact of diversifying on

her contract payment: Will the supplier in region B strategically mark up his price to make

a windfall profit based on his cost advantage over the supplier in region A? If so, how should

the buyer design her supply base in the first place to manage both regional-costs risks and

supplier-windfall-profit-taking risks?

Bargaining power and supply base design decision. In our study the buyer’s

contract payment is determined through a competitive bidding process (i.e., auction). Thus,

it is crucial to understand how the buyer’s ability to design auctions (i.e., choose auction

format and rules) should be taken into account when she designs her supply base. We term

such ability the buyer’s bargaining power. For forward auctions, Bulow and Klemperer (1996)
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point out that an auctioneer with no bargaining power can only run an English auction with

no reserve price while an auctioneer with full bargaining power can utilize an optimal auction

mechanism.

Similarly, in this paper, at one extreme we model a buyer with no bargaining power —

such a buyer cannot make credible take-it-or-leave-it offers and must solely rely on supplier

competition for price concessions, utilizing a simple reverse English auction with no reserve

price. In such an auction, the lowest-total-cost supplier charges the buyer a price that is

set according to second-lowest supplier’s total-cost, creating the risk of severe windfall-profit

taking. Returning to our example two paragraphs above, the supplier in region B could take

windfall profits and consequently the buyer’s total cost could be the total cost of the supplier

in region A, which includes A’s regional cost shock! Thus, the imperative to diversify the

supply base (i.e., choose suppliers from different regions) is mitigated by the need for cost

parity among suppliers. We find that the optimal amount of diversification depends on the

total number of suppliers and the likelihood of regional cost shocks.

At the other extreme, we model a buyer having full bargaining power, who thus can design

an optimal procurement mechanism within which suppliers compete for the buyer’s business

(e.g., could promise to bias against the supplier in B who has regional cost advantage).

Between the two extremes there can be intermediate cases, where for example the buyer is

unable to use an optimal mechanism but can commit to using a reserve price in a reverse

English auction. We find that supplier cost parity is less crucial for buyers with more

bargaining power — such buyers are better served by a diversified supply base — and the

optimal supply-base-design strategy can depend on the distributions of supplier costs and

regional cost shocks.

The next section reviews related literature, and §4.3 introduces the model and assump-

tions. Section 4.4 analyzes the buyer’s optimal supply-base-design problem and focuses on

the two cases: one in which the buyer has full bargaining power and uses the optimal mech-

anism, and the other in which the buyer has no bargaining power and uses a reverse English
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auction without reserve price. Section 4.5.1 extends the results to the cases with codepen-

dent regional costs, §4.5.2 extends the analysis to the cases with asymmetric regions, and

§4.5.3 studies the case in which the buyer has intermediate bargaining power and uses a

reserve price in reverse English auctions. We provide numerical illustrations of our results

in §4.6 and conclude in §4.7. All proofs are provided in the electronic companion.

4.2. Literature Review

Our paper analytically studies how buyers should select suppliers to mitigate regional cost

risks, and is thus related to the supply risk management literature. However, our paper differs

from the majority of the literature in two main aspects. First, we focus on supply risks that

can be modeled as “cost shocks,” while the existing literature mainly focuses on catastrophic

“supply shocks” that cause supply shortages. Such “supply shocks,” more commonly referred

to as supply disruptions, include natural disasters (fire, hurricane, earthquake, etc.), supplier

bankruptcy, etc. Researchers have studied various mitigation and contingency strategies to

manage supply disruption risks; readers are referred to Tomlin (2006), which categorizes

these strategies as stockpiling, multi-sourcing, using backup options, managing demand, and

others. Among these categories, multi-sourcing and using backup options are related to

supply base design. Studies on multi-sourcing to mitigate supply disruptions typically focus

on buyers’ inventory management decisions (e.g., determining the optimal ordering quantity

and split of quantities among suppliers) and model the impact of disruptions by various

random yield models. Recent examples include Dada et al. (2007), Federgruen and Yang

(2007, 2008), etc.; readers are referred to Tomlin (2006), which provides a detailed survey

of early work of this stream. For work including backup options in the supply base, see, for

example, Yang et al. (2008) and references therein.

Second, this paper studies price escalation risks (e.g., windfall-profit taking by suppliers),

while the majority of supply risk management literature presumes exogenous contract prices

(or unit procurement costs) and ignores suppliers’ strategic pricing behavior. One exception

is Babich et al. (2007), which endogenizes suppliers’ pricing decisions in a multi-sourcing
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problem where a buyer allocates ordering quantities among suppliers with correlated default

risks. They assume that suppliers have full information of competitors’ costs, and show how

suppliers’ pricing decisions can be affected by their default risk correlations. In particular,

they find that the buyer prefers suppliers with positively correlated default risks despite the

loss of diversification benefits, because default risk correlation increases supplier competition.

In our paper, which studies the supply base design problem in the presence of suppliers’ re-

gional cost risks, we model supplier competition via procurement auctions in which suppliers

possess private cost information, and we show how supplier competition can be affected by

correlations across suppliers’ cost shocks. We find that the buyer’s bargaining power dictates

her preference for the supply base design, namely, a buyer with stronger bargaining power

prefers a more diversified supply base, which effects less correlation across suppliers’ cost

shocks.

The term “bargaining power” is probably one of the most widely used but vaguely defined

concepts in the literature of bargaining models. In the literature of bargaining games with

complete information, the asymmetric Nash bargaining model (Roth 1979) “captures some

imprecisely defined ‘bargaining power’ ” (Binmore et al. 1986) by including weighting scalars

in the calculation of utility products. However, the literature on bargaining games with

incomplete information focuses on analyzing bargaining outcomes given different bargaining

mechanisms (see Ausubel et al. (2002) for a detailed survey), without explicitly defining

players’ “bargaining power.” In the present paper, we interpret the term “bargaining power”

as the buyer’s ability to impose an auction mechanism that she favors, an interpretation that

can be traced to the prominent work of Bulow and Klemeperer (1996). In other words, we

use the term “bargaining power” as a way to rank the auction mechanisms that we study in

this paper.

Extensive work has examined procurement cost reduction via supply base competition.

Elmaghraby (2000) provides a comprehensive survey of early work on competitive sourcing

strategies including auctions; more recently, Grey et al. (2005) surveys the literature on e-
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marketplaces in relationship-based supply chains, and Elmaghraby (2007) surveys industry

practices in designing and running auctions for e-sourcing events. Our paper considers a

buyer who finds the lowest-price provider by auctioning off short-term supply contracts. In

supply chain settings, Chen (2007) studies buyers’ auctions of supply contracts, and Chen and

Vulcano (2008) studies a supplier’s auction to sell capacity and compares first- with second-

price auction formats. Methodologically, our paper is related to the auction and mechanism

design literature; readers are referred to the books by Krishna (2002) and Milgrom (2004),

which provide excellent treatments and detailed references on auction theory.

4.3. Model and Preliminaries

4.3.1 Model

We study a stylized model in which a risk-neutral buyer selects a cohort of N qualified

suppliers to form a supply base for a component. We allow N to be any integer no less than

two; however, in practice it is not rare that a buyer forms a supply base for a component

with two suppliers, especially when the buyer needs to manage procurement of many different

kinds of components.2 In period t = 0, the buyer designs the supply base. For simplicity, we

assume that designing supply base is a one-time decision and no suppliers are removed from

or added to the supply base after the establishment of the supply base. This models the

cases in which frequently finding and qualifying new suppliers are not practical due to costly

and time-consuming supplier qualification screening processes. To focus on the supply base

diversification decision, we assume that N is exogenously given. Suppliers can be selected

from different geographic regions. The buyer’s decision variables are the number of regions

to select suppliers from, R, and the number of suppliers to select from each region, denoted

2For such a buyer, having many suppliers for each component would result in a great number of suppliers
overall. Due to the burden of supplier qualification processes — not only on the purchasing agents but also
on internal customers such as engineering — it can be difficult to have a huge total number of suppliers. For
instance, for one of the firms we interacted with, it was common to have just two suppliers for a component
since this was the minimum number of suppliers required by company policy. As the buyer put it to us,
with two suppliers, “the monkey was off the back of the internal customer (engineering).” Basically, the
engineering department viewed the need to qualify multiple suppliers as an unwelcome responsibility, and
consequently was reluctant to qualify more than the minimum (two).
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by n1, n2, . . . , nR for region 1, region 2 . . ., and region R, respectively, where
∑R

r=1 nr = N .

We assume that there are at least N symmetric regions available and within each region up

to N suppliers can be found. (We extend our results to the cases with asymmetric regions

in §4.5.2. The analysis changes in a straightforward way if limited number of regions are

available; see our discussion in §4.7.) Thus, the number of regions R can be any integer from

1 to N ; in particular, R = 1 means selecting all suppliers from only one region, which we

call the pooling strategy, and R = N means selecting each supplier from a different region,

which we call the fully diversifying strategy.

After establishing her supply base (finding and pre-qualifying the suppliers) in period

t = 0, in each of the following periods t = 1, . . . ,∞ the buyer runs an auction to award

an indivisible short-term contract to one of the suppliers in the supply base. This setup

is most appropriate when the buyer procures commodity parts from suppliers, who do not

fully rely on the buyer’s contract to keep afloat. To keep the analysis focused and tractable,

we assume that the buyer does not store inventory and does not have in-house production,

hence she must contract with one supplier in every period. This setup could model, for

example, a buyer who produces high tech, short life-cycle products, relies on suppliers for

key components, and holds quarterly supply auctions. When analyzing auction outcomes

we assume that the suppliers are risk-neutral and fully rational players following a Bayesian

Nash bidding equilibrium, as is standard in the auction literature.

Two types of costs are associated with each supplier i = 1, . . . , N in each period t.

The first type of cost is an idiosyncratic production cost, xt
i ∈ [0, 1], which as typical in

auction models is assumed to be independently and identically distributed across suppliers

and periods according to a commonly known distribution F . Cost xt
i represents supplier

i’s firm-specific and privately known cost of fulfilling the contract offered in period t, per

supplier i’s inventory level, capacity utilization, working capital position, debt status, etc.

For simplicity we assume F has a positive and continuous density f and is stationary over

time (this assumption can be relaxed; see our discussion in §4.7). As is standard in the
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auction theoretic literature, we also assume that x + F (x)
f(x)

is increasing in x — a technical

assumption that ensures pure strategy implementation of the optimal mechanism described

later in this section, which is satisfied, for example, if f is logconcave, including normal,

logistic, and exponential distributions (Bagnoli and Bergstrom 2005).

The second type of cost is a region-specific cost, yt
r, which represents (from the buyer’s

perspective) common costs affecting all suppliers in region r in period t. In our analysis,

we assume such regional costs are not related to suppliers’ production costs but are the

additional procurement expenses the buyer incurs when doing business with a supplier in

the region, for instance, logistics costs. (Our results easily extend to cases where regional

factors also influence suppliers’ production costs; see our discussion in §4.7.) We assume that

yt
r’s are commonly observable at the outset of period t and are independently and identically

distributed across regions and periods according to a commonly known distribution G with

finite mean (i.e., E[yr
t ] < ∞). We discuss how our results extend to the cases where regional

costs are possibly codependent in §4.5.1, and study the cases where regions can be asymmetric

in terms of distributions of supplier costs and regional costs in §4.5.2. We let at
i denote the

regional cost of supplier i in period t, that is, at
i = yt

r if supplier i is located in region r. For

simplicity we assume G is stationary over time, although this too can be relaxed (see §4.7).

The buyer seeks to minimize her expected long-term total procurement cost. Let xt def
=

(xt
1, x

t
2..., x

t
N) denote the vector of realized supplier production costs in period t; let yt def

=

(yt
1, y

t
2, ..., y

t
N) denote the vector of realized regional costs in period t; let at def

= (at
1, a

t
2, ..., a

t
N)

denote the vector of realized regional costs of suppliers in period t. Thus, the supply base

design problem can be formulated as follows:

min
n1,...,nR

E
(xt,yt)

[ ∞∑
t=1

βtπMech(xt; at)

]
=

β

1− β
E

(x1,y1)

[
πMech(x1; a1)

]

s.t. R ∈ {1, ..., N}, ni ∈ N ∀i ∈ {1, ..., R}, and n1 + ... + nR = N ,

where β is a discount factor and πMech(x, a) is the buyer’s period-t total procurement cost
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given the auction mechanism Mech. Since xt
i’s and at

i’s are assumed to be identically dis-

tributed from period to period, the buyer’s objective is simplified to minimizing the expected

one-period total procurement cost. Therefore, we omit the superscript t for notational con-

venience in the rest of this paper. In §4.4, we focus on two auction mechanisms — the

optimal mechanism (denoted by Mech = OPT ) and the reverse English auction without

reserve price (denoted by Mech = RE), representing the cases in which the buyer has full

bargaining power and zero bargaining power, respectively (Bulow and Klemperer 1996). In

§4.5.3, we further examine our main result (the effect of bargaining power on the buyer’s op-

timal supply base design strategy) by studying the case in which the buyer has intermediate

bargaining power and can impose a reserve price in a reverse English auction (denoted by

Mech = RER). We describe these three auction mechanisms in §4.3.2.

The buyer’s supply base design strategy affects her expected total procurement cost

because different strategies yield different at given a realized yt. For example, in a four-

supplier case (N = 4), if the buyer selects all four suppliers from region 1, (i.e., pooling),

the suppliers’ regional costs are a = (y1, y1, y1, y1), while if the buyer selects two suppliers

from regions 1 and 2 each, the suppliers’ regional costs are a = (y1, y1, y2, y2). The pooling

strategy enables the buyer “win big” (i.e. secure a low regional cost no matter which supplier

wins the contract) if region 1 happens to have a low regional cost, but it is clearly a very

risky strategy — the buyer would have to “lose big” (i.e. suffer a high regional cost no

matter which supplier wins the contract) if a large cost shock hits region 1. In contrast,

a diversification strategy, say the two-region strategy, engenders regional cost disparities

among suppliers and hence increases the likelihood for the buyer to access at least some

suppliers from low-cost regions. But is this more temperate, diversified approach better

than potentially winning big with a pooling strategy? As yet the buyer’s preference for or

against diversification is unclear, mainly because the buyer’s contract price is determined

through supplier competition (an auction), which would obviously be affected by the cost

disparities introduced by diversification strategies. Thus, the buyer’s optimal supply base
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design strategy would reasonably depend on the number of suppliers N , the cost distributions

F and G, and the auction mechanism. In this paper, we characterize the buyer’s optimal

supply base design strategy and describe when and if her optimal strategy depends on her

ability to choose an auction mechanism (per her bargaining power). To this end, we next

formally describe the auction mechanisms we will examine.

4.3.2 Auction Mechanisms

Optimal mechanism (OPT). When the buyer has full bargaining power, she can offer

suppliers a join-or-leave-it mechanism such that all suppliers will participate and meanwhile

the buyer’s expected total procurement cost is minimized. We refer to such a mechanism as

the optimal mechanism (OPT). Let ψ(xi)
def
= xi + F (xi)

f(xi)
, which is commonly referred to as

supplier i’s virtual cost in the mechanism design literature, and let ψ(xi)+ai denote supplier

i’s adjusted virtual cost, that is, supplier i’s virtual cost adjusted by the additive regional

cost ai. In equilibrium, the optimal mechanism awards the contract to supplier j having the

lowest adjusted virtual cost, i.e., j = arg min
i=1...N

{ψ(xi) + ai}, breaking ties evenly, and pays the

contract winner min{ψ−1[ψ(xj1)+aj1−aj], 1}, where j1 = arg min
i=1...N, i6=j

{ψ(xi)+ai} is the losing

supplier with the lowest adjusted virtual cost. The payment is truncated from above by an

optimal reserve price of 1. Because the buyer must contract with a supplier, if the buyer uses

a reserve price, it is always optimal to set it at the worst possible supplier cost type, i.e., at

1. The optimal awarding and payment rules can be derived by straightforward adaptation

of Myerson (1981) (Rezende 2009 also points this out). To implement this optimal auction,

we now propose a modified reverse clock auction, in which bidding proceeds as follows. The

auction begins at calling price ψ(1)+ max
i=1...N

{ai}, and continuously drops. Each bidder signals

their willingness to stay in the auction or drop out, and the auction ends when at most one

bidder remains in the auction. Let p be the calling price when the auction ends. The last

bidder remaining in the auction, say bidder j, wins and is paid min{ψ−1(p− aj), 1}; ties are

broken evenly.

Proposition 12 The optimal mechanism can be implemented by the modified reverse clock
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auction described above. Furthermore, in such an auction bidders have a dominant strategy

of staying in the auction until the calling price reaches their true adjusted virtual cost.

Reverse English auction without/with reserve (RE/RER). In the case where the

buyer does not have any bargaining power, she can only demand price concessions on the

basis of competing offers from suppliers and cannot credibly impose a reserve price. Thus,

the contract award and payment decisions can be modeled as outcomes of a reverse English

total-cost auction without a reserve price (RE). In such an auction, a supplier’s regional

cost is added to his price bid to yield a total-cost bid. For instance, a supplier with a

regional cost of $8,000 who bids $100,000 for the contract has a total-cost bid of $108,000.

During the auction, suppliers can see the current lowest total-cost bid, and can respond by

lowering their own price bid if they are not the current lowest total-cost bidder. In such an

auction, it is a weakly dominant strategy for a supplier to bid down to his true total cost

xi +ai (although he may not have to); see, for example, Maskin and Riley (2000). Thus, the

auction ends when the second-lowest total-cost supplier drops out of the auction, and the

lowest total-cost supplier wins the contract and is paid the second-lowest total cost minus

the winner’s regional cost. We also study cases where the buyer has some bargaining power

and can impose the optimal reserve price of 1 in a reverse English auction (RER). In such a

case, it remains optimal for bidders to bid down to their true costs before dropping out.

Under the three mechanisms, the buyer’s expected total procurement cost can be written

as expectations of order statistics as follows:

E
(x,y)

[
πOPT (x,a)

]
= E

(x,y)

[
min

i=1,...,N
{ψ(xi) + ai}

]
; (4.1a)

E
(x,y)

[
πRE(x,a)

]
= E

(x,y)

[
second min

i=1,...,N
{xi + ai}

]
; (4.1b)

E
(x,y)

[
πRER(x,a)

]
= E

(x,y)

[
second min

i=1,...,N
{xi + ai, 1 + ai}

]
, (4.1c)
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where “second min{·}” denotes the second-lowest value in the set. Throughout the paper,

let Xk:N and Yk:N denote the kth-lowest order statistic out of N independent and identical

random draws from distributions F and G, respectively, let Xk:N and Y k:N denote their

expectations, respectively, let I{A} denote the indicator function of event A, and let ∨ and

∧ denote the componentwise maximum and minimum operators, respectively.

4.4. Analysis and Results

To evaluate the buyer’s expected total procurement cost under different diversification

strategies, we need to compute the expectation of asymmetrically distributed random vari-

ables as shown by equations (4.1). However, this would be technically intractable mainly

because closed-form expressions for expectations of order statistics are generally restricted

to identically and independently distributed random variables following a handful of dis-

tributions such as power-function family distributions and exponential distribution. Our

problem is even more challenging in that the expected total procurement cost, first, takes

ex ante expectation over x given realized a, involving order statistics of random variables

from asymmetric distributions, and then, it takes ex ante expectation over a, which involves

elements that can exhibit various correlation depending on the supply base design strategy.

Thus, in order to have a hope of tackling the challenging problem of optimal supply base

design, we need to exploit whatever structure can be found in the problem. We accomplish

this by undertaking an iterative analysis of the buyer’s diversification tradeoff, introduced

next.

4.4.1 Diversification Tradeoff

Suppose the buyer compares an R-region diversification strategy (n̂1, n̂2, . . . , n̂R) with the

(R + 1)-region strategy (n̂1, n̂2, . . . , n̂R−1, ñR, ñR+1) such that n̂R = ñR + ñR+1. Let â be the

vector of suppliers’ regional costs under the R-region strategy and let ã denote the vector

of suppliers’ regional costs under the (R + 1)-region strategy. Given that all suppliers have

independent and identical cost distributions, the difference between the two strategies comes
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entirely from the suppliers’ regional costs â and ã. We use a sample-path analysis as follows.

On a sample path with given regional costs y, the suppliers’ regional costs â and ã can only

differ from each other in the last ñR elements. In particular, when region R experiences a

larger cost shock than region (R + 1) does, i.e., yR > yR+1, switching to the (R + 1)-region

strategy would have saved the buyer money, resulting in a diversifying upside. Conversely,

when region R experiences a smaller cost shock than region (R + 1) does, i.e., yR < yR+1,

switching to the (R + 1)-region strategy would have resulted in an expected disbenefit for

the buyer, the diversifying downside. To facilitate expressing suppliers’ regional costs under

these two strategies, we let

ahh def
= (a1, . . . , aN−nR

, yR ∨ yR+1, . . . , yR ∨ yR+1︸ ︷︷ ︸
ñR elements

, yR ∨ yR+1, . . . , yR ∨ yR+1︸ ︷︷ ︸
ñR+1 elements

),

ahl def
= (a1, . . . , aN−nR

, yR ∨ yR+1, . . . , yR ∨ yR+1︸ ︷︷ ︸
ñR elements

, yR ∧ yR+1, . . . , yR ∧ yR+1︸ ︷︷ ︸
ñR+1 elements

),

alh def
= (a1, . . . , aN−nR

, yR ∧ yR+1, . . . , yR ∧ yR+1︸ ︷︷ ︸
ñR elements

, yR ∨ yR+1, . . . , yR ∨ yR+1︸ ︷︷ ︸
ñR+1 elements

), and

all def
= (a1, . . . , aN−nR

, yR ∧ yR+1, . . . , yR ∧ yR+1︸ ︷︷ ︸
ñR elements

, yR ∧ yR+1, . . . , yR ∧ yR+1︸ ︷︷ ︸
ñR+1 elements

).

In other words, ahh denotes the vector â when yR ≥ yR+1, ahl denotes the vector ã when

yR ≥ yR+1, all denotes the vector â when yR < yR+1, and alh denotes the vector ã when

yR < yR+1. Thus, for a given Mech and realized (x,y) we can write

diversifying upside
def
=

[
πMech(x, â)− πMech(x, ã)

]
I(yR ≥ yR+1)

=
[
πMech(x, ahh)− πMech(x,ahl)

]
I(yR ≥ yR+1), and

diversifying downside
def
=

[
πMech(x, ã)− πMech(x, â)

]
I(yR < yR+1)

=
[
πMech(x, alh)− πMech(x,all)

]
I(yR ≥ yR+1).
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When regions R and R + 1 are symmetric, we have

expected diversification upside =
1

2
E

(x,y)

[
πMech(x,ahh)− πMech(x,ahl)

]
, and

expected diversification downside =
1

2
E

(x,y)

[
πMech(x,alh)− πMech(x,all)

]
.

Definition 1 In comparing the R-region strategy with the (R + 1)-region strategy, given the

auction mechanism Mech and the realized costs (x,y), we call

πMech(x, ahh)− πMech(x, ahl)− πMech(x,alh) + πMech(x,all)

the diversification tradeoff of a buyer considering switching from the R-region strategy to the

(R + 1)-region strategy.

Apparently, the buyer prefers the (R + 1)-region strategy if the expected diversification

tradeoff is positive; she prefers the R-region strategy, otherwise. In general, however, the

buyer’s preference is not trivial because the diversification tradeoff on a sample path can be

positive or negative, depending on (x,y), and hence the buyer’s preference between a more

and a less diversified supply base depends on the supplier production cost distribution F ,

the regional cost distribution G, and the auction mechanism.

However, noticing that ahh = ahl∨alh and all = ahl∧alh, we can prove that the diver-

sification tradeoff is always (i.e., regardless of the realized costs x or y) non-positive/non-

negative when the buyer’s per-period cost function πMech(x,a) is submodular/supermodular

in a for all x, per the definitions of submodular and supermodular functions (see, e.g., p.43

of Topkis 1998). Formally, we have the following lemma.

Lemma 4 If πMech(x, a) is supermodular in a for all x, then the buyer always prefers

the (R + 1)-region strategy to the R-region strategy, which in turn implies that the fully

diversifying strategy is optimal. If πMech(x,a) is submodular in a for any fixed x, the

converse is true, which in turn implies that the pooling strategy is optimal.
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In other words, Lemma 4 provides a tractable shortcut to the buyer’s optimal supply base

design problem: Instead of comparing diversification strategies after computing the buyer’s

expected total procurement cost under each possible supply base design strategy — which

in general is technically intractable as we mentioned — we can possibly find the optimal

strategy by examining the super- or submodularity of the per-period total cost function

πMech(·). Using this approach, we thus next explore the optimal supply base design strategy

and the effect of buyer’s bargaining power.

4.4.2 Optimal Supply Base Design Strategy For A Buyer with Full Bargaining
Power

Per (4.1a), we have πOPT (x, a) = min
i=1,...,N

{ψ(xi) + ai}, which implies that, for any vector

of supplier production cost x, and any two vectors of suppliers’ regional costs a and a′, it

must be true that

πOPT (x,a∧a′) = πOPT (x,a)∧πOPT (x,a′) and πOPT (x,a∨a′) ≥ πOPT (x,a)∨πOPT (x, a′).

This in turn implies that πOPT (x,a) is supermodular in a for any x. Therefore, from

Lemma 4, we obtain the optimal supply base design strategy under mechanism OPT, as

stated in the following proposition.

Proposition 13 For any F , G, or N , it is always optimal to fully diversify if mechanism

OPT is used.

Proposition 13 highlights a remarkably general result: Whenever the buyer has the power

to use the optimal mechanism, it is optimal to fully diversify the supply base, regardless of

the number of suppliers N , or the cost distributions F and G. This is because, although the

buyer’s expected total procurement cost under any supply base design strategy in general

depends on N , F , and G, the diversification tradeoff (per Definition 1) of a buyer using OPT

is non-negative for all x, y, and R < N .
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To provide intuition for Proposition 13, we will use an example to illustrate why mecha-

nism OPT allows the buyer to enjoy the benefits of diversification, and how OPT functions.

Later, we will use these illustrations as a point of contrast to what happens when the buyer

has zero bargaining power and uses mechanism RE. For simplicity, our example will assume

that regional costs follow a two-point distribution, and are either high, yH , or low, yL. The

optimal mechanism involves the virtual cost function ψ(·), and for convenience we assume

suppliers’ production costs are uniformly distributed, making the virtual cost function linear

(namely, ψ(x) = 2x).

With this setup, we examine a two-supplier case for which the pooling strategy has two

suppliers in region 1 and the diversifying strategy has suppliers 1 and 2 in regions 1 and 2,

respectively. Figure 4.1(a) pictorially illustrates the diversification upside and diversification

downside for a particular pair of supplier production cost realizations x1 and x2. Because

the function of a reserve price is straightforward, the figure depicts cost realizations for

which a supplier with a regional cost advantage will win and receive a payment set by his

competitor’s dropout bid rather than via the reserve price.3 In this discussion we assume

OPT is implemented with the auction format described in Proposition 12.

Example 1:

• The top panel of Figure 4.1(a) depicts the diversification upside, which occurs when

y1 = yH > yL = y2. Had the pooling strategy been used, both suppliers would have

the high regional cost, supplier 1 would drop out when the calling price reached his

true adjusted virtual cost ψ(x1)+yH and supplier 2 would win the auction and be paid

ψ−1(ψ(x1)+ yH − yH) = x1, yielding a total procurement cost x1 + yH to the buyer. In

contrast, had the diversifying strategy been used, the buyer’s supply base would have

one supplier (supplier 2) with the low regional cost. In such a case, mechanism OPT

would capture the cost reduction opportunity by awarding the contract to supplier

2 (so the buyer incurs a low regional cost) and paying supplier 2 ψ−1(ψ(x1) + yH −
3In particular, Figure 4.1(a) assumes x1 > x2 and ψ(x1)+yL < ψ(x2)+yH , and yH−yL < max

i=1,2
{2−2xi}.
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yL) = x1 + yH−yL

2
. Consequently, the buyer pockets a diversification upside equal to

(x1 + yH)− [(x1 + yH−yL

2
) + yL] = yH−yL

2
.

• The lower panel of Figure 4.1(a) depicts the diversification downside, which occurs

when y1 = yL < yH = y2. Had the pooling strategy been used, both suppliers would

have low regional costs, and supplier 2 would win the auction and be paid ψ−1(ψ(x1)+

yL − yL) = x1, yielding a total procurement cost of x1 + yL to the buyer. However,

had the diversifying strategy been used, supplier 1 would be the only supplier with a

low regional cost. Mechanism OPT would award the contract to the low-regional-cost

supplier 1 and pay him ψ−1(ψ(x2) + yH − yL) = x2 + yH−yL

2
. Thus the diversification

downside equals [(x2 + yH−yL

2
) + yL]− (x1 + yL) = yH−yL

2
− (x1 − x2).

Note that in this example, the diversification upside exceeds the diversification downside.

Because symmetry implies that either occurs with equal probability, this example confirms

that for these realizations of x1 and x2 the buyer always benefits from diversifying.

While this example applied to a particular set of assumptions on F , G, N , and realizations

of x1 and x2, the important takeaway is that mechanism OPT helps the buyer capture surplus

from a supplier enjoying a regional cost advantage because OPT’s rules bias against such

a supplier. For example, consider the outcome for the upper-right part of Figure 4.1(a):

Supplier 2 is paid x1 + yH−yL

2
, which is actually yH−yL

2
dollars less than the lowest total

cost the buyer could possibly incur if she transacted with supplier 1. The buyer gets away

with this by promising ex ante to compare suppliers’ virtual costs, not actual costs, when

determining the auction winner and payment. This biases against the advantaged supplier.

In particular, when supplier 2 enjoys a regional cost advantage, he only wins the auction if

x2 ∈ {x2|ψ(x2) + yL ≤ ψ(x1) + yH} ⊂ {x2|x2 + yL ≤ x1 + yH}. (4.2)

In summary, mechanism OPT biases against advantaged suppliers in order to reduce their

payment, and in doing so might impose an inefficient allocation (evidenced by the proper
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Figure 4.1: The diversification upside and downside. Panel (a) plots for mechanism OPT
with N = 2 suppliers, assuming F ∼ U [0, 1]; Panel (b) plots for mechanism RE with N = 2
suppliers.

subset relation in (4.2); see also MacAfee and McMillan 1989, Rezende 2009). The upshot is

that, because diversifying engenders cost realizations in which suppliers can enjoy a regional

cost advantage and mechanism OPT allows the buyer to capitalize on the resulting cost-

saving opportunities, the buyer finds it optimal to fully diversify her supply base.

Despite being theoretically optimal, mechanism OPT may be difficult to implement in

practice. First, it requires the buyer to impose take-it-or-leave-it allocation and payment

rules that bias against suppliers with a cost advantage. The buyer may have a difficult time

convincing suppliers to go along with such a scheme, who might not understand why they

should be put at a disadvantage even though they have a low regional cost that is attractive

for the buyer. In such a case, the optimal mechanism may be off the table and the buyer

might have to employ another mechanism which does not require her to exert bargaining

power over the suppliers. This motivates our analysis using mechanism RE in the next

subsection.
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4.4.3 Optimal Supply Base Design Strategy For A Buyer with Zero Bargaining
Power

We now examine the cases in which the buyer uses a reverse English auction with no

reserve price (zero bargaining power). We first study the case in which the buyer designs a

supply base with two suppliers, and then study the general case in which the supply base

consists of N ≥ 3 suppliers.

Two suppliers

Per (4.1b), we have πRE(x,a) = max{x1 + a1, x2 + a2} when N = 2, which implies that, for

any vector of supplier production costs x, and any two vectors of suppliers’ regional costs a

and a′, it must be true that

πRE(x,a ∨ a′) = πRE(x,a) ∨ πRE(x,a′) and πRE(x,a ∧ a′) ≤ πRE(x,a) ∧ πRE(x, a′).

This in turn implies that πRE(x,a) is submodular in a for all x. Therefore, from Lemma 4,

we obtain the optimal supply base design strategy under mechanism RE when N = 2, as

stated in the following proposition.

Proposition 14 With two suppliers, for any F or G, it is always optimal to pool if mech-

anism RE is used.

Surprisingly, with two suppliers, Proposition 14 shows that, rather than diversifying the

supply base, the buyer prefers to select the two suppliers from the same region if she has no

bargaining power (i.e., uses reverse English auctions without reserve price). Perhaps more

surprising, this preference persists for any supplier cost distribution and any regional cost

distribution. Why is it never optimal to spread out the regional cost risk by diversification

when the buyer uses mechanism RE, even if large supply shocks are very likely? This is

because without a reserve price mechanism RE fully exposes the buyer to windfall profit-

taking by the advantaged supplier with lower regional cost, who largely absorbs what would
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have been the buyer’s upside benefit of diversifying. Such windfall profit-taking by the

advantaged supplier is so severe that the buyer always has no diversification upside. We

illustrate this with an example. As a point of contrast to mechanism OPT, we use the

same setup as for Example 1, but apply mechanism RE instead of mechanism OPT. The

diversification upside and downside are illustrated in Figure 1(b)’s top and bottom panels,

respectively. 4

Example 2:

• The top panel of Figure 1(b) illustrates the diversification upside, which occurs when

y1 = yH > yL = y2. Had the pooling strategy been used, both suppliers would have high

regional cost, and the lowest total-cost supplier (supplier 2) would win the auction and

be paid supplier 1’s total cost minus supplier 2’s regional cost, i.e., x1 + yH − yH = x1.

Thus, the buyer’s total procurement cost would be the largest total cost, i.e., x1 + yH .

In contrast, had the diversifying strategy been used, supplier 2 would have low regional

cost. However, this does not mean the buyer will get any benefit from having such a

low-regional-cost supplier. On the contrary, supplier 2, with lower total cost, would

win the auction but charge price x1 + yH − yL, matching supplier 1’s total cost and

yielding a total procurement cost x1 + yH to the buyer. In other words, mechanism

RE would allow the advantaged supplier 2 to fully absorb the diversification benefit,

leaving zero diversification upside to the buyer.

• The lower panel of Figure 1(b) illustrates the diversification downside, which occurs

when y1 = yL < yH = y2. Had the pooling strategy been used, both suppliers would

have low regional costs, and supplier 2, with lower total cost, would win the auction and

be paid supplier 1’s total cost minus supplier 2’s regional cost, i.e., x1 + yL − yL = x1.

Thus, the buyer’s total procurement cost would be the largest total cost, i.e., x1 + yL.

In contrast, had the diversifying strategy been used, only supplier 1 would have low

regional cost. Supplier 1 would charge price x2 + yH − yL, matching supplier 2’s total

4Figure 4.1(b) assumes x1 > x2 and x1 + yL < x2 + yH .
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cost and yielding a total procurement cost of x2 + yH to the buyer. In other words,

mechanism RE would allow the advantaged supplier 1 to fully absorb the benefit of its

regional cost advantage, saddling the buyer with a large diversification downside.

In summary, mechanism RE allows the supplier with lower regional cost to take so much

windfall profit that diversifying yields no diversification benefit but effectively exposes the

buyer to more regional cost risk. Consequently, the buyer with no bargaining power is worse

off by using the diversifying strategy, and hence would rather pool the two suppliers in the

same region.

As Propositions 13-14 reveal, the optimal supply base designs under OPT and RE are

polar opposites. This encapsulates our fundamental message in this paper: Bargaining power

is a key driver of supply base diversification decisions. The buyer’s bargaining power (i.e.,

the auction mechanism she is able to deploy) determines how much diversification benefit

she can pocket, which then informs her decision to diversify the supply base or not. A weak

buyer who foresees not being able to pocket the benefits of diversification should take this

into account and design her supply base with less diversification than she would if she held

full bargaining power over suppliers. This key finding is confirmed in our following analysis

of the case in which the buyer uses mechanism RE with N ≥ 3 suppliers.

More than two suppliers

The goal of this subsubsection is to show that a buyer with zero bargaining power (RE) and

three or more suppliers finds that, in many cases, it is suboptimal to fully diversify. This

is in stark contrast to the strategy of always fully diversifying, which is optimal for a buyer

with full bargaining power (OPT). Thus, this subsubsection reenforces the main message

of the paper: The buyer’s bargaining power can drastically affect her optimal supply base

design.

With three or more suppliers, the optimal diversification strategy under mechanism RE

turns out to be much more complicated than that with two suppliers, for two reasons. First,
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as discussed earlier, the buyer’s total procurement cost πRE(x,a) is the second-lowest order

statistic of the possibly correlated total costs of N suppliers. Second, this total procurement

cost can easily be shown to be neither submodular nor supermodular in a for all x — hence,

the buyer’s preference between the R-region strategy and the (R + 1)-region strategy in

general depends on N , R, and the cost distributions F and G.

To gain insight into the buyer’s supply base design preference, we will characterize how

the buyer’s preference is affected by the shape and scale of the regional cost distribution

G, given an N and supplier production cost distribution F . For any distribution G, we

accomplish this by examining a family of models {(F, G(s)), s ∈ R}, where G(s)(y)
def
= G(y

s
).

Regional cost distribution G(s) has the same “shape” as G, but a different scale. We call

s the scale parameter. Since we have normalized the range of F to the unit interval, this

sequence of models captures an increasing variation of the regional cost distribution relative

to that of the supplier production cost distribution.

Large regional costs drive preference away from pooling. Section 4.4.3 shows that

with two suppliers a buyer using mechanism RE always finds it optimal to pool. Following

that intuition, does the buyer always prefer to pool even with three or more suppliers?

Here we show that the answer is “no.” In particular, when the scale parameter s is large,

regional cost variation dominates suppliers’ production cost variation. This can model, for

example, cases in which suppliers use standard production technology and the variability of

production costs is negligible in comparison to that of regional costs — which could be driven

by a variety of sources ranging from incremental transportation rate changes to catastrophic

port strikes. When the regional cost variation is relatively large, pooling and “losing big”

(as described on page 98) could be catastrophic for the buyer. (For example, if a strike hit

the originating port in a region containing all N of her suppliers.) Intuitively the buyer

might want to diversify her supply base, but then again we recall the N = 2 case for which

we know that pooling is optimal due to supplier windfall-profit taking. How can the buyer

benefit from diversifying when using mechanism RE? The key is that, with N ≥ 3 suppliers,
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the buyer can partially diversify by grouping suppliers together into different regions. This

curbs unilateral regional cost advantages and forestalls windfall-profit taking. Suppliers in a

low-cost region will — in the course of competing for the buyer’s business in the auction —

transfer the surplus of their regional cost advantage to the buyer. This result is formalized

in Proposition 15 below, which shows that, in fact, the buyer would always prefer to have at

least R = bN
2
c regions (with at least two suppliers per region) to any less diversified strategy

with R < bN
2
c regions. Therefore, we see that the number of suppliers can affect the supply

base design strategy under mechanism RE, and the pooling strategy can dominated by the

partially diversifying strategy.

Preference between full and partial pooling driven by shape of regional cost

distribution. We now turn to the main goal of this subsubsection, which is to show that

a buyer using mechanism RE with three or more suppliers need not find fully diversifying

optimal. In particular, we show that the buyer prefers the partially diversifying strategy to

the fully diversifying strategy when the scale parameter s is large and G “has a low-cost tail”

(roughly speaking, this will be made more precise shortly). These conditions make windfall-

profit taking a serious concern for the buyer. When s is big, regional costs largely determine

the auction winner. Furthermore, when G has a low-cost tail there is more chance for low

“outlier” regional costs. Hence, fully diversifying under these conditions is apt to backfire

by yielding a winning supplier with a sizeable, unilateral regional cost advantage that he

absorbs through windfall-profit taking: Even though the buyer has suppliers in N regions,

she incurs costs as if she contracts with a supplier in the second-cheapest of N regions. On

the other than, if the buyer chose to forestall windfall profit-taking by partially diversifying,

then she would have two suppliers in each of bN
2
c regions, and incur costs associated with

the cheapest of bN
2
c regions. After netting out the production cost, the buyer’s preference

between partial and full diversification depends on the relative sizes of Y 2:N and Y 1:bN
2
c,

which in turn is driven by the shape of G.

The following proposition summarizes the results so far in this section.
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Proposition 15 When the scale parameter s of the regional cost distribution is large enough:

• The partially diversifying strategy that has bN
2
c regions with at least two suppliers each

dominates any strategy with fewer regions;

• The buyer prefers the partially diversifying strategy to the fully diversifying strategy if

Y 2:N > Y 1:bN
2
c; vice versa.

Given the above discussion, it is natural to ask what distributions G have a “low-cost

tail” shape that causes the buyer to prefer partial diversification. More precisely, in light

of Proposition 15 we can equivalently ask for what distributions G will Y 2:N exceed Y 1:bN
2
c.

One can show (see the e-companion) that

Y 1:bN
2
c − Y 2:N =

∫ ∞

−∞
ḠbN

2
c(y)dy −

∫ ∞

−∞

[
NḠN−1(y)− (N − 1)ḠN(y)

]
dy (4.3)

=

∫ 1

0

[
zb

N
2
c −NzN−1 + (N − 1)zN

] 1

g[Ḡ−1(z)]
dz,

where Ḡ(y)
def
= 1−G(y) denotes the tail distribution of regional costs and Ḡ−1 is the inverse

function of Ḡ. Note that there exists some 0 < z < 1 such that zb
N
2
c − nzn−1 + (n− 1)zn is

positive (negative) for all 0 < z < z (z < z < 1). Therefore, if the distribution G has most

of its density piled close to the left end-point of the support (the low-cost end-point), then

g[Ḡ−1(z)] is large for z close to one but is small for z close to zero, and thus Y 1:bN
2
c − Y 2:N

must be positive, which implies that fully diversifying is preferred. In contrast, if G has most

of its density close to the right end-point (the high-cost end-point) of the support (and so

has a “low-cost tail”), then g(Ḡ−1(z)) is large for z close to zero but is small for z close to

one, and thus Y 1:bN
2
c − Y 2:N must be negative, which implies that the partially diversifying

strategy is preferred. To further illustrate this (i.e., the shape of G drives the buyer’s

preference between the two strategies), we consider the power-function family G(s)(y) = (y
s
)v

with a shape parameter v > 0 on the support [0, s], because such a distribution’s density

function takes various shapes according to the shape parameter v > 0: As illustrated in
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Figure 4.3(a), the density distribution is very concentrated near the left endpoint when v is

small; in contrast, the density distribution flattens out as v increases. Consistent to the above

discussion on the shape of distribution G, we find that the buyer prefers fully diversifying

when v is small but prefers the partially diversifying strategy otherwise.

Corollary 1 Suppose G(s)(y) = (y
s
)v. When the scale parameter s is large enough, there

exists a threshold v such that the buyer prefers fully diversifying if v < v, and the partially

diversifying if v > v.

The insight to Corollary 1 is consistent to that to Propositions 13 and 14. Whereas

diversification gives the buyer better chance to access to a supplier with low regional cost,

the supplier is likely to take a windfall profit by charging a high price and thus absorb the

buyer’s diversification benefit if the supplier’s competitors all have higher regional costs and

the buyer has little bargaining power against this advantaged supplier, leaving the buyer with

only the diversification downside. Such an advantage supplier is likely to emerge and enjoy a

large advantage over competitors unless the regional cost distribution G has density piled up

at the low-cost end. That’s why the buyer prefers the partially diversifying strategy under

RE unless G has density piled up at the low-cost end, i.e., the shape parameter v is small if

G is a power-function distribution. Intuitively, these insights would not be sensitive to the

scale parameter s, i.e., the relative variation of the regional costs compared to that of the

production costs; in fact, our numerical examinations in §4.6 will show that Proposition 15

and Corollary 1 hold even when s is small, i.e., when the regional cost variation is comparable

to the production cost variation.

4.4.4 General Takeaways

Sections 4.4.2–4.4.3 suggest that the buyer should carefully evaluate her bargaining clout

relative to the suppliers before deciding to diversify her supply base. Buyers with strong

bargaining power always find it optimal to have just one supplier per region (fully diver-

sifying); this is because diversifying mitigates the exposure to regional cost shocks, while
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such buyers can use reserve prices and biasing rules to prevent suppliers from absorbing the

benefits of diversification and hence capture significant benefits from having a supplier in a

low-cost region. In contrast, for buyers who have extremely little channel power and cannot

prevent advantaged suppliers from making significant windfall profits, there is little benefit

to diversifying and they should only add more regions to their portfolio if doing so is unlikely

to forfeit the benefits of diversification to an advantaged supplier. Because a supplier with

a sizeable regional cost advantage can largely absorb the resulting benefits if he is the only

supplier in his region, the buyer can avoid the emergence of such an advantaged supplier

by keeping two suppliers in each region (partially diversifying). In particular, for a buyer

who uses a two-supplier supply base, there is little benefit to diversifying and she should

always instead simply pool her risk by choosing both suppliers in a single region. While

such a buyer is inevitably more vulnerable to cost shocks, by pooling she ensures greater

cost parity between suppliers, which she needs to drive down suppliers’ price bids. A buyer

with weak bargaining power who uses more than two suppliers will diversify a two-supplier

region into two single-supplier regions only if neither region is likely to contain an advan-

taged supplier that can absorb the benefits of the diversification. Because the benefit of this

diversification accrues precisely when just one of the two regions experiences a large regional

cost, this pushes the buyer to prefer diversifying only if, in such a case, she has supplier(s)

in a third region which is unlikely to experience a large regional cost. Consequently, buyers

with weak bargaining power prefer to fully diversify only if there are at least three suppliers

in the supply base and the regional cost distribution does not have a left (low-cost) tail.

4.5. Extensions

4.5.1 Codependent Regional Costs

Our analyses in §4.4 assumed independent regional costs. However, one can easily imagine

situations where regions exhibit vulnerability to common shock factors, such as the price of oil

or global shipping volumes. This subsection thus examines the results of Propositions 13-15

for the case with ex ante symmetric and codependent regions. We first discuss how the result
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extend, and then conclude this subsection with a proposition formalizing this discussion.

Regional codependence does not affect buyer’s preference for diversifying with

OPT. Propositions 13 revealed that the buyer prefers to fully diversify no matter what the

production cost and regional cost distributions are. The intuition is that the buyer diversi-

fies in order to enjoy the upside benefit of finding suppliers with attractive regional costs.

Surprisingly, this general result extends even when the regional costs can be codependent

(technically, this follows from the fact that Lemma 4 holds even when regional costs are

codependent). Thus, even if regions’ costs are correlated, the buyer still places exactly one

supplier in each region in order to diversify her regional cost risk as much as possible.

Regional codependence affects the buyer’s preference under RE only when she

has three or more suppliers. Because Lemma 4 remains valid in the presence of regional

codependence, Proposition 14 extends to codependent regions and consequently a buyer

using mechanism RE always prefers to forestall windfall-profit taking by pooling when she

has just two suppliers. Diversifying leaves the buyer with downside risk but no upside benefit,

and this remains true no matter how small the windfall-profit taking risk is: Regardless of

how highly positively correlated the regional costs are, the buyer’s preference for pooling

is unchanged. On the other hand, when the buyer has three or more suppliers and uses

mechanism RE, regional codependence can affect her supply base design preference. To

see why, consider correlated, random regional costs (y1, y2, . . . , yR) for which there exists

a random state variable ξ having distribution P (·) such that the yr’s are independently

distributed according to some distribution function G(·|ξ). (In the terminology of Shaked

(1977), these random variables are “positive dependent by mixture.”) Using §4.4.3’s results

for the case with identically and independently distributed regional costs (Proposition 15), we

can see that the effect of regional codependence on the diversification strategy thus depends

on both P (·) and the family of distributions G(·|ξ). (Unless of course the family G(·|ξ)
is such that Y 1:bN

2
c never exceeds Y 2:N [or vice-versa] — in such cases the codependence

116



does not affect the buyer’s preference between fully and partially diversifying.) For example,

consider G(y|ξ) = s−ξyξ with a given s > 0. In such a case, a small value of state variable ξ

can model the case in which regional costs are mainly driven by global factors and exhibit

small variance; in contrast, a large ξ can model the case in which regional costs are mainly

driven by local factors and exhibit large variance. According to Corollary 1, it is clear that

the buyer prefers partially diversifying if the state variable distribution P (ξ) has enough of

its density concentrated at large values of ξ, but would instead prefer partially pooling were

the density concentrated primarily at small values of ξ.

The following proposition formalizes the discussion in this section.

Proposition 16 With codependent, ex ante symmetric regions,

• Under mechanism OPT, the buyer’s preference is robust to regional codependence and

she always finds it optimal to fully diversify her supply base.

• Under mechanism RE,

– with two suppliers the buyer’s preference is robust to regional codependence and

she always finds it optimal to pool her supply base;

– with three or more suppliers, regional codependence can affect the buyer’s prefer-

ence between fully diversifying and partially diversifying.

4.5.2 Asymmetric Regions

We have thus far assumed that all regions are symmetric; this assumption has enabled us

to shed some light to the in general challenging problem of supply diversification and focus

on the effect of the buyer’s bargaining power. In this subsection, we examine the cases in

which different types of regions may have different supplier production cost distributions and

regional cost distributions. We show that Propositions 13 and 14 remain valid even when

there are asymmetric regions, as long as each region type has enough “copies” of regions.

Relaxing this assumption, however, may push the buyer away from fully diversifying; we

provide an example at the end of this subsection.
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We use an index k for a region type. For a type k region, let Fk denote the supplier

production cost distribution and let Gk denote the regional cost distribution. For a supplier

in a type k region, let Hk denote the total cost distribution and let Ĥk denote the adjusted

virtual cost distribution. Namely, Hk
def
= Fk ⊕ Gk, where the convolution operator ⊕ is

such that Hk(z) =
∫∞
−∞ G(z − x)dF (x); Ĥk

def
= F̂k ⊕ Gk, where F̂k(z)

def
= Fk(ψ

−1
i (z)) is the

distribution of the virtual cost. We assume that suppliers’ production costs and regional

costs are all independent.

Proposition 17 If mechanism OPT is used, it is always optimal to fully diversify even

when regions are asymmetric. However, the optimal supply base design strategy may involve

different region types.

Our main insights remain valid under asymmetric regions: With full bargaining power

(OPT), it is optimal to fully diversify the supply base. This is because any R-strategy having

nr ≥ 2 suppliers in some region r is dominated by the (R+1)-strategy strategy having nr−1

suppliers in region r and one supplier in the region (R + 1) which is of the same type as

region r. However, the way in which the buyer chooses to fully diversify the supply base

may be more nuance than that in the case with symmetric regions. In particular, the buyer

might use multiple types of regions when fully diversifying the supply base. For example,

consider a two-supplier case with two types of regions, denoted by k = 1, 2. Suppose that

Ĥ1 is the two-point distribution with probability mass q at zero and probability mass 1− q

at one, and that Ĥ2 is the uniform distribution U [0, 1]. It is easy to check the following are

true. If the buyer uses two type 1 regions, the buyer’s expected total cost equals (1− q)2; if

the buyer uses two type 2 regions, the buyer’s expected total cost equals 1
3
; if the buyer uses

one type 1 and one type 2 region, the buyer’s expected total cost equals (1−q)
2

. The “mixed

diversification strategy” that uses both region types is optimal when q > 1
3
. Intuitively, in

such cases type 2 regions are less “risky” but a second type 2 region has a decreasing effect

on reducing the buyer’s expected total cost. As a result, the buyer can be better off using

one type 2 region as a “safety” and then gambling on a “bet” by having one type 1 region.
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In summary, our main message of the paper remains under asymmetric regions: With more

bargaining power, the buyer prefers a more diversified supply base. However, the ability to

mix-and-match asymmetric regions adds complexity in determining how to best execute the

fully diversifying strategy — a complex question that we leave to future work.

With asymmetric regions, Proposition 14 still holds. In other words, it is never optimal

to select two suppliers from two asymmetric regions under mechanism RE. Intuitively, any

two types of regions have a “better” type, and hence using two regions of different types

is dominated by using two regions of the “better” type, which is in turn dominated by

selecting two suppliers from one region of the “better” type according to Proposition 14. Let

H̃k
def
= F 2

k ⊕Gk; namely, it denotes the distribution of the buyer’s total procurement cost if

she has two suppliers in a type k region. We have the following proposition.

Proposition 18 With two suppliers, it is always optimal to pool if mechanism RE is used,

even when regions are asymmetric. In particular, it is optimal to choose a type k region such

that
∫∞
−∞ zdH̃k is minimized.

Proposition 18 generates managerial insights for buyers who uses two suppliers and mech-

anism RE. Consider such a buyer who has access to suppliers in both a local region, denoted

by k = 1, and a foreign region, denoted by k = 2. Suppose that F2 is stochastically smaller

than F1, and that G1 is stochastically smaller than G2, which models that foreign suppliers

have stochastically lower production costs but the buyer incurs higher transportation cost

and risk if using foreign suppliers. According to Proposition 18, the buyer should choose

between “go foreign” (i.e., selecting two supplier from the foreign region) or “stay local”

(i.e., selecting two supplier from the local region) by taking a total-cost perspective, that is,

comparing region types via the distribution H̃k, but she should never do a “mix’ (i.e., using

one local supplier and one foreign supplier).

Apparently, Proposition 18 holds even if each region type has only one “copy” of region

since the optimal strategy is after all to use only one region. However, if some “better”

region type has limited “copies”, instead of fully diversifying, a buyer using mechanism
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OPT may select multiple suppliers from such a “better” region. Here is a simple example.

Consider a buyer who wants to use two suppliers and can only access to two regions with

the same production cost distribution U [0, 1] but different regional cost distributions G1 and

G2, respectively. Suppose that Gk has probability mass pk at 1 and probability mass 1− pk

at 0 and p2 > p1. It is easy to check that it is optimal to select both suppliers from region 1

if and only if p2 > p1

5−4p1
.

4.5.3 Optimal Supply Base Design Strategy For A Buyer with Intermediate
Bargaining Power

Mechanisms OPT and RE represent the full and zero bargaining power cases, respectively.

Using these two mechanisms, our comparisons of the buyer’s diversification preference has

revealed the following insight: Buyers with more bargaining power favor more diversification.

In this subsection we examine whether this insight extends to a third auction mechanism,

the reverse English auction with a reserve price (RER). Compared to the zero-bargaining

power, mechanism RER adds the power to set a credible reserve price. Thus, our goal is to

see whether adding the reserve price to the reverse English auction format will encourage,

or discourage, diversification. To make the results comparable with Propositions 13-15,

we adopt the same assumptions that suppliers’ production costs and regional costs are all

independent and regions are symmetric. In the following, we first show that, with two

suppliers, the buyer can find it optimal to diversify if using mechanism RER, in contrast to

that it is always optimal to pool if using mechanism RE (Proposition 14); we next discuss

that, with N ≥ 3 suppliers, when the scale parameter of the regional cost distribution is

large, the buyer finds it always optimal to fully diversify if using mechanism RER, in contrast

to that the buyer’s preference toward fully diversifying depends on the shape of the regional

cost distribution if using mechanism RE (Proposition 15).

With two suppliers, the sign of the buyer’s diversification tradeoff (per Definition 1)

under mechanism RER can be positive or negative, depending on the realized regional cost

difference |y1 − y2| and the larger production cost X2:2, as stated in the following lemma.
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Figure 4.2: Effect of reserve price when N = 2. Panel (a) illustrates Lemma 5; panel (b)
illustrates the effect of reserve price on the diversification tradeoff.

This is in stark contrast to the always non-positive diversification tradeoff under mechanism

RE.

Lemma 5 If |y1 − y2| ≥ 2(1 − X2:2), the buyer’s diversification tradeoff (per Definition 1)

is non-negative. If |y1 − y2| ≤ 1 − X2:2, or if |y1 − y2| ≤ 2(1 − X2:2) and X2:2 ≤ 1
2
, the

diversification tradeoff is non-positive.

Figure 4.2(a) illustrates Lemma 5, and Figure 4.2(b) demonstrates the main message of

Lemma 5: When the regional cost difference is large (e.g., |y1 − y2| ≥ 2 − 2X2:2), a reserve

price effectively limits windfall profit-taking and allows the buyer to capture significant cost

savings when sourcing from a low regional cost supplier. Consequently, diversifying makes the

buyer better off under mechanism RER. To directly compare with the case under mechanism

RE, Figure 4.2(b) shows the diversification upside and downside under mechanism RER for

the same setting as in Figure 4.1(b).

Example 3:

As a direct comparison against what would happen under mechanism RE, Figure 4.2(b)

shows the diversification upside and downside under mechanism RER for the same setting

as in Figure 4.1(b).
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• When y1 = yH > yL = y2, had the buyer diversified, although the advantaged supplier

2 would still win the auction (as in Figure 4.1(b)), the reserve price would cap its

payment at 1, yielding a total procurement cost 1 + yL to the buyer. Namely, the

reserve price would increase the diversification upside to (x1 +yH)−(1+yL), compared

to zero in Figure 4.1(b).

• When y1 = yL < yH = y2, had the buyer diversified, although the advantaged supplier

1 would still win the auction (as in Figure 4.1(b)), the reserve price would again cap

its payment at 1, yielding a total procurement cost 1 + yL to the buyer. Namely,

the reserve price would decrease the diversification downside to (1 + yL) − (x1 + yL),

compared to (x2 + yH)− (x1 + yL) in Figure 4.1(b).

As a result of effectively truncating large windfall profit opportunities, when the regional

cost difference is large (e.g., |y1−y2| ≥ 2−2X2:2), the buyer who can use a reserve price in a

reverse English auction has a positive diversification tradeoff equal to |y1− y2|− (2− 2X2:2).

However, when the regional cost difference is small, the reserve price is inactivated — in

such cases the auction payment is (as in RE) set purely by pricing competition. Thus, even

with a reserve price, the buyer could have a negative diversification tradeoff.

Since the buyer prefers diversifying (pooling) if the expected diversification tradeoff is

positive (negative), Lemma 5 implies that pooling is optimal only if the realized regional

cost difference |y1−y2| and the larger production cost X2:2 are both small enough. Formally,

we have the following proposition.

Proposition 19 With two suppliers, if mechanism RER is used,

• it is optimal to diversify if the expected regional cost difference E[|y1 − y2|] is large

enough, and

• it is optimal to pool if the probability that |y1−y2| > 1 and the probability that X2:2 > 1
2

are both small enough.
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We now turn to the case with three or more suppliers. First, note that when the scale

parameter s of the regional cost distribution is large enough, mechanism RER is a good

“facsimile” of mechanism OPT: In both cases the winner is likely to be determined by

regional costs, while the payment is likely to be determined by the reserve price. Using this

intuition, it is possible that when s is large it is optimal to fully diversify under mechanism

RER. This contrasts with the buyer’s preference under RE, which even with a large s favored

partially pooling depending on the shape of the regional cost distribution, G.

4.6. Numerical Illustrations

The purpose of this section is threefold. First, we illustrate the buyer’s optimal supply-

base strategy under mechanisms OPT and RE in a two-supplier case (Propositions 13-14).

Second, we illustrate that regional codependence does not change the optimal strategy un-

der mechanisms OPT and RE in a two-supplier case (Proposition 16) but can affect the

magnitude of the buyer’s benefit from choosing the “right” strategy. Third, we illustrate the

buyer’s preference between the partially and the fully diversifying strategy when using mech-

anism RE and N ≥ 3 suppliers. In particular, we show that Proposition 15 holds even when

the scale parameter s is not very large, i.e., the variation of the regional cost distribution is

comparable to that of the supplier production cost.

To measure the relative performance of different supply base design strategies in any

given setting (with fixed number of suppliers N , cost distributions F and G, and the auction

mechanism), we benchmark all supply base design strategies to the pooling strategy and

define for each supply base design strategy

rate of cost improvement = 1− expected total cost under the strategy

expected total cost under the pooling strategy
. (4.4)

In this section, we assume the supplier production cost distribution F ∼ U [0, 1]. For

the regional cost distribution we use the power-function family G(s)(y) = (y
s
)v with a shape

parameter v and a scale parameter s on the support [0, s]. Figure 4.3(a) illustrates the
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Figure 4.3: Power-function distribution’s density and rates of cost improvement per equa-
tion (4.4). Panel (a) illustrates the power-function distribution’s density, g(y) = vs−vyv−1,
with scale parameter s = 4 and shape parameters v = 0.1, 1, 2. Panels (b) and (d) assume
that suppliers’ production costs follow F ∼ U [0, 1] and regional costs follow the power-
function distribution with density g(y) = vs−vyv−1, v = 0.1, 1, 2. Panel (b) plots the rates
of cost improvement by diversifying under mechanisms OPT and RE when N = 2 against
the scale parameter s = 0 ∼ 4. Panel (c) plots the rates of cost improvement by diver-
sifying under mechanisms OPT and RE when N = 2 against the regional cost correlation
ρ = −1 ∼ 1. Panel (d) plots the cost improvement of the partial (R = 2) and the full
(R = 4) diversification strategies when N = 4 against the scale parameter s = 0 ∼ 4.
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density functions of such distributions with a fixed shape parameter s = 4 and three shape

parameters v = 0.1, 1, 2. As it shows, the power-function distributions have density very

concentrated near the left endpoint of the support when v is small, i.e., v = 0.1; however,

the shape of the density functions flatten out toward the right endpoint of the support when

the shape parameter increases, i.e., v = 1 and v = 2.

Figure 4.3(b) plots the rates of cost improvement by the diversifying strategy under

mechanism OPT and RE in a two-supplier case. In all three cases (v = 0.1, 1, 2), the rate is

positive/negative under mechanism OPT/RE, confirming that diversifying is optimal under

mechanism OPT (Proposition 13) and pooling is optimal under mechanism RE (Proposi-

tion 14). In all cases, the magnitude of the rate of cost improvement increases as the scale

of the regional cost distribution increases. This confirms the intuition that the buyer can be

significantly better off by optimizing the supply base design especially when the variation of

regional costs is relative large compared to that of supplier production costs.

We examine the effect of regional cost codependence by studying a two-supplier case,

in which two regions (regions 1 and 2) have correlated and identically distributed regional

costs. In particular, we assume that region 1 has a random cost yc
1 = λy1 +

√
1− λ2y2

and region 2 has a random cost yc
2 = λy2 +

√
1− λ2y1, where λ = −

√
2

2
∼

√
2

2
, and y1

and y2 are independent draws from the power-function distribution G(s)(y) = (y
s
)v with

v = 0.1, 1, 2 and s = 4. Namely, yc
1 and yc

2 are identically distributed and have correlation

ρ = 2λ
√

1− λ2 ∈ [−1, 1]. For such a case, Figure 4.3(c) plots the rate of cost improvement

by diversifying against the regional cost correlation ρ. It illustrates that in a two-supplier

case the regional cost correlation does not change the buyer’s preference between pooling

and diversifying (Proposition 16): Diversifying is always optimal under mechanism OPT and

pooling is always optimal under mechanism RE. Moreover, it also shows that the magnitude

of the buyer’s benefit from choosing the optimal strategy decreases with the regional cost

correlation. Intuitively, the buyer is indifferent between pooling and diversifying when the

regional costs are perfectly positively correlated — in such a case, regions are essentially the
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same region. However, choosing the optimal supply base design strategy is most beneficial

when the regional costs are perfectly negatively correlated — the case in which regional

cost disparity is most significant. A buyer who uses mechanism OPT can take advantage of

such regional cost disparity and hence finds it most beneficial to diversify the supply base;

in contrast, a buyer who uses mechanism RE expects most severe windfall profit-taking by

advantaged suppliers and consequently finds it most beneficial to pool the two suppliers in

the same region.

Figure 4.3(d) plots the rates of cost improvement of the partially diversifying strategy R =

2 and the fully diversifying strategy R = 4 for a setting in which the buyer uses mechanism

RE and N = 4 suppliers. It clearly verifies Proposition 15: When the scale parameter s is

large enough, first, the pooling strategy is dominated by the partially diversifying strategy;

second, the buyer prefers fully diversifying when the shape parameter is small, i.e., v = 0.1,

but prefers the partially diversifying strategy when the shape parameter is not small, i.e.,

v = 1, 2. Moreover, the figure indicates that Proposition 15 can hold even when the scale

parameter s ' 1, i.e., when the variation of the regional cost distribution is comparable

to that of the supplier production cost distribution. However, it also indicates that the

performance difference between the partially and fully diversifying strategies is reasonably

small when the scale parameter s is small.

4.7. Conclusions

A buyers’ total procurement cost includes not only the contract payment to a supplier but

also other costs (logistics costs, duties, etc.), which are often subject to various regional cost

shocks such as labor strikes, regulation changes, and geopolitical events. To mitigate regional

cost risks, a buyer seeking to minimize her total procurement cost can strategically reduce

the cost correlation across suppliers by diversifying her supply base (i.e., choosing suppliers

from different regions). However, in settings where the buyer’s payment to her supplier is

determined by a competitive bidding process (i.e., an auction), the buyer’s upside benefit

of diversification — having a significantly cost-advantaged supplier — can be undermined
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by this supplier’s windfall profit-taking. This paper models the interaction between the

buyer’s supply-base-design strategy and the risks of windfall profit-taking by suppliers, and

characterizes the optimal supply-base-design strategy under various auction mechanisms. To

our knowledge, this paper is the first study of supply base design to mitigate regional cost

shocks.

We find that the buyer needs to make a tradeoff between the benefit from diversifying

her risk of exposure to cost shocks, and the risk that suppliers will absorb such benefits

for themselves by taking windfall profits. The ability of suppliers to take windfall profits

depends upon the buyer’s bargaining power, that is, the buyer’s ability to choose an auction

mechanism to suppress supplier profits. In particular, at one extreme, when the buyer has

full bargaining power and thus can impose the optimal mechanism (i.e., the optimal reserve

price plus the optimal contract allocation rule that biases against cost-advantaged suppliers),

windfall profit-taking is curbed and consequently the buyer finds it optimal to fully diversify

her supply base (i.e., select each supplier from a different region). However, at the other

extreme, when the buyer has no bargaining power and solely relies on supplier competition

for price concessions (i.e., uses a reverse English auction with no reserve price), supplier

windfall profit-taking can be severe and consequently the buyer diversifies less. With two

suppliers she always finds it optimal to pool both suppliers in a single region. With more

suppliers she prefers a blended strategy: She diversifies by using multiple regions, but keeps

two suppliers per region to hedge her bets and eliminate the risk that any supplier possesses

a unilateral regional cost advantage. We also study cases where the buyer has intermediate

bargaining power and thus can impose a reserve price when using a reverse English auction.

We find that imposing a reserve price allows the buyer to truncate large supplier profits,

so when the cost shock size is large the buyer prefers fully diversifying when she can use

a reserve price. This again highlights that buyers with strong bargaining power prefer to

diversify more, while buyers with less bargaining power prefer to diversify less due to concerns

about windfall profit-taking.
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We find that introducing codependence across regional cost shocks generally leaves the

buyer’s diversification decision unchanged, and only affects the buyer’s decision in cases

where there are at least three suppliers and the buyer is susceptible to severe windfall profit-

taking by advantaged suppliers (formats RE). In these cases, codependence can encourage or

discourage fully diversifying, depending on whether or not it reduces the risk of an advantaged

supplier emerging, that is, reduces the risk of windfall profit-taking.

Our study was motivated by focusing on shocks to the buyers’ “non-price” costs (logistics

costs, tariffs, etc.), but our results can easily be extended to cases where suppliers share

regional cost drivers, such as costs associated with a small local labor force, regional energy

market, or a common second-tier supply base. More precisely, all analyses in this paper

follow if regional cost yr is re-interpreted as a commonly known cost factor shared by all

suppliers within region r.

Although we assume that the distributions capturing production costs and regional costs

remain static over time, Propositions 13-14 (and their extensions Propositions 16-18) di-

rectly extend to cases where these distributions vary over time, given that these results hold

regardless of production cost distribution F or regional cost distribution G. For Corollary 1,

which says the optimal strategy depends on the shape of the regional cost distribution G, we

suspect that the optimal supply-base design decision depends on the shape of the regional

cost distribution G “on average”, if G is time-variant.

We examined three auction mechanisms that are of both theoretically and practically

important. Of course, buyers may use other auction mechanisms or unstructured bargaining

processes — for example, the buyer may use first-price auctions, or may negotiate with

the advantaged supplier. For such cases, we suspect that the key insight of our paper will

continue to apply: The more bargaining clout the buyer has to control windfall-profit taking

by cost-advantaged suppliers, the more she will prefer building a diversified supply base.

Our results can also extend to the cases where the buyer has only a limited number of

regions to choose suppliers from — suppose there are only R < N regions available — the
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buyer tends to use all R regions if fully diversifying is optimal in the unconstrained case,

or tends to use min{R, bN
2
c} regions if the partially diversifying strategy is optimal in the

unconstrained case. Some other extensions are possible, for example, imposing a fixed cost of

using additional regions, or allowing asymmetry among regions. Our preliminary numerical

studies suggest that these issues affect the buyer’s supply base design decisions in quite

straightforward ways, but we leave further examinations for future work.

Finally, to keep our analysis focused and tractable we ignore the buyer’s inventory deci-

sions. To the extent that the buyer can anticipate regional cost shocks, she may choose to

speculatively purchase inventory to avoid future cost spikes, e.g., impending tariffs increases

in a certain country. Interestingly, our analysis suggests that the usefulness of such a strat-

egy depends on the buyer’s bargaining clout. Speculative inventory might behoove a buyer

with little bargaining clout, who might use it to help avoid paying windfall profits to cost

advantaged suppliers. On the other hand, speculative inventory would likely be of much less

benefit to a buyer with strong bargaining clout, who could contract with cost-advantaged

suppliers without paying an undue price premium, thereby reducing the speculative bene-

fits of holding inventory. We leave a detailed analysis of the interplay between inventory

decisions, bargaining power and supply base design to our future work.

4.8. Proofs

4.8.1 Proof of Proposition 12

If a supplier drops out of the auction when the calling price is higher than his true

adjusted virtual cost and there is at least one other supplier staying in the auction, the

supplier loses the auction and gets zero profit. The buyer can possibly win the auction and

get a positive profit by staying in the auction until the calling price reaches his true adjusted

virtual cost. Thus, dropping out of the auction before the calling price reaches the true

adjusted virtual cost is a dominated strategy.

If a supplier stays in the auction when the calling price falls below his true adjusted
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virtual cost, it is possible that he wins the auction. But he will get a negative profit because

the payment is lower than his cost if the auction ends with a calling price lower than his

true adjusted virtual cost. Thus, staying in the auction when the calling price falls below

the true adjusted virtual cost is a dominated strategy.

Therefore, it is a dominant strategy for each supplier to stay in the auction until the

calling price reaches his true adjusted virtual cost. Consequently, the optimal mechanism is

implemented: The supplier with the lowest adjusted virtual cost will win the auction and is

paid exactly as the optimal mechanism’s payment rule specifies.

4.8.2 Proof of Lemma 4

The expected difference between the total procurement cost under the R-region strategy

and that under the (R + 1)-region strategy equals

1

2
E

(x,y)

[
πMech(x,ahh)− πMech(x,ahl) + πMech(x,all)− πMech(x,alh)

]
. (4.5)

Note that ahh = ahl ∨ alh and all = ahl ∧ alh. Therefore, the lemma follows from the

definitions of supermodular and submodular functions.

4.8.3 Proof of Proposition 13

The fact that πOPT (x, a) = min
i=1,...,N

{ψ(xi)+ai} implies that, for any â and ã, we have that

πOPT (x, â ∧ ã) = πOPT (x, â) ∧ πOPT (x, ã) and πOPT (x, â ∨ ã) ≥ πOPT (x, â) ∨ πOPT (x, ã).

Thus, πOPT (x,a) is supermodular in a for any x. Therefore, the proposition follows from

Lemma 4.

4.8.4 Proof of Proposition 14

When N = 2, we have πRE(x,a) = max{ψ(x1) + a1, ψ(x2) + a2}. It implies that, for

any â and ã, we have that πRE(x, â ∨ ã) = πRE(x, â) ∨ πRE(x, ã) and πRE(x, â ∧ ã) ≤
πRE(x, â) ∧ πRE(x, ã). Thus, πRE(x,a) is submodular in a for any x. Therefore, the

proposition follows from Lemma 4.
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4.8.5 Proof of Proposition 15

It is equivalent to prove the proposition by considering a family of models {(F (s), G), s ∈
R}, where F (s)(x)

def
= F (sx). As s goes to infinity, the probability that production cost equals

zero goes to one. Therefore, as s goes to infinity, the buyer’s expected total procurement cost

equals Y 1:R if she uses R ≤ bN
2
c regions with at least two suppliers in each. The partially

diversifying strategy that has bN
2
c regions with at least two suppliers each dominates any

strategy with fewer regions, since Y 1:R decreases in R when R ≤ bN
2
c. Because the buyer’s

expected total procurement cost equals Y 2:N if she fully diversifies, she prefers the partially

diversifying strategy to the fully diversifying strategy if Y 2:N > Y 1:bN
2
c; vice versa.

4.8.6 Proof of Equation (4.3)

We have Y 1:bN
2
c =

∫∞
−∞ ḠbN

2
c(y)dy because the tail probability Pr(Y1:R > z) = Pr(yr >

z, r = 1, . . . , R) = ḠR(z). We have Y 2:N =
∫∞
−∞

[
NḠN−1(y)− (N − 1)ḠN(y)

]
dy because

the tail probability Pr(Y2:R > z) = Pr(yr > z, for all r ∈ {1, . . . , R}) + Pr(yr̂ ≤ z for an r̂ ∈
{1, . . . , R}, yr > z, for all r ∈ {1, . . . , R} − {r̂}) = RG(z)ḠR−1(z) = R[ḠR−1(z)− ḠR(z)].

4.8.7 Proof of Corollary 1

When the regional costs are independent draws from a power-function distribution G(y) =

a−vyv with scale parameter a > 0 and shape parameter v > 0, we have Y 1:R = aΓ(R+1)Γ(1+1/v)
Γ(R+1+1/v)

and Y 2:R = aΓ(R+1)Γ(2+1/v)
Γ(R+1+1/v)

; see Malik (1967). Thus, for N ≥ 4 even, we have

Y 1:N
2

Y 2:N

=
(N + 1/v)(N − 1 + 1/v) · · · (N/2 + 1 + 1/v)

(1 + 1/v)N(N − 1) · · · (N/2 + 1)
.

We now show that there exists a threshold v > 0 such that the above fraction is greater

than 1 when v < v and less than 1 when v > v. To see this, note that the numerator

minus the denominator can be written as −b1v
−1 + b2v

−2 + . . .+ bN
2
v−

N
2 with b1, . . . , bN

2
> 0.

Thus, the threshold v is the unique positive root of b1 = b2v
−1 + . . . + bN

2
v−

N
2

+1. Note v is

unique because b2v
−1 + . . . + bN

2
v−

N
2

+1 is strictly decreasing, approaches positive infinity as
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v approaches zero, and approaches zero as v approaches positive infinity. For N ≥ 3 odd,

we can similarly prove that Y 1:N−1
2

/Y 2:N is greater (less) than 1 if v is greater (less) than a

threshold v > 0. Namely, the proposition holds.

4.8.8 Proof of Proposition 16

In presence of regional codependence, Propositions 13-14 still holds because the proof

of Lemma 4 does not use the assumption that regions are independent. To see this, note

that the sign of equation (4.5) is not affected by the distribution of y if πMech(x,a) is

supermodular or submodular in a for all x.

4.8.9 Proof of Proposition 17

When the buyer uses mechanism OPT, it is optimal to select all suppliers from different

regions even when regions are asymmetric, because any R-strategy having nr ≥ 2 suppliers

in some region r is dominated by the (R + 1)-strategy strategy having nr − 1 suppliers in

region r and one supplier in the region (R + 1) which is of the same type as region r. This

is true because the proof of Lemma 4 is still valid given that the distributions of x and y

are the same under both the R-strategy and the (R + 1)-strategy strategy.

4.8.10 Proof of Proposition 18

Note that the buyer’s total procurement cost equals max{x1 + y1, x2 + y2} under mech-

anism RE. Thus, if the buyer has one supplier in region 1 and one supplier in region 2,

the expected total cost equals
∫

zdH1(z)H2(z); if the buyer uses two copies of region k,

k = 1, 2, the expected total cost equals
∫

zdHk(z)Hk(z). The diversification strategy that

has one supplier in region 1 and one supplier in region 2 is dominated by either or both of

the diversification strategies that use two copies of region k, k = 1, 2, because

2

∫ ∞

−∞
zdH1(z)H2(z)−

∫ ∞

−∞
zdH1(z)H1(z)−

∫ ∞

−∞
zdH2(z)H2(z)

= −
∫ ∞

−∞
zd[H1(z)−H2(z)]2 =

∫ ∞

−∞
[H1(z)−H2(z)]2dz > 0,

132



where the last equality uses integration by parts and the fact that H1(−∞) = H2(−∞) = 0

and H1(∞) = H2(∞) = 1. The proposition follows because the buyer prefers pooling to

using two symmetric regions.

4.8.11 Proof of Lemma 5

With N = 2 suppliers, the buyer’s total cost under RER equals

πRER(x, a) = [(x1 + a1) ∨ (x2 + a2)] ∧ (1 + a1) ∧ (1 + a2).

Thus, πRER(x,ahh) = x1 ∨ x2 + y1 ∨ y2,

πRER(x,all) = x1 ∨ x2 + y1 ∧ y2,

πRER(x,ahl) = 1 ∧ [(x1 + |y1 − y2|) ∨ x2] + y1 ∧ y2,

πRER(x,ahl) = 1 ∧ [(x2 + |y1 − y2|) ∨ x1] + y1 ∧ y2.

Hence, πRER(x, ahh)− πRER(x, ahl) + πRER(x,all)− πRER(x,alh)

= 2(x1 ∨ x2) + |y1 − y2| − {1 ∧ [(x1 + |y1 − y2|) ∨ x2]} − {1 ∧ [(x2 + |y1 − y2|) ∨ x1]}. (4.6)

Assuming x1 ≥ x2 without loss of generality, equation (4.6) equals

• 0 · I(|y1 − y2| ∈ [0, x1 − x2]) + (x1 − x2 − |y1 − y2|) · I(|y1 − y2| ∈ (x1 − x2, 1 − x1]) +

(2x1−x2−1)·I(|y1−y2| ∈ (1−x1, 1−x2])+(2x1+|y1−y2|−2)·I(|y1−y2| ∈ (1−x2,∞)),

if 2x1 − x2 − 1 ≤ 0;

• 0 · I(|y1 − y2| ∈ [0, 1 − x1]) + (x1 + |y1 − y2| − 1) · I(|y1 − y2| ∈ (1 − x1, x1 − x2]) +

(2x1−x2−1)·I(|y1−y2| ∈ (x1−x2, 1−x2])+(2x1+|y1−y2|−2)·I(|y1−y2| ∈ (1−x2,∞)),

if 2x1 − x2 − 1 > 0.

This implies that equation (4.6) is non-positive if |y1 − y2| < (1 − x1), is non-negative if

|y1 − y2| ≥ 2(1− x1), and is non-positive if 2x1 − x2 − 1 ≤ 0 (or, sufficiently, if x1 ≤ 1
2
) and
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|y1 − y2| < 2(1− x1). The lemma thus follows.

4.8.12 Proof of Proposition 19

Assuming x1 ≥ x2 without loss of generality, equation (4.6) is greater than (2x1 − x2 −
1) · I(|y1−y2| ≤ 2−2x1)+ [|y1−y2|− (2−2x1)] · I(|y1−y2| > 2−2x1) when 2x1−x2−1 < 0,

and it is greater than [|y1 − y2| − (2− 2x1)] · I(|y1 − y2| > 2− 2x1) when 2x1 − x2 − 1 ≥ 0.

Thus, the expectation of equation (4.6) over the distributions of x and |y1 − y2| is greater

than min{2x1 − x2 − 1, 0}Pr(|y1 − y2| ≤ 2− 2x1) + E[|y1 − y2| − (2− 2x1)||y1 − y2| > (2−
2x1)] Pr(|y1−y2| > 2−2x1), which is greater than E[|y1−y2|]−1−(2−2x1) ≥ E[|y1−y2|]−3.

This implies that it is optimal to diversify if E[|y1 − y2|] ≥ 3.

Equation (4.6) is always less than |y1−y2|, and is less than (2x1−1)·I(1−x1 ≤ |y1−y2| ≤ 1)

when x1 < 1
2
. Thus, the expectation of equation (4.6) over the distributions of x and |y1 −

y2| is less than E
[
(2x1 − 1) · I(1− x1 ≤ |y1 − y2| ≤ 1) | x1 < 1

2
, |y1 − y2| < 1

] · Prob(x1 <

1
2
, |y1−y2| < 1)+E[|y1−y2|] · [1−Prob(x1 < 1

2
, |y1−y2| < 1)]. Since E[|y1−y2|] is finite (be-

cause E[|y1|] = E[|y2|] < ∞) and E
[
(2x1 − 1) · I(1− x1 ≤ |y1 − y2| ≤ 1) | x1 < 1

2
, |y1 − y2| < 1

]
<

0, the expectation of equation (4.6) over the distributions of x and |y1 − y2| is negative if

Prob(x1 < 1
2
, |y1 − y2| < 1) is large enough. The lemma thus follows.
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Chapter 5

Conclusion

This dissertation consists of three essays on operational strategies to manage procurement

costs and risks, focusing on two types of risks concerning corporate procurement managers,

namely, supplier non-performance risk and procurement cost risk. To manage the supplier

non-performance risk, a buyer can conduct supplier qualification screening processes and only

award supply contracts to those qualified suppliers who can pass the qualification screening

processes. To mitigate the procurement cost risks, a buyer can diversify her supply base by

including pre-qualified suppliers from different geographic regions in the supply base.

Firms’ operational strategies to manage procurement risks can induce strategic responses

of their supply chain patenters, which could then affect the firms’ total procurement cost

equations and hence the buyer’s optimal operational strategy.

When the buyer conducts a procurement auction in combination with the supplier qual-

ification screening process to award a new contract to a group of new suppliers, the suppli-

ers may strategically make their bidding strategy contingent on their believes about their

competitors’ probabilities of being truly qualified, which consequently affects the buyer’s

expected contract payment to winning suppliers. Since the suppliers’ believes about com-

petitors’ qualification probabilities are affected by the timing that the buyer performs qual-

ification screening process, the buyer needs to optimize the timing so as to minimize her

expected total procurement cost. To explore the buyer’s optimal qualification screening

strategy, an analytic framework is developed in which the suppliers strategic bidding behav-
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ior is captured in a mechanism design approach. The analysis shows that the buyer’s optimal

qualification screening timing depends on both the buyer’s qualification screening cost and

the buyer’s cost to fulfill the contract outside of the auction: it is optimal to delay more

qualification screening until after the auction if the qualification screening cost is higher or

the outside option cost is lower.

Analogously, when the buyer conducts a procurement auction between an incumbent

supplier and an entrant, the timing of qualification screening the entrant would affect the

incumbent’s bidding strategy. The incumbent in an open-descending auction setting chooses

three strategies — boycotting, testing-the-water, and bidding-to-win — depending on his

cost. Such strategic bidding behavior can also be affected by the buyer’s qualification cost

and the entrant’s qualification probability. Thus, a buyer seeking total procurement cost

minimization needs to tradeoff between “scaring the incumbent for price concessions” and

the incumbent’s strategic holding back in bidding. The research shows that the buyer should

delay screening the entrant until after the auction (to save qualification cost and retain the

opportunity of running the auction) unless the qualification cost is very cheap and the

entrant’s qualification probability is medium.

The buyer also needs to take into account of suppliers’ strategic response when diver-

sifying her supply base. This is because diversification amplifies cost asymmetry among

suppliers and could enable suppliers with cost advantage to use such advantage against the

interests of the buyer — by charging a high contract price and taking windfall profit out of

the buyer’s diversification benefit — especially when the contract price is mainly determined

through the suppliers’ competition. Such windfall-profit taking can be so significant that

it would surprisingly be better for the buyer not to diversify the supply base in a typical

setting where the buyer uses two suppliers and runs an open descending reverse English auc-

tion. With more suppliers and regions, such a buyer can contain the advantaged suppliers’

windfall profit-taking by keeping two competing suppliers within the same region, i.e., using

a partial diversification strategy.
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