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PREFACE

At first blush a dissertation with the words “market systems” in the title appears

out of place in the mechanical engineering department. The dissertation is motivated

by two observations. The first is that establishing the product development problem

as I have posed it requires engineering insight. The goal here is to make product design

decisions endogenous to the overall product planning decision. Achieving this goal

requires the ability to model the technology capability of the firm. This is precisely

what engineers do: describe the physical interactions within a product that lead to

the complex attribute colinearities lamented by marketers and economists.

The second observation is that engineers are the primary customers of this work.

The benefits from the insights gained from a market system approach that includes

the ability to change vehicle design are most valuable in the early stages of product

planning. At the early stage planners have the most design freedom. A methodol-

ogy for exploring the potential economic desirability of future technologies provides

insight into R&D investment. Additionally, integrating engineering design models in

a market system context begins to provide tools to engineers to enable communica-

tion with the broader product development organization. As communication across

the organization improves, the expected outcome is improved profitability, product

quality, and reduced time to market.

BF

Ann Arbor, 2009
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ABSTRACT

Market Systems Modeling for Public Versus Private Tradeoff Analysis in Optimal
Vehicle Design

by

Bart D. Frischknecht

Chair: Panos Y. Papalambros

The motivating application for this work is the tension between the public versus

private tradeoff in the automotive industry between firm profit and the public nega-

tive externalities of automotive transportation, particularly fossil fuel energy use and

greenhouse gas emissions.

This dissertation establishes a methodology for evaluating automotive vehicle de-

sign according to private (firm profit) and public (fuel consumption) criteria. The

methodology set forth relies on developments from engineering, economics, and mar-

keting. The primary contribution of this dissertation is that these disparate devel-

opments have been brought together in a single mathematical problem formulation

for a large-scale problem. The integrated problem formulation will allow study of

interdisciplinary issues related to product development in a new way. Other work has

begun to develop similar comprehensive problem formulations. This work points to

some of the challenges that must be addressed in such formulations. Specifically, the

functional form of the cost models, and the utility specification of the demand models

can have a large impact on the market outcomes even when the differing models ap-
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pear to fit the underlying data similarly well. A second contribution is the application

of the notion that we can explore the tradeoff between private interests and public

interests by simulating market response under different hypothetical scenarios. We

can then gain deeper insights by examining the tradeoff relationships between the

different scenarios.

The strength of the approach, at its current state of development, lies not in a

claim to predict future automotive market behavior but in establishing a quantitative

approach for evaluating the implications of future scenarios were they to become

reality. Individual firms and policy makers can learn from this approach by comparing

the differences between the scenario outcomes.

The problem formulation integrates models of demand, cost, and product per-

formance in order to implement a game-theoritic formulation of producer behavior

where producers choose the attributes of the products they produce and the prices

they will charge in order to maximize profit. Two variations of a newly estimated

mixed-logit discrete choice model of new car buyer purchase behavior are developed

for incorporation as demand models. Three cost model formulations are developed

and compared in the context of the problem formulation. An explicit representation of

an automotive manufacturer’s technology capability in the form of a comprehensive

yet stylized engineering performance model is developed. Novel metrics are estab-

lished for comparing the Pareto set of solutions from one hypothetical scenario to the

next. Hypothetical scenarios are evaluated involving the design of a single vehicle

within a price-equilibrium market context and the design of multiple same-segment

vehicles within a price-equilibrium market context. The differences in scenario out-

comes based on differences in the demand and cost models are explored. The results

show that improving the fuel economy of a specific vehicle does not always lead to a

reduction in US fleet fuel consumption.

Several areas for modeling improvement are identified.
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CHAPTER I

Introduction

Increasing environmental sustainability related to the automotive vehicle industry

can be seen as a public good. Negative externalities from the existing automotive-

centric transportation system vary from harmful airborne emissions, traffic conges-

tion, noise, and crashes, to greenhouse gas emissions. Fuel taxes, emissions standards,

and fuel economy standards transfer the costs of these externalities to private actors,

namely automotive manufacturers and individual drivers. There is much debate about

the effectiveness of the current set of regulatory policies in mitigating the negative

externalities of automotive transportation especially as climate change has captured

public attention. A diversity of technologies is expected to proliferate over the next

decades including hybrid, plug-in hybrid, clean diesel, bio-fuels, and fuel cells [J.D.

Power and Associates (2006)] that could have a substantive impact on greenhouse

gas emissions from automotive trasnportation.

This dissertation establishes a methodology for evaluating automotive vehicle de-

sign according to private (firm profit) and public (fuel consumption) criteria. The

methodology set forth relies on developments from engineering, economics, and mar-

keting. The primary contribution of this dissertation is that these disparate devel-

opments have been brought together in a single mathematical problem formulation

for a large-scale problem. The integrated problem formulation will allow study of

1



interdisciplinary issues related to product development in a new way. Other work has

begun to develop similar comprehensive problem formulations. This work points to

some of the challenges that must be addressed in such formulations. Specifically, the

functional form of the cost models, and the utility specification of the demand models

can have a large impact on the market outcomes even when the differing models ap-

pear to fit the underlying data similarly well. A second contribution is the application

of the notion that we can explore the tradeoff between private interests and public

interests by simulating market response under different hypothetical scenarios. We

can then gain deeper insights by examining the tradeoff relationships between the

different scenarios.

The strength of the approach, at its current state of development, lies not in a

claim to predict future automotive market behavior but in establishing a quantitative

approach for evaluating the implications of future scenarios were they to become

reality. Several areas for modeling improvement are identified. Individual firms and

policy makers can learn from this approach by comparing the differences between the

scenario outcomes.

This dissertation develops model components that represent the technical feasi-

bility, the cost, and the consumer demand of new automotive vehicles. The approach

is not tied to the automotive industry. It can be applied to a range of products and

markets as well as a range of public interests.

1.1 Product Development as a Quantitative Decision-making

Process

The description of a product depends on the disciplinary perspective adopted. For

example, a product may be a complex assembly of interacting components to an engi-

neering designer. It may be a sequence of development and production process steps to

2



a supply-chain manager. The product may be a bundle of attributes to a marketer, or

it may be viewed by an executive as the outcome of an organizational process [Krish-

nan and Ulrich (2001)]. Each description is useful in achieving the goals of a product

development organization. None of the descriptions are complete. Analogous to the

communication in actual organizations, we can develop mathematical abstractions of

each description. Using the mathematical descriptions of a product we can observe

the interactions between stakeholders, and we can exercise the mathematical frame-

work under different scenarios to gain insights into the actual product development

problem. The decision-making framework to be implemented is adapted from that

introduced by Georgiopoulos [Georgiopoulos (2003)] and Michalek [Michalek (2005)].

1.1.1 Design for market systems framework

We adopt quantitative measures for each product development perspective. En-

gineering design will be represented as a vector of performance criteria z = f(x)

that are a function of product design variables x. The marketing interest is as-

sumed to be a representation of consumer demand Qj(Uij); i = 1, . . . , I; j = 1, . . . , J

where Uij = u(α(zj), pj) is the utility of consumer i as a function of product at-

tributes Product attributes α(zj) including price pj for product j. Product cost

Cj = c(xj, Qj(Uij)), a function of product design variables xj and quantity demanded

Qj(Uij), represents operations. Single-period profit π = Qp − C is taken as the

organizational objective. In general, each firm will produce multiple differentiated

products (Qf =
∑Jf

j=1Qj). Finally, each firm in the market faces competition from

other firms. By adopting a consumer utility measure based on product attributes

and price we assume that a firm’s products compete in the market on these at-

tributes. The demand function for firm f is modified to account for competitors

Qf =
∑J

j=1

∑I
i=1Qj(Uij,Uik), ∀k = 1, . . . , J 6= j.

The interactions of the various product descriptions can be formalized into a
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Decision Variables
price, product design,...

Product 
Attributes

Cost Demand

max Profit 
subject to 
 Engineering,
 Regulatory Constraints

Profit-optimal 
price and 

design

N
Y

Figure 1.1: Single-firm design-decision-model schematic

mathematical optimization problem representing the firm’s profit interest.

max
p,x

π(p,x; v)

subject to: engineering constraints

regulatory constraints (1.1)

where the objective is to maximize profit with respect to design variables x and price

p, given a set of fixed parameters v, subject to engineering and regulatory constraints.

A graphical description of the interacting functions is shown in Figure 1.1.

The design decision model can be expanded to include multiple firms. The firms’

decisions are coordinated using a game-theoretic structure describing the competition

between firms. The interaction between firms is illustrated in Figure 1.2.
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Competitors

Decision Variables
price, product design,...

Product 
Attributes

Cost Demand

max Profit 
subject to 
 Engineering,
 Regulatory Constraints

Profit-optimal 
price and 

design

N
Y

Figure 1.2: Multi-firm design-decision-model schematic

A mathematically formalized decision model as described in Equation (1.1) is a

suitable subject for counterfactual experiments. Counterfactual experiment is a term

derived from economics to describe the exercise of modifying model parameters in

order to study the model response to the new parameter values. The word counter-

factual is used to textslasize that the model is exercised using parameters other than

those originally found to estimate best the observed market activity without implying

that the results reflect a prediction of future market activity. For example, using data

on vehicle miles traveled in the US, it may be possible to fit a model that estimates

the vehicle miles traveled in a given year as a function of gasoline price, gross domestic

product, etc. A counterfactual experiment would be to change the price of gas for a

given year and observe the difference in vehicle miles traveled between the original

model and the model with the change in gas price.

The work in design for market systems has evolved from the notion that coun-

terfactual experiments can indeed inform future design decisions either as scenario

generators or as full-fledged prescriptive models. This is a similar view to the market-

ing community whose work seeks to be normative rather than positive [Chintagunta
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et al. (2006)]. A question in design for market systems is how to identify sensible

optimization outcomes within a counterfactual experiment. If the original market is

in price and design equilibrium and the demand and cost models capture this, then

a design optimization market simulation should replicate the existing vehicle prices

and designs. The researcher could then experiment with counterfactual demand- or

supply-side shocks.

If the market is not in design (or price) equilibrium, then a design optimization

market simulation will suggest changes to firms’ designs (prices) in order to maximize

profits. The confounding question becomes how to differentiate a situation where

the market is in design and price equilibrium but the cost and demand models are

inadequate from a situation where the market is not in equilibrium and the cost and

demand models are reflective of the market. We conjecture that one way forward is

to develop models with sufficient flexibility to allow testing of either scenario. Such

models would necessarily accommodate the effects of attribute and not only price

changes. This dissertation is a first step in establishing such models.

Although the majority of the design examples in the literature have adopted pub-

lished choice models, we hypothesize that this practice may contribute to poor market

simulation results regardless of whether the market is in equilibrium or not. This can

occur when the estimated choice model describes well the aggregate consumer be-

havior given a fixed vehicle fleet, but misses preference nonlinearities and correlations

between attributes, which would mislead the design optimization. In this dissertation

we seek to expand the understanding of demand modeling in a design context, leaving

the comprehensive evaluation of integrated engineering, product cost, and demand

models to future work.
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1.1.2 Economic Assumptions

The development of the previous sections implies three economic assumptions.

Namely, producers are profit-maximizers; consumers are utility-maximizers; and com-

petitive behavior is well-defined. There is a tension between these assumptions and

the aims of the analyst. The assumptions are intuitively appealing, and they make

the problem computationally tractable. However, we desire the results to be useful

for normative rather than positive analysis. If the basic assumptions held in reality,

then producers would have already determined methods for maximizing profits, and

the market would be in price and design equilibrium. This dissertation assumes that

the automotive market demonstrates static price equilibrium during a single period

(year). We also assume vehicle producers seek to produce vehicles that maximize

profit. However, we make no assumption about the state of market equilibrium with

respect to vehicle designs. Calculating price equilibrium of the US automotive mar-

ket under policy changes by a firm or firms (i.e., design changes in one or a small

number of vehicles) is then used as one method for evaluating market response to the

introduction of new technology or regulation.

We make several assumptions about the structure of competition. Much of the eco-

nomics literature evaluating the automotive market assumes that the vehicle producer

sets vehicle price directly. Recent work in the design for market systems literature

confirmed that modeling the vehicle producer and the vehicle dealer as independent

decision-makers changes the nature of the design decision problem for the vehicle

producer [Shiau and Michalek (2009)]. To simplify the discussion of the work in this

dissertation we evaluate the case where the dealer markups are fixed and assumed

known a priori.

Policy analysts have used a single-stage equilibrium where a producer makes all

decisions simultaneously. Industrial organization economists view this approach as
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simplistic. They suggest a subgame perfect equilibrium where all producers make

product design decisions before making a subsequent decision to update prices. This

idea is supported by the notion that producers have more freedom to control prices

than vehicle designs [Tirole (1988)]. We adopt a subgame perfect equilibrium ap-

proach where the pricing game is the subgame within the product design game. We

adopt a fixed-point iteration algorithm for computing price equilibrium of the auto-

motive fleet as developed in [Morrow (2008)].

1.1.3 Automotive Vehicle Application

The mathematical model described by Equation (1.1) and Figure 1.2 is illustrated

through an example representing the US automotive market. Models have been de-

veloped to represent product attributes, demand, and cost.

Product attributes

Product attributes α are assumed to be functions of product design variables x.

Product attributes may be a one-to-one or some other transformation of product per-

formance criteria z(x). The fidelity of product attribute representation is determined

by the quality of the models translating the physical design variables to product per-

formance criteria. For the purposes of this research we assume that the engineering

models of vehicle performance adequately describe the relationships between product

design decisions and product attributes. Sensitivity analysis can be employed to look

at the effects of uncertainty.

Engineering design models were built to represent a five-passenger mid-size crossover

vehicle to evaluate proposed vehicle concepts in terms of vehicle attributes such as

fuel economy, acceleration, range, crashworthiness, and cargo capacity. Three pow-

ertrain options are modeled for the vehicle: gasoline spark-ignition internal combus-

tion engine; gasoline turbocharged direct-injection internal combustion engine; and a
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split-mode hybrid vehicle design with a battery for energy storage, a gasoline internal

combustion engine, and two electric machines for battery charging and locomotion.

New engineering models were developed for this dissertation with the exception of the

hybrid vehicle model which was developed by Kukhyun Ahn from other work [Ahn

(2008)]. The engineering design model is described in Chapter 3.

Consumer demand

Consumer demand for new automotive vehicles is modeled based on random utility

theory [Keeny and Raiffa (1976)]. A choice model indicates the probability that

individual i selects a product j given a utility expression Uij. A specific choice model

may represent consumers as having homogeneous or heterogenous preferences. We

adopt utility expressions that are a function of individual demographics s such as

income, household size, location of residence, etc.; and product attributes α. We

assume that the aggregate choice shares Pj for each product j can be represented by

summing the individual choice shares Pij for each product.

Pj =
1

I

I∑
i=1

Pij (1.2)

Market demand is the product of aggregate choice share and total marketsize M .

Qj = MPj (1.3)

In this dissertation we briefly discuss existing choice models from the literature in

Chapters 2 and 4, and we estimate new choice models for the US automotive industry

as described in Section 4.2. The data for the new models comes from a survey of new

car buyers and detailed vehicle data.
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Cost model

A cost model represents all of the relevant economic information about a firm’s

technology for maximum profit considerations [Varian (1992)]. The cost model relates

company cost to specified levels of outputs or, in our case, to a product with specified

attribute levels. A cost model can be expressed as a function of product attributes

or directly as a function of design and process variables. The domain of the cost

model describes the feasible output levels of the firm. We present and compare

three cost modeling approaches for the US automotive market. One approach seen

in the marketing and economics literature is to assume pricing decisions represent

market equilibrium outcomes. Then, cost and utility model forms are postulated

and unknown coefficients are estimated for both models. This approach was taken

in [Berry et al. (1995)], for example. We implement this approach as described in

Section 5.1.4.

A second approach we propose here is to identify cost drivers from the physical

components of the product and regress a cost relationship based on price (see Section

5.1.3). We have implemented such an approach using data from model year 2005 in

Ward’s Automotive Yearbook [Wards Communications (2006)].

The third approach modifies a cost model from De Weck [De Weck et al. (2006)]

and Cook [Cook (1997)] and is described in Section 5.1.2. It is based on assigning

a cost to a hypothetical average vehicle and then computing the cost for a specific

vehicle based on design deviations from the average. Approaching cost modeling in

this way enables design-specific cost differences to be considered without requiring a

complete bottom up cost structure. This approach requires individual cost models

for each vehicle class of interest, as opposed to the other approaches that suggest cost

relationships for the entire vehicle fleet.
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Competition

The mathematical modeling of the competitive interaction among firms is de-

scribed in Chapter 6.

Optimal Vehicle Design Problem

The implementation of the optimal vehicle design problem is described in Chapter

8.

1.2 Public versus Private Tradeoffs

This dissertation follows previous work on public and private interest in vehicle

design [Michalek et al. (2004); Wissmann and Yassine (2005)]. We look at this prob-

lem in more detail by developing an engineering model with greater delity for a specic

vehicle class, by developing new demand models from disaggregate consumer data,

by considering the impact of the entire market through rm pricing behavior, and

by formalizing metrics for comparing bi-objective optimization problems that can be

applied to public versus private tradeoff scenarios.

Increasing the energy efficiency of personal transportation, reducing vehicle miles

traveled, or switching to more efficient modes of transportation are three high-level

strategies for decreasing the environmental impact of personal transportation. Given

a fixed number of vehicle miles traveled, emissions outcomes are directly related to

the fuel source and fuel economy of transportation vehicles. Fuel consumption is

adopted as the public good objective in these studies.

1.2.1 Externalities

Economic externalities affect decision-making. An externality exists when con-

sumers and producers do not explicitly consider all costs and benefits associated with
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Negative Externalities
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S
D
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internalized
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Society Optimal 
Market Equilibrium
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Figure 1.3:
(a) Market equilibrium compared to societal ideal with externality inter-
nalized by supplier. (b) Market equilibrium compared to societal ideal
with externality internalized by consumer

their choices, as observed by society. A negative externality occurs when a decision

maker does not bear the full cost of a decision and over-produces or over-consumes.

Figure 1.3 shows two cases where the market equilibrium point is different compared

with the societal ideal. Figure 1.3a shows the case where all external costs have been

internalized by the supplier. For example, this situation could result if automotive

vehicle producers were taxed directly for each vehicle they produced. Figure 1.3b

shows the case where all external costs have been internalized by the consumer. For

example, this situation could result if consumers were taxed directly for each vehicle

they purchase. In fact, both of these examples already occur in the US automotive

market. The size of the tax on consumers and producers determines how different the

observed market equilibrium is from the hypothetical unregulated market equilibrium.

Externalities occur frequently with public goods such as clean air because a public

good is not excludable and is nonrival [Varian (1992)]. This means that an individual

can not be excluded from consuming the good and one person’s consumption does not

limit another persons ability to consume the good. Negative externalities related to

automobiles include traffic congestion, harmful pollutant emissions, road degradation,
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accidents, and greenhouse gas (GHG) emissions. For example, increased vehicle fuel

economy has a personal benefit through lower cost of transportation. However, the

societal benefit of lower greenhouse gas and other harmful emissions and greater

energy security are not captured in the vehicle or fuel purchase transaction. The

result is lower production of higher fuel economy vehicles, or fuel and vehicle prices

that are too low.

The basic strategy for eliminating externalities is to create a new market (convert

the public good into a private good), or to incorporate the costs and benefits that

were once external into an existing market. The debate surrounding externalities is

not usually about their existence, but the price society should be willing to pay to

encourage positive externalities and discourage negative externaities.

Mechanisms such as fuel taxes, emissions standards, and fuel economy standards

are all measures that place additional cost on consumers or vehicle producers. How-

ever, one may argue that these measures do not internalize the total cost to soci-

ety, and that an externality still exists, particularly with respect to GHG emissions.

This dissertation will not discuss public valuation [Arrow et al. (1993)] or finding the

“right” price for GHG emissions. Instead, we present analysis of the trade-off between

profit and fuel consumption to support the private decision of a producer to act in its

best interest. This construction has the side-benefit (i.e., positive externality) that

it can be used to aid policy makers in quantifying one aspect of the public versus

private debate with respect to fuel consumption and the automotive vehicle industry.

1.2.2 Firm Perspective

We adopt an enterprise-wide trade-off model [Hazelrigg (1998); Michalek et al.

(2004); Wassenaar and Chen (2003)] with two objectives: a private one (a firm’s

stated business objective to maximize profit) and a public one (a firm’s stated social

objective to minimize environmental impact). The enterprise balances these compet-
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ing objectives with price and product design as decision variables. Firm motivation to

pursue a social objective may come from a desire to pursue corporate social responsi-

bility for brand building purposes, from anticipation of future government regulations,

from anticipation of changing consumer preferences, from a desire to proactively shift

consumer preferences, or from a desire to mitigate risk under uncertain exogenous

effects such as fuel prices.

The firm may choose to see its influence on the public objective on multiple levels.

Firms whose revenue stream relies on the sale of new vehicles may influence the public

outcome primarily by reducing the on-road GHG intensity of one or multiple vehicle

offerings. They may assess their impact on multiple levels: the firm’s fleet GHG

intensity, the firm’s sales-weighted fleet GHG intensity, or the entire US automotive

new vehicle sales-weighted fleet GHG intensity compared to a baseline scenario.

1.2.3 Greenhouse Gas Emissions as a Negative Externality in the Auto-

motive Industry

Transportation in the US delivers a significant environmental burden, causing

about 28% of the greenhouse gas emissions in the US in 2004. Light-duty trucks alone

accounted for over 27% of the total greenhouse gas emissions from the transportation

sector [USEPA (2006a)]. In addition, light duty ground vehicles (passenger cars and

trucks) contribute about 28% of CO, 11% NOX , and 15% VOC emissions in the U.S.

and are also sources of PM, SO2, and NH3 [USEPA (2000)].

Numerous methods have been proposed for analyzing and labeling environmental

impact of products and services [EUCAR et al. (2004)]. Areas of concern for the

automobile include contribution to global warming, harmful emissions, and nonre-

newable resource and energy use. The vehicle-use phase constitutes as much as 85%

of GHG and other emissions [Keoleian et al. (1997); Graedel and Allenby (1998)].

Research has found significant correlation between cumulative fossil fuel energy use
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and numerous other environmental indicators [Huijbregts et al. (2006)], so fossil fuel

use attributed to the use phase of a vehicle life cycle (fuel economy) appears to be a

suitable metric for assessing environmental performance. For advanced technologies,

gasoline equivalent fuel economy measures are being proposed and developed [Gonder

and Simpson (2006); Markel et al. (2006)].

A miles per gallon gasoline equivalent metric for advanced technology vehicles

may be difficult to interpret. What could once be communicated in a single number

now requires multiple metrics to communicate (e.g., $/mile, frequency of trips to the

pump, barrels of foreign oil consumption, greenhouse gas (GHG) emissions). Should

a miles per gallon gasoline equivalent (MPGGE) that is calculated on a mile/joule

or mile/$ basis become prevalent in the future, some other metric for recognizing the

GHG contribution of driving a vehicle may be relevant. A straightforward approach

for doing this is to follow a well-to-wheels approach for energy required in the use

phase similar to what will be done for any MPGGE calculation. Several well-to-wheels

studies have been performed that track such factors as total energy use, fossil fuel use,

GHG emissions, criteria pollutant emissions, etc. in the US [Wang (2001); Brinkman

et al. (2005); ANL (2007); Wang (2002)] and in Europe [EUCAR et al. (2004, 2006)].

These studies typically consider numerous energy paths including production and

distribution of conventional gasoline, hydrogen, biofuels, and electricity. Data from

these models could support future work for well-to-wheels GHG emissions calculations

for proposed vehicle designs.

1.2.4 Previous Studies

The National Energy Modeling System developed by the Energy Information Ad-

ministration [Gabriel et al. (2001)] uses an equilibrium framework to project energy

consumption and prices for the US. It has been used to analyze various scenarios re-

garding penetration of advanced technology vehicles among others. Argonne National
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Lab’s VISION model [ANL (2006)] is a spreadsheet model specifically for projecting

impacts of advanced technology transportation vehicles on energy and greenhouse

gas emissions outcomes. The base case for this model is updated from the Energy

Information Administration’s annual report.

General Motors, Argonne National Lab, and Shell partnered to develop well-to-

wheels analysis for a full-sized pickup truck [Brinkman et al. (2005)]. Their intent was

not to look at market dynamics, but instead to capture the vehicle characteristics and

the associated environmental impact that would result from a fully-functional pickup

truck using various powertrains and fuel pathways. They could then use this data to

assess the economic viability of each option.

A 2004 NESCCAF report [Cooper et al. (2004)] studied the emissions impacts

of various advanced vehicle technology packages across five different vehicle classes.

They considered a cost-effectiveness metric to make recommendations about which

technologies should be adopted by the market.

These previous studies are primarily analysis tools. They do not project auto-

motive vehicle demand; rather, they require this as an input to then analyze the

environmental outcomes.

As cited previously, some preliminary work has proposed using a design for market

systems approach to study the public vs. private goods automotive design problem.

Michalek et al. [Michalek et al. (2004)] focused on the impact of producer design

decisions (engine selection) in the face of various hypothetical regulatory regimes.

Wissmann and Yassine [Wissmann and Yassine (2005)] developed a design for market

systems framework that demonstrated how producers may adapt designs over time

given changes in fuel price, price of steel, and regulation.

The goal of this dissertation is to bring greater fidelity to the engineering applica-

tion and greater sophistication and modeling insights to the demand and cost sides

to enable more realistic application of the design for market systems idea.
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1.3 Expected Contributions

The methodology set forth relies on developments from engineering, economics,

and marketing. The primary contribution of this dissertation is that these previously-

made disparate developments have been brought together in a single mathematical

problem formulation for a large-scale problem. The integrated problem formulation

will allow a new way to study interdisciplinary issues related to product development.

Other work has also begun to develop similar comprehensive problem formulations.

This work points to some of the challenges that must be addressed in such formula-

tions. Specifically, the functional form of the cost models, and the utility specification

of the demand models can have a large impact on the market outcomes even when

the differing models appear to fit the underlying data similarly well. We show this by

comparing outcomes for the vehicle design problem formulation using two different

cost models and two different demand models.

A second contribution is the application of the notion that we can explore the

tradeoff between private interests and public interests by simulating market response

under different hypothetical scenarios. We can then gain deeper insights by exam-

ining the tradeoff relationships between the different scenarios. Novel metrics are

established for comparing the Pareto set of solutions from one hypothetical scenario

to the next that can be public and private tradeoffs derived from hypothetical market

simulations.

Practical contributions include the development of several models that can be

applied to other similar problems. Specifically, the problem formulation integrates

models of demand, cost, and product performance in order to implement a game-

theoritic formulation of producer behavior where producers choose the attributes of

the products they produce and the prices they will charge in order to maximize profit.

Two variations of a newly estimated mixed-logit discrete choice model of new car

buyer purchase behavior are developed for incorporation as demand models. Three
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cost model formulations are developed and compared in the context of the problem

formulation. An explicit representation of an automotive manufacturer’s technol-

ogy capability in the form of a comprehensive yet stylized engineering performance

model of a midsize crossover vehicle is developed. A methodology for developing

and estimating mixed-logit choice models accessible to the design for market systems

researcher is documented.

Hypothetical scenarios are evaluated in order to test the vehicle design problem

formulation involving the design of a single vehicle within a price-equilibrium market

context and the design of multiple same-segment vehicles within a price-equilibrium

market context. The differences in scenario outcomes based on differences in the

demand and cost models are explored. The results show that improving the fuel

economy of a specific vehicle does not always lead to a reduction in US fleet fuel

consumption.

Caution should be taken in interpreting the results of this study. The optimal

vehicle design problem solutions presented in Chapters 7 and 8 represent a stylized

equilibrium rather than a formal, full-market design and price equilibrium. Significant

obstacles remain in studying maximum profit formulations in vehicle design including

questions about underlying demand model validity and realistic cost models among

others. Furthermore, regulatory scenarios can be considered, such as the CAFE

standard, a fuel tax, or a CO2 tax. Therefore, the numerical results presented here

are useful in illustrating the proposed concept of public and private alignment rather

than suggesting specific decisions or policy outcomes.

1.4 Dissertation Overview

The dissertation proceeds as follows. Chapter 2 reviews the literature from discrete-

choice modeling, emperical cost modeling, multi-objective programming, game the-

ory, market simulations in the automotive industry, and design for market systems
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research. Chapter 3 develops the engineering model for a midsize crossover vehicle.

Chapter 4 describes the newly-estimated demand models of the US automotive in-

dustry and presents methods for evaluating the suitability of such demand models.

Chapter 5 presents the three cost modeling approaches. Chapter 6 briefly reviews the

mechanics of game-theoretic market simulations. Chapter 7 expands the public versus

private tradeoff discussion by presenting measures for comparing tradeoffs between

hypothetical future scenarios. Chapter 8 details several hypothetical scenarios. The

first set of studies focuses on a single producer modifying a single vehicle in the fleet.

The second set of studies focuses on the midsize crossover segment where three firms

can modify their midsize crossover vehicle. Chapter 9 concludes with a summary, con-

tributions, and future work. One appendix supplements the dissertation. Appendix

A provides detailed background on the development of the vehicle engineering model.
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CHAPTER II

Literature Review

This chapter reviews literature and background related to the many disciplines

touched by this dissertation. Section 1 reviews discrete-choice modeling. Section 2

reviews empirical cost modeling. Section 3 reviews game theory. Section 4 reviews

multiobjective programming. Section 5 reviews previous work in market simulations

of the automotive vehicle industry. Section 6 reviews design for market systems

research.

2.1 Discrete-choice Modeling

Choice models can be useful in estimating demand for products. Many econo-

metric demand models have been estimated for the automotive market, for example

Berry, Levinsohn, and Pakes; Beresteanu and Li; and Train and Winston [Berry et al.

(1995); Beresteanu and Li (2008); Train and Winston (2007)]. These models predict

choice share as a function of product attributes, individual demographics, product-

demographic interactions, and other factors.

Table 2.1 lists the model variables or, covariates, used in three mixed-logit choice

models developed for the automotive industry. (BLP 95: [Berry et al. (1995)]; B&L:

[Beresteanu and Li (2008)]; T&W: [Train and Winston (2007)]). The first column

labels the choice model. The second column lists the years over which the choice model
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was estimated. For example, BLP95 used vehicle and sales data from 1971-1990 to

estimate their choice model. The third, fourth, and fifth columns list the covariates

for each model. The covariates are divided by vehicle attributes, household attributes,

and other factors. Some covariates can take on continuous values such as vehicle price

or size. Other covariates are discrete such as household size, and others are binary

taking a value either 0 or 1 such as Automatic transmission or Air conditioning. The

last column lists the cost model attributes for cases where a cost model was jointly

estimated with the choice model. The respective references contain the full definition

of each covariate and the functional form of consumer utility.

2.1.1 Choice Paradigm

Random utility theory is the most common choice paradigm in marketing and

economics work. It assumes that consumers seek to maximize satisfaction or utility

from their purchases. An individual’s utility Uij is assumed to be composed of two

parts, a systematic component νij and a random component εij. The role of the utility

specification is to describe the preference structure for an individual by providing a

mapping from a preference ordering of each choice alternative to a numerical ordering

of each choice alternative. The analyst assigns the systematic component of utility

νij to each individual i for each choice alternative j.

In one typical arrangement, the utility is expressed as a linear combination of

product attributes dj with fixed effects δ, demographic and attribute interactions bij

with fixed effects β, attributes or interactions mij with individual-specific random

effects µi [Train and Winston (2007)], and in independent and identically distributed

random variable εij. The random effects allow for individual taste differences inde-

pendent of demographics or other observed factors, Equation (2.1).

Uij = δ′dj + β′bij + µ′imij + εij (2.1)
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The probability Pij that an individual i chooses product j is the probability that

the difference in the systematic component of utility between product j and any other

product k is greater than the difference in the random component of utility of the

other product k and product j,

Pij = Pr(νij − νik > εik − εij|∀k). (2.2)

For the special case where we assume that the portion of the random component εij is

independent and identically distributed across individuals according to the extreme

value type 1 distribution and the product and product and demographic interaction

random components are assumed known for each individual, a closed-form expression

exists for the choice probabilities [Train (2003)].

Pij =
eδ
′dj+β′bij+µ′imij∑J

k=1 e
δ′dk+β′bik+µ′imik

(2.3)

When a sample population is assumed representative, the aggregate choice shares are

taken to be the weighted average of the individual choice shares.

Pj =
1

I

I∑
Pij (2.4)

The simple logit model results when we assume that all individuals have homo-

geneous taste preferences (Equation (2.5)). This model still allows heterogeneity to

enter through observed demographics.

Pj =
1

I

I∑ eδ
′dj+β′bij∑K eδ′dk+β′bik

(2.5)
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2.1.2 Consumer preference and product differentiation

Economic theory describes two forms of product differentiation: Vertical differ-

entiation results when consumers agree on the relative value ordering (or quality)

of competing products or attributes of a product but differ in their willingness to

pay for increased quality. Horizontal differentiation results when consumers disagree

about the relative ordering of goods or attribute levels of a good. In the new vehi-

cle automotive market we observe products that appear both vertically (e.g., various

grades of luxury for a full-size sedan) and horizontally (e.g., various vehicle classes)

differentiated. We also observe that manufacturers produce a portfolio of products

rather than a single product offering. Consumer preferences can be one factor mo-

tivating firms to produce multiple products that are both vertically differentiated

and horizontally differentiated. For example, industrial organization theory suggests

that when consumers have nonidentical preferences product differentiation tends to

weaken price competition [Tirole (1988)].

The previous discussion motivates the challenge of developing choice models that

capture consumers’ vertical as well as horizontal taste differences. It is expected

that a choice model that only represents vertical preference differences (willingness to

pay) would suggest policies different from a model that represents horizontal prefer-

ence differences (“distance from ideal”). In the former, the dominant tradeoff for the

firm is between cost and improvement of the attribute but in the latter, the impor-

tant tradeoff is choosing which group of consumers to address. We may conjecture

that for the new car buyer vehicle acceleration, fuel economy, safety features, and

luxury appointments are examples of attributes for which preference may be char-

acterized best by vertical differentiation. On the other hand, preference for brand,

vehicle class, overall size, drivetrain (i.e., FWD, RWD, AWD, 4WD), ride, handling,

and transmission (i.e., automatic, manual) may be best characterized by horizontal

differentiation.
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The consumer preference structures across individuals in the population can be

categorized by their tendency to promote vertical differentiation between product

offerings or horizontal differentiation. Following the development of Tirole [Tirole

(1988)], one example of a preference structure leading to vertical differentiation is

described by the utility function in terms of price p and quality r for consumer i and

product j in Equation (2.6).

Uij = δirj − pj (2.6)

The utility of the outside good is assumed to be 0.

Two market cases can result for a monopolistic firm considering two products

with different prices (p1, p2) and qualities (r1, r2). We consider a consumer population

that is represented by a distribution of preference parameters µj that are assumed

distributed according to some known distribution (µj ∼ f(µ)). In the case where

r2/p2 ≥ r1/p1 then Product 2 dominates Product 1. Demand for Product 2 will be

Q2 = M

(
1− F

(
p2

r2

))
, (2.7)

where F () denotes a functional relationship. In other words, consumers with µj ≥
p2/r2 purchase Product 2; otherwise, they do not purchase either product. When

r2/p2 ≤ r1/p1, consumers with µj > (p2 − p1)/(r2 − r1) purchase the higher quality

good (i.e., Product 2). Consumers with p1/r1 < µj ≤ (p2−p1)/(r2− r1) purchase the

lower quality good (i.e., Product 1). Demand for Product 2 will be

Q2 = M

(
1− F

(
p2 − p1

r2 − r1

))
, (2.8)

and demand for Product 1 will be

Q1 = M

(
F

(
p2 − p1

r2 − r1

)
− F

(
p1

r1

))
. (2.9)
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One example of a preference structure leading to horizontal differentiation is de-

scribed by the utility function for consumer i and product j in Equation (2.10).

Uij = βi(γi − αj)2 − pj (2.10)

Two parameters identify each consumer; µi represents willingness to pay similar to the

vertical differentiation case but should have a negative sign; γi represents consumer i’s

preferred level of attribute α. The specific functional form (in this case a quadratic)

controls the change in utility as an attribute’s value is further away from the ideal

one (γi). Following the linear city analogy [Hotelling (1929)] consumers’ preferred

attribute levels are assumed distributed on a continuum. If we assume two competing

firms will offer one product each, most consumers will experience some disutility (or

“transportation cost”) by purchasing a good away from their ideal. In the first case,

Product 1 is priced below Product 2 such that the reduced price compensates for the

transportation cost for all consumers. In the second case, there is a tradeoff between

price and transportation cost such that some consumers prefer Product 1 and some

consumers prefer Product 2. A variant on this case occurs when both products are

priced so high that the consumers in the middle purchase neither product due to the

additional transportation cost.

With the exception of dummy coding [Beresteanu and Li (2008)], the typical

utility function of mixed-logit specifications found in the literature is formulated as

in Equation (2.1). Studying this equation reveals that linear-in-attribute specifica-

tions primarily imply vertical differentiation through the monotonicity of utility with

respect to each attribute.

Linear-in-attribute specifications do allow for two commonly seen cases and a

third less utilized case implying horizontal differentiation. The first is when a random

coefficient straddles 0 so that increase in the given attribute provides utility to some
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individuals and disutility to other individuals—implying that consumers either like

or dislike the attribute monotonically.

The second opportunity for horizontal differentiation from the conventional util-

ity forms comes from the dummy variables associated with brand, vehicle class, or

other attributes. When the coefficients on these dummies are treated as random, it is

possible for the preference ordering between vehicle class, for example, to vary across

the population. This will occur if the estimated variances are large enough to dom-

inate the estimated mean effects. Interacting vehicle class dummies with observed

demographics is the systematic analog to this idea. When the estimated parameters

are constant across individuals then the utility function represents a homogeneous

ranked-ordering of brands or vehicle classes (i.e., vertical differentiation). This ap-

proach is quite common; however, it requires specifying the structure of differentiation

a priori (e.g., the vehicle classes).

A third, less common approach is to transform a product attribute such that it

does not enter into the utility function monotonically. In Chapter 4 we propose an

ideal-point utility formulation for vehicle size that gives an example of this approach.

We choose vehicle footprint for the ideal-point because we believe it is the continuous

attribute that is most likely to demonstrate horizontally differentiated preference.

2.1.3 Stated vs. Revealed Choices

Demand models can be estimated from a variety of data sources including revealed

choice (actual product purchase) and stated choice (respondent’s preferred alternative

in a thought experiment). Individual-level revealed-choice data can be collected at

the point of sale (e.g., scanner data), or through a survey mechanism after the sale.

Aggregate sales data may also be collected through various reporting mechanisms.

Individual-level purchase observations represent the gold standard for data in much

applied economics work. These data have high face validity because they represent an
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actual choice (involving an exchange of money or allocation of some other resource).

However, revealed-choice data only inform models of consumer preference based on

the alternatives that each consumer actually saw.

Stated-choice data allow researchers to extend investigations beyond the scope

of current product availability and investigate product attributes or other factors of

interest at finer detail than provided by the market [Louviere et al. (2000)]. One form

of stated-choice data useful for demand modeling is collected by gathering responses

to hypothetical-purchase-choice experiments. Because this data comes from planned

experiments, it is almost always collected at the individual level. The stated-choice

approach is particularly appropriate for considering future demand for alternative fuel

vehicles given their limited market penetration and rapidly evolving technology [Po-

toglou and Kanaroglou (2007); Bunch et al. (1993)]. However, there is no guarantee

that a consumer will behave the same way in the market as in the stated-choice

experiments.

It is possible to combine revealed and stated preference data. Hybrid models com-

bining stated and revealed choice are an active area of research [Kumar et al. (2007);

Feit et al. (In Review)]. Louviere et al. include a discussion on this topic [Louviere

et al. (2000)], and Brownstone et al. show a combined data model for alternative fuel

vehicles [Brownstone et al. (2000)]. The model we present in Chapter 4 follows the

development of Train and Winston [Train and Winston (2007)] where we supplement

observed vehicle purchases and demographics with stated information about other

considered vehicles.

2.1.4 Choice Model Evaluation

Chintagunta et al. [Chintagunta et al. (2006)] propose four criteria for evaluat-

ing choice models in their review of the economic and marketing literature regarding

structural choice models. They are fit, interpretability, predictive validity, and plausi-
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bility. The econometrics literature has developed and applied many statistical tests to

address these criteria in the context of choice share predictions [Train (2003)]. How-

ever, other properties of choice models are important to investigate for engineering

design, particularly how the design optimization model will behave based on the given

demand model. One approach to begin to address this question is to consider how

the demand model covariates (particularly those associated with product attributes)

and their functional forms affect choice shares.

Interpretability and Fit

Traditional measures of interpretability are tests of significance of the estimated

parameters, and checking parameter sign against intuition.

A standard measure of fit for logit models is the likelihood ratio index:

ρ2 = 1− LL(δ̂, β̂, µ̂)/LL(0), (2.11)

which measures how well the estimated model performs compared to a model where

all of the parameters are zero (i.e., no model).

The likelihood function L is the product of choice probabilities Pyj for each in-

dividual for all choice observations for the choice the individual actually made given

a set of estimates for the model parameter values {δ̂, β̂, µ̂}, where fyj is a dummy

variable equal to 1 when for choice observation y product j is selected and fyj = 0

otherwise.

L =
Y∏
y=1

J∏
j=1

P
fyj
yj (2.12)

The log likelihood function is the natural logarithm transformation of the likelihood

function.

LL =
Y∑
y=1

J∑
j=1

fyj lnPyj (2.13)
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We take LL(0) to be the log likelihood function where all parameter values are set

equal to 0. This is equivalent to predicting that each choice alternative has the same

choice probability, i.e., Pyj = 1/J . An alternative definition for LL(0) is to substitute

Sj for all Pyj in Equation (2.13), where Sj is the percentage of observed choices for

product j from the data sample.

Values between 0.2-0.4 represent very good model fits, and have been equivalenced

to 0.7-0.9 R2 values for linear ordinary least squares regression [Louviere et al. (2000)].

This statistical measure can only be used to compare the goodness-of-fit of two or more

models if they are estimated from identical data sets and choice alternatives [Train

(2003)].

Predictive Validity and Plausibility

The goal of estimating the demand model in design for market systems is to predict

demand for products under counterfactual scenarios. Properties of particular interest

to design optimization relate to how the model predicts consumers trade off product

attributes and how their willingness to pay for improving an attribute compares to

the cost of improvement.

Whereas fit measures the ability of the model to describe the in-sample data, pre-

dictive validity evaluates the ability to describe out-of-sample data. This may include

a hold-out sample from the same time period for which the model was estimated, or it

could be a sample from another time period or population. The likelihood ratio index

can be used to evaluate a model’s ability to predict choice shares from this out-of-

sample set. This evaluation is one measure of a model’s ability to capture consumer

tradeoffs among attributes because one way to interpret superior model performance

(i.e., higher ρ2) on out-of-sample data is that the model better captures consumer

tradeoffs better than simply describing the data (i.e., a good fit).

Similarly, another test that can be performed to evaluate indirectly the validity
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of the attribute valuation described by a particular model is predicting prices for

products in an equilibrium framework as performed by Morrow [Morrow (2008)]. If

accurate cost data are available, then the demand model can be used to generate

equilibrium prices for all products under assumptions of competitive behavior. This

evaluation is stronger than the likelihood ratio index because it can be used to identify

systematic errors in predicting attribute tradeoffs such as if prices for higher quality

products were underpredicted compared to observed market behavior.

We define plausibility as the ability of the estimated model to produce outcomes

that represent market behavior based on theory or observations. One way to assess

plausibility in the absence of cost and constraint models is to examine substitution

patterns between competing goods given changes in price and other attributes, as

measured by own- and cross-elasticities [Train (2003); Nevo (2000)]. The substitution

patterns can then be compared to observed market behavior where possible.

2.2 Cost Modeling

Product planning and investment decisions rely on estimates of design and produc-

tion costs, and yet cost estimates are a key element of uncertainty in the formulation

of design and product development problems. The cost of a product is an outcome of

various supply markets and labor inputs. Simplifying the discussion to focus on how

product attribute changes affect cost is no less problematic. Costs change for iden-

tical components based on volume and from year to year. Cost to produce a vehicle

includes not only the direct production costs, but also a firm’s overhead. The cost

models developed in this study do not attempt a bottom-up estimation for an entire

vehicle. Rather the cost formulations focus on differences in cost from a baseline vehi-

cle due to differences in powertrain and vehicle geometry. More sophisticated models

could be included in the design optimization framework as they become available.

Examples of cost models for automotive vehicles include an ACEEE model that
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estimates incremental cost increases for advanced powertrains [Kliesch and Langer

(2006)], and studies by the national labs [Markel et al. (2006)]. The AVCEM model

provides estimates for alternative and traditional powertrains [Delucchi (2005)].

Three approaches to cost modeling are illustrated in Chapter 5: (1) an analytical

model based on attribute differences, (2) a parametric model based on attribute

regression of presumed costs (based on market prices and dealer markups), and (3)

a parametric model derived from the price-equilibrium conditions given a demand

model. The first two models are primarily motivated from an engineering perspective.

The third model is motivated from an economics perspective. The following sections

briefly review cost modeling from an engineering and economics perspective.

2.2.1 Cost Models from the Engineering Literature

Cost modeling as described in the engineering literature usually falls into one of

three categories, or the approach is a combination of two or three of the categories.

These catagories are parametric, analogous, and analytical. Parametric modeling

seeks to define relationships between attributes of interest (design variables) and cost.

This can be accomplished by using regression to match historical data. Analogous

models use historical cost data from similar products in order to estimate the cost

of a new product. Analytical models are explicit functions based on known (or pre-

sumed) relationships used to predict cost. One type of analytical modeling is based

on detailed models of manufacturing processes. Another is based on abstract relation-

ships between product characteristics and cost. Fixson reviews several levels of cost

analysis and hypothesizes that as the scope of the analysis broadens from estimat-

ing the cost of operating a single machine towards estimating the costs of the entire

enterprise, the fraction of indirect cost increases and the cost becomes increasingly

nonlinear [Fixson (2004)].

Direct and abstract modeling are the two primary means whereby the three cost
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modeling approaches are applied. Direct modeling links cost directly to manufactur-

ing and production operations through analytical, parametric, or analogous models.

This approach has the potential to give an accurate cost estimate. However, these

models are generally more difficult to associate directly with design variables and

they are resource intensive to create and maintain.

Abstract modeling uses a proposed analytical or parametric model as a surrogate

model for a detailed cost model. The abstract model is intended to provide some of

the trade-off features of a detailed cost model without being tied directly to specific

cost drivers such as machining time or energy use. Such models may use informa-

tion such as sales prices, or they may develop cost of variety functions based on the

number and variety of components. Design variables appear in these models, but

they make assumptions about the impact the design variables will have on final cost

of the product rather than rely on historical data or detailed manufacturing models.

Although they predict design and production costs, they cannot usually assure manu-

facturing feasibility. This type of model is meant to guide product planning decisions

and not to be used as a rigorous cost analysis tool. For a more detailed review of cost

modeling in the engineering literature see [Frischknecht (2006)].

2.2.2 Cost Models and Economic Theory

Market equilibrium simulations have become common practice in the marketing

and economics literature, see for example, the various examples cited in [Chintagunta

et al. (2006)]. Two approaches in these studies for handling costs are (1) obtain

actual cost data [Chintagunta et al. (2003)]; or (2) estimate a cost model from price

equilibrium conditions assuming a specific model of competition [Berry et al. (1995);

Beresteanu and Li (2008)]. Obtaining manufacturing costs for the automotive market

appears highly unlikely. This would require multiple manufacturers to share closely-

held cost information. It may be possible for someone close to the industry to develop
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working approximations of vehicle costs for various firms. However, this approach is

not practical for academic studies. We therefore look to the work based on equilibrium

assumptions described briefly below.

Economists expect producers to behave as profit maximizers. This implies that for

any two production plans with the same quantity and quality of outputs, the producer

will choose the production plan with the lowest cost. We can then say that producers

are cost minimizers. Therefore the cost model that is relevant to the economist is

not the cost of every possible production plan (i.e., the type and number of inputs

required to produce a certain quality and quantity of outputs), but the minimum

cost for each set of outputs. Given a description of a technology (i.e., the relationship

between costs and quantities of inputs to quantities and qualities of outputs), the

relevant cost function can be derived by solving the cost minimization problem for

each output level [Varian (1992)].

Technology descriptions are complex, proprietary, and often not fully articulated

even within a given firm. One economics approach is then to work backwards by

making some assumptions about the competitive behavior in a market. For example,

if we assume a given market is in Nash-Bertrand price equilibrium we can assume that

the market prices reflect the profit maximizing behavior of the firms in the market.

We can then write out the equilibrium conditions implied for each firm by setting

the derivative of each firm’s profit function equal to 0. In the simplest case profit π

is a function of revenue R and cost C, where revenue and costs depend on demand

Q and price p, π = Q(p)(p − c). The costs can then be computed by rearranging

the equilibrium conditions. A functional form for cost can be postulated (typically a

function of product attributes believed to impact demand), and the cost values can be

regressed on cost factors. A variation on this approach is to co-estimate the demand

and cost parameters simultaneously by enforcing the equilibrium conditions at each

iteration of the estimation procedure [Berry et al. (1995)].
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The cost models developed using the equilibrium approach are typically described

as functions of product attributes. It is an open question whether cost models that

were a function of more elementary vehicle characteristics could yield better results.

For example, intuition indicates that a cost model that was a function of engine power

and size (measured as the product of vehicle length and width) may better capture

cost tradeoffs than one that is rather a function of acceleration (related to the ratio

of engine power to vehicle mass), fuel consumption, and size. Although acceleration

and fuel consumption are important to the consumer, there is no physical reason why

these attributes should contribute to vehicle cost in an additively separable way as is

frequently modeled.

2.3 Multi-objective Optimization

Mathematical multi-objective problem formulations are appropriate when there

are important criteria, believed to be competing, that are noncommensurable (i.e.,

they cannot be compared directly with the same units of measurement and it is

difficult to convert them into a common unit of comparison such as dollars). A mult-

objective optimization problem can be mathematically stated as:

min
x

f(x; v)| h(x; v) = 0, g(x; v) ≤ 0, x ∈ X (2.14)

Here f(x; v) is a vector of criteria of interest fn, n = 1, . . . , N . The set of variable

values x that satisfy all constraints is the feasible (design) domain, X . The set of

parameters v take on fixed values. The set of all vectors f mapped from the feasible

domain is the attainable set A = {f(x; v)|x ∈ X}. A point in A, f(x∗), is said to be

non-dominated or Pareto optimal, if there exist no f(x; v) such that f(x; v) ≤ f(x∗; v)

and fn(x; v) < fn(x∗; v) for at least one n. Ideal values f ◦n are the optimal criterion

values obtained optimizing one criterion at a time. The ideal or utopia point is the
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vector of ideal values for all criteria, f◦ = [f ◦1 , f
◦
2 ]′.

Special cases of multicriteria optimization occur when the criteria are dependent.

Following from the Karush-Kuhn-Tucker conditions for noninferiority of vector opti-

mization problems [Karush (1939); Kuhn and Tucker (1951); Kuhn (1976)]1, when

the gradient of one criterion function can be expressed as a linear combination of the

other criteria functions (∇fr(x) =
∑N

n 6=r wn∇fn(x) then one of the following condi-

tions exists: (1) If wn ≥ 0 for all n, then objective fr can be eliminated from further

consideration. (2) If the summation is negative and wn 6= 0 for all n 6= r, then all

feasible solutions are noninferior [Cohon (1978)].

The Pareto set of a multicriterion optimization problem may have regions where a

very small improvement in one objective leads to a large decline in another objective.

Kuhn and Tucker [Kuhn and Tucker (1951)], and Geoffrion [Geoffrion (1968)] labeled

these regions as improper Pareto points.

2.3.1 Multi-objective decision making

The concept of Pareto optimality was introduced by Edgeworth in 1881 [Edge-

worth (1881)] and advanced by Pareto in 1906 [Pareto (1906)]. During the first half

of the 20th century numerical techniques for multi-objective optimization were devel-

oped by mathematicians and economists. Engineers began to apply these techniques

widely in the 1960s [Stadler (1979)]. Within engineering most early applications were

large-scale civil projects. Most of civil applications were water resource management

applications [Stadler (1981)]. Often these decisions were concerned with public pol-

icy. The utilization of multi-objective optimization can serve in the public debate by

making trade-offs explicit and analysis transparent [Cohon (1978)]. Early engineering

academic work concentrated on linear programming. Closed-form expressions can be

developed for the Pareto set for small problems [Lin et al. (1975)].

1A summary of the unpublished 1939 Master’s thesis of W. Karush was published as an appendix
to [Kuhn (1976)].
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Multicriterion decision making can be broken into three different approaches [Evans

(1984)]: (1) Preferences are determined a priori and expressed as a value function; (2)

Preferences evolve iteratively by solving a problem and adjusting preferences multiple

times; 3) The range of solutions is presented and preferences are established a poste-

riori. In all cases, making a final decision about a single solution requires decisions

to be made about the decision maker’s preferences. Preferences can be described

mathematically by value functions. A value function is often called a utility function,

and it can include consideration of risk or uncertainty [Keeny and Raiffa (1976)].

If preferences for all criteria are monotonic, then the decisions under consideration

can be reduced from the attainable set to the Pareto set [Athan (1994)]. Pareto

optimality is the most common vector (multiobjective) optimality concept; however,

there are others, especially from game theory, such as some equilibrium concepts and

min-max solutions [Stadler (1988)].

This dissertation adopts utility functions from random-utility theory as the value

function for consumer preferences. No preference structure is defined for the firm-level

public private tradeoff between firm profit and vehicle fuel consumption. Instead we

present the first part for approach three above by presenting the range of solutions

before establishing preferences.

2.3.2 Solution techniques

Several solution techniques exist for generating Pareto optimal points. A common

approach is to convert the vector objective function into a scalar objective and solve

the problem once, or a number of times, using the techniques of scalar optimization.

Multiobjective genetic algorithm methods generate an approximation to the Pareto

set at once as an envelop of the attainable set [Fonseca and Fleming (1993)].

Popular scalarization methods include the weighted criteria, global criterion, and

ε-constraint method (or constraint trade-off method) [Osyczka (1984)] including the
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lexicographic method [Waltz (1967)], and others [Rao and Papalambros (1989); Athan

and Papalambros (1996); Das (1999)]. A limitation of the linear weighted criteria

method is that it cannot find Pareto points in a non-convex region of the Pareto fron-

tier. Generalized weighted criteria methods consider functions in the place of constant

weighting parameters [Athan and Papalambros (1996)]. We adopt the ε-constraint

method because of its straight-forward application in the case of two criteria and the

ability to identify non-convex Pareto solutions.

A brief review is presented of common solution techniques. These techniques can

be divided into those that provide Pareto optimal solutions and those that provide

solutions based on some other solution strategy.

Pareto-optimal techniques

ε-constraint

The approach is to minimize one criterion with constraints on all other criteria. It

can find Pareto optimal solutions in regions of nonconvexity. However, it may require

a large number of constraint level combinations when the number of criteria is large.

A special case of this method is the lexicographic method. The lexicographic method

is not a Pareto optimal solution strategy and is described below.

Weighted Criteria

The weighted criteria method solves a single objective problem that consists of the

weighted sum of the individual objectives. This method can be incorporated with

no change to existing single objective optimization routines. However, because a

weighted sum is a convex combination of the two objectives, the solution algorithm

will not identify nonconvex regions of the Pareto frontier. Also, an even distribution

of weights will not lead to even distribution of points on the Pareto curve. The

distribution of the solutions generated therefore is highly dependent on the scale of

each criterion and the weighting factors chosen.
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Compromise Programming

Compromise programming sets a target point f t. Then, a regret function, defined

to be a norm of the target point and the criterion vector, is minimized [Yu and

Leitmann (1974)]. The target point can be set to the ideal point to ensure that

solutions are Pareto optimal. Determining the ideal point requires separate scalar

optimization runs for each criterion. The form of the regret function is typically

R(f) = (
∑n

i=1(fi−f ti )p)(1/p). A p = 1 value treats each criterion as equally important

and commensurable (i.e., the lowest sum of values in the criterion vector is sought).

p = 1 is similar to goal programming and majority rule. For a bicriterion minimization

problem the slope of a line tangent to the Pareto curve at the p = 1 solution is equal to

-1. A p = 2 value corresponds to the Euclidean distance from the target point to the

Pareto surface. It treats each criterion as equally important but noncommensurable

(i.e., the value that is geometrically closest to the ideal point is preferred). A p =∞
value corresponds to the L∞ norm. It treats each criterion as equally important and

seeks to minimize the maximum deviation from the target value for each criterion.

For a bicriterion problem the solution will be found at the intersection of the Pareto

curve and a line with slope equal to one that also intersects the target point. Setting

p =∞ is also called the min-max, or Tchebycheff method.

Given that the range of each criterion may be vastly different and compromise pro-

gramming with regret functions typically treats each criterion as equally important,

designers typically scale each criterion over its range in order to normalize the criteria

comparison. Yu and Leitman document some characteristics of compromise program-

ming including how the methodology implicitly imposes an intercomparison among

criteria because the solution is not independent of a positive linear transformation of

criteria (i.e., scaling of objectives matters). Also, for problems where the individual

criterion represent the objectives of multiple independent stakeholders, as p increases,

group utility decreases, but individual regret reduces as well. As p decreases group
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utility increases, but individual regret increases as well [Yu and Leitmann (1974)].

Curve Tracing using Homotopy Techniques

This method is specifically for bi-objective problems. The principle is to move along

the Pareto frontier from one Pareto-optimal point to the next using local informa-

tion at the current solution. For further description of this method see [Rao and

Papalambros (1989)].

Normal-Boundary Intersection

This method begins with the ideal values for each objective (or an approximation).

A line search is then conducted in the direction normal to the hyperplane intersecting

the ideal values. The search continues until no further improvement in the objective

is achieved. The solution is guaranteed to be Pareto optimal for most cases. There

are notable exceptions when a Pareto set contains “folds” that the algorithm can ter-

minate prematurely at a dominated point. This method is very useful for developing

an even distribution of solutions across the Pareto frontier [Das (1999)].

Non Pareto optimal solution techniques

Goal Programming

Goal programming requires setting a priority for all criteria and establishing con-

straints for each criteria. The objective is to minimize deviations from each criterion

goal [Ignizio (1976)]. Pareto optimality is not relevant in this framework because the

preferences for criteria are not monotonic but based on the criteria prioritizing and

the goal values. The goal values or targets may or may not be attainable. This is a

primary difference from compromise programming where the targets are unattainable

to ensure that the solution will be Pareto optimal.

Game Theory

In game theory the multiple criteria are typically broken down and adopted by mul-

tiple agents, or players [Fudenberg and Tirole (1991)]. One objective of game theory
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is to observe outcomes based on the actions of multiple agents given specific decision

strategies. The strategies may or may not be based on monotonic preference for a

given set of criteria. Some game theory solutions will generate Pareto optimal points

and some will not depending on the particular strategy employed. For example, some

models of competition may put more textslasis on reducing the outcome for a com-

petitor rather than maximizing own benefit. Game theory is discussed in more detail

below as it relates to market simulations.

Multilevel programming (lexicographic or hierarchical)

A special case of the ε-constraint method is multilevel programming, sometime called

the lexicographic or hierarchical method. The lexicographic method is not a Pareto

optimal solution strategy because the problem is divided into subproblems that are

solved sequentially rather than all at once. The decision maker incorporates prefer-

ences into the solution strategy by ranking criteria in order of importance. Then, a

series of sequential scalar optimization problems are solved in the order of the ranked

criteria subject to problem constraints. The attained value of each succeeding crite-

rion is maintained as a constraint for the remaining problems [Waltz (1967)]. The

technique can be useful when there are many degrees of freedom. If there are low

degrees of freedom the solution will be fixed after the first optimization runs.

Parameter Space Investigation and Genetic Algorithms

Parameter Space Investigation was developed for low-dimensional problems that are

highly nonlinear and nonsmooth. Adaptation of the method beyond ten decision

variables has proven difficult computationally. Furthermore there is no guarantee

of Pareto optimality. The method involves sampling design points randomly or by

some prescribed method. Infeasible points are discarded, and the remaining points

are ordered. Sampling and selection occur in an iterative fashion [Steuer and Sun

(1995)].

Genetic algorithms have been applied to multi-objective problems in much the
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same way as for parameter space investigation. However the genetic algorithm han-

dles the sampling, ordering, and selection procedure. See for example [Horn et al.

(1994)].

2.4 Game Theory

Game theory is a large and active area of research. Many of the ideas were first for-

malized by Von Neumann [Morgenstern and Von Neumann (1944)]. Several textbooks

have been dedicated to the topic including [Fudenberg and Tirole (1991); Friedman

(1986)]. Several key terms are provided here as background for the development of

the market simulations described in Chapters 6 and 8.

2.4.1 Structure of a Game

A game is defined by identifying the players (i.e., decision makers), the strategies

(i.e., the choices faced by each decision maker), the payoffs (i.e., the consequence for a

player of each choice), and the sequence of decisions to be made. The simplest games

assume players simultaneously make one decision each.

The decision-making strategy of each player will determine the choices the player

makes. Individual utility (i.e., payoff) maximization is a frequently adopted strategy.

In this case each decision maker will seek to maximize individual utility while consider

the actions of the other players. A mixed strategy is one where the decision maker

does not always make the same choice in a repeated game. A pure strategy is where

a particular choice will be made every time.

A Nash equilibrium is defined as a solution strategy for each player such that

one individual cannot unilaterally change strategies and increase payoff. A Nash

equilibrium solution is expected when all players have correct information about the

likelihood of each individual choosing each strategy, and each individual is acting to
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maximize payoff. Nash showed that given these assumptions with a finite number of

agents and a finite number of pure strategies an equilibrium will always exist [Varian

(1992)].

2.4.2 Game variants

Single vs. Multi-stage Game

A single-stage game is a game where players make choices simultaneously. Other

games can be developed where players make a series of choices either simultaneously

or in sequence. One example of such a game is where one player is the leader and the

others are the followers. That is, one player makes his or her choice first. The other

players then simultaneously make their choices. When players face a set of decisions

given that some decision has already been made, the reduced decision context is

called a subgame. A subgame perfect equilibrium is a strategy for each player that

results in an equilibrium to the overall problem, which is also an equilibrium of the

subgames [Varian (1992)].

Static vs. Dynamic Games

A single-stage game can be repeated. When the players know that the single-

stage game will be repeated we have a simple dynamic game. A player’s preferred

strategy may change from the single-stage game strategy knowing that the game will

be repeated. More complicated dynamic games can be developed that incorporate

multi-stage games.

2.4.3 Application to Market Simulations

Published market simulations for the automotive industry have focused on static

games. This is clearly a simplification because we expect manufacturers to have
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expectations about the future actions of competitors that would influence decisions

today. Dynamic games are computationally much less tractable than static games.

We follow previous research and choose to focus on a static-game representation of

the automotive industry. The players (vehicle manufacturers) are assumed to be profit

maximizers. Price is chosen as the strategic variable controlled by firms implying that

the resulting equilibrium solution to the market pricing game will be a Nash-Bertrand

equilibrium [Tirole (1988)]. This means that we assume that producers are capable

of supplying arbitrary quantities demanded exactly. This is a simplification adopted

by other researchers for the automotive industry. Another simplifying assumption

we make is that each producer will adopt only pure strategies. This means that

each producer will charge a specific price for each vehicle, rather then, for example,

charging one price 40% of the time and another price 60% of the time.

A different situation (typical of many commodities) would arise if we assumed

that each producer was production constrained. In this case, firms would allocate

resources to produce a specific quantity of a good. Price would then be determined

by the overall market demand and the total quantity supplied. The result would be

a Cournot equilbrium [Tirole (1988)].

The textslasis in design for market systems is to study the implications of the

market on the decisions that firms make about product design decisions, not only

price. We therefore adopt a two-stage (or subgame) approach where firms first design

products and then set prices. The subgame is the pricing problem given all vehicle

designs. We limit the number of players to one player or a small number of players

to clarify the discussion of the results for the market simulations. In the case of

one player, the manufacturer will design a given vehicle (the first stage) considering

that the price for all own and competing vehicles can be adjusted based on the given

designs (the second stage). In the multi-player case, a limited number of firms design

one vehicle each (the first stage) considering that the price for all own and competing
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vehicles can be adjusted based on the given designs (the second stage). Conducting

two-stage games where each player designs multiple vehicles is beyond the scope of

this dissertation.

2.5 Market Simulations in Automotive Industry

Many econometric demand models have been estimated for the automotive mar-

ket [Beresteanu and Li (2008); Petrin (2002); Brownstone et al. (2000); Train and

Winston (2007); Goldberg (1995); Sudhir (2001)]. These models are often tailored

for specific analyses such as interpreting firm pricing behavior rather than pricing

and design decisions. For example, Berry, Levinsohn, and Pakes [Berry et al. (1995)],

abbreviated BLP95, estimated a mixed-logit model of the automotive market to intro-

duce a method for estimating demand in differentiated-products markets accounting

for price endogeneity, and using only aggregate level demand and known population

demographic distributions. They simultaneously recovered demand and cost param-

eters assuming observed prices satisfied Nash equilibrium. Many succeeding papers

describing the automotive market have followed the BLP methodology.

Several drawbacks to the BLP approach can be identified. It is not clear that

the BLP-style model supports counterfactual analyses based on changes in product

attributes because the estimation procedure assumes design decisions are exogenous

[Nevo (2000)]. Also, the exogenous specification of distributions for demographics,

such as income, risk affecting parameter identification through erroneous correla-

tions between demographics and product choices. Additionally, the utility specifi-

cation enforces counterintuitive notions about consumer preferences. For instance,

the utility specification contains the attribute “miles per dollar” (fuel economy di-

vided by the price of gas), which lowers the relative importance of fuel economy as

gas price increases. Although all three of the more recent demand models corrected

the “miles-per-dollar” error—in favor of either a “dollars per mile” or “gallons per
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mile” attribute—both [Petrin (2002)] and [Beresteanu and Li (2008)] formulate util-

ity as monotonic with vehicle size when it is possible that an individual could prefer

a specific size vehicle.

2.6 Design for Market Systems Research

Engineers have begun to adopt, modify, and develop econometric models to serve

in design for market systems applications, especially applied to automotive vehicle

design [Michalek et al. (2004); Shiau and Michalek (2007); Frischknecht and Pa-

palambros (2008); Wassenaar et al. (2005); Donndelinger et al. (2008)]. Michalek

[Michalek et al. (2004)] and Shiau and Michalek [Shiau and Michalek (2007)] ex-

tracted the price, fuel economy, and acceleration pieces of utility from an existing

automotive demand model, assuming all other product attributes (e.g., dimensions)

are fixed. Frischknecht and Papalambros [Frischknecht and Papalambros (2008)] used

these same assumptions while including vehicle size decisions but also adjusted the

parameters for fuel economy and acceleration, recognizing the fleet average (i.e., con-

sumers’ expectations) of these attributes have changed since the time the model was

estimated. These heuristic methods allow demand models to be used in design opti-

mization for illustrative purposes but the interpretation of the results is uncertain.

Kumar [Kumar et al. (2007)] and Shiau [Shiau and Michalek (2009)] constructed

their own demand models for the purpose of design optimization. However, little

textslasis has been placed on the choice of the functional form of utility used in

these models. Wassenaar et al. [Wassenaar et al. (2005)] presented a first attempt

at addressing this issue, applying the Kano method to select the functional form

for each product attribute, but offered no methods for evaluating the suitability for

design optimization of the resulting demand model beyond measures of fit.

Other work in design for market systems research includes topics such as how

to allocate resources between projects and what should be the product of each
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project [Georgiopoulos et al. (2005); Michalek et al. (2006); De Weck et al. (2006); Ku-

mar et al. (2009)]; how to translate product attribute targets into engineering design

and compare the value of different designs [Cooper and Papalambros (2003)]; how to

integrate experimental techniques from marketing with engineering design [Michalek

et al. (2005); MacDonald et al. (2007a); Hoyle et al. (2008); Kumar et al. (2007)];

how distribution channels affect product design [Williams et al. (2008)]; and many

others [Lewis et al. (2006)]. Survey pieces include [Michalek (2008); Frischknecht

et al. (2009a)].
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CHAPTER III

Product Performance

An engineering model representing a midsize crossover vehicle is developed by

combining powertrain performance simulations and other empirically or analytically

derived models representing other vehicle characteristics. Three separate powertrain

configurations are developed: conventional spark-ignition (SI) gasoline engine, gas

turbo direct-injection gasoline engine (GTDI), and a split-mode hybrid electric ve-

hicle with a conventional spark ignition gasoline engine (HEV). The hybrid electric

powertrain model is a backwards-looking simulation built by Kukhyun Ahn based on

his dissertation work [Ahn (2008)]. Section 3.1 defines the modeled vehicle character-

istics. Section 3.2 defines the design variables, parameter values, and the engineering

constraint functions. Section 3.3 presents model validation data, and Section 3.4

summarizes the chapter. Additional details describing the engineering performance

model are found in Appendix A.

3.1 Vehicle characteristics

Vehicle characteristics are presented in three categories: powertrain performance,

packaging (which includes curbweight), and safety.
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3.1.1 Powertrain

Vehicle simulations for SI and GTDI were developed using the AVL Cruise soft-

ware package [AVL (2008)]. The vehicle powertrain was configured to represent a

standard automatic transmission front-wheel-drive vehicle with a gasoline engine. In

addition to powertrain specifications (i.e., gear ratios, gear shifting schedule, engine

number of cylinders, vee or inline configuration, bore, and stroke, valvetrain configu-

ration, and final drive ratio) Cruise also receives other vehicle parameters as inputs,

including curbweight, frontal area, drag coefficient, tire radius, and center of gravity

location under various loads. These parameters were developed from the other char-

acteristic models as described below or taken from data describing one 2007 model

(i.e., Ford Edge). In all, over 30 parameters were tuned for midsize crossover vehicles.

All other parameters were left at the default passenger vehicle levels.

Five performance tests were simulated in Cruise: The US city driving cycle

(FTP75), the US highway driving cycle (HFET), used to calculate combined city

and highway fuel economy, zmpg; an acceleration test starting from rest, used to cal-

culate 0-60 mph time, z060, and vehicle top speed, zTS; an elasticity test, used to

calculate 30-50 mph acceleration time while towing, z3050; and a gradeability test,

used to calculate maximum grade at 65 mph while towing, z65T . The 30-50 mph

acceleration test simulated towing by adding the maximum towing capacity to the

mass of the vehicle. The gradeability test simulated towing by using the virtual trailer

option, which allows specification of trailer mass and an estimate of losses.

Cruise characterizes engine performance by reference to engine maps derived from

experimental results of a baseline engine. The fuel consumption map for SI was taken

from a 2.5 l, V-6 engine with BMEPPpeak = 1068 kPa. The full load characteristic

was scaled from the Duratec35 engine (BMEPPpeak = 1085 kPa) used in the Ford

Edge. The GTDI baseline fuel consumption map was adapted from an SAE pa-

per [Kleeberg et al. (2006)]. The full load characteristic was adopted from a “best
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guess” transcription from the EcoBoost YouTube video hosted by Derek Kuzak of

Ford [Ford Environmental (2009)]. Additionally, Cruise provides modules for model-

ing turbo-charger behavior (see Appendix A for more details). The fuel consumption

map and full-load performance characteristic for HEV were taken from a data based

on the engine in the Toyota Prius.

Engine maps were scaled for a given evaluation as functions of xB and xBtS fol-

lowing established scaling relationships [Chon and Heywood (2000)]. We assume the

peak power brake mean effective pressure of the engine is 1085 kPa and mean piston

speed at peak power out is 18.1 m/s for all SI designs. We assume the peak power

brake mean effective pressure of the engine is 2047 kPa and mean piston speed at peak

power out is 16.7 m/s for all GTDI designs. The advanced friction module found in

Cruise, which incorporates engine and valvetrain architecture, based on [Patton et al.

(1989)] was used to integrate frictional engine losses into the simulations for SI and

GTDI.

Surrogate models were obtained from Cruise simulations to reduce computational

expense during design optimization. A Latin hypercube experimental design with

1000 numerical experiments was executed for the SI. A similar experiment with 1600

experiments was executed for GTDI and 500 experiments for HEV. The HEV sim-

ulation was developed in Matlab rather than Cruise, and the HEV simulations were

executed by Kukhyun Ahn. Table 3.1 shows the experimental factors and the upper

and lower bounds for each factor for each powertrain.

3.1.2 Packaging

Vehicle characteristics derived from simplified assumptions of vehicle geometry

include an estimated engine length, zEL; cargo volume index behind 2nd row, zCV I ;

ramp breakover angle, zA147; angle of departure, zA107 [SAE International (2005)];

and distance in the width direction to allow tire movement (i.e., tireflop), zTF .
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Vehicle characteristics related to the mass properties of the vehicle include vehicle

curbweight and gross vehicle weight rating, zVM , zGVWR; and the minimum required

payload capacity, vpay. A regression was fit (R2:0.92) to estimate curb weight (re-

ported in lbm) using data for 2005 light-duty trucks from Ward’s automotive year-

book [Wards Communications (2006)]. Here zEDisp is the engine displacement vol-

ume in cubic centimeters, length and width in inches. vFWD, vAWD, v4WD, vRWD are

dummy variables {0,1} for driveline configuration, and vHEV is a dummy variable

{0,1} for a hybrid electric powertrain. Table A.3 lists the parameter values.

zVM = c1((xL103 × xW105)/100)2 + c2(xL103 × xW105) + c3zEDisp

+c4vFWD + c5vAWD + c6v4WD + c7vRWD + c8vHEV + c9

(3.1)

3.1.3 Safety

Vehicle characteristics modeled that influence vehicle safety include the static

rollover score based on the static stability factor [NHTSA (2009)], zRoll; vehicle center

of gravity position in longitudinal and vertical direction, zCGlong, zCGvert; bumper to

driver heel crush space, zCS; Minimum required crush space for a given average force,

vMCS; and estimated peak deceleration in front crash test, vMD;

The static stability factor is a function of vehicle geometry and vertical center of

gravity position. A correlation has been made between the static stability factor and

the risk of rollover [NHTSA (2009)]. Vehicle center of gravity is determined by vehicle

geometry and a prescribed subsystem mass distribution [Malen (2005)]. Bumper to

heel crush space, minimum required crush space, and estimated peak deceleration are

derived from vehicle geometry, underhood component geometry, and assumptions of

crush efficiency and 50% of crush load born by midrails.
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Table 3.3: Upper and lower bounds on design variables
xB xBtS xFD xH101 xL101 xL103 xW105 xPGR xBPow

Units mm - - mm mm mm mm - kW

SI, V-6
86 0.95 1.1 1600 2286 3556 1600
100 1.18 4.0 1930 3048 5080 2000

GTDI, I-4
80 0.9 2.5 1651 2286 4318 1727
92 1.18 5.0 1803 2286 5080 1982

HEV, I-4
88 0.9 3.5 1651 2286 4319 1727 0.3333 45
92 1.18 5.0 1803 3048 5080 1982 0.6666 65

3.2 Design Variables and Constraints

The design variables are: engine bore, xB; engine bore to stroke ratio, xBtS;

final drive ratio, xFD; vehicle length, width, and height, xL103, xW105, xH101; vehicle

wheelbase, xL101; and for HEV planetary gear ratio, xPGR; and peak power for the

battery, xBPow. Other parameters include the minimum height between seat and roof,

vMSH , and the underhood midrail width, vMRW among others. Table 3.3 gives the

upper and lower bounds of the design variables organized by powertrain.
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The constraint set is as follows:

g1 = 5%− z65T ≤ 0

g2 = 13◦ − zA107 ≤ 0

g3 = 12◦ − zA147 ≤ 0

g4 = 29ft3 − zCV I ≤ 0

g5 = zCV I − 60ft3 ≤ 0

g6 = zRoll − .21 ≤ 0

g7 = 50%− 100(1− zCGlong − xL104/xL101 ≤ 0

g8 = vpay + zVM − zGVWR ≤ 0

g9 = zMCS − zCS ≤ 0

g10 = zMD − 20(9.81m/s2) ≤ 0

g11 = (2zTF + 2vMRW + zEL + 50.8)− (xW105 − 254) ≤ 0

g12 = xL101 + vL104 − xL103 ≤ 0

g13 = 115mph− zTS ≤ 0

g14 = vMSH − xH101 ≤ 0

(3.2)

Table 3.4 lists an explanation for each constraint. Cargo volume and rollover

constraints [NHTSA (2009)] were relaxed: g4 (min cargo volume) from 32 ft3 to

29 ft3; g6 (max rollover score) from 0.1999, a 4-star rating, to 0.21, to account for

differences between the model and real-world data.

3.3 Model Performance

This section presents data to illustrate the performance of the engineering mod-

els. Results for the three powertrain configurations are given. Each of the powertrain

sections presents the curve-fits for the surrogate models. The SI and GTDI sections

also compare the AVL Cruise simulations with data from specific vehicle actual ve-

hicles. The curbweight section compares the model predictions to actual data for the
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Table 3.4: Explanation of engineering constraints
Constraint Description

g1 Minimum grade towing 3500 lbm at 65 miles per hour greater than 5%
g2 Rear wheel to bumper angle of departure greater than 13 degrees
g3 Ramp breakover angle between wheels greater than 12 degrees
g4 Minimum cargo volume index greater than 29 cubic feet
g5 Maximum cargo volume index less than 60 cubic feet
g6 Maximum rollover score less than 0.21
g7 Minimum of 50% of vehicle mass distributed on front axle
g8 Vehicle gross vehicle weight rating greater than the vehicle curbweight

plus a minimum payload vpay = 100 kg

g9
Minimum hood compartment crush space greater than calculated required crush
space

g10 Maximum deceleration less than 20 g’s in a 35 mile per hour front crash

g11
Vehicle width great than tire flop, midrail width (vMRW = 74.5 mm), and engine
length

g12 Vehicle length greater than front overhang and wheelbase
g13 Vehicle top speed greater than 115 miles per hour

g14
Minimum vehicle height high enough to allow a minimum sitting height vMSH = 840
mm

curbweight.

3.3.1 Powertrain performance

Conventional spark-ignition

Simulation fits

Satisfactory polynomials were found for both driving cycles, and the gradeability

simulation (R2: 0.998 City, 0.994 Hwy, 0.997 Grade). Three neural nets were gener-

ated in Matlab, one for z060, one for zTS, and one for, and z3050. z060 and z3050 had

R2 values for the training and test points of 0.999. zTS had an R2 of 0.988. The R2

values reported for the neural net fits are for the test points. Figure 3.1 plots the

predicted vs. actual Cruise responses.

Single model comparisons
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Figure 3.1:
(a) City driving cycle fuel economy; (b) Highway driving cycle fuel econ-
omy; (c) Maximum gradeability at 65 mph while towing; (d) 0-60 mph
acceleration time; (e) 30-50 mph acceleration time; (f) Maximum vehicle
velocity
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Attributes for midsize crossover vehicles were gathered from the Internet including

values for all design variables, transmission ratios, and other model parameters [Con-

ceptcarz.com (2008); Edmunds Inc. (2008); LLC Classified Ventures (2008)]. In ad-

dition to scaling the fuel consumption map and full-load performance characteristic

by engine geometry, the fuel consumption map was further scaled by the ratio of the

baseline and modeled engine peak power brake mean effective pressure. Single Cruise

simulation runs were performed for each vehicle and the values of the attributes were

recorded. The vehicle simulation was rerun using the reported curb weight for zVM in

cases where the vehicle curb weight prediction deviated by more than 50 kg from the

reported curb weight. This was to make a fair assessment of the simulation tool rather

than bias the results based on weakness in the curbweight model. Table 3.5 lists the

comparisons between the modeled vehicles and the actual quoted performance values.

Fuel economy values for the actual vehicles are those reported as combined fuel econ-

omy ratings according to the pre-2008 window sticker reporting method. The 0-60

times for the actual vehicles are approximate and were primarily gathered from pop-

ular press. The Nissan Murano was not simulated in Cruise due to its continuously

variable transmission. Figure 3.2 shows the difference in reported versus simulated

fuel economy. Most vehicles are simulated within 6% of the reported value. The

Santa Fe simulation deviates 9% and the Suzuki XL7 deviates 19%.

Gas Turbo-charged direct Injection

Simulation fits

Satisfactory polynomials were found for both driving cycles, the gradeability sim-

ulation, and 30-50 mph acceleration time while towing (R2: 0.998 City, 0.995 Hwy,

0.999 z65T , 0.998 z3050). Two neural nets were generated in Matlab, one for z060 (R2:

0.99) and one for zTS (R2: 0.987), where the R2 values reported are for the test points.
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Table 3.5: Comparison between actual vehicles and SI simulated vehicles
zMPG z060 z3050 z65T zTS zVM zEDisp xB xBtS xFD

Units mpg s s % mph kg cc mm - -
2007 Edge 21 7.4-8.4 unavail. unavail. 111 gov. 1859 3496 92.5 1.07 2.77

Edge Calc.
zVM

20.5 7.5 5.2 6.8 134 1768 3496 92.5 1.07 2.77

Edge Act.
zVM

20.2 7.7 5.3 6.6 134 1858 3496 92.5 1.07 2.77

2006 Mu-
rano

22 8.0 unavail. unavail. unavail. 1747 3494 95.5 1.18 5.17

Murano
Calc. zVM

unavail. unavail. unavail. unavail. unavail. 1744 3494 95.5 1.18 5.17

2006 High-
lander

21 7.8-9.4 unavail. unavail. unavail. 1655 3309 91.9 1.11 3.48

Highlander
Calc. zVM

19.9 7.9 6.0 5.1 131 1658 3309 91.9 1.11 3.48

2006 Santa
Fe

22 8.7 unavail. unavail. unavail. 1691 3339 91.9 1.10 3.68

Sant Fe
Calc. zVM

20.0 7.7 6.0 6.1 125 1708 3339 91.9 1.10 3.68

2006
Tribeca

20 7.4-9.5 unavail. unavail. unavail. 1885 2997 89.2 1.11 3.58

Tribeca
Calc. zVM

20.9 7.8 5.6 6.1 128 1717 2997 89.2 1.11 3.58

Tribeca
Act. zVM

20.5 8.3 5.9 5.8 128 1885 2997 89.2 1.11 3.58

2006 Vue 23 8-9 unavail. unavail. unavail. 1578 3462 88.9 0.96 4.06

Vue Calc.
zVM

22.6 8.7 6.9 3.5 112 1640 3462 88.9 0.96 4.06

Vue Act.
zVM

22.8 8.4 6.8 3.6 112 1578 3462 88.9 0.96 4.06

2006
Suzuki
XL7

20 8.2 unavail. unavail. unavail. 1763 3563 94.0 1.10 2.48

Suzuki XL7
Calc. zVM

16.3 8.0 4.2 0.0 132 1794 3563 94.0 1.10 2.48

2006 En-
deavor

20 8.4 unavail. unavail. unavail. 1810 3824 95.0 1.06 4.32

Endeavor
Calc. zVM

20.6 9.9 7.0 3.4 124 1793 3824 95.0 1.06 4.32
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Figure 3.3 plots the predicted vs. actual Cruise responses.

Single model comparisons

The GTDI concept was introduced by Ford in 2007-08. For a comparison with

actual vehicle data we use the 20-30% fuel economy improvement quoted for the 2008

Explorer America concept car from the 2008 North American Auto Show [Ford Motor

Company (2009)] compared to the V-6 conventional Explorer. The simulated values

are reported in Table 3.6 for the Explorer America concept car, the conventional

Explorer, and a conventional Explorer with the V-6 engine replaced by the 2 liter, 4

cylinder GTDI engine. The simulated fuel economy difference between the conven-

tional and the concept car was 29%. We also present the results for a GTDI equipped

Ford Edge with similar 0-60 time as the baseline Ford edge and compare the fuel

economy improvement in the GTDI Ford Edge versus the baseline (approximately

13%).

Split-mode hybrid electric

Simulation fits

For the HEV model, satisfactory polynomials were found for all powertrain per-

formance characteristics (R2: 0.998 City; 0.999 z060; 0.99 z65T ; 0.999 z3050; 1.0 Peak

power output from motor-generator one, zMG1; 1.0 Peak power output from motor-

generator two, zMG2;) except the fuel economy for the highway driving cycle, and the

vehicle top speed. These two outputs were fit with neural nets (R2: 0.99 Hwy, 0.97

zTS for the test points). Figures 3.4 and 3.5 plot the predicted vs. actual Matlab

simulation responses. The HEV fuel economy and 0-60 time were adjusted to account

for the overly optimistic behavior of the Matlab simulation.
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Figure 3.3:
(a) City driving cycle fuel economy; (b) Highway driving cycle fuel econ-
omy; (c) Maximum gradeability at 65 mph while towing; (d) 0-60 mph
acceleration time; (e) 30-50 mph acceleration time; (f) Maximum vehicle
velocity

61



74.5 5 6

7

4.5

5

6

Predicted City Fuel Consumption, l/100 km

S
im

u
la

te
d
 C

it
y
 F

u
e
l 
C

o
n
s
u
m

p
.,
 l
/1

0
0
 k

m

(a) (b)

   5 6 7 8 9 10

   

5

6

7

8

9

10

Predicted Gradeability @ 65 mph, 3500 lbm trailer

S
im

u
la

te
d

 G
ra

d
e

a
b

ili
ty

(c) (d)

(f)(e)

6   5

6

   

5

Predicted 30-50 mph time, 3500 lbm trailer, s

S
im

u
la

te
d
 3

0
-5

0
 m

p
h
 t
im

e
, 
s

   5 6 7 8

8.5

   

6

7

8

Predicted 0-60 mph time, s

S
im

u
la

te
d

 0
-6

0
 m

p
h

 t
im

e
, 

s

85.5 7

8

5.5

7

k

S
im

u
la

te
d
 H

w
y.

 F
u
e
l 
C

o
n
s
u
m

p
.,
 l
/1

0
0
 k

m

85.5 7

8

5.5

7

k

S
im

u
la

te
d

 0
-6

0
 m

p
h

 t
im

e
, 

s

85.5 7

8

5.5

7

k

S
im

u
la

te
d
 0

-6
0
 m

p
h
 t
im

e
, 
s

Predicted Hwy. Fuel Consumption, l/100 km

ValidationTraining Testing

130100 115

130

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

k

S
im

u
la

te
d

 M
a

x
S

p
e

e
d

, 
m

p
h

130100 115

130

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

k

S
im

u
la

te
d

 0
-6

0
 m

p
h

 t
im

e
, 

s

130100 115

130

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

k

S
im

u
la

te
d

 0
-6

0
 m

p
h

 t
im

e
, 

s

Predicted MaxSpeed, mph

ValidationTraining Testing

Figure 3.4:
(a) City driving cycle fuel economy; (b) Highway driving cycle fuel econ-
omy; (c) Maximum gradeability at 65 mph while towing; (d) 0-60 mph
acceleration time; (e) 30-50 mph acceleration time; (f) Maximum vehicle
velocity
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Table 3.6:
Comparison between 2007 Ford edge and 2008 Explorer America concept
car with SI and GTDI simulated vehicles
zMPG z060 z3050 z65T zTS zV M zEDisp xB xBtS xFD

Units mpg s s % mph lbm cc mm - -

Simulated
2008 Ex-
plorer
America
concept

21.3 4300 2000 87.4 1.07

Simulated
SI Ex-
plorer

16.5 4460 4000 100.3 1.19 3.55

Simulated
GTDI
Explorer

20.3 4460 2000 87.4 1.07

2007 Ford
Edge 21 7.4-8.4 unavail. unavail. 111 gov. 4096 3496 92.5 1.07 2.77

Simulated
SI Edge 20.2 8.29 5.64 5.86 134 4096 3496 92.5 1.07 2.77

Simulated
GTDI
Edge

22.9 8.25 5.53 5.94 134 4095 2000 87.4 1.05 2.5
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Figure 3.5:
(a) Power required for electric machine zMG1 (b) Power required for elec-
tric machine zMG2
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An additional 0.9 seconds was added to the 0-60 mph acceleration time for the HEV

model. A scaling factor of 5.778/4.5772 was applied to the test cycle city fuel con-

sumption for the HEV model. These changes were recommended by the author of

the HEV model to account for the overly optimistic performance of the HEV model.

The Ford Escape Hybrid/Mercury Mariner Hybrid, Toyota Highlander Hybrid,

and Lexus RX400h were all SUV hybrids in the 2006 model year. The Saturn VUE

Hybrid was added in 2007.

3.3.2 Vehicle Mass Prediction

curbweight

Figure 3.6 plots the predicted versus reported curbweight (zVM) for the crossover

segment based on Equation (3.1).

3.4 Summary

Engineering models representing the midsize crossover vehicle segment were devel-

oped representing three powertrain options: conventional spark-ignition engine (SI),

gas turbocharged direct-injection engine (GTDI), split-mode electric-gasoline hybrid

(HEV). Powertrain attributes were modeled using the AVL Cruise simulation soft-

ware. Surrogate models were generated for each powertrain simulation. The simulated

versus predicted powertrain attribute results were presented. Packaging and safety

attributes were modeled using a combination of empirical and analytical equations.

Comparisons of the modeled attributes to the reported attributes were given.
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CHAPTER IV

Demand

This chapter describes various methods adapted from the literature for developing

and then assessing discrete choice models for the purpose of design optimization.

A suitable demand model is one piece of the required framework for conducting

design studies with market simulations. Two newly developed discrete-choice models

are presented that were developed from individual-level survey responses of new car

buyers. Particular emphasis is made on comparing the substitution patterns implied

by the attribute elasticities of demand between the two models. Both newly developed

models appear to have avoided extreme price sensitivity as observed with the BLP95

model. The US automotive market was selected to illustrate the choice modeling

for design optimization approach. However, the same approach can be applied to

a wide range of products and industries. Key features of a product or market that

could benefit by the approach are an established market with observable consumer

purchase data and a product with technical attributes and constraints that require

engineering modeling to compare feasibility of the product design.

Some challenges with estimating choice models are selecting a suitable utility spec-

ification where the utility specification is the mathematical formulation that maps

product and consumer attributes to consumer preference for product choices; lack of

disaggregate consumer data where disaggregate consumer data mean recorded pur-
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chase observations and demographic information by individual; correlation of price

with unobserved attributes of products; and modeling of the outside good, where the

outside good represents the value to the consumer of not purchasing any product in

the market.

We test two variations of a utility specification that contains similar elements

to previous choice models of the automotive industry. We obtained individual con-

sumer data from a new car buyer survey conducted by Maritz Research. To account

for the correlation between price and unobserved product attributes (i.e., price en-

dogeneity), we instrumented for price endogeneity using a previously demonstrated

approach. We ignore the possibility of product attribute endogeneity, or the corre-

lation of unobserved vehicle attributes with vehicle attributes that are included in

the systematic component of utility. While we think this is an important issue to

be explored, it was beyond the scope of this work. Additionally, we did not model

an outside good in our choice model. This is common practice in many automotive

studies because the choice model is estimated on observed data (i.e., only buyers are

observed not individuals who “walked away”).

There are two elements that are new with our approach that have not been high-

lighted in the literature. The first element is that we take a larger than normal set of

vehicle alternatives. Most automotive studies have used on the order of 200 vehicles

per model year. Our study includes 473 vehicle alternatives. Increasing the number

of alternatives allows finer product differentiation by permitting attribute differences

associated with power and fuel economy to be captured between same models that

come with different engine options. We approximate observed market shares at this

level by referencing the EPA collected sales figures, which are organized at this level

of detail. The intention is that the large vehicle set allows for improved parameter

identification including individual taste differences (i.e., unobserved heterogeneity).

The second novel element is a model specification that incorporates an explicit
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ideal-point for consumer preferences for vehicle size (i.e., length×width). This model

assumes that individuals have an ideal vehicle size rather than a monotonically in-

creasing or decreasing preference for increased vehicle size.

Section 4.1 reviews traditional methods for evaluating demand models . Section

4.2 presents the choice modeling approach and derives the expressions for the relevant

vehicle attribute point-elasticities. Section 4.3 presents the horizontal differentiation

hypothesis and the model specifications to test the hypothesis, the estimation results,

and the model comparisons. Section 4.4 discussions the findings from the model in a

design for market systems context, and Section 4.5 summarizes the chapter.

4.1 Methods for Evaluating Demand Models

We define interpretability as a qualitative assessment of how well the functional

form of utility is supported by theory or beliefs of market behavior. Questions that a

modeler should ask when checking for interpretability before estimation include: Do

all components of utility have behavioral or physical significance? Does each behav-

ioral or physical factor influence choice probabilities in a manner that is consistent

with theory or belief? After estimation, the modeler should check interpretability

by conducting various tests: (1) The significance of the estimated parameters, with

particular attention to those deemed to support theory or beliefs; (2) the signs of

the estimated parameters; (3) over-fitting; (4) colinearities among attributes. We

will report on the new model performance on items 1-2. Items 3-4 require further

development and are left for future work.

The form of the choice model can influence decision outcomes more or less in line

with economic observations. We postulate that an appropriate choice model should

account for price endogeneity, at a minimum. Endogeneity of other vehicle attributes

may also be important. The choice model should yield to several intuitive checks:

(i) the sum of the non-price component of utility and the price component due to
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product cost for an individual’s utility maximizing vehicle should be interior to the

vehicle attribute space for the majority of individuals; (ii) price equilibrium calcula-

tions employing the choice model should yield increasing markups with price; (iii) a

design optimization should yield firms that are incentivized to produce a portfolio of

differentiated products. For example, the simple logit does not meet the second check

as it is known to exhibit constant markups for all products of a firm irrespective of

price [Shiau and Michalek (2009)]. The choice models estimated in this dissertation

account for price endogeneity. We leave non-price attribute endogeneity for future

work. The performance of the choice models on the three checks is discussed in the

market simulation results in Chapter 8.

4.1.1 Measures of Fit

Metrics to evaluate the fit of a choice model can be directly applied from econo-

metrics. Measures of fit emphasize the descriptive power of a model with respect to

the same data set used to estimate the model. However, they do not indicate if the

model is correctly describing the most important factors or how well the model will

predict outcomes based on changes in behavior, both of which are important for de-

sign optimization. One primary measure of fit is the likelihood ratio test as described

in Chapter 2.

Another common measure of fit is to count the choice shares correctly predicted

by the model. However, choice models are probabilistic by nature, dealing in expected

choice shares. Correct prediction counts are therefore of limited value [Train (2003)].

In addition, recent practice in economics is to employ an alternative-specific constant

for each alternative during the estimation procedure. This means that each alternative

(except one baseline alternative) is identified in the utility specification by a dummy

variable. Augmenting the utility specification in this way allows the predicted choice

shares to be matched to the observed market shares. We do not include alternative-
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specific constants in the model specification. However, we emphasize the importance

of considering model performance without the aid of the alternative-specific constants

because (1) a designer comparing different models should consider how much vari-

ance can be described by design attributes before the aid of the constants, (2) the

values for alternative-specific constants are not available for many published models,

and (3) including alternative-specific constants can add computational burden to the

model estimation process. One way to visually assess how the model is doing without

alternative-specific constants is to plot observed market shares and predicted market

shares on the same graph as a function of a given attribute (e.g., price).

Alternative-specific constants are essential for improving choice share prediction.

However, their importance in a design optimization context is less straightforward.

It is true that increasing or decreasing the utility of a particular vehicle through

an alternative-specific constant could change its own or another vehicle’s optimal

design decisions. This is expected especially for the mixed-logit case where the cross-

elasticities of demand are affected by all vehicle choice alternatives, not only the two

vehicles being compared. Future work should study the difference in optimization

outcomes between a model that was estimated without alternative-specific constants

and one with alternative-specific constants. In the end, this work is computationally

limited (i.e., in computer memory) in its ability to explore models with the additional

472 parameters (or 200+ if consolidated to the model level) required to represent the

alternative-specific constants. The vehicle brand parameters in the present study act

as a coarser version of true alternative-specific constants.

4.1.2 Attribute Elasticity

The elasticity of demand EjXm
k

for vehicle j is the percentage change in demand for

j given a percentage change in attribute m of product k. Computing own- and cross-

elasticities is then an indication of the substitution patterns expected given changes
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to vehicle attributes. Given two choice models with identical fit characteristics, the

model with the substitution patterns more reflective of the market should yield more

useful design optimization results.

The formula for cross- and own-elasticities for individual i given a mixed-logit

choice model are as follows [Nevo (2000); Train (2009)].

EijXm
k

=
∂PijX

m
k

∂Xm
j Pij

=


Xm
k

Pij

∫
Bm
ikLik(µ)(1− Lij(µ))f(µ)dµ if j = k

−Xm
k

Pij

∫
Bm
ikLik(µ)Lij(µ)f(µ)dµ if j 6= k

(4.1)

where Pij =
∫

(eµ
′Xij/

∑
k e

µ′Xik)f(µ)dµ is the unconditional likelihood individual i

chooses vehicle j, and Lij(µi) = eµ
′
iXij/

∑
k e

µ′iXik is the conditional likelihood individ-

ual i chooses vehicle j for a particular µi with similar interpretation for Lik for vehicle

k, Xm
k is the value of attribute m for vehicle k, and Bm

ik is the partial derivative of

utility with respect to Xm
k .

The integrals in these equations can be simulated by computing the inner terms

for a number of draws from the parameter distributions and then dividing by the

number of draws D, where the market-level elasticity EjXm
k

can be approximated by

summing the individual elasticities of a representative population and dividing by the

number of individuals I.

EjXm
k

=


Xm
k
ID

∑I 1
Pij

∑D Bm
ikdLikd(µd)(1− Lijd(µd)) if j = k

Xm
k
ID

∑I − 1
Pij

∑D Bm
ikdLikd(µd)Lijd(µd) if j 6= k

(4.2)
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4.2 Estimating Mixed Logit Choice Models from Disaggre-

gate Data

Two mixed-logit discrete-choice models of the US new vehicle industry were esti-

mated. The goal for the estimation was to develop models that could be used in the

design optimization market simulation. A schematic of the choice model development

is shown in Figure 4.1. The following subsections describe each of these steps in more

detail.

4.2.1 Choice Data

Data for the estimation came from the Maritz Research 2006 New Vehicle Cus-

tomer Satisfaction survey [Maritz Holdings Inc. (2007)] and additional vehicle speci-

fication data came from Chrome System Inc.’s New Vehicle Database and VINMatch

tool [Chrome Systems Inc. (2008)].

The choice set for each individual was selected from 473 vehicles (a subset of 2006

model year vehicle styles corresponding to available make, model, and engine op-

tions). We eliminated vehicles priced over $100,000 as well as seven alternatives that

were not observed in the survey data, and further reduced the vehicle choice set by

consolidating pickup truck and full-size van models with gross-vehicle-weight ratings

over 8,500 lb to 2 models each. Summary vehicle data are provided in Table 4.1.

The table lists manufacturer suggested retail price MSRP ; vehicle attributes for fuel

economy, engine peak horsepower, vehicle curbweight; and vehicle dimensions length,

width, and height.

4.2.2 Instruments

We instrumented for price endogeneity (R2=0.78) using attribute distance metrics

patterned after those reported by [Train and Winston (2007)], where instrumental
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variables consist of differences between vehicle attributes (zhp and zL×zW×zH) among

a firm’s vehicle fleet and among competitors’ vehicles as well as the systematic product

attribute components of utility. We ignore product attribute endogeneity assuming

that the observed non-price attributes are uncorrelated with the unobserved utility

component.

4.2.3 Estimation Approach

We estimate new mixed-logit choice models according to the simulated maximum

log likelihood approach using Matlab code modified from Kenneth Train’s publicly

available estimation code [Train (2009)].

An individual’s choice set was taken to be 100 vehicles including the purchased

vehicle, the vehicles strongly considered (up to 3 vehicles as reported by the sur-

vey respondent), and uniformly-conditioned randomly-selected vehicles up to the 100

vehicles. We take the reported order of considered vehicles as a preference ranking

and treat the overall estimation as an exploded (or rank-ordered) logit. Assuming

the error term εi is independent and identically distributed following the extreme

value type 1 distribution in the mixed logit model allows ranked observations to be

treated as seperate choice observations [Train (2003)]. An individual’s choice set for

the pseudo-observations is the same as for the purchased vehicle observation choice

set with the purchased and higher-ranked considered vehicles removed.

A set of 6,563 individuals were sampled from 81,705 survey respondents1 using

1Nineteen percent of the survey respondents did not report income. These individuals were set

Table 4.1: Summary vehicle attribute data
MSRP zMPG zhp zVM zL zW zH

units $ mpg hp lbm in in in
min 11925 11.0 65 1975 143.1 65.7 47.6
max 97485 56.6 520 6400 249 86 93.1

median 27330 21.0 230 3682 189.7 72.2 58.7
mean 32675 21.5 241 3887 190.9 72.8 63.4
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Figure 4.2:
Regression showing reported vehicle MSRP as a function of the instru-
mented price p̂

choice-based sampling to approximate 2006 market shares. In some cases either too

few vehicle choices were available in the survey to match the sales or too few respon-

dents would be sampled to represent the demographics of purchasers of a vehicle.2

To account for this, a set of weights was generated for each individual in the sam-

ple to adjust the log-likelihood calculation to correctly match 2006 market shares.3

aside for sampling purposes as well as individuals who purchased model year 2007 vehicles in 2006.
2A minimum of five observations for each vehicle alternative was set (if at least five were available)

to increase the sample of demographics for consumers of low market-share vehicles.
3The weighting procedure used was available in Train’s code. This procedure multiplies the log

of each individual’s logit probability (including all choice observations) by the weighting value for
that individual.
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The assumption made with this choice-based sampling approach is that the sampled

individuals who purchased a particular vehicle alternative are representative of all

individuals who purchased that vehicle.

4.2.4 Attribute Elasticity

We examine the substitution patterns produced by both models by looking at own-

and cross-elasticities. Table 4.2 gives the values of Bm
ik required for Equation (4.2) for

the several attributes of interest.

4.3 Testing Newly-estimated Demand Models

4.3.1 Horizontal Differentiation Hypothesis

We conjecture that optimization studies of the automotive market using demand

models with little horizontal differentiation will be oversensitive to price and under-

predict differentiation in product attributes compared with the observed market. Our

hypothesis is that functional forms of econometric demand models that have more

freedom to capture horizontal differentiation, if it exists, will perform better in terms

of fit than those that imply consumer preferences are predominantly based on vertical

differentiation. The improved fit could be taken as one measure that the conventional

models underpredict the level of horizontal preference heterogeneity in the market.

Additionally, we hypothesize that substitution patterns between vehicles will be no-

ticeably different between the conventional and the increased horizontal differentiation

Table 4.2: Partial derivatives Bm
ik of attributes evaluated for elasticities

Attribute Model 1 Model 2
price µprice/Incomei µprice/Incomei
hp/wt µhp/wt µhp/wt
gal/100mi µgal/100mi µgal/100mi

zL × zW µzL×zW 2µ(zL×zW )2(zLkzWk
)− 2µ(−2zL×zW )
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models.

We choose vehicle footprint to test an ideal-point preference model because we

believe it is the continuous attribute that is most likely to demonstrate horizontally

differentiated preference.4

4.3.2 Model Specification

The utility specification can be broken into three parts following Equation (2.1):

Terms that rely on the product alone δ′dj (brand dummies5 European dEur, Japanese

dJap, Chrysler dChr, General Motors dGM , and Korean dKor); interactions between

product attributes and demographics β′bij (minivan and children bm·c, SUV and chil-

dren bs·c, pickup truck and rural living bp·r); product-attribute or attribute-demographic

interaction terms with individual-specific random coefficients (assumed normally dis-

tributed) µ′imij (vehicle price divided by individual income pj/sinc,i, power to weight

ratio (a proxy for acceleration) zhp/zVM , combined city and highway fuel consumption

100/zMPG, vehicle footprint zL × zW ; class dummies based on EPA vehicle classes:

Two seater or minicompact mtsmc, minvan mmvan, Sport utility vehicle mSUV , full

size van mvan, pickup truck mpup; and a hybrid powertrain dummy vHEV ) 6.

Model 1 assumes utility is monotonic in vehicle footprint: µ1(zL × zW ). Model

2 assumes an ideal-point model of footprint: µ1(µ2 − zL × zW )2, which implies an

interior maximum when µ1 is negative. Variation across individuals in µ2 represent

individual-specific ideal footprints for a vehicle. In order to use estimation techniques

built around linear-in-parameters utilities we simplify the expression by expanding

the quadratic: µ1µ
2
2 − 2µ1µ2zL × zW + µ1(zL × zW )2 and drop µ1µ

2
2, leaving µ1(zL ×

zW )2 − µ̂22zL × zW (Note: µ̂2=µ1µ2), which we use in the estimation. We can drop

4We expect preference for acceleration and fuel economy to be monotonic although not necessarily
linear.

5Ford was considered the baseline brand, so no dummy variable was used for Ford vehicles. This
means that all brand coefficient values are with respect to Ford.

6zhp/zV M is zhp × 10/zV M where zV M is measured in lbm, and footprint is zL × zW measured
in in.2/10000.
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µ1µ
2
2 from the expression because it is constant across vehicles and only relative utility

affects choice probabilities.

4.3.3 Model Identification

Parameter estimates and standard errors are reported in Table 4.3.

4.3.4 Model Comparisons

Fit

The log-likelihood ratio, or psuedo-R2 value, for the models were 0.115 and 0.119

respectively. While these values are substantially lower than the target range of 0.2-

0.4, the likelihood ratio cannot be compared across other models in the literature

estimated on different data. Overall, both models are comparable in terms of fit.

Interpretability

Attributes and demographics were chosen with physical interpretations related

to design optimization and product planning. Price divided by income allows sen-

sitivity to price to change nonlinearly with income. This follows the intuition that

price influences choices more when it represents a higher percentage of annual in-

come. Horsepower over curbweight is a proxy for acceleration, which we believe is

an important factor in purchases. Other performance metrics may be better suited

for certain vehicle classes concerned with towing, for example, but this extension is

beyond the scope of the present study. Vehicle size should also be relevant to the car-

buying decision. However, the monotonic formulation of Model 1 seems nonsensical

when carried to extremes. The formulation in Model 2 maps more naturally to the

observation that different size vehicles (of the same price) succeed in the market.

The vehicle segment dummies match observed vehicle classes in the market. Sedans

(ranging from subcompacts to full-size) represent the baseline vehicle, so values of the
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segment dummies are relative to those vehicles. The majority of two-seater and mini-

compact vehicles are sports cars. We included this parameter to see if this class would

command a premium above the average tradeoff for acceleration and other attributes.

A hybrid dummy was also included to account for any influences on purchase decisions

Table 4.3: Vehicle demand model parameter estimates
Mean values

Model 1 Model 2
Parameters Estimate Std. Error Estimate Std. Error
p/sinc 3.29 0.13 4.11 0.16
10zhp/zVM 0.4 0.13 0.62 0.13
100/zMPG -0.82 0.03 -0.86 0.03
zL × zW 5.33 0.13 - -
(zL × zW )2 - - -15.6 0.94
−2zL × zW - - -25.5 1.37
mtwmc -1.7 0.46 0.25∗ 0.23
mmvan -6.03 0.69 -4.74 0.53
mSUV -0.56 0.11 -0.56 0.11
mvan -13.2 3.55 -7.72 0.97
mpup -4.79 0.46 -1.77 0.14
vHEV -3.89 0.48 -4.97 0.63
dEur -0.38 0.055 -0.18 0.059
dJap 0.15 0.036 0.24 0.038
dChr 0.16 0.043 0.13 0.044
dGM -0.43 0.036 -0.34 0.038
dKor -0.63 0.059 -0.55 0.06
bm·c 2.87 0.31 2.53 0.26
bs·c 0.74 0.13 0.76 0.13
bp·r 4.66 0.53 2.07 0.22

Standard Deviations
p/sinc 0.88 0.17 0.79 0.19
10zhp/zVM 0.19∗ 0.3 0.04∗ 0.32
100/zMPG 0.73 0.03 1.01 0.03
zL × zW 0.36∗ 0.33 - -
(zL × zW )2 - - 0.17∗ 0.17
−2zL × zW - - 4.29 0.23
mtwmc 2.47 0.3 1.08 0.27
mmvan 5.12 0.47 4.16 0.37
mSUV 3.19 0.15 2.93 0.13
mvan 8.17 2.15 4.91 0.63
mpup 6.21 0.5 2.42 0.17
vHEV 2.16 0.38 2.94 0.44
∗ not significant at 95% confidence interval
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of hybrids independent of fuel economy.

Brand differences were consolidated into six groups (European, Japanese, Chrysler,

GM, Korean, and others–i.e., Ford). Other combinations could also be tested but are

outside the scope of this study. The demographic interactions of minivan and SUV

purchases in households with children and pickup truck purchases in rural areas are

intuitive.

The signs of both sets of parameters are generally as expected including the signs

for the footprint terms in Model 2, which implies local maximum values. It is non-

intuitive that individuals would prefer lower fuel economy, but the large standard

deviations on the fuel consumption parameter implies this behavior. This is a case

where either the model lacks appropriate instruments to tease apart the power to

weight ratio versus fuel consumption interaction, the model should be respecified to

get at a more intuitive preference structure, or the data set should be improved. For

example, an alternative would be to use a cost to drive attribute such as $/mile and

estimate a model where gasoline price is determined using date of purchase.

Another observation is that the mean value for the two seater or minicompact

vehicle class is positive but not significant in Model 2 and negative and significant

in Model 1. Both standard deviations are significant. This is likely related to the

differences in the footprint specifications. This case illustrates the challenge working

with these models because a change in specification propagates to other elements of

the specification that may have very different interpretations in a design optimization

context.

Model 2 includes two more terms than Model 1 and has one more term that is

significant in a two-tailed t-test at a 95% confidence interval as noted in Table 4.3.

Notably, the standard deviations for footprint and power to weight ratio in Model

1 are not significant. Model 2 appears to support our initial hypothesis with both

mean and one standard deviation footprint term significant.
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Predictive Validity

The use of choice-based sampling did not allow true hold-out sample testing from

the 2006 survey data. Comparing model behavior on data from another year is a

next step for future work. A psuedo-hold-out-sample test was generated by drawing

a new choice-based sample from the 2006 survey data. The log likelihood ratio for

the pseudo-hold-out-samples for Model 1 was 0.106 and for Model 2 was 0.113. This

was an overlapping sample because the low observation choices in the survey data

where identical in both samples.

Plausibility

We investigate the plausibility of the models through visualization schemes. First,

we compare existing market shares in Figure 4.3. The purpose for the comparison

with the BLP model is not to compare performance directly per se given that BLP was

estimated on 1971-1990 vehicle data, but to illustrate a potential pitfall in adopting

an “off-the-shelf” choice model for a design for market systems study7.

We simulated own- and cross-elasticities for each vehicle alternative using the

estimation population of individuals (I = 6, 563) and 100 standard normal random

draws for each individual. Figure 4.4 shows the own-elasticities for price, hp/wt,

gal/100 mi, and zL×zW for both Model 1 and Model 2 for all 473 vehicles. The cross-

elasticity for zL× zW is shown for both models in Figure 4.5. In both figures vehicles

were ordered to aid interpretation: From left to right the vehicles were grouped by

class; for Figure 4.4 vehicles were ordered within class from smallest to largest value

of the corresponding attribute; for Figure 4.5 vehicles were ordered within class from

7To make the comparison as fair as possible, the following steps were taken. All attributes
involving dollar values were scaled from 2006$ to 1983$ for BLP utility evaluation. Additionally,
a model of the outside good was reported in BLP but not in model 1 and model 2. We normalize
utility comparisons between all models by differencing the maximum utility for each individual from
the other utilities for that individual. For BLP we further eliminate individuals whose maximum
utility did not exceed the value of the outside good and then rescale the market shares based on the
remaining individuals.
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least to most expensive.

Comparing own-elasticities in Figure 4.4 reveals that Model 2 has greater hetero-

geneity in the zL × zW and gal/100 mi attributes. The own-elasticities for zL × zW
in Model 2 are large positive values indicating that, in the overall market, increasing

size is preferred. Another important difference is that while Model 1 indicates that,

on average, size is more important as the vehicle size increases (shown by increasing

elasticities from smaller to larger classes), Model 2 shows that increased size is more

important for the large sedans and much less important for full size vans and pickups.

Figure 4.5 is a gray-scale plot showing cross-elasticities for the zL× zW parameter

for Model 1 (a) and Model 2 (b). More negative elasticities are shown in darker

shades. Many effects can be observed by studying the plot in detail. For example,

changes in the sedan class affect shares in the two seater or minicompact class, but

changes in the two seater or minicompact class have less effect on the sedan class.

Panel (b) shows that some vehicles have positive cross-elasticities for zL × zW in

Model 2 (primarily for changes to the large pickup trucks and vans). This means

that increasing size of vehicle k will increase the market share of vehicle j. Both

models show much stronger substitution within class than between classes. Panel (b)

shows that vehicles within the same class and closer in price have greater magnitude

cross-elasticities (an intuitive property). This is seen by the lighter shading on the

upper diagonal for each block compared to the lower diagonal. This effect is less

pronounced for Model 1, but it is difficult to conclude from the plot if this is a real

difference between models or due to the difference in cross-elasticity magnitude.

4.4 Implications for Design for Market Systems

The results from the previous section point to the differences in choice model

behavior given different choice model specifications. Two questions relating to the

application of the choice models in a design optimization context are addressed in this
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section. The first section looks at the influence of using different numbers of draws to

simulate the taste distribution for each individual in the simulated population. The

second section briefly highlights the fact that the effect of the specification differences

may be most pronounced when the entire vehicle fleet is free to change vehicle design.

This step is beyond the scope of this work.

4.4.1 Simulating population heterogeneity

With demand model in hand, the design for market systems goal is to incorporate

the demand model into a market simulation. Such a simulation evaluates product

demand given product attributes and prices. It may include a game that represents

competitive behavior. Product demand is evaluated by simulating a population of

car buyers with representative demographic characteristics. Random taste coefficients

are drawn for each individual. A set of coefficients µ for individual i from a single

draw can be used to compute the conditional probability of individual i choosing

each product j given µ. However, the individual’s “true” µ’s are not known, rather

the distribution of µ. The unconditional choice share over the distribution of µ for

an individual can be simulated by taking multiple draws of µ and averaging the

conditional choice shares. Each draw per individual adds additional computational

expense to the market simulation. What is the right number of draws to capture the

population heterogeneity? Figures 4.6-4.13 investigate this question by computing the

own-elasticity for each attribute for Model 1 and Model 2. The elasticity of demand

with respect to some attributes (those with little or no taste variation) changes little

between 1 draw/individual and 128 draws/individual. However, the elasticity for

attributes such as the footprint attribute in Model 2 change dramatically.

The simulations were performed on the identical population (I=6,563) used to es-

timate the models. Draws were standard normal random draws generated by Matlab.

Figure captions for Figures 4.6-4.13 indicate the number of draws in each illustrated
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case. The gray data are the elasticities from the previous case (i.e., the figure panel

for 2 draws shows the 1 draw results “grayed-out”). Figures 4.6-4.9 correspond to

Model 1 (linear in footprint). Figures 4.10-4.13 correspond to Model 2 (quadratic in

footprint).

Price elasticities change primarily for the most expensive vehicles, and here the

change is small. Therefore, the expectation is that price equilibrium results would

change little from the case with 1 draw to the case with many draws (i.e., 128).

However, elasticities for the the fuel consumption and size attributes change to a

large degree. Therefore, we expect the results of design simulation results that allow

vehicle attributes to change to change between the case with 1 draw and the case

with 128 draws per individual.

4.4.2 Model specification

We hypothesize that the differences in model parameter values and the differences

observed in the attribute elasticities will lead to different design optimization market

simulation outcomes given the same inputs. Testing this hypothesis is one of the

outcomes of the case studies detailed in Chapter 8. Future work remains to expand

the engineering modeling framework to allow modeling of multiple product offerings

across the vehicle fleet for each firm. This is an important piece to fully test the above

hypothesis because the most dramatic differences in elasticities occur for the luxury

models and for specialty market segments such as the two-seaters/minicompacts, and

the pickup trucks. For example, comparing Model 1 and Model 2 in Figure 4.4 shows

that the own-elasticities for footprint in Model 1a primarily monotonic relationship

across a vehicle class for the entire vehicle fleet. Own-elasticities for footprint in Model

2 are scattered. Notably, Figure 4.4 also shows that own-elasticities for footprint for

full size vans and pickup trucks classes are among the highest magnitudes across

classes in Model 1 and among the lowest magnitudes across all classes in Model 2.
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4.5 Summary

Methods were presented for developing and evaluating consumer choice models

that are suitable in a design optimization context. We used these methods to test the

hypothesis that allowing horizontal taste preferences to be expressed explicitly and

separately from distributions of random coefficients improves the performance of the

model with respect to these metrics. Results suggest that the inclusion of horizontal

preferences slightly improved fit and predictive validity, but this effect was not strong

enough to clearly support the hypothesis. With respect to plausibility, we show that

the inclusion of horizontal-preference terms significantly modifies substitution effects.

This behavior is expected to change optimization results as shown in Chapter 8.

Applying similar evaluation methods to those presented should be foundational to

design for market systems research in order to evaluate hypotheses about consumer-

preference relationships. Similar evaluation methods are needed for producer cost

models and for game-theoretic competitive behavior. The right combination of ap-

propriate demand and cost models, and competitive assumptions should lead to a set

of intuitive checks on plausibility applied to the entire market system.
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CHAPTER V

Cost

A key component in testing hypotheses for market and environmental outcomes

assuming profit-maximizing firm behavior is an adequate representation of production

costs as a function of producer decisions. Here we explore the ability to capture such

a model relying on publicly available data rather than proprietary cost estimates

or joint demand and cost model estimations. Section 5.1.1 examines some publicly

available data for vehicle prices and projected dealer markups.

The objective of the cost model exploration is to identify promising approaches

for generating parametric cost representation of vehicle production costs. Parametric

cost models typically relate variable costs to a firm’s product design and production

decisions through a mathematical expression. Cost models of this form are particu-

larly well suited for integration within a design optimization context.

Three cost modeling approaches are examined in this chapter. The first two

approaches are motivated by work in the engineering community. The third approach

is motivated by the economics community. The first approach (Section 5.1.2) develops

a cost representation specifically for the midsize crossover segment. It is based on

establishing a baseline vehicle configuration and then linearly scaling costs based

on deviations from the baseline attributes. The second approach (Section 5.1.3)

develops a regression equation as a function of product characteristics for predicting
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pre-specified costs based on an assumed relationship between market prices, dealer

markups, and original equipment manufacturer (OEM) markups. The third approach

(Section 5.1.4) begins with the newly-estimated demand models and backs out the

costs for each vehicle by enforcing the equilibrium conditions for the given vehicle

designs and prices. The costs are then regressed on vehicle characteristics.

No approach has as yet yielded completely satisfactory results. One of the sim-

plifying assumptions for all three models is that the cost factors are additively sepa-

rable. This means that the total per vehicle cost is a linear combination of product

attributes. It is conceivable that the true cost relationship may be described by a

nonlinear interaction between product characteristics. Exploring cost models and

their implications for design optimization is an important area for future work.

Additionally modeling is required to supplement each modeling approach in the

case of new technologies. Section 5.1.5 presents models to account for incremental

costs associated with gas turbo-charged direct-injection engine technology and hybrid

electric vehicle technology. Section 5.2 summarizes the chapter.

5.1 Cost Model Approaches

5.1.1 Exploratory Data

The scaling and the empirical markup cost model representations rely on an esti-

mation of dealer and OEM markup, at least for an average vehicle. These estimates

were made by examining publicly available price data (i.e., quoted dealer invoice and

MSRP values). Wards automotive yearbook provides data on several vehicle charac-

teristics as well as MSRP for new vehicles sold in the US each year [Wards Commu-

nications (2006)]. In addition, many online sources such as Edmunds.com [Edmunds

Inc. (2008)] or Cars.com [LLC Classified Ventures (2008)] provide an estimate of the

dealer invoice price, destination charge, and MSRP. In the absence of transaction price
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Table 5.1: Average dealer markups and estimated full markups by class

Class
Sample
Size

Min Max Avg
Std
Dev

OEM+Dealer
Markup

Crossover 35 5.9% 12.4% 8.1% 1.9% 17.7%
Large Pickup 10 10.5% 15.5% 13.4% 1.8% 41.3%

Large SUV 11 9.3% 15.6% 13.2% 2.2% 40.2%
Large Van 13 9.9% 15.6% 13.9% 1.8% 43.9%

Mid-size SUV 18 5.5% 12.0% 8.9% 2.2% 20.7%
Small Pickkup 12 5.7% 11.9% 9.9% 1.6% 24.4%

Small Van 14 6.2% 12.3% 9.1% 1.8% 21.5%
Lux. SUV/Cross. 30 6.3% 14.3% 9.9% 2.0% 24.5%

data for vehicle sales, these data sources provide a comprehensive information source

that offers insight into the relationship between vehicle characteristics, price, and

cost. Examining 143 vehicle makes for model year 2005, as reported by Cars.com,

indicates there are differences by vehicle class for the percentage markup between

dealer invoice and manufacturer suggested retail price. Table 5.1 and Figure 5.1 show

the average dealer markup for various classes of light-duty trucks. The error bars

in Figure 5.1 show ± 1 standard deviation assuming the markups are normally dis-

tributed. The trends match the historical belief that large trucks and large SUVs are

more profitable for dealers and OEMs than smaller vehicles.

5.1.2 Scaling Models

The cost model, modified from De Weck [De Weck et al. (2006)] and Cook [Cook

(1997)], is based on assigning a cost to a hypothetical average vehicle and then com-

puting the cost for a specific vehicle based on deviations from the average. Approach-

ing cost modeling in this way enables design-specific cost differences to be considered

without requiring a complete bottom up cost structure. The initial cost value is gen-

erated from assumptions about average profit margin γ = 20% (OEM plus dealer),

as well as the average operating leverage φ = 0.35 (relative distribution of fixed vs.

variable costs). No learning curve effect was assumed.
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Figure 5.1: Average percentage markups by class: Invoice to MSRP

Per vehicle variable cost UnitCvar is broken down into four subsystems, where

the relative cost of each subsystem (indicated as a percentage in parentheses) is a

function of design variables and parameters. Design variables corresponding to each

subsystem are listed after the subsystem percentage: Powertrain (30%): xB, xBtS;

Chassis (35%): xW105, xL101; Body (30%): xL103, xH101, xW105; Wheels (5%): Wheel

diameter vw, Tire width vtw. Total cost C is calculated according to the following,

where Cf corresponds to the total fixed cost for the manufacturer, cavg corresponds

to the per vehicle unit variable cost for the average vehicle, Qavg corresponds to the

sales volume of the average vehicle, cfun corresponds to the hypothetical variable cost

to produce a single unit given the specified learning curve effect with the additional

subscripts indicating the hypothetical variable cost to produce a single unit of a

given subsytem, and similarly for cj the per vehicle unit variable cost of vehicle j, G
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corresponds to the learning curve effect, the average variable and parameter values

(e.g., xL101,avg) are also indicated.

Cj = Qj × cj + Cf (5.1)

Cf =
φ× cavg ×Qavg

1− φ
cavg = cfun ×QG

avg

cfun = cfun,pwtrn + cfun,chas + cfun,bod + cfun,whe (5.2)

cj = cpwtrn + cchas + cbod + cwhe

cpwtrn = cfun,pwtrn
zEDisp

zEDisp,avg
QG
j

cchassis = cfun,chas
xW105 × xL101

xW105,avg × xL101,avg

QG
j

cbody = cfun,bod
xW105 × xL103 × xH101

xW105,avg × xL103,avg × xH101,avg

QG
j

cwheels = cfun,whe
vtw × vw

vtw,avg × vw,avgSalesV ol
G

cfun,pwtrn = 0.3(1− φ)(1− γ)pavg ×Q−Gavg
cfun,chas = 0.35(1− φ)(1− γ)pavg ×Q−Gavg
cfun,bod = 0.3(1− φ)(1− γ)pavg ×Q−Gavg
cfun,whe = 0.05(1− φ)(1− γ)pavg ×Q−Gavg (5.3)

Fixed cost Cf is the same for all firms and relates the operating leverage φ, the

average unit variable cost cavg, and the average sales volume for a model in the

midsize crossover segment Qavg. Vehicle model sales volume Qj is the product of the

vehicle choice share Pj and the total market size M . This cost model could be further

customized for individual firms by specifying a firm’s specific φ, γ, Qavg, and average

vehicle characteristics.
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5.1.3 Empirical Markup Models

A second approach we propose is to identify cost drivers from the physical com-

ponents of the product and regress a cost relationship based on price. We have

attempted such an approach using data from model year 2005 Ward’s Automotive

Yearbook.

The 2005 Wards light-duty truck database contains approximately 1650 unique

nameplates (e.g., Ford Escape XLS). There may be any number of nameplates pro-

duced under 1 of the approximately 160 models (e.g., Ford Escape). All models belong

to one of 34 makes (e.g., Ford). Vehicles with MSRP above $60,000 were filtered out

as well as a small number of specialty vehicles (e.g., Ford Escape Hybrid, Chevy SSR,

Dodge Ram Quad Cab SRT 10). An effort was then made to filter all vehicles that

had identical characteristics in the Wards data, but were differentiated significantly

in price. The higher priced vehicle was filtered from the data set. A large number

of pickup trucks were removed in this way. In total 800 nameplates remained in the

data set.

Vehicle data include gross vehicle dimensions, engine characteristics (e.g., bore,

stroke, compression ratio, ), engine performance (e.g., peak horsepower, peak torque),

transmission type, drive type, safety features (e.g., antilock brakes), curbweight, fuel

economy, and MSRP.

We make the common economic assumption that, for a given firm, the price they

charge in the market increases with product quality and that firms practice cost-

minimizing behavior, i.e., they seek the minimum cost of inputs to produce an output

of a given quality. Therefore, vehicle price and cost should both be monotonic with

respect to product quality (quality, here taken to be increasing levels of measurable

product characteristics).

We assume that there is a consistent relationship (or apportioning) between the

dealer invoice and MSRP markup and the amortized per vehicle OEM cost and
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the dealer invoice price markup. We assume further that higher percentage dealer

markups for certain classes of vehicles indicate vehicles with a superior value proposi-

tion affording the supplier more pricing power; and that as value increases, the OEM

has more pricing power than the dealer and thereby captures a greater percentage

of the available profit. For lower value products we observe lower percentage dealer

markups, and we assume the dealer has more pricing power than the OEM. This

affect has historically been compounded, at least for the U.S. automakers, by a down-

ward pricing pressure on fuel-efficient vehicles in order to sell those vehicles to satisfy

CAFE requirements.

The dealer markup data from Table 5.1 was used to compute average total markups

γT according to the following relationship. The formula is based on the assumption

that OEM markups γOEM increase more rapidly than dealer markups γD.

γT = γD

(
1

6
(100γD − 7) + 2

)
γOEM = γT − γD (5.4)

Figure 5.2 plots the relationship from Equation (5.4). The equation, as it is currently

tuned, implies that nominally γD = γOEM when γD = 7%, and nominally γOEM will

be twice γD when γD = 13%. In practice the OEM markup will be slightly less than

the nominal value because the dealer markup acts on the price charged by the OEM,

not the cost to the OEM to produce the vehicle.

Relying on such a proposed relationship between price, dealer markups, and OEM

markups, we can compute assumed unit vehicle cost cj,a for each vehicle j = 1, . . . , J .

We then fit assumed vehicle costs as an output of a regression where components are

vehicle characteristics using data from model year 2005 light-duty trucks. A general
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Figure 5.2:
Plot showing relationship between dealer markup and assumed total
markup

linear least-squares regression problem was solved for a cost function of the form

cj = exp

(
R∑
r=1

ωrWr

)
(5.5)

Cf = 0 (5.6)

by taking the natural log of both sides of the equation and then solving for the

unknown coefficients by minimizing the sum of the squared error between the assumed

cost based on markup assumptions cj,a and the predicted per vehicle unit cost cj

based on Equation (5.5). Fits with numerous vehicle parameters were made with

non-significant parameters being discarded. The set of vehicle cost parameters W is

as in Equation (5.8). Table 5.2 describes each parameter, and Table 5.3 gives the
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values for the cost parameter coefficients ω.

W = Wcon

WEDispSI

WEDispCI

WAWD

WV CUV

WV LpupLvan

WV LSUV

WVMSUV

WV Spup

WV mvan (5.7)

WV LxSUV

WABS

WSC

WMan

WCLvan

WCmvan

WTCI

WTSI

WCDI

(5.8)

Allowing cost parameters to be fit in this way can result in nonintuitive rela-

tionships between cost and vehicle parameters. Ideally we could specify a known
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Table 5.4: Cost formula coefficients for conventional powertrains
ωEng1 ωEng2 ωEng3 ωEng4

400 0.63 1625 0.1758

relationship between cost and a cost parameter before fitting the data. An alter-

native cost model was created that postulated a specific form for the relationship

between engine power, given in units of horsepower, and cost from [Michalek et al.

(2004)]. The light-duty truck price data was then fit by regressing coefficients for the

other vehicle parameters. The regression model had an R2 = 0.83. The form of the

cost equation is as follows:

cv = exp

(
R∑
r=1

ωrWr

)
+ cSIEng + cCIEng

cSIEng = (1− vDies)ωEng1 exp (ωEng2zhp/100)

cCIEng = (vDies)ωEng3 exp (ωEng4zhp/100). (5.9)

The final set of vehicle cost parameters W is as in Equation (5.11). Table 5.5

describes each parameter, and Table 5.6 gives the values for the cost parameter coef-
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ficients ω.

W = Wcon

WAWD

WV CUV

WV LpupLvan

WV LSUV

WVMSUV

WV Spup

WV mvan (5.10)

WV LxSUV

WABS

WSC

WMan

WCLvan

WCmvan

WTCI

WTSI

WCDI

5.1.4 Equilibrium-derived Models

One approach seen in the marketing and economics literature is to assume pricing

decisions represent market equilibrium outcomes. Then, cost and utility model forms

are postulated and unknown coefficients are estimated for both models. At least two
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issues may detract from this approach. The first is that by assuming the market is in

price equilibrium it is no longer possible to test if the market is in price equilibrium.

Second, the analyst has generated the functional form of the cost model based on

experience, insight, or convenience. The static price and cost values may represent

an equilibrium. However, if the functional form of the cost model does not describe

the underlying relationship between cost and the cost factors, a design optimization

that suggests changes in design will result in different design solutions than would be

expected in the market

For the purposes of this dissertation, the first issue of assuming price equilibrium

is accepted. Prices are easily changed through changes to MSRP and OEM and dealer

incentives. Most models are sold over several years, so OEMs have considerable expe-

rience pricing their portfolio. The focus of the dissertation is on the implementation

of the design game on top of the pricing game, and so assuming price equilibrium

simplifies this discussion.

The second issue of unknown functional form of the cost model is truly problem-

atic. This is one of the reasons for including cost models with different functional

forms and developed using different approaches. Multiple cost models allow us to com-

pare and contrast the study results in Chapter 8. Improving cost modeling should be

the focus of future work.

The equilibrium-derived cost modeling approach is straightforward and intuitively

appealing even with its drawbacks. Here we present the derivation of the equilibrium

costs.

Firm profit πf is defined as a function of the choice share of all vehicles in a firm’s

fleet Pf , vehicle prices pf and vehicle costs cf ,

πf = Pf (pf − cf ). (5.11)
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Assuming prices are in equilibrium means that we assume that a firm’s profit can

not be increased by unilaterally changing its vehicle’s prices. Therefore, we take the

derivative of firm profit with respect to each vehicle price and set it equal to 0:

dπf
dpf

=
dPf

dpf
(pf − cf ) + Pf = 0. (5.12)

We now solve for the vector of costs.

cf = pf +

(
dPf

dpf

)−1

Pf , (5.13)

where, for a simulated population (borrowing notation from [Morrow (2008)],

dPf

dpf
= diag(Λ)− (diag(Λ))−1Γ′ (5.14)

Λ =
1

I

I∑ dUi

p
(5.15)

Γ =
1

I
Pl
dUi

p
(5.16)

Equilibrium costs were computed for the 2006 model year data with the BLP95,

Model 1, and Model 2 demand models using a log normal distribution on income for

the BLP95 population and using the 6563 individual population from the demand

model estimation for Model 1 and Model 2. Forty draws were taken from the dis-

tribution of random coefficients for each individual. Figure 5.3 plots the calculated

equilibrium costs versus vehicle prices in 2006 dollars. The BLP95 model costs are

clustered closely together, and all costs appear in a range slightly below prices.

The Model 1 and Model 2 costs are more scattered, and a significant portion of

the lower-priced vehicles exhibit negative costs. Model 1 has the greater portion of

negative costs. The reason that the predicted equilibrium costs are negative relates to

the demand model estimation and the market equilibrium assumptions. Considering
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Figure 5.3:
Calculated equilibrium costs versus market prices for 2006 model year
vehicles for demand model (a) BLP95, (b) Model 1, (c) Model 2
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Figure 4.3 indicates that Model 1 and Model 2 underpredict the shares of the most

popular vehicles in the market, which are also among the lower-priced vehicles. Model

1 and Model 2 also overpredict the shares of the least popular vehicles, which are also

among the higher-priced vehicles. We expect that this over and underprediction would

be compensated were we to employ alternative-specific constants in the demand model

estimation. However, as it now stands the true market prices appear quite generous

to a potential car buyer according to Model 1 or Model 2 who are more willing to buy

an expensive car compared to the market data. Therefore, in the equilibrium costs

formulation the rational explanation for the low prices must be that costs are very

low–so low that they are negative for some vehicles. The corollary of this observation

is seen in Section 6.2, where for fixed costs the resulting equilibrium prices are much

higher than those observed in the market.

The BLP95 model, on the other hand, is very price sensitive as shown by the

choice share distribution in Figure 4.3. Costs are then predicted to be close to prices

because if costs were lower, the firm would lower prices in order to capture the price

sensitive market.

With calculated costs in hand, a functional form for cost can be postulated and

fit. We assume a linear in coefficients model where the cost factors are a constant;

horsepower; footprint; diesel dummy vDies; 4WD or AWD dummy vAWD, v4WD; foot-

print interacted with two seater or minicompact class, minivan class, SUV class,

Van class, Pickup truck class; brand dummies Chrysler, GM, European, Japanese,

Korean; Turbo-charged dummy vTC ; Hybrid dummy. Table 5.7 lists the coefficient

values corresponding to each demand model.

Figure 5.4 shows the vehicle costs with the calculated equilibrium costs versus the

regressed cost values in 2006 dollars.

The postulated cost model form fits the data with an R2 of 0.74 for BLP95, R2

of 0.77 for Model 1, and with an R2 of 0.74 for Model 2. The market simulations
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Figure 5.4:
Calculated equilibrium costs versus regressed costs for 2006 model year
vehicles for demand models BLP95, Model 1, and Model 2
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Table 5.7:
Coefficients for equilibrium cost models for BLP95, Model 1, and Model 2

Cost Factor BLP95 Model 1 Model 2

Constant -11640 -20200 -16790
zhp 8783 7153 7960

zLzW 8301 4230 3549
vDies 6249 4286 4844

vAWD, v4WD 990.5 941.5 1008
mtsmczLzW 4920 3479 2944
mmvanzLzW -378.1 -930.6 -536.4
mSUV zLzW -341.9 9.290 -211.4
mvanzLzW -3531 -6338 -5217
mpupzLzW -5115 -5182 -4765

dChr -1501 -1790 -1993
dGM -2004 -5138 -4852
dEur 9641 9421 9937
dJap 1222 1946 1829
dKor 1470 2950 2452
vTC -5380 -4486 -5419

vHEV 5936 1236 1243

assume that most of the vehicles remain unchanged, and the designed vehicles are

modifications from existing vehicles. Therefore, the residuals are kept for each vehicle

in the market. The cost model is used to compute changes to the base vehicle cost

based on changes in design variables.

5.1.5 Advanced technology costs

Models based on historical data will not give any information about the costs of

new technologies. Incremental cost models were developed for two advanced technolo-

gies: Gas-turbo-direct-injection gasoline engines (GTDI), and hybrid-electric power-

trains (HEV).

For GTDI we simply added a constant to the predicted cost from the cost mod-

els listed above. For the empirically fit cost models, the T2TSI parameter captures

some of the additional cost of the advanced technology. Additional comparisons are

115



required to form an estimate for the additional cost. In the case of the empirically fit

cost model that includes separate engine cost calculations, besides the T2TSI compo-

nent, engine cost is a function of peak engine power rather than engine displacement,

thus accounting for the higher power output of the smaller GTDI engine and fully

accounting for the additional cost.

The additional cost of a hybrid electric vehicle powertrain is assumed to comprise

electric machine power, battery peak power, energy density, cell capacity, and con-

troller & inverter, and bracket & cable costs1 [Lipman and Delucchi (2006, 2003)].

Equation (5.17). Table 5.8 defines the parameters and lists the values used in the

HEV cost equation. The total per unit cost of the hybrid powertrain cHEV is made up

of electric machine 1 and 2 costs cMG1, cMG2, the cost of the controller cHEV con, the

cost of brackets and cable cHEV BC , and the cost of the battery cHEV B. All component

costs are multiplied by a constant markup factor ωHEVm. Several attributes of the

hybrid powertrain system are calculated and used to compute the hybrid powertrain

system component costs. The battery cell charge in Amp-hours zCAh, the energy stor-

age capacity of a battery cell zCE, the energy density of a battery cell in Watt-hours

per kilogram of battery zEDTBc3 , the per kilogram cost of a battery cell WHEV Bpk,

1This model is adopted from a paper by Lipman and Delucchi from UC Davis. “Retail and LCC
of HEVs,” Lipman, Delucchi, 2006, Transportation Research, Part D; see also, “Hybrid Electric
Vehicle Design Retail and Lifecycle Cost Analysis,” 2003-UCD-ITS-RR-03-01.
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and the total number of cells in the battery pack zNC .

cHEV = (cMG1 + cMG2 + cHEV con + cHEV BC + cHEV B)ωHEVm

cMG1 = −111.3 + 127.7 ln (zMG1)

cMG2 = −111.3 + 127.7 ln (zMG2)

cHEV con = 480 + (2.95(zMG1 + zMG2));

cHEV BC = 1.5(zMG1 + zMG2);

cHEV B = zNC × vcm ×WHEV Bpk

zNC = 1000xBPow/(vcV × vcI)

WHEV Bpk = vMCC∗ − ((zEDTBc3 − vEDTBc∗3)/vKBM ) ln(zEDTBc3)

zEDTBc3 = zCE/vcm

zCE = zCAh × vcV
zCAh = vcQ/3600 (5.17)

Table 5.8: HEV cost model parameters
HEV Cost Parameter Value Units Description

vcm 0.17 kg mass of single battery cell
vcI 175 A nominal peak current
vcV 1.55 V nominal cell voltage
vcQ 23400 A-s nominal cell charge
vMCC∗ 17.69 $/kg reference battery cost in $/kg
vEDTBc∗3 75 Wh/kg baseline EDTBc3 value
vKBM 15 scaling coefficient for battery cost
ωHEVm 1 multiplicative constant on all costs

The value computed by the HEV cost equation is added to the unit variable cost

for a new cv.

cv = HEV UnitCost+ cv (5.18)
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The empirically fit cost model with the explicit engine cost has been further ad-

justed for the HEV case by including additional details. The cost of the engine in this

cost model is based on peak engine power. We assume that HEVs employ spark igni-

tion engines running the Atkinson cycle rather than the Otto cycle, so these engines

have lower peak power than would be expected for engines of similar displacement. In

these cases engine displacement may be a better predictor of engine cost than engine

power. We compensate by adding a constant of 120 HP to zhp when computing the

cSIEng. A calibration constant ωHEV con is also added to cv resulting in the following

equation for unit variable cost.

cv = cHEV + ωHEV Con + exp

(
R∑
r=1

ωrWr

)
+

ωEng1 exp

(
ωEng2

zhp + 120

100

)
(5.19)

5.2 Summary

A major component in a market equilibrium study is a representation of producer

costs. Three approaches were taken: (1) scaling costs around an average expected

cost, (2) employing empirical data on prices, (3) using market equilibrium assump-

tions, given a demand model, to estimate costs. The three approaches differ on the

data required and the assumptions made to generate the cost models. The scaling

cost model requires only average values for vehicle parameters and sales figures for

the vehicle segment of interest. The empirical model requires a set of individual ve-

hicle data. The equilibrium cost model requires a set of individual vehicle data and

a consumer demand model.

Some of the estimated costs for the equilibrium model are negative, and the costs

in general are much lower than expected. We conjecture that the low cost projections
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are based on the fact that the cost model was derived from a demand model that did

not match the sales for the market from which it was estimated. In other words, in

the real market a set of vehicles and vehicle prices produced a certain mix of sales.

When we simulate predicted sales volume using the newly-estimated demand model

with the same mix of vehicles and vehicle prices we predict a different sales volume

mix. If we take the modeled sales volume mix to represent market equilibrium with

its unrealistic sales, it makes sense that we will get unrealistic vehicle costs based on

the equilibrium costs method. The implications for the market simulation based on

the unrealistic cost behavior are discussed in Chapter 8.

The empirical cost model was fit to the data based on vehicle attributes alone.

The equilibrium cost model relied on vehicle attributes, but also on vehicle brand

because the demand model was estimated with brand coefficients. This is another

way that unexpected cost results may be generated by the equilibrium cost model.

Assumptions were stated about incremental costs for GTDI technology. A cost

model that was adapted from the literature for hybrid electric vehicles was also pre-

sented.

This chapter is a first step to identify the best methods for constructing empirical

cost models using publicly available (or at least not proprietary) data. A second

step would be to refine the formulations of the cost models to capture better the

relationships between vehicle characteristics and costs.
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CHAPTER VI

Market Simulation

The development in the previous chapters implies two economic assumptions,

namely, producers are profit-maximizers and consumers are utility-maximizers. This

chapter will describe a third assumption that is competitive behavior is well-defined.

There is a tension between these assumptions and the aims of the analyst. The

assumptions are intuitively appealing, and they make the problem computationally

tractable. However, we desire the results to be useful for normative rather than

positive analysis. If the basic assumptions held in reality, then producers would have

already determined methods for maximizing profits, and the market would be in

price and design equilibrium. This dissertation assumes that the automotive market

demonstrates static price equilibrium during a single period (year). We also assume

vehicle producers seek to produce vehicles that maximize profit. However, we make

no assumption about the state of market equilibrium with respect to vehicle designs.

Calculating price equilibrium of the US automotive market under policy changes by

a firm or firms, i.e., design changes in one or a small number of vehicles, is then used

as one method for evaluating market response to the introduction of new technology

or regulation.

Section 6.1 outlines the computational steps that are used to simulate a firm’s

profit maximizing behavior with respect to vehicle design decisions in the context
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of a market in price equilibrium. Section 6.1.1 discusses the case where we would

assume a combined design and price equilibrium. This is the approach adopted in

the automotive vehicle design example in Chapter 7. Section 6.1.2 discusses the case

where price equilibrium is treated as a subgame of the design game. The case of a

single designing firm, and the case of multiple designing firms are described. The

price equilibrium subgame is the approach adopted in Chapter 8. Section 6.2 shows

computational results for the price equilibrium problem alone when vehicle costs and

prices are given in order to demonstrate that the price equilibrium assumption appears

reasonable for the US automotive vehicle market.

We make several assumptions about the structure of competition. Much of the

economics literature evaluating the automotive market assumes that the vehicle pro-

ducer sets vehicle price directly. Recent work in the design for market systems lit-

erature confirms that modeling the vehicle producer and the vehicle dealer as inde-

pendent decision-makers changes the nature of the decision problem for the vehicle

producer [Shiau and Michalek (2009)]. To simplify the discussion in this dissertation,

we evaluate the case where the dealer markups are fixed and assumed known a priori.

6.1 Game Structures

Policy analysts have often used a single stage equilibrium where a producer makes

all decisions simultaneously. Industrial organization economists view this approach

as simplistic. They suggest a subgame perfect equilibrium where all producers make

product design decisions before making a subsequent decision to update prices. This

idea is supported by the notion that producers have more freedom to control prices

than vehicle designs [Tirole (1988)].

For simple cases it should be possible to derive equilibrium conditions that can

be solved directly with respect to price and design decisions. For complex cases

such a derivation is difficult. This dissertation employs a convergence criterion that
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references changes in vehicle attributes from one iteration to the next. When the

maximum vehicle attribute change from one iteration to the next is below the conver-

gence tolerance we take the solution as an approximation to an equilibrium solution.

In future work, we can verify that our solutions have behavior of equilibrium solutions

by checking 1st and 2nd order optimality conditions for the design game.

A complete product equilibrium process would allow each competitor to optimize

designs as well as prices with respect to all others’ designs and prices. The market

simulation scenarios could also be enhanced to allow for product entry and exit. In

the case of a homogenous multinomial logit model and identical underlying engineer-

ing and cost models, each firm would choose identical designs and prices, as seen

in [Michalek et al. (2004)]. Instead, assuming some fixed competitor designs coin-

cides with vehicle planning where a firm makes some educated assumptions about

the products competitors will produce. During product launch and subsequent sales,

all competitors are at liberty to adjust prices freely while the designs remain fixed.

Competitive behavior [Chintagunta et al. (2006)] among automotive manufacturers

considering the full market has been modeled, see for example [Sudhir (2001); Gold-

berg (1995)]. The simplified approach shown here includes competitive effects suffi-

cient to illustrate trends without greatly increasing the computational complexity of

the model.

6.1.1 Design Problem Formulation for Single-stage Design and Price Equi-

librium

The first F−1 competitors f = 1, . . . , F−1 maximize profit with respect to vehicle

price pj,f given the product designs z and prices pk 6=j of all competitors. A single firm

F is designated as the designing firm. The designing firm optimizes product design

variables xj,F and the price variable pj,F , concluding one iteration. Iterations continue

until price changes fall below a convergence tolerance ptol. The vehicle prices (and
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firm F design variables) are now set such that no firm can make a different decision

that would improve its own profits while the choices of the other firms remain fixed,

thus approximating a Nash equilibrium [Fudenberg and Tirole (1991)].

The following expression in Equation (6.2) is used to simulate computationally

the solution to a single-stage game where one firm (firm F ) controls design and price

variables and other firms (firms 1, . . . , F − 1) control price variables only. This is the

approach that was used in the automotive design example in Section 7.4.1.

Do while max{∆pj, j = 1, . . . , J} > ptol

for f = 1, . . . , F − 1

max
pj,f

πf (pj,f ; z,pk 6=j)

end (6.1)

max
xj,F ,pj,F

πF (xj,F , pj,F ; zk 6=j,pk 6=j)

s.t. g(xj,F ) ≤ 0

end

where,

πf = (pf − cf )
′ · qf (6.2)

In these expressions, the index j represents the individual vehicles being designed or

priced across all of the firms. The index f represents the individual firms that are

competing in the market. The combined subscript j, f , for example in the case of pj,f

signifies the price of vehicle j, where vehicle j is controlled by firm f . The index k

is used to differentiate the remaining vehicle choices in the market from the current

vehicle j.
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6.1.2 Design Problem Formulation for Two-stage Design and Price Equi-

librium

The difference between the two-stage game described in this section and the single-

stage game described in Section 6.1.1 is that the pricing problem for all of the vehicles

in the market is solved as a subgame to the vehicle design problem. Three market

scenarios of varying complexity are presented here. The first two scenarios are later

implemented in Sections 8.2-8.5. The third scenario is presented for illustrative pur-

poses only.

Single Firm with Two-stage Game

This market simulation scenario is the one employed in the vehicle design examples

in Sections 8.2-8.4.

A single firm is designated as the designing firm F . This firm controls all vehicle

design variables for its vehicle xj,F except for price pj,f . The price of the designed

vehicle and the prices of all of the other vehicles {pj, j = 1, . . . , J} in the market

are determined in a subgame that is computed at each function call of the designing

firm’s profit objective. This process iterates until the largest change in any of the

designed vehicle’s attributes zj,F is below a convergence tolerance ztol.

Do while max{∆zj,F} > ztol

max
xj,F ,p

πF (xj,F ,p; zk 6=j)

s.t. g(xj,F ) ≤ 0 (6.3)

p = arg

(
max

p
{πf (pf ; zf ), f = 1, . . . , F}

)
end,

where, πf is the same as Equation (6.2).
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Single Market Segment with Two-stage Game

This market simulation scenario is the one employed in the vehicle design example

in Section 8.5.

Multiple firms F − q + 1, . . . , F with competing vehicles in the same segment are

designated as the designing firms. The first designing firm (F − q + 1) maximizes

profit πF−q+1 with respect to the vehicle design variables xj,F−q+1 where all vehicle

prices in the entire market p are determined by a pricing subgame as in the single firm

two-stage game case. The second designing firm then maximizes profit with respect

to the vehicle design variables xj,F−q+2, and so on. This process iterates until the

largest change in one of the designed vehicles’ attributes is below the convergence

tolerance ztol.

Do while max{∆zj,f ; f = F − q + 1, . . . , F} > ztol

for f = F − q + 1, . . . , F

max
xj,f ,p

πf (xj,f ,p; zk 6=j) (6.4)

s.t. g(xj,f ) ≤ 0

p = arg

(
max

p
{πf (pf ; zf ); f = 1, . . . , F}

)
end

end,

where, πf is the same as Equation (6.2).

Multi-product Firms with Two-stage Game

This market simulation scenario is not demonstrated in this dissertation and is

listed here for illustrative purposes.

Multiple firms F − q + 1, . . . , F are designated as the designing firms. Multi-
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ple products {jF−q+1; jF−q+1 = 1, . . . , JF−q+1} from each firm are designated as the

designed vehicles. The first designing firm maximizes profit with respect to the ve-

hicle design variables for all vehicles it will design {xjF−q+1
; jF−q+1 = 1, . . . , JF−q+1}

where all vehicle prices in the entire market p are determined by a pricing subgame

as in the single firm two-stage game case. The second designing firm then maxi-

mizes profit with respect to the vehicle design variables of the vehicles it will design

{xjF−q+2
; jF−q+2 = 1, . . . , JF−q+2}, and so on. This process iterates until the largest

change in one of the designed vehicles’ attributes is below the convergence tolerance

ztol.

Do while max{∆zjf ; jf = 1, . . . , Jf ; f = F − q + 1, . . . , F} > ztol

for f = F − q + 1, . . . , F

max
xjf ,p

πf (xjf ,p; zk 6=jf ); jf = 1, . . . , Jf (6.5)

s.t. g(xjf ) ≤ 0

p = arg

(
max

p
{πf (pf ; zf ); f = 1, . . . , F}

)
end

end,

where, πf is the same as Equation (6.2).

6.2 Automotive Market Price Equilibrium Comparisons

The price equilibrium represents the subgame in the vehicle design market simu-

lation. We compare the simulated market behavior for the case of price equilibrium

alone without the vehicle design problem for the BLP95 model and the two new

models presented in Chapter 4. The pricing problem is posed in the form of a dealer
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pricing problem. In other words, assuming that each dealer sells only vehicles from

a single manufacturer, what prices should dealers set collectively to maximize prof-

its for their vehicle sales. The fixed-point algorithm developed by Morrow [Morrow

(2008)] is used to compute optimal prices for a portfolio of vehicles for each firm in

the market by iteratively solving a fixed-point equation for price. Convergence is

evaluated at each fixed-point iteration by comparing a user-specified tolerance value

to the combined gradient norm. The combined gradient norm G is defined to be the

L∞-norm of the vector composed of the products of the choice-share derivatives λ

and the difference between the initial prices and computed fixed-point prices p− p′.

G = ||λ′ × diag(p− q)||∞ (6.6)

When the combined gradient norm is close to 0, it means that no firm can improve

its profits by changing prices unilaterally. For this reason we take the combined

gradient norm convergence below a given tolerance value as an approximation to a

Nash equilibrium solution.

The vehicle data came from a JD Power data set of 5,298 vehicle purchases during

the 2005 calendar year. This set of observations was reduced to a total of 993 vehicle

offerings corresponding to different model years and model names. Characteristics

for vehicles with the same model name and model year were averaged. The dealer

costs were taken to be the vehicle costs.

A simulated population was generated for each demand model evaluation. For

BLP95 the only demographic is income, so 1000 standard normal random draws were

taken and converted into annual incomes assuming a log normal distribution of income

in 1983 dollars with mean 10.33 and standard deviation of 1. Random coefficient

values for zhp/zVM , z$/mi, and zLzW were generated in the same way assuming normal

distributions on these parameters. All vehicles were assumed to have air-conditioning
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standard. The utility of each vehicle for each simulated individual was computed.

Choice shares were computed according to the standard mixed-logit formulation.

Price equilibrium prices were computed using the fixed-point iteration technique.

Prices and shares for the two newly estimated demand models from Chapter 4,

Model 1 that is linear in footprint and Model 2 that is quadratic in footprint, were

computed following the same methodology as described in the preceding paragraph.

However, the simulated population was taken to be the same population used to

estimate the models. Fifteen random draws were taken for each random coefficient

for each individual. The price equilibrium simulation was repeated several times for

each model all with similar results to those reported here.

Equilibrium prices were compared with the (average) transaction prices as shown

in Figure 6.1, and the estimated market shares were plotted in Figure 6.1. The equi-

librium prices for the BLP95 model match the reported transaction prices very well.

The equilibrium prices for Model 1 and Model 2 are offset higher than the reported

transaction prices and appear to have a percentage increase, i.e., slope greater than

1, compared to the transaction prices. Model 2 has a slight but noticeably smaller

slope than Model 1.

Additionally, the BLP95 simulation achieved a very small combined gradient

norm, G < 1 × 10−17. The fixed-point iteration code typically achieved a combined

gradient norm around values of G < 5 × 10−9 for both Model 1 and Model 2. The

difference can be seen by the increased “thickness” of the band of computed versus

reported prices in Figure 6.1. All three demand models preserve the price ordering

to a recognizable degree, i.e., the trend for computed vs. given prices lies along a

straight line.

We believe that difference in the convergence criterion values between the BLP95

model and the newly estimated model comes because of increased nonlinearities in

the choice share calculations for Model 1 and Model 2. Consumers, according to the
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Figure 6.1:
Computed prices vs. reported prices. Left: BLP95; Center: Model 1;
Right: Model 2
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BLP95 model, are quite price sensitive, and so there is a clear ordering of sales volume

that corresponds well with vehicle price. The Model 1 and Model 2 demand models

show that some high-priced models achieve significant market share. This makes the

profit calculation for each firm much more nonlinear because vehicles across the firm’s

fleet (not only the inexpensive vehicles) contribute to firm profit.

The choice shares plots in Figure 6.2 show a contrast between the BLP95 perfor-

mance and the new model performance. The BLP95 model predicts very high choice

shares for the lowest priced models and almost 0 choice share for the remaining mod-

els. This behavior is more accentuated than in the 2006 model comparison shown

in Chapter 4. On the other hand, Model 1 and Model 2 show similar choice share

behavior to the 2006 comparison in Chapter 4. All models show a tendency toward

lower price vehicles as compared to the 2006 model comparison. The suggested cause

for this tendency is that the choice model, without alternative-specific constants, does

not capture the underlying preference for the most popular less expensive vehicles.

However, it appears that the models do capture this underlying preference because

when let loose in a market equilibrium simulation, the resulting shares look much

more similar to the observed market shares. This hypothesis is supported by the

equilibrium cost results in Chapter 5 that show that in order to produce the equilib-

rium outcome suggested by the demand models at the observed market prices, the

cost to manufacture the least expensive vehicles would be negative. It is natural, then

that when prices are free to vary, manufactures increase prices in order to rebalance

the market shares more similarly to what was observed in the actual market.

It should be noted that the choice set used in the market simulation in this section

spans multiple model years and is not known to be representative of the vehicles avail-

able in 2005. The robustness of the choice share results for Models 1 and 2 compared

to the 2006 data comparison provide a preliminary indication that they may exhibit

structural properties well suited for market simulation with design optimization. The
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BLP95 model, on the other hand, demonstrates accentuated price sensitivity beyond

the already exaggerated behavior shown in Chapter 4.

One hypothesis about the poor performance of the BLP95 model is that consumer

preferences have shifted since the model was developed. This idea is worth investi-

gating since the BLP95 model was estimated on vehicle data from 1971-1990, and the

test data was from 2005. Figure 6.3 shows market equilibrium simulations for various

cost scenarios. Again, this is a dealer pricing problem, since we are maximizing profit

based on the retail price values. Panel (a) assumes that dealer markup is 10% of

MSRP. Panel (b) assumes that dealer markup is a fixed $512 for each vehicle. Panel

(c) assumes that percentage dealer markup increases linearly with MSRP and takes

values between 0%-30%.

For all the cases we observe that the choice share of the most popular vehicle has

been reduced by an order of magnitude. This observation supports the idea that the

BLP95 model is better suited for the older data. Without data on the actual sales of

the models in the choice sample it is difficult to draw further conclusions about the fit

of the 1985 data. The visual effect of the choice share spread in Figure 6.3 compared

to the 2006 market shown in Figure 4.3 suggests that the 1985 market was much more

skewed toward inexpensive cars or that the BLP95 model exhibits oversensitivity to

price even in the model years for which it was estimated. The oversensitivity to price

may be accounted for completely by the alternative specific constants. However, those

constants are not reported in the BLP95 paper. The oversensitivity to price of the

model without the constants highlights one of the dangers of adopting models from

the literature for design for market systems studies.

More specifically in Figure 6.3, we observe that for the constant 10% margin case

(a), the shares are more dispersed and the prices are overpredicted compared with

Figures 6.1-6.2. For the fixed margin case (b), the prices for high-priced vehicles are

overpredicted even more than in case (a) and the share dispersion is similar. For the
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Figure 6.3:
Computed shares vs. computed prices for BLP95 model using 1985 vehicle
data from Ward’s Automotive Yearbook. (a) 10% dealer margin; (b) 512$
dealer margin; (c) linearly-increasing-with-price dealer margin between
0%-30%

133



increasing percentage markup (c), the prices are overpredicted for low-priced models

and underpredicted for high-priced models. We interpret this as an underprediction

of margin for the low-priced vehicles and an over prediction of margin for the high-

priced vehicles given the demand model. The share dispersion begins to approach

the dispersion seen with Model 1 and Model 2 in the year 2006 case. However, shares

remain more dispersed.

6.3 Summary

This chapter defined the computational structure that is used for the automotive

vehicle design examples in Chapters 7 and 8. We pattern the computations after singe

and two-stage market equilibrium games. However, we do not prove convergence to a

market equilibrium solution. Instead we iterate among competitors until no further

design changes are observed. We also simplify the problem by designating a small

number of designing firms and designed vehicles. The designing firms control the

vehicle design variables of the designing firms. All other firms and vehicles in the

market are considered in the pricing problem, but the vehicle designs of these vehicles

remain fixed.

The second element of this chapter is an analysis of the price equilibrium com-

putational results to be employed as a subgame in all of the two-stage design and

price formulations. The purpose of these tests were to test the pricing game behavior

in isolation of the design game in order to gain confidence about the suitability and

feasibility of employing the pricing subgame in the over all design game model. Using

data from dealers on vehicle cost and selling price we presented graphically the results

of the price equilibrium problem. The choice share results for Model 1 and Model 2

for the dealer data test using 2005 data appear quite similar to the real market choice

shares from the 2006 data used in Chapter 4. The pricing game for all models appears

to converge although the BLP95 model is capable of a much higher convergence tol-
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erance and well matched predicted to given prices. Both Model 1 and Model 2 have a

price offset where the predicted prices are higher than the given prices. This behavior

coincides with and is the inverse of the equilibrium pricing behavior seen in Chapter

5 where given the reported prices, the equilibrium predicted costs were much lower

than expected. All of these findings build confidence in the computational approach.

We conjecture that the offset observed in Model 1 and Model 2 would be accounted

for by incorporating alternative specific constants in the demand model estimation.

We observed that the choice share prediction of the BLP95 model was very poor.

We presented three different equilibrium price and choice share results for 1985 data

using the BLP95 demand model and three different cost assumptions in order to

examine the change in the price and choice share behavior when the BLP95 model

was used for a model year over which it was estimated. In all three cases the choice

share predictions appear more reasonable although perhaps remaining overly price-

sensitive. The price predictions were not as accurate as in the 2005 dealer data case,

which could be expected based on the simplistic cost assumptions made rather than

using dealer cost data.
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CHAPTER VII

Local and Global Measures for Bi-objective

Tradeoffs

Quantitative studies of tradeoffs between competing objectives are ubiquitous.

They typically focus on finding Pareto points [Steuer (1986)] and the preference

structure for selecting one point among many or vise versa. Preferences or constraints

that lead to the tradeoff relationship are assumed fixed.

However, changes to the mathematical structure and input parameter values of

the optimization model can lead to changes in the shape of the attainable set and its

Pareto boundary. These changes can be captured by the objective function gradients

and constraint activity shifts. Furthermore, psychologists have shown, and recent

work in the design community has begun to explore, that decision maker preferences

do not necessarily exist a priori. This finding implies decision maker preferences may

be influenced by evolving tradeoffs—hence the value of studying them systematically

[Slovic (1995); Kulok and Lewis (2007); Besharati et al. (2006); MacDonald et al.

(2007b)].

This chapter encompasses portions of the papers [Frischknecht and Papalambros

(2008); Frischknecht et al. (2009b)]. The goal in this chapter is to establish a method-

ology and metrics for comparing the type of public versus private goods tradeoffs pre-

sented in Chapter 8. We can think of of each set of parameter values used as inputs
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to a vehicle design and market simulation problem as corresponding to a product

development or policy scenario. For a given scenario, the public versus private good

tradeoff can be captured as a tradeoff between vehicle fuel consumption and the firm’s

profit. The optimization results can then be represented as a Pareto set. The meth-

ods presented in this chapter provide an approach for measuring differences in the

Pareto set from one scenario to another in order to facilitate the discussion of what

represents a desirable scenario. Essentially, using the optimization framework, we can

study how changes in parameter values (or possibly the analysis models) change the

tradeoff, or alignment, of the competing objectives.

The remainder of the chapter is organized as follows. Section 1 describes a bi-

objective problem formulation and categorizes changes to this problem formulation

that lead to changes in the Pareto set. Section 2 introduces global metrics for com-

paring Pareto sets, and Section 3 introduces local metrics. Section 4 gives examples

of how the metrics can be used, and Section 5 summarizes the chapter.

7.1 Pareto set analysis

A wide body of literature in the decision sciences [Keeny and Raiffa (1976)] and

the engineering community [Das (1999); Kasprzak and Lewis (2001)] studies how to

formulate preferences given a particular tradeoff. The Pareto set, in particular, has

received much attention, including how the Pareto frontier relates to sensitivity in the

objective functions [Lootsma (1999)]. Additionally, analogies to postoptimal analysis

in single objective problems have been proposed, particularly for vector objective

linear programming [Kornbluth (1974); Gal and Leberling (1977)].

This chapter formalizes metrics for comparing tradeoff scenarios. We hypothesize

that we can measure how much two objectives compete in a Pareto problem. The

less they compete the more aligned they are. A multicriterion or Pareto optimization
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problem is stated as:

min f(x)

subject to: h(x) = 0; g(x) ≤ 0; x ∈ S; (7.1)

Here f(x) is a vector of criteria of interest fn, n = 1, . . . , N . The set of variable

values x that satisfy all equality h, inequality g, and set constraints S is the feasible

(design) domain, X . The range set of all vectors f mapped from the feasible domain is

the attainable setA = {f(x)|x ∈ X}. A point inA, f(x∗), is said to be non-dominated

or Pareto optimal, if there exist no f(x) such that f(x) ≤ f(x∗) and fn(x) < fn(x∗)

for at least one n.

Ideal values f ◦n are the optimal criterion values obtained optimizing one criterion

at a time:

f ◦n = min(fn(x)|h(x) = 0, g(x) ≤ 0, x ∈ X ), n = 1, . . . , N (7.2)

Nadir values fNn are the worst values for each criterion found in the set of Pareto

optimal points. For a bi-criterion problem the nadir value for one criterion can be

found when the other criterion reaches its ideal value [Ehrgott and Tenfelde-Podehl

(2003)]:

fNn = {(fn(x)|fl(x) = f ◦l } (7.3)

The ideal or utopia point is the vector of ideal values for all criteria, f◦ = [f ◦1 , f
◦
2 ]′.

We consider now Pareto set analysis, or how we can compare different Pareto

sets. A design scenario is defined here as the Pareto set generated by a given problem

statement and its associated parameter values. A design scenario can be classified as

superior to another using the concept of a meta-Pareto set, which includes all non-
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dominated criteria vectors selected from the union of all the individual Pareto sets

under consideration [Athan and Papalambros (1996); Mattson and Messac (2003)].

Cohon [Cohon (1978)] discusses special cases of mathematical conditions for non-

inferiority introduced by Kuhn & Tucker [Kuhn and Tucker (1951)] where objectives

are redundant or completely conflicting. Lootsma [Lootsma (1999)] suggests examin-

ing a cross-effect matrix, whose rows are the values for all criteria at the individual

optimum for each criterion, to observe competition between objectives. Several de-

gree of conflict and similarity measures have been proposed for pairwise comparison

of alternatives or for linear programs. Purshouse & Fleming [Purshouse and Fleming

(2003)] characterize regions of objective space as independent, conflicting, or har-

monious. Carlsson & Fuller [Carlsson and Fuller (1995)] define interdependence of

objectives, degree of objective conflict, and problem complexity for the linear case.

Deng [Deng (2007)] presents a conflict index between two alternatives and defines a

metric for similarity to the ideal point.

The design of the solution set (rather than a single-point design) is important in

many design scenarios. These scenarios share a characteristic that design decisions

are not all made simultaneously, but some may be made before others (configuration

design), some decisions may be more flexible then others, or be repeated at a higher

frequency (dynamic control, product platforming, design for adjustability), and some

decisions (or exogeneities) may be uncertain (robust design, product development

investment planning, regulatory policy). In the general case, systems characterized

by multiple objectives will exhibit a tradeoff relationship between improvements for

both objectives. Considering how the Pareto set changes with changes in the problem

formulation can facilatate design of the attainable set in addition to illustrating the

tradeoffs between specific solutions.

Changes to the mathematical structure and input parameter values of a bi-objective

programming problem can lead to changes in the shape of the attainable set and its
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Pareto boundary. We illustrate the link between the terms described in Sections 7.2

and 7.3 and outcomes of the Pareto set using a simplified automotive vehicle design

problem and a two-dimensional nonlinear programming examples.

The task of the designer abstracted to a mathematical decision-making problem

is to specify the functional forms of the objective and constraint functions (referred

to as system specification in the dynamic systems terminology), then partition model

elements between parameters and variables, specify parameter values, and find effi-

cient values for design variables (referred to as system identification in the dynamic

systems terminology). We classify changes to a system design problem formulation

(summarized in Table 7.1) according to this definition of system specification and

identification. Each of these decisions may affect the Pareto set. For example, chang-

ing parameter values is equivalent to a traditional parametric study and fits in system

identification. The examples listed in Table 7.1 reflect changes to the example prob-

lem specified in Equation (7.18).

Table 7.1: Classification of System Design Model Changes

System Modeling Stage Change Example

Specification

Objective functional form -
Constraint functional form -
Add constraint x2 − 5 + 2x1 ≤ 0
Remove constraint -

Identification
Repartition parameters -
Parameter values p = 5

Section 7.2 discusses global metrics that are so named because they require in-

formation about the extreme points of the Pareto set and require evaluation of more

than one Pareto point. The metrics described in Section 7.3 are referred to as local

metrics because they are computed at a specific Pareto point.
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7.2 Global multicriterion tradeoff metrics

We introduce here three global metrics to compare the nature of multiobjective

tradeoffs that have similarities to previous work with the advantage that the new

metrics are relatively inexpensive to compute and can be applied to a wide range

of problem types. The new metrics can be applied to compare Pareto sets when

the system design model has changed (i.e., the functional form of objectives and

constraints) in addition to comparing tradeoffs for a single problem definition.

The concept of criterion alignment is introduced to compare Pareto sets in terms

of how much their objectives compete with each other. Two objectives are said to

be aligned when both attain their ideal values simultaneously. A Pareto curve is

more aligned than another when (i) the effective curvature of the normalized Pareto

curve is greater; (ii) it spans a smaller area in the criterion space; (iii) it is less

sensitive or “flat”. Three metrics, each emphasizing a different aspect of criteria

alignment, are proposed in order to facilitate comparisons between design scenerios:

Effective curvature, area, and sensitivity. With the exception of curvature, the metrics

are relative and can be used to compare tradeoffs only for problems with the same

objectives f . Computing the effective curvature metric requires examining the Pareto

frontier, while the other two metrics can be computed from knowing the ideal points.

7.2.1 Effective curvature

The effective curvature κ indicates the relative convexity or concavity of a par-

ticular tradeoff. To calculate κ we normalize the Pareto set between 0 and 1 for

each criterion: f ′n(x) = (fn(x)− f ◦n) /
(
fNn − f ◦n

)
, and define the minmax solution

LA∞ = minL∞ = min ‖f ′‖∞ = max {|f ′1|, |f ′2|}, that minimizes the maximum devia-

tion from either ideal value, 0 < LA∞ < 1. This solution is at the intersection of the

curve f ′2 = f ′1 and the Pareto set, and is used to calculate κ by finding the curvature
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Figure 7.1:
Normalized criterion space showing competition severity as a function of
Pareto set curvature

of the hyperbola y = 1/ ((Ax+B)− C), intersecting the coordinate axes at 1. Then

κ = 3
√

2(2LA∞ − 1)2/
(

2LA∞
2
(LA∞ − 1)2

)
, 0 < LA∞ ≤ 1

2
, convex

κ = −3
√

2(2LA∞ − 1)2/
(

2LA∞
2
(LA∞ − 1)2

)
, 1

2
< LA∞ < 1, concave

(7.4)

Thus κ is a monotonically decreasing, smooth, piecewise function with respect to

LA∞, with vertical asymptotes at 0 and 1 and an inflection point at 0.5. Criteria com-

pete less as κ increases, indicating increasing convexity and LA∞ closer to 0. Figure 7.1

shows differences in curvature for a normalized Pareto set. In general,

−∞ < κ <∞



limLA∞→1 κ→ −∞, perfectly competing

−∞ < κ < 0, severely competing

0 < κ <∞, marginally competing

limLA∞→0 κ→∞, perfectly aligned

κ = 0, balanced tradeoff

(7.5)
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7.2.2 Area

The area metric is the area of the rectangle that inscribes the Pareto set, defined

as Φ = |XsYs| where Xs = (fN1 − f ◦1 )/λ1, Ys = (fN2 − f ◦2 )/λ2 for the bi-objective

problem, with λn, n = 1, 2, chosen by the designer, to compute a scaled range for

criterion n. Criteria compete less or are more aligned, as the area is reduced.

A useful heuristic for selecting λn is to consider the smallest change in fn that

would be meaningful, i.e., one that gives a unique solution in a practical application.

For example, for a miles/gallon criterion, a difference of 0.1 mpg may be the smallest

significant unit. The scaled values of fn would then be multiples of the significant

unit. Setting λ = 1 maintains the original scale. Scaling based on a significant unit

is useful for comparing Pareto sets because the scale of the relative changes in each

criterion is preserved. This would not be the case if the Pareto set was normalized or

if a value unique to each design scenario was used, such as f ◦n. Selecting scaling factors

implies some judgment on the relative value of each criterion, just as normalizing or

leaving criteria unscaled implies a relative weighting.

7.2.3 Sensitivity

The sensitivity metric is defined relative to each criterion ∆Xs = Ys/Xs, ∆Ys =

Xs/Ys. A lower value of ∆Xs means criterion Y is less sensitive to changes in criterion

X. The sensitivity metric reflects the change in one criterion given a change in the

other criterion over the entire Pareto set; it indicates the shape of the rectangle that

inscribes the Pareto set. A criterion is more or less sensitive as the rectangle becomes

more eccentric. Balanced sensitivity occurs when Ys/Xs = 1.

7.2.4 Pareto set comparisons

Criterion alignment is just one aspect of Pareto set comparison. It should be

noted that increased or decreased alignment according to the metrics described above
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Figure 7.2:
Alternative Pareto set exhibiting reduced area and sensitivity at the ex-
pense of objective values

does not indicate preference for a given design scenario over another in terms of the

numerical objective values of the Pareto set. For example, introduction of additional

constraints may reduce the value of the area or sensitivity metrics compared to a

baseline case by reducing the attainable set, see for example Figure 7.2). The Pareto

set would then exhibit increased alignment at the expense of the objective values.

7.3 Local multicriterion tradeoff metrics

To clarify the motivation of the discussion that follows it is helpful to think about

the vehicle design problem as a design and control problem. The design variables are

physical characteristics of the vehicle. The control variable is the vehicle price. In

the simplest case where a producer is only considering the public impact of its own

isolated actions, the public objective (minimize fuel consumption per vehicle sold)

is a function of design variables alone. The private objective (maximize profit) is a

function of design variables and vehicle price. The public objective is analogous to

a design objective and the private objective is analogous to a control objective in a
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co-design and control problem.

One method for solving a design and control problem is to first solve the de-

sign problem to optimality and then solve the control problem to optimality given

the results from the first stage. This method works well when the design problem

has highest priority and the design problem is not influenced by the control vari-

ables. More priority can be given to the control problem by solving the problem

as a weighted-sum single objective problem with more weight added to the control

problem. Even in this case, the computations can proceed in the same sequential

fashion–first design, then control. The analogy to public and private tradeoffs in a

market systems context comes when we realize that the two-stage design and price

equilibrium game we established in Chapter 6 is analogous to the sequential solution

strategy just described for design and control problems. Each vehicle producer solves

the vehicle design problem (the top-level game) assuming that the price (control

variables) will be solved to optimality given a set of design variables (the subgame).

The design of modern smart products requires concurrent optimization of the ar-

tifact design and its controller. This so-called co-design problem [Fathy et al. (2001);

Reyer et al. (2001)] is often performed in a sequential manner for reasons of con-

venience and tradition: design the artifact first, and then design its controller. In

general, such a strategy will yield non-optimal solutions, compared with a simulta-

neous or all-in-one optimization of the combined system [Fathy et al. (2001); Reyer

et al. (2001)], particularly when bidirectional coupling exists between the two sub-

problems, for example, when each of the two objectives depends on some variables

and parameters of the other subproblem [Reyer et al. (2001)]. However, there exists

a large class of problems where coupling is unidirectional, for example, the artifact

criterion f1(x1) depends only on the artifact design variables x1 while the control

criterion f2(x1,x2) depends on both the artifact variables and the controller design

variables x2, so that the system objective becomes: F = w1f1(x1) + w2f2(x1,x2),
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where w1, w2 are weights. An example of such a formulation is a linear positioning

device where the artifact objective is steady-state displacement and the controller

objective is settling time. Such a partitioning is inherent when the artifact criterion

is independent of the controller variables as measured by the partial gradients of the

objective and constraint functions with respect to the controller variables. Partition-

ing artifact and controller variables may be desirable for practical purposes in cases

where the effect of the controller variables on the artifact criterion is deemed small

enough, or where the analytical or computational means are not available to treat ar-

tifact and control variables simultaneously for the controller objective. One strategy

for the latter case above is to solve the system-level problem as a nested optimiza-

tion one [Reyer et al. (2001); Fathy (2003)], where the system solution is found with

respect to x1, with the optimal x2 computed as a function of x1 by solving the “in-

ner” optimal controller problem first [Fathy et al. (2001); Fathy (2003)]. This nested

problem formulation is distinguished from the simultaneous one using the notation

F n = w1f1(x1) + w2f
n
2 (x∗2(x1)).

Note that the linear scalarization used here reflects typical practice in the control

literature. Since this is known to fail in cases of nonconvex Pareto sets, the ac-

tual computation can be done using nonlinear scalarization [Athan and Papalambros

(1996)] or some other method, several of which were described in Section 2.3.

Viewing the co-design problem as a bi-objective Pareto formulation without scalar-

ization and weights, we can examine how much the two objectives compete or are

aligned [Cohon (1978)]. Intuitively, it would appear that objective alignment must

relate to objective coupling. Quantifying this relationship will provide deeper insights

in the nature of both the alignment and coupling concepts, and their implications for

understanding coupled multi-objective problems. In what follows, we show how a

measure of objective alignment (the polar cone of objective gradients) is related to

the coupling vector derived for a problem with unidirectional coupling, and how the
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measure of constraint decoupling can be normalized when the system design problem

is considered as a bi-objective problem. These measures help to understand how the

Pareto set is affected by changes to the system design problem formulation.

7.3.1 Objective Coupling and Objective Alignment

Multi-objective programming typically focuses on finding Pareto points and defin-

ing the preference structure for selecting one point among many [Steuer (1986)]. Sev-

eral researchers have applied the concept of objective function gradient differences

in order to compare solutions [Purshouse and Fleming (2003); Carlsson and Fuller

(1995); Deng (2007)]. Lootsma examined how the Pareto frontier relates to sensitivity

in the objective functions [Lootsma (1999)]. Additionally, analogies to postoptimal

analysis in single objective problems have been proposed, particularly for vector ob-

jective linear programming [Kornbluth (1974); Gal and Leberling (1977)]. Others

have also discussed the idea of comparing different Pareto sets using the concept of

a meta-Pareto set, which includes all non-dominated criteria vectors selected from

the union of all the individual Pareto sets under consideration [Athan and Papalam-

bros (1996); Mattson and Messac (2003)]. We adopt the polar cone of the negative

gradients as our measure of objective alignment, and we will consider how this mea-

sure changes, and the attendant implications for the Pareto set, with changes in the

problem formulation.

The decision space can be partitioned into three disjoint sets with respect to a

feasible point x: Points [x1, . . . ,xn]> ∈ Rn that are superior, Q<(x); points that are

equal or inferior, Q≥(x); and points that cannot be compared, Q∼(x). The set Q<(x)

is equivalent to the interior of the polar cone of the negative objective gradients

Q<(x) = {k| − k>∇f i > 0; i = 1, 2} (7.6)
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where k is an n-dimensional vector with origin at x [Zadeh (1963); Cohon (1978)].

The angle between the boundaries of the polar cone can then be taken as a measure

of objective function alignment at a particular x. A polar cone angle of π corresponds

to the case where the gradients of both objectives at x are parallel. The polar cone

angle collapses to 0 when objective gradients are parallel with reversed signs.

The interdependence of the multiple objectives for a given system is critical to

its design [Balling and Sobieszczanski-Sobieski (1996); Bloebaum et al. (1992); Ha-

jela et al. (1990)]. The complete co-design problem with unidirectional coupling is

formulated as [Fathy (2003)]

min
x1,x2

w1f1 (x1) + w2f2 (x1,x2)

subject to: h1 (x1) = 0; h2 (x1,x2) = 0

g1 (x1) ≤ 0; g2 (x1,x2) ≤ 0 (7.7)

where f1 (x1) is the artifact objective function, f2 (x1,x2) is the controller objective

function, x1 is the vector of artifact design variables, x2 is the vector of controller

design variables, h are the system equality constraints, and g are the system inequality

constraints, and w1 and w2 are the weights associated with the objective functions f1

and f2, respectively.

7.3.2 Definitions

We adopt several terms to aid in explaining changes in the Pareto set. First, we

define terms related to the unidirectional coupled system problem. Next, we define

terms related to the bi-objective problem. Then, we define terms related to both

problems.
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Consider the nested system design problem

F n = w1f1(x1) + w2f
n
2 (x∗2(x1)), (7.8)

where the asterisk denotes that the optimal values for x2 have been found with respect

to x1. The coupling vector Γv [Fathy (2003)] defined by Equation (7.9) is derived

from the Karush-Kuhn-Tucker (KKT) optimality conditions for the weighted-sum

objective describing the system design problem.

Γv = W

(
∂f2

∂x1

+
∂f2

∂x∗2

∂x∗2
∂x1

)
= W∇fn2 (x1) (7.9)

To simplify the notation in Equation (7.9), we set w1 from Equation (7.8) equal to 1

and substitute W for w2. The inner term is the gradient ∇fN2 (x1). Γv is assumed to

be a row vector.

Objective decoupling

Objective decoupling occurs when the inner term of Γv vanishes. In this case

the solution to the single-objective problem, min f1, will also be the solution to the

weighted-sum system objective problem [Fathy (2003)].

Constraint decoupling

Constraint decoupling occurs when there is a range of values for W for which a

given x∗ is the system optimal solution. This behavior occurs when the gradients of

the active constraints at the system optimal solution can form convex combinations

equal to the system objective gradient for a range of objective gradient directions,

controlled by W .
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Objective alignment

For a bi-objective problem, two objectives are said to be aligned at a particular

design point x if the angle between the objective gradients is 0, or equivalently if the

angle described by the polar cone θ< of the two negative objective gradients is π.

The polar cone has an appealing geometric interpretation in that the larger θ< the

greater the region of simultaneously improving directions, or the greater the objective

alignment. From the definition of polar cone in Equation (7.6), the polar cone angle

is

θ< = arccos

(
k1 · k2

|k1||k2|
)
, {k1| − k1∇f1(x) = 0; k2| − k2∇f2(x) = 0}. (7.10)

A convenient way to identify the appropriate k1 and k2 for a problem with two design

variables is to recognize that k1 should be orthogonal to −∇f1 and in the plane

defined by f1 and f2. We preserve the polar cone measure for the n-dimensional

case but calculate it directly from the objective gradients: θ< = π − ξ, where ξ =

arccos((∇f1 · ∇f2)/(|∇f1||∇f2|)).

Coincidence

Two objective criteria are said to be coincident when the single-objective mini-

mizers of the design variables shared between the objectives are equal. Namely, there

exists some vector x∗| f1(x∗) = f ◦1 , f2(x∗) = f ◦2 . A relative measure of coincidence

to compare two Pareto sets is the L2 norm of the design variables between objective

ideal points ||(xf◦1 − xf
◦
2 )||2.

Dominance

One Pareto set is said to dominate another Pareto set when each member of the

dominated Pareto set belongs to Q≥(x) for at least one member of the dominating
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Pareto set.

Independence

Two objectives are said to be independent at a particular design point x when

Γv = 0 or when θ< is undefined.

Pareto slope

The coupling vector Γv is related to the slope of the Pareto frontier of the bi-

objective problem [Peters et al. (2009)]. At a given Pareto-efficient point x∗ using

Equation (7.9) we have,

df ∗2
df ∗1

=
1

W
Γv
dx1

df ∗1
= ∇fn2 > · (1/∇f1). (7.11)

7.3.3 Quantification of Alignment and Objective Coupling

We begin with the necessary conditions for an efficient point to a bi-objective

minimization problem [Kuhn and Tucker (1951)] as in Equation (7.1):

η1∇f1(x∗) + η2∇f2(x∗) + λ>∇h + µ>∇g(x∗) = 0

µ ≥ 0

λ 6= 0

µ>g(x∗) = 0

h = 0 (7.12)

Comparing Equation (7.12) to the first-order optimality conditions for Equation (7.7)

we see that the co-design problem is a special case of the bi-objective problem where

the weighting factors were chosen a priori. In previous work on co-design coupling, em-

phasis has been placed on comparing f1 to the weighted system objective w1f1 +w2f2
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rather than comparing f1 and f2 directly. However, the coupling vector Γv is difficult

to interpret because it is directly proportional to the subjective weighting value W

and the units of measurement for the objective function. Comparing the two objec-

tives directly frees the designer from implying a scale W , or “exhange rate”, between

objectives before studying the attainable set. Objective alignment is a function of

gradient direction only (not magnitude). It is still possible that the gradient direction

is affected by the scale of the controller variables x2 since they do not appear in the

artifact objective function.

Objective alignment can be calculated for a unidirectional coupled problem follow-

ing the definition of alignment above. This is a straightforward process if the whole

gradients are available: ∇f1(x1),∇f2(x1,x2). However, it can be challenging to for-

mulate or compute the whole gradients when the controller objective is formulated as

a nested problem with gradient ∇fn2 = ∂f2

∂x1
+ ∂f2

∂x∗2

∂x∗2
∂x1

. For example, assume fn2 (x1) is

a black-box simulation. We can then compute ∇fn2 (x1) and observe ∂x∗2/∂x1. How-

ever, we require ∇f2(x1,x2). If we assume we can compute ∇f2(x2) analytically or by

evaluating the conventional control problem f2(x2), then we can back out the missing

component: ∂f2/∂x1 = ∇fn2 − ∂f2

∂x2

∂x2

∂x1
.

7.3.4 Normalized Constraint Decoupling

Returning to the geometric interpretation of the weighted-sum objective in the

design variable space, the sum of any two vectors with positive weighting factors

((1 − w)f1 + wf2| w ≥ 0) will be a new vector that lies between the two original

vectors assuming the same origin. The necessary conditions for the optimal system

design problem imply that the weighted-sum-objective vector can be formed by a

convex combination of the gradients of the active constraints. Constraint decoupling

requires that, at a given Pareto point for a system design problem with weight w,

the span of the convex combination of satisfied constraints (including degenerate
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constraints) will similarly satisfy the necessary conditions for optimality for a system

design problem with some other weighting factor t 6= w.

The constraint decoupling ratio φ can be calculated at an ideal point (f ◦1 ) by

first calculating the angle between the two single-objective gradients ∇f1,∇f2. We

can then find the limiting weighting value w∗, and compute the angle between the

weighted-sum system-objective gradient and ∇f1. Assuming the system design ob-

jective is a convex combination of the single objectives, the limiting weighting value

can be found by solving the following problem where ∇f1,∇f2,∇g,∇h have been

evaluated at (x1,x2)f◦1 :

min
w,β

−w

subject to: (1− w)∇f1 + w∇f2 + β>∇g + λ>∇h = 0

−β ≤ 0; λ 6= 0. (7.13)

The ratio φ evaluated at an ideal point is then the ratio of the angle between

the maximum weighted-sum objective gradient with the same optimal solution as the

ideal point and the single-objective gradient, and the angle between the two single-

objective gradient vectors:

φ = arccos

( ∇f1 · ((1− w∗)∇f1 + w∗∇f2)

|∇f1|| ((1− w∗)∇f1 + w∗∇f2) |
)
/ arccos

( ∇f1 · ∇f2

|∇f1||∇f2|
)
. (7.14)

The amount of constraint decoupling, or the range of weighting values for which

the constraint decoupling conditions hold, will change with the objective scaling.

However, φ, based on the gradient directions will take a value between 0 and 1 and

will not change with objective scaling. Figure 7.5(c) illustrates this case where the

dashed line shows the limiting gradient direction for which the system design problem

will have the same solution as the single-objective problem f1. A normalized measure

can be defined for any Pareto point x∗ by replacing ∇f1 in Equation (7.13) with
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Figure 7.3:
Algorithm for evaluating objective alignment and coupling measures for
multiple problem formulations figure produced by D.L. Peters

(1 − υ)∇f1 + υ∇f2, where υ is the minimum weighting value for which x∗ is the

system design problem solution.

Given a fixed set of constraints, increasing objective alignment will result in a

higher φ. Given a fixed set of objectives, decreasing satisfied-constraint alignment

will result in higher φ.

Figure 7.3 summarizes the steps described above into an algorithm for systemat-

ically analyzing the Pareto set for objective alignment and coupling. The “compare

results” step of the algorithm is illustrated in the next sections.

7.4 Pareto set analysis examples

Section 7.4.1 presents an example of Pareto set analysis applying the global mea-

sures. Section 7.4.2 presents an example of Pareto set analysis applying the local

measures.
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Table 7.2: Explanation of fuel economy constraint
Constraint Description

g15
Minimum combined fuel economy rating must be greater than the minimum
fuel economy parameter

7.4.1 Pareto set analysis with global measures

This section illustrates a simplified vehicle design optimization problem that em-

ploys the scaling-based cost model from Chapter 5 and a simple logit model from the

literature [Boyd and Mellman (1980)].

Problem formulation

The engineering models are the same as described in Chapter 3. The constraint

set is the same as given as Equation (3.2) with the addition of a constraint:

g15 = zMPG − vMMPG ≤ 0 (7.15)

on fuel conusmption used to calculate Pareto points to the following problem using

the ε-constraint method [Osyczka (1984)]:

min f |f = [π, zMPG] (7.16)

by varying the minimum fuel economy constraint parameter vMMPG between the

nadir and ideal values of fuel economy fNMPG and f ◦MPG. Table 7.2 gives a description

of the fuel economy constraint.

Vehicle simulations were configured to represent a standard automatic transmis-

sion front wheel drive vehicle with a gasoline engine. In addition to powertrain spec-

ifications (i.e., gear ratios, gear shifting schedule, engine number of cylinders, vee or

inline configuration, bore, and stroke, valvetrain configuration, and final drive ratio)

Cruise also receives other vehicle parameters as inputs, including curb weight, frontal
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area, drag coefficient, tire radius, and center of gravity location under various loads.

Over 30 parameters were tuned for midsize crossover vehicles based on data from one

2007 model. All other parameters were left at the default passenger vehicle levels.

Vehicle demand model

A logit model was chosen for representing demand, due to its ease of interpreta-

tion congruent with random utility theory [Train (2003)], and widespread use. We

considered only vehicles from a very narrow class and thus reduced the risk of violat-

ing the independence of irrelevant alternatives assumption with the introduction or

exclusion of a particular vehicle. All other purchase possibilities are represented in

the utility of the outside good νog.

The choice share of a given product Pr(i) is defined for the logit model as the

probability of choosing product i given products 1, . . . , n as follows,

Pr(i) = exp(νi)/

(
νog +

n∑
j=1

exp(νj)

)
, νi

∑
k

δkα(zk) for k attributes, (7.17)

where νi is the systematic component of utility for product i, νog is the utility of the

outside good, δk is the systematic utility coefficient or part-worth corresponding to

attribute k, α is a function that relates vehicle characteristic zk to the systematic

utility expression.

From the literature of demand models for the automotive industry [Berry et al.

(1995); Petrin (2002); Berry et al. (2004)] we adopted a model similar to Boyd & Mell-

man [Boyd and Mellman (1980)]. It assumes aggregate (homogeneous) preferences,

a logit form of the choice model, and a utility model that is linear in the coefficients

with vehicle attributes: price, fuel consumption, the inverse of 0-60 acceleration time,

and the styling factor Styl1 based on external vehicle dimensions.

The Boyd & Mellman model was estimated using model year 1977 vehicle data,
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and as such, caution should be taken when interpreting results. Vehicle price was

converted to 1977 dollars using the consumer price index; 0-60 times improved dra-

matically from 13.8s in 1977 to 9.6s in 2007 [USEPA (2007)]. A 1s shift (rather than

the full 4.2s) to acceleration times generated vehicle designs similar to the existing

market for the baseline scenario implying that preference for acceleration increased.

Conveniently, the assumed price of gas in 1977 dollars was $0.70 (roughly $2.40

in 2007 dollars—at the low end of the observed range of gas price in 2007). The

average decrease in fuel consumption (≈ 30%), as tested by the EPA, is accounted

for by using the updated adjusted values [USEPA (2006b)] for fuel economy, rather

than the EPA test values, and then shifting the mpg value by the 0.7mpg remaining

difference, implying people value improvements in fuel economy at roughly the same

level but expect higher average fuel economies.

The model was further calibrated by setting market size to the total vehicles

sold in the US in 2007 (14.87 M), and νog was set to produce a total demand for

the 9 hypothetical vehicles roughly equivalent to the 2007 sales of the real vehicles

(≈ 600, 000). Adjusting market size and νog in this way rather than using the segment

market size and a modest νog did not shift the design decisions of Firm X, but did

provide downward pressure on prices to bring them inline with observed values.

Market demand for each vehicle is estimated to be the product of the market size

cap and the choice share. Other choice model formulations such as the mixed logit

[Train (2003)] allow for individual taste heterogeneity. Studying the impact of choice

model selection on the Pareto set outcomes could be the subject of future work.

Calibrating models between years is difficult because the purchase power of the

dollar has decreased, the average vehicle attributes have changed, and the average

price of vehicles in real dollars has increased [Berry et al. (1995)].

Attributes of the competing vehicles are listed in Table 7.3. Vehicle model names

are prefaced by ‘x-’, indicating that the zAcc060 and the zMPG attributes given are
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Table 7.3: Hypothetical midsize crossover vehicle market excluding Firm X vehicle

Model zAcc060 zMPG zL103 zW105 zH101 zSty1
B&M
Util.

xEdge 7.7 19 185.7 75.8 67.0 3.9 5.75
xEndeavor 8.4 19 190.8 73.6 69.6 3.80 5.42
xHighlander 7.9 19 184.6 71.9 67.9 3.78 5.52
xMurano 8.0 20 187.6 74.0 66.5 3.93 5.82
xSanta Fe 8.2 19 184.1 74.4 67.9 3.81 5.48
xXL7 7.9 18 190.8 73.6 69.6 3.80 5.43
xTribeca 8.3 19 189.8 73.9 66.4 3.97 5.68
xVue 8.4 21 181.3 71.5 66.5 3.8 5.64

based on our simulation—not on the corresponding vehicle model’s real world reported

performance. Time is given in seconds, fuel economy in miles/gallon, and length in

inches. The zStyl1 attribute and utility are dimensionless. We assume all vehicles use

regular gasoline.

Price Equilibrium Solution Strategy

Each competitor optimizes profit with respect to vehicle price given the product

designs and prices of all competitors. Firm X then optimizes product design and price

variables, concluding one iteration. Iterations continue until price changes fall below

a threshold constraint (≈ $80). The vehicle prices (and Firm X design variables) are

now set such that no firm can make a different decision that would improve its own

profits while the choices of the other firms remain fixed, thus approximating a Nash

equilibrium [Fudenberg and Tirole (1991)].

A complete product equilibrium process would allow each competitor to optimize

designs as well as prices with respect to all others’ designs and prices. However, given

the use of a homogenous multinomial logit model and identical underlying engineer-

ing and cost models, each firm would choose identical designs and prices, as seen in

[Michalek et al. (2004)]. Instead, assuming fixed competitor designs coincides with

vehicle planning where a firm makes some educated assumptions about the products
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Table 7.4: Design scenario parameters for baseline
Market As-
sumptions

Market Size
Utility of
outside good

Dealer
Markup

Number
of Firms

14,870,000 9.1 8% 9
Relative Cost
Breakdown

Powertrain Chassis Body Wheels

0.3 0.35 0.3 0.05
Choice Model
Coefficients

δMPG δAcc060 δStyl1 δPrice

-0.339 0.375 1.37 -0.000286

competitors will produce. During product launch and subsequent sales, all competi-

tors are at liberty to adjust prices freely while the designs remain fixed. Competitive

behavior [Chintagunta et al. (2006)] among automotive manufacturers considering

the full market has been modeled, see for example [Sudhir (2001); Goldberg (1995)].

The simplified approach shown here includes competitive effects sufficient to illustrate

trends without greatly increasing the computational complexity of the model.

Design Scenarios

We examine design scenarios that translate into model changes and new Pareto

sets. The criterion alignment metrics and the overall objective values of the Pareto

sets are compared. We divide design scenarios into four ‘mechanisms’: technology,

preference, competition, and regulation. Table 7.4 gives the initial parameter values

for the baseline case. Table 7.5 lists each design scenario and the corresponding model

changes. Each model change is implemented individually, and all other parameter

values are kept at the baseline levels. The unscaled results are shown in Figure 7.4.

All design scenarios consider 9 producers including Firm X.

Baseline Case

The vehicle price (MSRP ), market share (within segment), and expected profit

for each firm are listed in Table 7.6 for thef ◦−profit solution. Table 7.7 shows the
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Table 7.5: Design scenarios listed by mechanism and model parameter level
Mechanism Levels

1 2 3

Technology
CD 0.34 0.40
Powertrain cost 20% 40%

Preference
Accel. Indifference δAcc060 = 0
Fuel economy -0.239 -.439 -.639

Styling preference zW105×2+zL103/2
zH101

−(zW105+zL103+zH101)
2000

10×zH101

zW105+zL103

Competition
Price-cutting $21,000 (xVue) $23,000 (xVue)
Market size volatility 12,870,000 16,870,000

Regulation
Price-ceiling $20,000 $22,000 $24,000

Table 7.6:
Prices, market shares, and expected profits for all firms for the baseline
case

xEdge xMurano xHighlander xSanta Fe xTribeca

MSRP $26,900 $26,700 $26,000 $26,300 $25,900
Market Share 12% 13% 10% 9% 12%
Profit $314M $373M $197M $151M $319M

xVue xXL7 xEndeavor Firm X

MSRP $25,900 $26,900 $27,100 $27,400
Market Share 11% 10% 8% 15%
Profit $257M $193M $68M $543M
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Table 7.7:
Firm X vehicle attributes for ideal −profit and fuelconsump values for
the baseline case

Model zAcc060 zMPG zL103 zW105 zH101 zStyl1 Util.

Firm X f ◦−profit 7.2 18.4 196.6 74.4 67.0 4.05 6.03
Firm X f ◦fuelconsump 9.8 21.1 187.3 74.2 67.0 3.90 5.48

attribute values for f ◦−profit and f ◦fuelconsump for the baseline case.

Technology

Two technology scenarios are considered. The drag coefficient is changed to 0.4

and 0.34 from 0.37, and the powertrain cost parameter is changed from 30% to 20%

and 40%. The difference in cost is absorbed evenly by the chassis and body subsys-

tems.

Preference

Individual preferences for products change over time based on externalities (e.g.,

rising fuel prices or increased public concern for global warming) and based on changes

to the performance levels and salience of the observable characteristics of a product.

Advances in technology and government regulation are two influences that may change

the observable product characteristics of a product such as the automobile. For

example, increased consumer interest may be placed on fuel economy and derivative

characteristics of advanced powertrains (e.g., range, access to refueling). Advertising

is another mechanism that influences preferences, but it is ignored here.

The importance of acceleration in the baseline case is contrasted to the case where

consumers are completely indifferent to 0-60 acceleration given that the vehicle meets

towing, top speed, and 30-50 mph acceleration requirements.

We postulate new fuel consumption coefficients in the demand model assuming

preference is proportional to cost of transportation in real dollars. This analysis as-
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sumes that preference for the other attributes with respect to price remain unchanged,

which has the unavoidable side effect of changing the elasticities between fuel con-

sumption and the other attributes. The coefficients are listed with the corresponding

fuel price in 2007 dollars: δMPG = {−.239, $1.69;−.339, $2.40;−.439, $3.10;−.639, $4.51}
Several alternative vehicle styling forms were considered. Three forms are re-

ported, i) A longer, lower, wider form, where increases in width are more important

than increases in length; ii) minimalist styling that emphasizes reduction in all three

exterior dimensions; iii) an “inverted” form that is taller, shorter, and thinner.

Changing parameter values or functional form of product attributes in the utility

model changes the computed values of utility. The utility of the outside good was

updated to preserve the relative difference between the average utility value of the 8

original vehicles and the utility of the outside good for all preference and regulatory

scenarios. Finally, all firms will react to changes in consumer preference. However,

only Firm X changes vehicle design in this example. The resulting profits should be

considered inflated relative to market expectations, but the trend in vehicle design

(i.e., the relative change of fuel economy) should be preserved.

Competition

Two scenarios are considered that deal with the competitive landscape facing

Firm X. First, the effect of a price-cutting strategy by another firm is examined

at approximately $3,000 and $5,000 below the baseline equilibrium price. Second,

market volatility is considered by varying annual US vehicle market size ± 2 million

vehicles.

Regulation

Numerous regulatory scenarios can be explored using the proposed framework.

Only one policy, a mandatory price ceiling at $24,000, $22,000, and $20,000, is re-
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ported here. A natural consequence of a price ceiling policy is that demand exceeds

supply. Losses by many firms in these scenarios indicate that the worst performing

firms would exit the market and fewer vehicles would be produced overall.

Discussion

The results of each design scenario, including the baseline case, are shown in

Figure 7.4 grouped by mechanism. The criterion alignment metrics are listed in

Table 7.8. The Scenario Dominance section below compares the relative objective

values of the Pareto sets across the scenarios, and the Tradeoff Metric section discusses

the criterion alignment metrics.

Vehicle length (zL103) is large at and shrinks along the Pareto frontier. Vehicle

cost, fuel consumption, and acceleration are all negatively correlated with vehicle

size. Vehicle height (zH101) is constrained by the minimum sitting height constraint.

Vehicle width (zW105) is constrained by the rollover constraint and vehicle length

and wheelbase are constrained by the minimum angle of departure and cargo volume

constraints. In the absence of preference valuation for cargo volume, legroom, or

other spatial features of the vehicle, Firm X will seek to build the smallest vehicle

possible. The style attribute, which rewards increases in length and width, moves the

design away from the constraint boundaries at the most profitable solutions. Vehicle

length, wheelbase, and width are above average for the hypothetical marketplace

and vehicle height is slightly below average. The minimum towing grade constraint

becomes active at f ◦fuelconsump.

The attainable set for all scenarios is limited by the same set of constraints on

vehicle characteristics. The scenarios have the effect of shifting output levels of the

objective functions (e.g., the technology scenarios) and shifting the boundary of the

attainable set that is Pareto optimal (e.g., the preference scenarios). New scenarios

that modified, introduced, or excluded constraints could change the boundary of the
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Figure 7.4: Results for all design scenarios showing −Profit vs. Fuel Consumption
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Table 7.8: Criteria alignment metrics for each design scenario

Design Scenario

Curvature Area
Sensitivity
∆Xs

Baseline 5.7 131,000 103
Technology
CD = 0.34 6.1 142,000 109
CD = 0.40 7.4 117,000 93
Powertrain cost 20% 6.3 149,000 98
Powertrain cost 40% 5.3 118,000 107

Preference
Accel. Indifference 0.02 5,750 168
Fuel economy -0.239 5.3 186,000 102
Fuel economy -0.439 6.4 95,000 101
Fuel economy -0.639 0.8 35,000 195

Styl1(1): W105×2+L103/2
H101

7.0 89,000 101

Styl1(2): −(W105+L103+H101)
2000

7.1 84,000 94
Styl1(3): 10×H101

W105+L103
1.8 188,000 145

Competition
Price-cutting $21,000 5.7 131,000 102
Price-cutting $23,000 5.7 131,000 102
Market size volatility (12,870,000) 5.7 114,000 89
Market size volatility (16,870,000) 5.7 149,000 116

Regulation
Price-ceiling $24,000 6.1 87,000 80
Price-ceiling $22,000 7.2 57,000 60
Price-ceiling $20,000 0.3 10,000 98
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attainable set. On the other hand, the Pareto frontier in an unconstrained problem

would depend only on the gradients of the objective functions. Reviewing Figure 7.4

most of the Pareto sets follow a similar form characterized by a distinct “elbow”

separating a region of gradual decrease in profits for about 1/2 the fuel consumption

change from a steeper region of profit loss for the remaining fuel consumption change.

The similar form across most scenarios is a result of the similar constraint activity

across those scenarios. The top speed constraint is active up to the elbow in the

direction of decreasing fuel consumption and is no longer active beyond that point.

Also near the elbow, EngBore meets the lower bound imposed by the model. How-

ever, EngBoretoStroke does not reach its lower bound so the engine displacement

continues to decrease modestly as fuel consumption decreases.

Scenario Dominance

The globally dominant meta-Pareto set tracks along the market size of 16.87

million, then follows the indifference to acceleration, and then the CD = 0.34 scenario.

In the low fuel consumption region, expensive powertrains produce results in the

market similar to higher preference for fuel economy. When powertrains are expensive

(40% vs. 30%), fuel economy improves for the max profit solution; however, it is still

more profitable to balance acceleration and fuel economy rather than reduce engine

size and cost, and focus on fuel economy. Such a result may explain one reason why

many hybrids have been tuned towards performance and not solely to maximize fuel

economy.

Intuitively, increased market size increases profits. Non-intuitively, artificially

lowering the price of a single vehicle had a negligible effect on Firm X decisions. This

result demonstrates one of the weaknesses of the simple logit model: there is no way

to account for the substitution patterns we would expect, i.e., more sales for the

reduced price model coming from shifting demand within the segment rather than
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the entire vehicle fleet (the outside good). Preliminary studies using the segment size

as the market size and a modest value of outside good utility showed results for a

price cut by one firm very similar to a price ceiling on the entire segment.

Tradesoff Metric Comparison

Values for the three metrics are listed in Table 7.8. Each metric shows a range of

values across the analyzed scenarios. Area and sensitivity were computed using scale

factors of λ−profit = $100, 000 and λfuelconsump = 0.02 gal/100 mi.

The acceleration indifference scenario comes closest to showing how the bi-objective

problem can collapse to a single solution when the gradients of the two objectives are

very similar. The importance of the Styl1 attribute preserves a tradeoff. Another

type of collapse could occur when one objective becomes completely indifferent to the

other objective. This can occur when the gradients of each objective are uncoupled

or only weakly coupled. In other words, the objectives depend on few, if any, of the

same design variables.

Comparing the metric values and Figure 7.4 shows that localized effects of the

Pareto curves are not accounted for by the metrics. The tradeoff region of interest to

a vehicle producer is the region immediately around the max profit point. For most

scenarios, the tradeoff in this region is much more shallow than the overall tradeoff

as indicated by the sensitivity metric, and the curvature is much closer to 0 than

indicated by the curvature metric. The metrics could be reapplied to a designated

region of the Pareto curve to define metrics for local curvature, area, and sensitivity.

There are clear changes to the nature of the tradeoff as the MPG attribute in-

creases in importance. The area decreases as fNfuelconsump decreases. The curvature

decreases dramatically between the baseline and the δMPG = −0.639 case because

the shallow tradeoff region is no longer Pareto-optimal, and the sensitivity increases

because the range of fuel consumption decreases dramatically while the range of

167



Table 7.9:
Trends in tradeoff metric values with respect to changes in Pareto set
objective values

Value Curvature Area
Sensitivity
∆Xs

Technology + − − +
Preference + mixed mixed +
Competition − none − −
Regulation − mixed − mixed

profit changes less. The styling importance impact on profit and fuel consumption is

mixed. Particularly interesting is the Styl1(1) scenario where width is valued more

than length. Increased profits can be achieved and a firm is severely penalized for

decreasing fuel consumption.

Reduced drag coefficient leads to increase in the area metric as the Pareto set

improves compared to the baseline case, which is inconsistent with the trend in the

preference scenarios. One interpretation of these results is that improvements in

vehicle design (e.g., improved drag characteristics) have great potential for decreasing

environmental impact, but these changes alone will lead only to marginal changes at

f ◦−profit when they occur in isolation of other model changes.

Price ceiling scenarios decreased fuel consumption at the cost of reduced profit

levels. Trends for the metrics are summarized in Table 7.9. For example, the first line

of the table should be read, “As preferences change such that the objective values

of the Pareto set improve, curvature and area decrease while sensitivity increases.”

Some trends are not monotonic. Results for effective curvature were mixed over all the

scenarios. As a whole, the tradeoff metrics show increasing alignment for Pareto sets

with improved objective values when changes are made with respect to technology or

preference, and they show increasing alignment for Pareto sets with inferior objective

values when changes are made with respect to competition or regulation.
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Discussion

The area metric is of practical significance to decision makers in that larger tradeoff

area means more to gain (lose) in the tradeoff decision. The area metric also appears

to give the best overall assessment of criterion competition considering the working

definition of criteria alignment, i.e., both objectives achieve single objective optimality

simultaneously. The other two metrics show increased competition for most cases

when the area metric decreases. The smallest area values coincide with the smallest

curvature values, likely indicating that, as ideal values move closer together for a

given problem formulation, smaller regions of the attainable set boundary are Pareto

optimal, and are thus more and more closely approximated by a straight line. This

effect should be explored in other multi-objective problems with different Pareto

frontier shapes (e.g., a concave frontier), and future work should investigate directly

how the problem structure (i.e., objective gradients and constraint activity) relates

to the metrics. The curvature metric, which can be compared across problems, may

serve to classify multiobjective problems according to typical Pareto frontier shapes.

The enterprise vehicle design problem is an example of a class of problems where

decision maker preferences are heavily weighted to one objective (e.g., profit). The

sensitivity metric can be useful in such problems, especially if it is applied locally

around the solution. A firm considering producing a vehicle away from f ◦−profit for

strategic reasons could then formulate a risk assessment for each scenario given the

sensitivity of profit with respect to its choice. Scenarios with lower ∆Xs values will

be less sensitive to design choices away from f ◦−profit.

Another insight drawn from the metrics is that decreased objective competition

does not predicate superior solutions compared to a more competing scenario. For

example, one intuitive yet important trend in the results is that, when the area

metric decreases due to changes in the objective gradients (e.g., consumer indifference

to acceleration), the design scenario has potential to improve objective values for
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both stakeholders. However, when area decreases are due to changes in constraints

(e.g., a price ceiling), the objective values of the scenario decreases for at least one

stakeholder.

Caution should be taken in interpreting the results of this study. The intent

is not to represent a true market equilibrium, but to represent a design scenario

as it may appear to a vehicle manufacturer making assumptions about the vehicle

designs of competitors. Significant obstacles remain in studying maximum profit

formulations in vehicle design including questions about underlying demand model

validity, econometric interpretations of changes to the demand model parameters, and

realistic cost models, among others. Furthermore, other regulatory scenarios can be

considered, such as a CAFE standard, fuel tax, or CO2 tax. Therefore, the numerical

results presented here are useful in illustrating the proposed concept of public and

private alignment rather than suggesting specific decisions.

7.4.2 Pareto set analysis with local measures

We now demonstrate examples of problem formulation changes and observe the

corresponding changes to the Pareto set for a two-variable nonlinear programming

problem modified from Problem 10 in [Hock and Schittkowski (1981)]:

min [f1 = 0.5x2
1 − 7x1, f2 = x2

2 − x1x2 − px2]>

subject to: x2
2 + 4x2

1 − 25 ≤ 0, p = 7 (7.18)

The problem is illustrated graphically in Figure 7.5. Case (a) shows the unmodified

problem, case (b) shows the case where p = 5, and case (c) includes the additional

constraint x2 − 5 + 2x1 ≤ 0. The dashed line in case (c) indicates the degree of

constraint decoupling for the problem.

We compute the measures defined in Section 7.3 and report the values in Ta-
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Figure 7.5:
Graphical representation of problem given in Equation (7.18) and modi-
fications from Table 7.1. Panel (a) shows the unmodified problem. Panel
(b) shows the case where p = 5. Panel (c) shows the case where the
constraint x2 − 5 + 2x1 ≤ 0 has been added

ble 7.10. The results have been categorized by their reflection on the Pareto set.

Performance refers to the placement of the Pareto set in the objective space. When

one Pareto set dominates another Pareto set it is said to have improved performance.

Sensitivity refers to the the slope of the Pareto frontier. Evaluated locally, sensitivity

is defined as df ∗2 /df
∗
1 . Evaluated over the entire Pareto frontier it represents the cost

in one objective to achieve the ideal value for the other objective. Parity refers to

the similarity in the decision to be made in order to minimize each objective f1 and

f2 singly. One measure of parity is the measure of coincidence between ideal values

(||(xf◦1 −xf
◦
2 )||2). Complete parity requires that the decision maker chooses the iden-

tical decision in order to minimize both objectives, in other words, the objectives are

coincident. We use the polar cone angle of the negative objective gradients θ< eval-

uated at an ideal point xf
◦
1 as an alternative measure of parity given that objectives

with a polar cone angle = π will be coincident. A degenerate case of complete parity

is when the objectives are independent.
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Examining Table 7.10, case (a) dominates the other cases and so is superior in

the performance criterion. However, if parity is important, then case (b) would be

superior. For reducing sensitivity of f2 with respect to f1 case (c) would be superior.

Table 7.10: Pareto Set Analysis Results

Criterion Case a b c
Performance Dominance a > b, a > c - -
Sensitivity

Local
f ◦1
f ◦2

und. und. und.
0 0 0

Global (f2/f1) -5.26 -5.21 -1.80

Γv
f ◦1
f ◦2

und. und. und.
0 0 0

φ 0 0 0.29

Parity
Coincidence 3.59 3.00 3.54

Polar cone angle
f ◦1
f ◦2

π/2 π/2 π/2
2.68 2.79 2.68

It should be noted that objective alignment on the Pareto set as measured by the

polar cone of the objective gradients is different from the general notion of objective

alignment that is perhaps best characterized by the measure of coincidence. In fact

high polar cone angles along the Pareto frontier could be an indication of an undesir-

able problem formulation in some design scenarios. For example, in an unconstrained

bi-objective problem, by definition the polar cone angle will be 0 at all points along

the Pareto set. High polar cone angles along the Pareto set may imply that the

feasible design space is far away from both unconstrained objective optima.

Increased parity may similarly result from constraint tightening (either through

parameter changes or adding constraints). Both polar cone angle increases and lower

coincidence distance may also be achieved through reformulation of the objective

functions.

The notion of sensitivity is particularly useful for problems characterized by a pri-

mary objective and a secondary objective. For example in a product design problem
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with a market system objective such as maximize profit, a producer will primarily

be concerned with satisfying the profit objective although the producer may also be

concerned with other objectives such as environmental impact for strategic or other

reasons. In this case it would be valuable to assess the local sensitivity, or incre-

mental cost to the profit objective for decreases in environmental impact. Decreased

sensitivity may result from a decrease in the coupling term due to constraint refor-

mulation, objective reformulation, parameter/variable repartitioning, or modification

to parameter values.

7.5 Discussion

Systematically studying changes to the Pareto set due to changes to the multi-

objective formulation can yield deeper insights into the system-level design problem.

We motivate Pareto Set analysis, or comparing Pareto sets from alternative design

scenarios by abstracting the design problem to a decision making problem that in-

volves system specification and system identification. Changes to the design problem

at the specification or identification stages give rise to unique design scenerios with an

accompanying unique Pareto set in the case of multiobjective problems. The general

Pareto analysis approach involves selecting several Pareto efficient points for analysis.

At a minimum, the two ideal points should be selected. These points can be evaluated

for each change in problem formulation such as a change in the functional form of the

objective function or a repartitioning of variables and parameters. Numerical mea-

sures were then presented that describe each Pareto set in terms of its performance or

dominance over other problem formulations, sensitivity of one objective to changes in

the other objective, and the parity faced by the decision maker in the objective space

and in the decision space when considering the difference between the single-objective

solutions.

The desirability of a given Pareto set, or problem formulation, over another should
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be dictated by the design context. There are numerous design contexts where the

designer is concerned with the attainable solution set and not only a point design

solution. Such problems include the nested co-design problem described here and a

wide variety of problems where the “control,” or partitioned variable design decisions,

may be made asynchronously to the other design decisions. The performance, sensi-

tivity, and parity attributes of a particular design problem represent a multi-objective

problem of their own.

Plots of Pareto sets such as Figure 7.5 are typical and very useful analysis tools for

bi-objective problems. However, as computational expense increases, it is not always

feasible to generate a suitable graphical representation of the Pareto set. The methods

presented in this chapter provide a series of concrete steps to make the most out of

a small number of analysis runs by connecting the local behavior of a bi-objective

problem to the characteristics of the Pareto set. Future work may seek to extend

the numerical measures described here to higher-dimension problems where graphical

representation is similarly problematic.

7.6 Summary

We presented results using the three global metrics to measure bi-objective trade-

offs in the vehicle design problem. We illustrated how the metrics could be used to

discuss differences across design problem and market simulation problem scenarios of

the type formulated in Chapter 6.

We presented additional local measures that can be evaluated at individual Pareto

points and illustrated their application with a nonlinear programming example. Bor-

rowing from traditional system design from the design and control literature, we have

shown how the particular case of combined optimal design and optimal control, or

co-design, can be represented as a system design problem or alternatively as a bi-

objective programming problem with an artifact objective and a controller objective.
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The coupling vector derived for a system problem with unidirectional coupling was

shown to be related to the alignment of competing objectives, as measured by the

polar cone of objective gradients, in the bi-objective programming formulation. We

also showed how the measure of constraint decoupling can be normalized when the

system problem is considered as a bi-objective one.

Chapter 8 illustrates the optimization results for numerous scenarios. The Pareto

sets are plotted for two different sets of scenarios. Following the approach illustrated

in Section 7.4.1 for the simplified automotive vehicle design example, the metrics

described in this chapter could be applied to the results in Chapter 8 to gain further

insight into the public versus private good tradeoff.
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CHAPTER VIII

Public Versus Private Tradeoff Studies in Vehicle

Design

The first goal of this chapter is to examine in practice the modeling framework that

has been proposed in the previous chapters including comparing differences between

different demand models and different cost models. The second goal of the chapter

is to examine the public versus private automotive vehicle design tradeoff problem in

the context of the results.

Vehicle manufacturers typically update and redesign the vehicles in their portfolio

over several years. Improving the fuel economy of the next vehicle scheduled for

introduction or redesign is one way a firm could consider reducing the environmental

impact of its fleet. The public versus private tradeoff problem is therefore posed as

the fuel consumption rating of the designed vehicle versus the expected firm profit.

Chapter 7 presented a simplified example based on studying a single vehicle class

in isolation. That study relied on the scaling cost model from Chapter 5 and a simple

logit model of demand from the literature [Boyd and Mellman (1980)]. This chapter

goes beyond that example by implementing the GTDI and HEV technology models

from Chapter 3, the two newly estimated demand models from Chapter 4 as well as a

mixed logit model from the literature [Berry et al. (1995)], the empirical cost model

and equilibrium cost model from Chapter 5, and the full US fleet price equilibrium as
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a subgame to the design problem as described in Chapter 6. The succeeding sections

present results from a range of design scenarios. Each design scenario is defined by the

number and name of the firms that are designing vehicles, the powertrain technology

of each vehicle, the demand model employed, the number of random coefficient draws

for each individual, and the cost model employed. For simplicity and consistency the

same 6563 individuals used to estimate the demand models from Chapter 4 were used

to execute the market simulations in this chapter except where noted. All scenarios

generate the optimal vehicle design of 1 to 3 midsize crossover vehicles. Each scenario

is solved for the two ideal points and three intermediate Pareto points of the firm profit

versus fuel consumption rating tradeoff.

The outcomes of interest for each scenario are the values of the design variables,

the vehicle attributes including price, the designed vehicle sales volume, the designing

firm’s profit, and measures of the environmental impact of the scenario. The measures

of environmental impact include fuel consumption rating of the designed vehicle,

expected annual fuel consumption from sales of the designed vehicle, the designing

firm’s projected fuel consumption from all vehicle sales, the expected midsize crossover

vehicle segment fuel consumption based on all midsize crossover vehicles sold, and

the expected US fleet fuel consumption based on all vehicles sold. Notably, the

annualized fuel consumption measures for the US fleet do not always fall with reduced

fuel consumption ratings of the designed vehicle illustrating that the public versus

private decision problem facing firms is more complex than simply improving the fuel

consumption of a single vehicle in their fleet.

The total market size M was fixed for all scenarios at 16,109,855 vehicles. This

is approximately the number of vehicle sales in 2006. While actual firm names are

referenced (Hyundai, Toyota, GM), it is noted that the design scenario results should

not be interpreted in the context of the 2006 market. As discussed in Chapters 5 and

6, the lack of alternative specific constants in the demand models means that vehicle
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share predictions do not match the 2006 market. Therefore, policy interpretations

including optimal design decisions should not be made with respect to the real market.

Section 1 develops the problem formulation used in each scenario. Section 2

presents the results for scenarios where a single firm designed a vehicle with a con-

ventional powertrain. Section 3 presents the results for scenarios where a single firm

designed a vehicle with a GTDI powertrain. Section 4 presents the results for sce-

narios where a single firm designed a vehicle with a hybrid powertrain. Section 5

presents results for scenarios where three firms designed vehicles of varying power-

trains. Section 6 compares the results across demand, cost, and powertrain models.

Section 7 discusses the public versus private tradeoff implications from the results.

Section 8 summarizes the chapter including points for future work.

8.1 Problem Formulation

The engineering models including the design variables are the same as described

in Chapter 3. The constraint set is the same as given as Equation (3.2) with the

addition of a constraint:

g15 = zMPG − vMMPG ≤ 0 (8.1)

on fuel conusmption used to calculate Pareto points to the following problem using

the ε-constraint method [Osyczka (1984)]:

min f | f = [πf , zMPG] (8.2)

by varying the minimum fuel economy constraint parameter vMMPG between the

nadir and ideal values of fuel economy fNMPG and f ◦MPG. Table 7.2 gives a description

of the fuel economy constraint.

The profit objective πf is the firm profit. This means that the firm takes into

account the price and profitability of its entire fleet when setting design variable values
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for the designed vehicle. Additionally, profits are calculated based on an assumed

markup by the dealer. In other words, firm profits are determined by taking the

product of a vehicle’s sales and the margin between the firm cost and the price paid

by the dealer (i.e., not the consumer purchase price MSRP ). The price paid by the

dealer is assumed to be the MSRP less a percentage of the MSRP assigned to be

the percentage difference between the dealer invoice price and the MSRP as given in

the Chrome Systems database [Chrome Systems Inc. (2008)]. Consumer demand is

determined based on the MSRP . However, the price equilibrium subgame is executed

for firm profit and is therefore based on dealer price rather than MSRP .

Vehicle simulations were configured to represent a standard automatic transmis-

sion front wheel drive vehicle. In addition to powertrain specifications (i.e., gear

ratios, gear shifting schedule, engine number of cylinders, vee or inline configuration,

bore, and stroke, valvetrain configuration, and final drive ratio) the engineering de-

sign model as described in Chapter 3 also receives other vehicle parameters as inputs,

including curb weight, frontal area, drag coefficient, tire radius, and center of gravity

location under various loads. Over 30 parameters were tuned for midsize crossover

vehicles based on data from one 2007 model.

As described in Chapter 6, computations proceeded with designing firms maxi-

mizing profit until based on the specific market simulation, the convergence tolerance

on changes in design attributes was met. All scenarios were executed as two-stage

game formulations where the vehicle prices for the entire market were solved as a

subgame to the overall vehicle design problem. These formulations are described in

Section 6.1.2.

Unless otherwise noted the population for the BLP95 model was generated from

1000 random draws from a lognormal distribution representing income. The pop-

ulation for Model 1 and Model 2 was generated from the identical 6563 individual

survey sample used in the model estimations. One draw for the random coefficients
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was taken for each individual. The lower bounds on the scaled engine bore variable

were lowered from -1 to -1.5 for the conventional model, from -1 to -2 for the GTDI

and HEV model, and the upper bound on engine bore was raised from 1 to 2 for the

HEV model. This was done because it was noticed that the engine bore variables were

consistently hitting their bounds. Relaxing the constraints allowed the final drive ra-

tio and engine bore to stroke ratios to adjust to more common values. The resulting

optimal engine displacements and horsepower ratings with unconstrained engine bore

values were in the range of midsize crossovers in the market in 2006 although lower

than the 2007 Ford Edge after which the conventional vehicle model was originally

patterned.

Tolerances for the price equilibrium game for Model 1 and Model 2 were 1e-11

for minimum choice share to be included in calculation Ptol, 1e-8 for the maximum

combined gradient norm Gtol, and 1e-8 for the minimum improving step size rstol.

Tolerances for the price equilibrium game for the BLP95 model were the same for the

minimum choice share and 1e-12 for Gtol, and 1e-15 for rstol. The price equilibrium

calculation consistently converged according to the combined gradient norm criterion

as defined in Equation (6.6).

The convergence tolerance for the design game ztol was 1e-3. Attribute differences

were normalized over the attribute value from the preceding iteration. This means

that a ztol =1e-3 required that no vehicle attribute deviated by more than 1/10th of

1 percent from the previous iteration values.

The optimization algorithm implemented for the design problem was a version

of sequential quadratic programming implemented in Matlab under the optimization

function ‘fmincon’. Gradients were computed using finite differencing with the for-

ward difference method. The maximum difference was set to 1e-1. The minimum

difference was set to 1e-2. The tolerance on the design variables was set to 1e-6. The

tolerance on the objective function was set to 1e+2. The tolerance on the constraints
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was set to 1e-5. The objective function values represented dollar values and were

typically on the order of 1e+8–1e+9. The larger than typical tolerance on the objec-

tive function is therefore an artifact of objective scale. The optimization algorithm

would terminate when changes in the objective function were on the order of 1e+1

to 1e+3 dollars. This behavior was deemed suitable given the noise from the price

equilibrium game and the discontinuities introduced by computing the weighted sum

of the choice shares from each individual for each vehicle alternative for changes in

the vehicle design.

8.2 Single Designed Vehicle with Conventional Powertrain

Results are presented in this section for various design scenarios where a single

firm has been selected as the designing firm and a single midsize crossover vehicle

with a conventional gasoline engine has been selected as the designed vehicle. The

subsections are organized in order to facilitate comparison between problem formula-

tion differences in the design scenarios. Design scenarios are compared across demand

models and cost models (Section 8.2.1), designing firms, the number of random co-

efficient draws per individual in the simulated population, and changes in consumer

preference for fuel consumption (Section 8.2.2). We report the values of the design

variables, the vehicle attributes including price, the designed vehicle sales volume,

and the designing firm’s profit for each scenario. We present the Pareto sets for the

profit versus fuel consumption tradeoff for an representative scenario in the discus-

sion in Section 8.2.3 . Comparisons of the other environmental impact metrics are

presented in Section 8.7.

8.2.1 Comparing Results across Demand and Cost Models

Table 8.1 presents the design variable values for design scenarios with a single

designed vehicle and a single designing firm (Hyundai). Table 8.2 presents the vehicle
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attributes for design scenarios with a single designed vehicle and a single designing

firm (Hyundai), and Table 8.3 presents the simulated market outcomes. Each of the

scenarios reported is a maximum profit scenario. In other words, there was no con-

straint set on vehicle fuel consumption. The table rows are labeled by demand model

(BLP95, Model 1, Model 2) and by cost model (Emp, Eq). Examining the design

variables in Table 8.1 shows that there are large differences between the optimal vehi-

cle designs under the BLP95 model versus the new models. There are no significant

differences in the optimal vehicle designs between Model 1 and Model 2, and there

are small differences in the designs between the empirical and the equilibrium cost

model.

The BLP95 vehicle has a large engine and small body compared to the Model

1 and Model 2 vehicles leading to a lower fuel economy rating and higher power to

weight ratio as shown in Table 8.2. The design differences between the empirical and

equilibrium cost models for Model 1 and Model 2 led to small differences in the engine

displacement, the power to weight ratio, and other performance metrics.

Referencing the market outcomes found in Table 8.3 shows that the BLP95 model

suggests a low price and achieves very low sales volume compared with the Model 1

and Model 2 results with the same empirical cost model. The empirical cost model

for Model 1 and Model 2 projects higher prices, sales volumes, and profits compared

to the equilibrium cost model. Model 2 consistently prices lower than Model 1 and

achieves higher sales volume and higher profits on the designed model. However,

Model 1 projects higher overall firm profits than Model 2. The BLP95 demand

model favors Hyundai in terms of total sales, and the Model 1 demand model with

the empirical cost model projects the highest firm profits.
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8.2.2 Comparing Results across Firms, Fuel Economy Preference, and

Draws

Table 8.4 presents the design variable values for design scenarios with a single

designed vehicle and a single designing firm. All scenarios employ the Model 2 demand

model and the equilibrium cost model. However, the first three rows represent three

different designing firms (Hyundai, Toyota, or General Motors). The fourth row

represents a case where the mean of the random coefficient for fuel consumption in

the demand model has been doubled from −0.8553 to −1.7106. The fifth row presents

results for the case that the number of draws per individual from the distribution of

random coefficients was 40 rather than 1. Table 8.5 presents the vehicle attributes for

the same design scenarios as Table 8.4 and Table 8.6 presents the simulated market

outcomes for the same scenarios. Each of the scenarios reported is a maximum profit

scenario. In other words, there was no constraint set on vehicle fuel consumption.

The table rows are labeled by designing firm (Hyundai,Toyota, General Motors), the

number of draws (1, 40), and row 4 of each table indicates that fuel consumption

preference has been doubled (2xMPG).

Tables 8.7-8.9 present additional results for design scenarios with differing number

of draws using Model 1 demand and the equilibrium cost model. In this case a subset

of only 500 individuals is used from the full 6563 individuals from the estimation

population. The smaller population allowed a higher number of draws to be tested,

in this case 128, without running into computer memory constraints. The top row

presents results from a scenario with 1 draw for each individual from the distribution

of random coefficients, and the bottom row presents the results from a scenario with

128 draws. Examining the design variables in Table 8.4 shows that there are no

differences in design variables across designing firms, fuel economy preference, and

number of draws except for very small differences in the final drive ratio for different

designing firms and very small differences in final drive ratio and engine bore to stroke
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ratio in the increased preference for fuel economy scenarios. These differences were

not large enough to change the fuel economy and horsepower to weight attributes at

the reported precision in Table 8.5.

The Hyundai and Toyota vehicles report similar prices in Table 8.6. However,

the Toyota vehicle has double the sales volume. The GM vehicle has the lowest

price and a sales volume in between the Hyundai and Toyota vehicle. Although

the case with the increased fuel economy preference did not lead to design changes,

the market outcome resulted in simultaneously higher price and higher sales volume

for the Hyundai vehicle. There are small differences in price, sales, and firm profit

between the 1 Draw and the 40 Draw case. Sales volume and profit at the designed

vehicle and firm level all declined in the 40 Draw case.

Examining the design variables in Table 8.7 shows that there are no differences in

design variables across the number of random coefficient draws. There are noticeable

difference in the projected market outcomes just as there were market differences

between the 1 Draw case and the 40 Draw case with the 6563 population in Table 8.6.

In this case increasing the number of draws led to a lower designed vehicle price and

lower sales volume.

8.2.3 Discussion

The primary finding from the results in this section is the similarity in design

solutions across all scenarios with the exception of the BLP95 scenarios. The design

solutions are all highly constrained. The constraints come from the specific require-

ments to stay within the midsize crossover vehicle class in terms of size and towing

capacity. The range of size for a midsize crossover vehicle in terms of vehicle footprint

is very similar to a midsize sedan. The average consumer according to Model 1 prefers

larger vehicles, and the average consumer’s ideal footprint according to Model 2 is

larger than a midsize sedan. The result is that both demand models reward increases
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in size over the allowable range of size for a midsize crossover vehicle. The market

simulations which then take into account the change in demand for the change in cost

to produce a larger vehicle all suggested that firms should make the largest vehicle

possible. In this case the vehicle size was limited by a practical constraint on the

wheelbase design variable, a practical constraint on the vehicle width, and an SAE

specification on departure angle that prohibits the tail end of the vehicle protruding

too far from the rear wheels.

The other result that was common across the scenarios was that each scenario

exhibited the same tradeoff solution between power to weight ratio and fuel con-

sumption. This may have resulted because the degrees of freedom of the powertrain

variables were taken away by the gradeability constraint and the top speed constraint.

Again it appears that for Model 1 and Model 2 high power to weight ratios were not

valued as highly as a larger, more fuel efficient, and less expensive vehicles. Anecdo-

tally, Ford introduced a midsize crossover vehicle to compete in the segment focused

on in this study in 2007. Then, they introduced a larger slower crossover in 2009.

The trend across the crossover segment has been to lengthen the vehicle with even

some small crossovers such as the Toyota RAV4 achieving third row seating.

The designed vehicle according to the BLP95 model in Section 8.2.1 projects lower

sales than the other demand models because consumers according to the BLP95 model

are more price sensitive. Sales are then weighted to the very least expensive vehicles.

The design constraints on size and towing capability inhibit the designed vehicle from

becoming smaller and less costly to build, and so it is not competitive with the least

expensive vehicles in the market. Additionally, the BLP95 model scenario predicts

higher total sales for Hyundai than in the other scenarios because Hyundai has several

small inexpensive models on the market.

The scenarios that combine the empirical or equilibrium cost models with the

Model 1 or Model 2 demand model result in grossly inflated profits compared to
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the real market. The combination of demand and cost model result in per vehicle

profit margins that are very large. We conjecture that introducing alternative specific

constants would resolve this issue by increasing sales volume of less expensive cars

and reducing sales volume of luxury models. The overall effect would be downward

pressure on prices in the case of the empirical cost model and higher equilibrium costs

in the case of the equilibrium cost model.

Model 2 marginally benefits smaller less expensive cars compared to Model 1 as

seen in the predicted market shares plot in Figure 4.3. Shares and designed vehicle

profit are therefore higher for Model 2. However, total firm profits are higher for

Model 1. The higher firm profits for Model 1 versus Model 2 could be some evidence

that a demand model that resolved the mismatch between actual and predicted sales

would resolve the inflated profit margins.

The small design differences that were observed between designing firms in Sec-

tion 8.2.2 may mean that different firms are motivated to design different vehicles

based on their specific context. Whether these differences are driven by differences in

brand value or by a firm’s existing portfolio or both should be a topic of future work.

For the given problem formulation these details may be difficult to determine because

the design decisions are in a highly constrained space. These points of exploration

are in addition to exploring the differences that emerge when firms have different

technology and cost capabilities.

For the case of Hyundai as the designing firm it appears that increasing the number

of draws decreases sales volume and profit. More runs can be taken in future work to

examine wether this result is stable and if it holds for other firms or designed vehicle

segments.

Figure 8.1 shows the public versus private tradeoff with various measures for

the public tradeoff for the design scenario from Tables 8.1-8.3. Figure 8.1(a) shows

the designed vehicle fuel consumption rating in gallons per 100 miles plotted versus
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the firm’s profit1. As the designed vehicle is constrained to improve fuel economy

beyond the maximum profit design firm profit decreases. While the initial thought

was to use the fuel consumption rating of the designed vehicle to represent the public

interest (Figure 8.1(a)), the market simulation results indicate that the aggregate

fuel consumption of the US fleet can actually increase rather than decrease when

the designed vehicle fuel consumption is reduced. This is the case for the design

scenarios with the Model 2 demand model and either the empirical or the equilibrium

cost model.

Figure 8.1(b) shows how the sales-weighted fuel consumption rating for a given

firm (Hyundai) changes with change in the designed vehicle. The fuel consumption

rating decreases with decreasing designed-vehicle fuel-consumption for all scenarios.

The firm sales-weighted fuel consumption rating for the BLP95 scenario is much

lower than the other scenarios. This is again indicative of the sales mix under the

BLP95 scenario that is heavily weighted towards less expensive vehicles with higher

fuel economies.

Figure 8.1(c) shows the fuel consumption of the midsize crossover segment. The

reporting is given in average-vehicle-mile-traveled gallons. What this means is that we

can calculate a projected annual fuel consumption of the new midsize crossover vehicle

sales by assigning an average vehicle-miles-traveled to the segment car buyers. For ex-

ample, if the average-vehicle-miles-traveled per new car buyer were 12,000 miles/year

and the segment per average-vehicle-mile-traveled fuel consumption was 16,000 gal-

lons, then the projected annual fuel consumption of the new midsize crossover sales

would be 12, 000× 16, 000 = 192× 106 gallons of gasoline.

We can also calculate an average-vehicle-mile-traveled fuel consumption for the

entire US fleet. These results for each scenario are presented in Figure 8.1(d). The

increasing aggregate fuel consumption in the Model 2 scenarios resulting from de-

1Here profit is listed with negative values as a convention so that the improving direction is
toward the bottom left corner of the plot
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Figure 8.1:
Pareto results for a single conventional designed vehicle with Model 2
demand model and equilibrium cost model (a) Vehicle fuel consumption
rating in gallons per 100 miles versus negative firm profit; (b) Firm sales-
weighted vehicle fuel consumption rating in gallons per 100 miles versus
negative firm profit; (c) Segment per average-vehicle-mile-traveled fuel
consumption in 10,000’s of gallons versus negative firm profit; (d) US fleet
per average-vehicle-mile-traveled fuel consumption in 10,000’s of gallons
versus negative firm profit;

creasing the fuel consumption for the designed vehicle beyond the maximum profit

value indicates that potential buyers substitute away from the designed vehicle to a

vehicle that on average is less fuel efficient. In the other scenarios they substitute on

average to a vehicle that is more fuel efficient.
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8.3 Single Designed Vehicle with GTDI Powertrain

Results are presented in this section for various design scenarios where a single

firm has been selected as the designing firm and a single midsize crossover vehicle with

a GTDI gasoline engine has been selected as the designed vehicle. The subsections are

organized in order to facilitate comparison between problem formulation differences in

the design scenarios. Design scenarios are compared across demand and cost models

(Section 8.3.1) and across designing firms (Section 8.3.2). We report the values of

the design variables, the vehicle attributes including price, the designed vehicle sales

volume, and the designing firm’s profit for each scenario. We present the Pareto sets

for the profit versus fuel consumption tradeoff for each of the different designing firms

scenarios in the discussion in Section 8.3.3. Comparisons of the other environmental

impact metrics are presented in Section 8.7

8.3.1 Comparing Results across Demand and Cost Models

Table 8.10 presents the design variable values for design scenarios with a single

designed vehicle and a single designing firm (Hyundai). Table 8.11 presents the vehicle

attributes for design scenarios with a single designed vehicle and a single designing

firm (Hyundai), and Table 8.12 presents the simulated market outcomes. Each of

the scenarios reported is a maximum profit scenario. In other words, there was no

constraint set on vehicle fuel consumption. The table rows are labeled by demand

model (BLP95, Model 1, Model 2) and by cost model (Emp, Eq). Examining the

design variables in Table 8.10 shows that there are large differences between the

optimal vehicle designs under the BLP95 model versus the new models. There are

small differences in the optimal vehicle designs between Model 1 and Model 2 and

between the empirical and equilibrium cost models.

The BLP95 vehicle has a large engine and small body compared to the Model

1 and Model 2 vehicles similar to the conventional technology case in Section 8.2.1
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leading to a lower fuel economy rating and higher power to weight ratio as shown in

Table 8.11. The design differences between the Model 1 and Model 2 scenarios led

to small differences in the engine displacement, the power to weight ratio, and other

performance metrics.

Referencing the market outcomes found in Table 8.12 shows that the BLP95 model

suggests a low price and achieves very low sales volume compared with the Model 1

and Model 2 results with the same empirical cost model. The empirical cost model

for Model 1 and Model 2 projects higher prices, but lower sales volumes and profits

compared to the equilibrium cost model. Model 2 consistently prices lower than

Model 1 and achieves higher sales volume and higher profits on the designed model.

Model 2 also projects higher overall firm profits than Model 1 for the equilibrium cost

model, but lower overall firm profits for the equilibrium model. The BLP95 demand

model favors Hyundai in terms of total sales, and the Model 1 demand model with the

empirical cost model again projects the highest firm profits similar to the conventional

technology case.

8.3.2 Comparing Results across Designing Firms

Table 8.13 presents the design variable values for design scenarios with a single

designed vehicle and a single designing firm. All scenarios employ the Model 1 demand

model and the equilibrium cost model. However, the first three rows represent three

different designing firms (Hyundai, Toyota, or General Motors). Table 8.14 presents

the vehicle attributes for the same design scenarios as Table 8.13 and Table 8.15

presents the simulated market outcomes for the same scenarios. Each of the scenarios

reported is a maximum profit scenario. In other words, there was no constraint set

on vehicle fuel consumption. The table rows are labeled by designing firm (Hyundai,

Toyota, General Motors). Examining the design variables in Table 8.13 shows that

there are small differences in design variables across designing firms in the engine
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bore, final drive ratio, and engine bore to stroke ratios for different designing firms.

These differences were not large enough to change the fuel economy, and only the

GM scenario reports a different power to weight ratio at the reported precision in

Table 8.14.

The market performance is very similar to the conventional technology case.

Hyundai and Toyota vehicles report very similar prices in Table 8.15. However, the

Toyota vehicle has more than double the sales volume. The GM vehicle has the lowest

price and a sales volume in between the Hyundai and Toyota vehicle.

8.3.3 Discussion

powertrain difference more noticeable perhaps because technology able to achieve

a higher fuel economy so closer to a saturated level with fuel economy

The GTDI technology allows the designed vehicle to achieve higher fuel economy

while still meeting the gradeability and top speed constraint. The Model 1 and

Model 2 demand models push the design in this way while maintaining the largest

vehicle possible. The BLP95 scenario produces a smaller powerful vehicle similar to

the conventional case. Overall the designs are again very similar across scenarios.

One reason that powertrain differences are slightly more noticeable in the GTDI

scenarios may be because fuel economy is higher. The marginal benefit of increasing

fuel economy may be closer to the marginal benefit of increasing the power to weight

ratio for example.

The design solutions again are all highly constrained. The constraints come from

the specific requirements to stay within the midsize crossover vehicle class in terms

of size and towing capacity. The Model 2, empirical cost model case does not strictly

constrained by the top speed constraint. Both Model 1 and Model 2 reward increases

in size over the allowable range of size for a midsize crossover vehicle. The market

simulations which then take into account the change in demand for the change in cost
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to produce a larger vehicle all suggested that firms should make the largest vehicle

possible. In this case the vehicle size was limited by a practical constraint on the

wheelbase design variable, a practical constraint on the vehicle width, and an SAE

specification on departure angle that prohibits the tail end of the vehicle protruding

too far from the rear wheels.

The other result that was common across the scenarios was that each scenario

exhibited a very similar tradeoff solution between power to weight ratio and fuel con-

sumption. This may have resulted because the degrees of freedom of the powertrain

variables were taken away by the gradeability constraint and the top speed constraint.

Again it appears that for Model 1 and Model 2 high power to weight ratios were not

valued as highly as a larger, more fuel efficient, and less expensive vehicles.

The designed vehicle according to the BLP95 model in Section 8.2.1 projects lower

sales than the other demand models because consumers according to the BLP95 model

are more price sensitive. Sales are then weighted to the very least expensive vehicles.

The design constraints on size and towing capability inhibit the designed vehicle

from becoming smaller and less costly to build, and so it is not competitive with

the least expensive vehicles in the market. Additionally, the BLP95 model scenario

predicts higher total sales for Hyundai than in the other scenarios because Hyundai

has several small inexpensive models on the market. It appears that for the designed

vehicle in the BLP95 scenario the maximum profit design was to differentiate as much

as possible from the rest of the Hyundai portfolio and capture what was available of

a very small market for high power to weight ratio.

Just as in the conventional technology case the scenarios that combine the empir-

ical or equilibrium cost models with the Model 1 or Model 2 demand model result

in grossly inflated profits compared to the real market. The combination of demand

and cost model result in per vehicle profit margins that are very large. We conjecture

that introducing alternative specific constants would resolve this issue by increasing
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sales volume of less expensive cars and reducing sales volume of luxury models. The

overall effect would be downward pressure on prices in the case of the empirical cost

model and higher equilibrium costs in the case of the equilibrium cost model.

Model 2 marginally benefits smaller less expensive cars compared to Model 1 as

seen in the predicted market shares plot in Figure 4.3. Shares and designed vehicle

profit are therefore higher for Model 2. However, total firm profits are split. In the

equilibrium cost case, firm profits are higher for Model 2, and in the empirical cost

case profits are higher for Model 1.

The small design differences that were observed between designing firms in Sec-

tion 8.3.2 may mean that different firms are motivated to design different vehicles

based on their specific context. Whether these differences are driven by differences in

brand value or by a firm’s existing portfolio or both should be a topic of future work.

For the given problem formulation these details may be difficult to determine because

the design decisions are in a highly constrained space. These points of exploration

are in addition to exploring the differences that emerge when firms have different

technology and cost capabilities.

Figure 8.2 shows the public versus private tradeoff with various measures for the

public tradeoff for the design scenario from Tables 8.13-8.15. Figure 8.2(a) shows

the designed vehicle fuel consumption rating in gallons per 100 miles plotted versus

the firm’s profit2. As the designed vehicle is constrained to improve fuel economy

beyond the maximum profit design, firm profit decreases. While the initial thought

was to use the fuel consumption rating of the designed vehicle to represent the public

interest (Figure 8.2(a)), the market simulation results indicate that the aggregate

fuel consumption of the US fleet can actually increase rather than decrease when the

designed vehicle fuel consumption is reduced. This is the case for all of the design

2Here profit is listed as a change from the profit at the maximum profit case. This allows data
for all three firms to be presented on the same plots. A positive profit value actually indicates a
decrease in profit of the given magnitude. This notation maintains the convention that the improving
direction is toward the bottom left corner of the plot
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scenarios once the designed vehicle fuel consumption reaches a certain point.
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Figure 8.2:
Pareto results for a single GTDI designed vehicle with Model 1 demand
model and equilibrium cost model; (a) Vehicle fuel consumption rating in
gallons per 100 miles versus negative firm profit; (b) Firm sales-weighted
vehicle fuel consumption rating in gallons per 100 miles versus negative
firm profit; (c) Segment per average-vehicle-mile-traveled fuel consump-
tion in 10,000’s of gallons versus negative firm profit; (d) US fleet per
average-vehicle-mile-traveled fuel consumption in 10,000’s of gallons ver-
sus negative firm profit;

Figure 8.2(b) shows how the sales-weighted fuel consumption rating for a given

firm (Hyundai, Toyota, or GM) changes with change in the designed vehicle. The

fuel consumption rating decreases with decreasing designed-vehicle fuel-consumption

for Hyundai, marginally for Toyota, and actually increases very slightly for GM. This
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shows that the sales-weighted average fuel consumption for Hyundai without sales

from the designed vehicle is lower, it is slightly lower for Toyota, and it is higher

for GM. It also shows that GM has better substitutes for the designed vehicle than

Hyundai, for example. They both lose about 41,000 total vehicle sales in the scenario

where the designed vehicle has minimum fuel consumption. This was on a loss of

43,000 designed vehicle sales for Hyundai and 87,000 designed vehicle sales for GM.

As a percentage of total sales the GM loss is much smaller (1% vs. 10%).

Figure 8.2(c) shows the fuel consumption of the midsize crossover segment. The

reporting is given in average-vehicle-mile-traveled gallons. What this means is that we

can calculate a projected annual fuel consumption of the new midsize crossover vehicle

sales by assigning an average vehicle-miles-traveled to the segment car buyers. For ex-

ample, if the average-vehicle-miles-traveled per new car buyer were 12,000 miles/year

and the segment per average-vehicle-mile-traveled fuel consumption was 16,000 gal-

lons, then the projected annual fuel consumption of the new midsize crossover sales

would be 12, 000 × 16, 000 = 192 × 106 gallons of gasoline. The segment fuel con-

sumption is going down both because of the increased fuel efficiency of the designed

vehicle, but also because of the reduction in sales of the designed vehicle. Only a

fraction of the consumers that substitute away from the designed vehicle will remain

in the narrowly defined midsize crossover segment.

We can also calculate an average-vehicle-mile-traveled fuel consumption for the

entire US fleet. The results for each scenario are presented in Figure 8.1(d). The

increasing aggregate fuel consumption for all firms beyond the third decrease in de-

signed vehicle fuel consumption results from potential buyers substituting away from

the designed vehicle to a vehicle that on average is less fuel efficient. The behavior in

this plot can be contrasted with Figure 8.1(d), where for the Model 1 scenarios the

US fleet fuel consumption always decreased. We can interpret this by noting that the

maximum profit design for the GTDI technology has a much higher fuel economy to
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begin with than the conventional technology design. When buyers substitute away

from this vehicle there reaches a point where the benefit from the (decreasing) sales

of the designed vehicle are outweighed by the higher fuel consumption values of the

substitute vehicles.

8.4 Single Designed Vehicle with HEV Powertrain

Results are presented in this section for various design scenarios where a single

firm has been selected as the designing firm and a single midsize crossover vehicle with

an HEV powertrain has been selected as the designed vehicle. The subsections are

organized in order to facilitate comparison between problem formulation differences in

the design scenarios. Design scenarios are compared across demand and cost models

(Section 8.4.1). We report the values of the design variables, the vehicle attributes

including price, the designed vehicle sales volume, and the designing firm’s profit for

each scenario.

8.4.1 Comparing Results across Demand and Cost Models

Table 8.16 presents the design variable values for design scenarios with a single

designed vehicle and a single designing firm (Hyundai). Table 8.17 presents the vehicle

attributes for design scenarios with a single designed vehicle and a single designing

firm (Hyundai), and Table 8.18 presents the simulated market outcomes. Each of

the scenarios reported is a maximum profit scenario. In other words, there was no

constraint set on vehicle fuel consumption. The table rows are labeled by demand

model (BLP95, Model 1, Model 2) and by cost model (Emp, Eq). Examining the

design variables in Table 8.16 shows that the only difference between the optimal

vehicle designs under the BLP95 model versus the new models are the engine bore

and engine bore to stroke ratio. There are no differences in the optimal vehicle designs

between Model 1 and Model 2 and between the empirical and equilibrium cost models.
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The BLP95 vehicle has a larger engine but with smaller horsepower and the same

large body compared to the Model 1 and Model 2 vehicles. This is different than

the other two technologies where the BLP95 scenarios had small vehicles and more

powerful engines.

Referencing the market outcomes found in Table 8.18 shows that the BLP95 model

suggests a lower price and achieves extremely low sales volume compared with the

Model 1 and Model 2 results with the same empirical cost model. The empirical cost

model for Model 1 and Model 2 projects higher prices, but lower sales volumes and

profits compared to the equilibrium cost model. Model 2 prices lower than Model 1 for

the empirical cost model but higher than Model 1 for the equilibrium cost model. In

both cases the Model 2 scenario achieves higher sales volume and higher profits on the

designed model. Model 2 also projects higher overall firm profits than Model 1. The

BLP95 demand model no longer favors Hyundai in terms of total sales given the high

popularity of the HEV designed vehicle in the other demand model scenarios. The

Model 2 equilibrium costs scenario, in particular, has very high HEV sales volume.

An oversight in the HEV simulations was not updating the power to weight ratio

to reflect the benefit of the electric machines. The additional effective horsepower for

the HEV vehicle because of the electric machines was accounted for in the vehicle mass

and vehicle cost calculations. However, it was not added to the vehicle attributes used

by the demand models. Correcting for this oversight would lead to higher power to

weight ratios and presumably higher demand for these vehicles than already projected.

8.4.2 Discussion

The HEV results are substantially different than the other two technologies. The

designed vehicles all have very high performance characteristics in terms of towing

and acceleration, and the fuel economy is also very high. The designed vehicles are

much more expensive than the other technology cases. However, the combination of
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high attribute levels more than overcomes the high price for consumers in the Model 1

and Model 2 scenario where sales volumes and profits are the highest of any scenario.

8.5 Three Designing Firms with one Designed Vehicle Each

Results are presented in this section for various design scenarios where three firms

have been selected as the designing firms and a single midsize crossover vehicle from

each firm is selected as the designed vehicles. Each firm is assigned a particular

powertrain technology. The subsections are organized in order to facilitate comparison

between problem formulation differences in the design scenarios. Design scenarios

are compared across demand models where all firms produce conventional designs

(Section 8.5.1) and across demand models and technology assignment (Section 8.5.2).

We report the values of the design variables, the vehicle attributes including price,

the designed vehicle sales volume, and the designing firm’s profit for each scenario.

Comparisons of the other environmental impact metrics are presented in Section 8.7

8.5.1 Comparing Results across Demand Models for Conventional De-

signs

Table 8.19 presents the design variable values for design scenarios with three de-

signed vehicles and three designing firms (Hyundai, Toyota, and GM). Table 8.20

presents the vehicle attributes for design scenarios with three designed vehicles and

three designing firms (Hyundai, Toyota, and GM), and Table 8.21 presents the simu-

lated market outcomes. Each of the scenarios reported is a maximum profit scenario.

In other words, there was no constraint set on vehicle fuel consumption. The table

rows are labeled by demand model (Model 1, Model 2), by cost model (Eq), and

by the designing firm (Hyundai, Toyota, Japan). Examining the design variables

in Table 8.19 shows that there are only small differences in final drive and engine

bore between the designing firms and between the two demand model scenarios. The
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designs are very similar to the single designed vehicle scenarios in Section 8.2.2.

The attribute values for the three designed vehicles in Table 8.20 are also very

similar to the respective single designed vehicle cases in Section 8.2.2. The design

differences between the Model 1 and Model 2 scenarios led to small differences in the

engine displacement, vehicle mass and acceleration times.

Referencing the market outcomes found in Table 8.21 shows that again similar to

the single designed vehicle cases, Hyundai and Toyota have similar prices and GM

has a much lower price. Toyota and GM have similar sales volumes, and Hyundai has

less than half the others’ sales volumes. The Model 1 scenario has higher prices and

lower sales volume than the Model 2 scenario. The designed vehicle profits are higher

in the Model 2 scenario, but the firm profits are higher in the Model 1 scenario.

8.5.2 Comparing Results across Designing Firms for Multiple Technolo-

gies

Table 8.22 presents the design variable values for design scenarios with three de-

signed vehicles and three designing firms assigned to a particular technology (Hyundai,

Conventional or GTDI; Toyota, GTDI or Conventional; GM, HEV). Table 8.23

presents the vehicle attributesfor design scenarios with three designed vehicles and

three designing firms assigned to a particular technology (Hyundai, Conventional or

GTDI; Toyota, GTDI or Conventional; GM, HEV), and Table 8.24 presents the simu-

lated market outcomes. Each of the scenarios reported is a maximum profit scenario.

In other words, there was no constraint set on vehicle fuel consumption. The table

rows are labeled by demand model (Model 1, Model 2), by cost model (Eq, Emp), by

the designing firm (Hyundai, Toyota, Japan), and by powertrain technology (Conv,

GTDI, HEV).

Examining the design variables in Table 8.22 shows that there are powertrain

design differences between each of the three technologies across all scenarios. However,
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vehicle size is the maximum allowable in all cases. The individual designs for the

conventional vehicle correspond well to the single designed cases from Section 8.2.2.

The powertrain variables for the GTDI designs shifted slightly from Section 8.3.2,

and the HEV designs are similar for the empirical cost model, but different for the

equilibrium model compared to Section 8.4.1.

The attribute values for the three designed vehicles in Table 8.23 are also very

similar to the respective single designed vehicle cases with the exception of the equi-

librium cost model HEV cases. These cases are also different from the single designed

vehicle cases because the designing firm for the HEV in the multi-firm case is GM

rather than Hyundai as in the single designed vehicle case.

Referencing the market outcomes found in Table 8.24 shows that the sales volume

and profit trends described in the previous sections held in the cases of multiple

firms with differing technologies. The two Model 1 empirical costs scenarios show

a behavior where the Toyota vehicle commands a higher price than the Hyundai

vehicle whether it designs a conventional or GTDI vehicle. The GTDI vehicle gains

a higher sales volume in both cases, but when Hyundai designs the GTDI vehicle the

difference between sales is much less than when Toyota designs the GTDI vehicle.

For the equilibrium cost case for both Model 1 and Model 2 Toyota prices the GTDI

vehicle below the conventional vehicle from Hyundai.

Examining the behavior of GM with the hybrid vehicle design shows interesting

behavior between the two cost models. In the case of the empirical cost model, GM’s

costs are similar to the other firms. It then prices the HEV much higher than the

other firms. The HEV is still popular, but achieves sales volumes on the order of

the other vehicles. The equilibrium cost case where GM’s costs are much lower than

the other firms shows that GM prices the hybrid well below the other vehicles and

achieves very large sales volumes.
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8.5.3 Discussion

The results for the multi-firm cases are similar to the single designed vehicle cases.

The differences in price and shares are reflective of differences in brand value which

also led to differences in cost according to equilibrium cost model. Because of this the

interaction between the firms in terms of vehicle price and sales volume, the market

outcomes are different between the two cost different cost models even though the

designs are for the most part similar.

8.6 Comparing Results across Design Scenarios

Across all scenarios there were small differences in powertrain variables between

scenarios with different cost models and demand models. The GTDI designed vehicles

had larger changes in powertrain variables, and the HEV designed vehicles had larger

changes still. There were some small differences between the single designed vehicle

scenarios and the multi-firm design scenarios particularly for the GTDI technology.

Further work should explore wether this behavior holds in more general cases or if it

was related to the highly constrained design space in these problems.

Vehicle size reached its upper bound for all cases except for the conventional and

GTDI BLP95 scenarios. We had expected to see differences in vehicle design between

the Model 1 and Model 2 demand models and in the cases with multiple random

coefficient draws per individual versus the 1 draw cases. However, the expected

changes hinged on differences in vehicle size. The footprint size of a midsize crossover

is very similar to a midsize sedan. The market simulations indicated that preference

for increased size was stronger than increased fuel economy or increased power to

weight for both Model 1 with the preference for size linear in footprint and for Model

2 with preference for size quadratic in footprint. We conjecture that based on the

elasticity plots for both Model 1 and Model 2 in Figures 4.4, 4.5, 4.8, 4.12, were we to
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design two seaters, full size vans, or pickup trucks we may have observed differences

in design outcomes between demand models and between number of draws. These

segments show the most difference in own and cross-elasticity values between the two

demand models and between number of draws.

The vehicle attribute tables show that the design variable differences did lead

to significant differences in predicted 0-60 mph acceleration times. However, the

acceleration times were not used in the demand model. In the past, researchers have

noted that the power to weight ratio could serve as a surrogate for some consumer

perceived attribute such as acceleration. The fact that the acceleration time and

power to weight ratios are not perfect corollaries raises the question of what are the

right attributes to include in the demand model, and how are consumers perceiving

differences in design.

The enhanced performance capability of GTDI technology allowed the engine

displacement to be dropped considerably. The resulting design weighed less and was

less costly while improving fuel economy. Power to weight was comparable. In general

the GTDI vehicles enjoyed higher sales and profit than the conventional technology

vehicles. The trend of improving technology was even greater for the HEV designed

vehicles, which enjoyed the largest profits and highest sales volumes.

The differences in market outcomes were much larger than differences in design

variables across scenarios. For example, the GTDI and HEV vehicles had higher sales

volumes with equilibrium cost model than with empirical cost model. The opposite

was true for the conventional technology. The conclusion is then that even when

the vehicle design is highly constrained or exhibits similar behavior under different

demand models, the details of market outcomes can vary widely depending on the

other details of the market simulation including the cost model, the demand model,

and how the consumer population was simulated in terms of the number of draws.

The brand coefficients clearly play a role in the price equilibrium game in terms
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of the price charged by a specific firm and the market share of the vehicle. The

brand coefficients are simply very granular alternative-specific constants. We expect

the influence of adding alternative-specific to the demand models to also make a

large difference in price and sales volume as did the brand coefficients. Beyond the

influence of the brand constants it would be interesting to explore the influence of a

firm’s portfolio on its own prices and sales volume.

The succeeding paragraphs discuss some of the shortcomings of the existing engi-

neering, cost, and demand models.

The engineering model is currently limited to a narrow range of design variable

and parameter values. One next step is to enhance the engineering model to accom-

modate vehicle designs over a range of vehicle classes and performance requirements.

The HEV performance model appears overly optimistic in terms of its combined fuel

economy and acceleration times compared to current vehicles on the market. The

optimism may come from the lack of a missing performance consideration or unre-

alistic engine properties. Another source for the very high attribute values in the

market simulations could be the hybrid cost model. The performance model could

be presenting the technology capabilities correctly, however, the electric machine and

battery costs could be lower than reality.

The costs for alternative technologies were introduced as incremental to the base

vehicle cost. This methodology appears to have worked as expected for the empirical

cost model case. However, for the equilibrium cost model case, the base vehicle

costs are clearly unrealistic. For the scenarios with homogeneous technologies such

as the conventional technology scenarios, the equilibrium cost model contributed to

market simulation outcomes with reasonable prices. However, in the cases with mixed

technologies, unexpected and unrealistic dynamics unfolded where (what are held as)

expensive technology vehicles were priced well below conventional vehicles.

The equilibrium cost model with its negative costs revealed failings in the multi-
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firm scenarios. The baseline GM vehicle had a negative cost. This meant that even

with the added HEV technology costs, GM was able to lower the price of the HEV

and capture a very large market share. The empirical model does not exhibit this

behavior because all costs were positive and equivalent across brands for equivalent

vehicle designs.

In order to consider a firm’s portfolio design decisions modifications must be made

to the cost structure. For example, the current cost models consider only variable

cost. However, the automotive industry is a capital intensive industry that requires

significant investment costs for each new vehicle line introduced. Additionally, savings

can be captured by sharing components and assembly facilities as a platform for

multiple vehicles. A cost model that took these factors into account may be more

likely to suggest an interior solution for vehicle size rather than seek to maximize

vehicle wheelbase and length. For example, the midsize crossover vehicles typically

have a midsize sedan counterpart. The common wheelbase of these vehicles allows

them to share many chassis components and a common assembly facility. Were the

cost model to account for the additional investment cost required to develop a new

vehicle platform, the optimal design decisions would reflect this cost.

The largest shortcomings for the demand models are the inaccuracy of baseline

market shares predictions and the resultant high profit margins in the market simu-

lations. As discussed previously, the most straightforward way to resolve these issues

is to estimate demand models that incorporate alternative-specific constants for each

vehicle alternative.

The power to weight ratios of the optimal vehicle designs appeared to be lower than

the power to weight ratios of the vehicles in the market. In general, the optimal vehicle

design improved fuel economy at the expense of power to weight ratio compared to

the baseline 2006 midsize crossover vehicles. This opens the question of whether

power to weight is really valued less than what is produced by the market, or if
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the demand model specification did not adequately capture the factors that most

influence consumer preferences.

The opposite behavior of the US fleet fuel consumption for the different demand

models shown in Figure 8.1 leads to the question of which model more accurately

reflects the real market. Further works should address how to test different demand

models and the respective market simulation outcomes.

8.7 Discussion of Public versus Private Tradeoff

Sections 8.2.3 and 8.3.3 present figures showing the relationship between various

measure of the public objective of reduced fuel consumption with the private objective

of firm profit. Depending on the demand model, the vehicle technology, and the level

of fuel consumption required, a reduction in fuel consumption of the designed vehicle

may lead to an increase or decrease in the total fuel consumption of the US fleet.

This statement is made assuming a fixed number of vehicles sold in a given year and

the average number of vehicle-miles-traveled per individual vehicle owner is the same

across all vehicle classes.

The maximum profit design for each corresponds to the maximum sales volume

case for each scenario. As fuel consumption is constrained to decrease, sales of the

designed vehicle decrease. Given a fixed number of new vehicles sold, the consumers

who leave the designed vehicle purchase some other vehicle. The vehicle they purchase

could have a fuel consumption rating greater or smaller than the designed vehicle.

The US fleet fuel consumption will increase if the substitute vehicle has higher fuel

consumption than the designed vehicle. US fleet fuel consumption will decrease if

the substitute vehicle has lower fuel consumption. Particularly, in the conventional

case in Figure 8.1, for the Model 2 scenarios, the US fleet fuel consumption goes up

when the fuel consumption of the designed vehicle increases. What this means is that

individuals are substituting to a higher fuel consumption vehicle on average. The
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opposite behavior is true for the Model 1 scenarios.

Therefore, the market simulation according to Model 2 indicates that having the

designed midsize crossover vehicle is helpful in reducing US fleet fuel consumption.

This is because the US fleet fuel consumption increases when the designed vehicle

sales are reduced. The results for the Model 1 scenario indicate that the US fleet fuel

consumption would decrease without the designed vehicle in the market, since US fleet

fuel consumption decreases with decreasing designed vehicle sales. The substitution

patterns for the two models must then be markedly different. This is a very interesting

result given that the two demand models appear to fit the data similarly well based

on the estimation fit and the demand model parameter coefficients significance.

There is a clear conflict between selling vehicles and reducing US fleet fuel con-

sumption if we assume that the average vehicle miles traveled is the same for each

new vehicle sold. According to some of the design scenarios, a firm could reduce

US fleet fuel consumption by redesigning its products to be more fuel efficient than

market expectations or by repricing—in both cases making less profit, but this is not

a sustainable way for the firm to operate. It is also not clear that such a strategy

could be used to the firms advantage in terms of PR value. In both cases, redesigning

cars for higher fuel efficiency or raising prices on high fuel consumption vehicles, they

would be saying, ”We want you to buy fewer of our cars so we use less gas.”

In any case, the market simulations appear to indicate that forcing a technology

beyond the market is a dangerous game. The Model 2 scenarios for the conventional

vehicle give no expectation of improvement of public objective in terms of US fleet

fuel consumption by improving fuel economy of a single midsize crossover. It would

be interesting to explore the impact of changing fuel consumption for vehicles in other

segments.

The GTDI and HEV technologies provide a different approach to the public ver-

sus private tradeoff problem. The advanced technologies allow increased performance.
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The market simulations indicate that the increased performance can be used to de-

crease fuel consumption in the case of the maximum profit designed vehicles. The

US fleet fuel consumption for the GTDI designed vehicle with Model 1 and the equi-

librium cost model is about 75.85e4 gallons per average-vehicle-mile-traveled. The

US fleet fuel consumption for the conventional designed vehicle with Model 1 and

the equilibrium cost model is about 76.06e4 gallons per average-vehicle-mile-traveled.

Introducing the GTDI vehicle reduces US fleet fuel consumption at a profit for the

firm.

Because the GTDI maximum profit vehicle has lower fuel consumption than the

conventional maximum profit vehicle, the effects on US fuel consumption of decreas-

ing the fuel consumption below the maximum profit design are more pronounced.

Examining Figure 8.2 shows that for Model 1, which showed monotonically decreas-

ing US fleet fuel consumption for the conventional case in Figure 8.1, there is a point

where US fleet fuel consumption will begin to increase.

The success of the technology strategy hinges on the cost per performance tradeoff

of the technology and the underlying consumer demand. If the consumer demand is

in the direction of increased performance rather than decreased fuel consumption, the

impact of the new technology on fuel consumption will be negligible.

8.8 Summary

This chapter presented a problem formulation for conducting market simulations

to examine the vehicle design decisions of profit maximizing firms. Four primary

design scenarios were explored, and the impact on the design scenario of changing

one of the modeling elements was examined. The results of the market simulation

are vehicle design variables, vehicle attributes, vehicle prices, sales volumes, firm

profits, and firm, segment, and US fleet fuel consumption. These outputs allow the

exploration of the tradeoff between firm profit and fuel consumption.
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The first scenario considered the design of a single midsize crossover vehicle using

conventional powertrain technology by a single designing firm. Market simulations

were run for changes in the demand model, the cost model, the designing firm, the

preference for fuel consumption, and the number of random coefficient draws per

individual in the simulated population. Vehicle designs for all scenarios were large

vehicles with marginal differences in powertrain variables, except for the BLP95 de-

mand model scenarios, which were small vehicles with high power to weight ratios

and high fuel consumption. Market outcomes such as vehicle price, sales volume, and

firm profit were more varied.

The second scenario considered the design of a single midsize crossover vehicle us-

ing GTDI powertrain technology by a single designing firm. Market simulations were

run for changes in the demand model, the cost model, and the designing firm. Vehicle

designs for all scenarios were large vehicles with marginal differences in powertrain

variables, except for the BLP95 demand model scenarios, which were small vehicles

with high power to weight ratios and high fuel consumption. Market outcomes such

as vehicle price, sales volume, and firm profit were more varied.

The fuel consumption rating for the GTDI vehicles were categorically higher than

the conventional vehicles. The effect of decreasing designed vehicle fuel consumption

below the maximum profit designed vehicle were mixed depending on the vehicle

technology and the demand model. Decreasing fuel consumption for the conventional

designed vehicle for the Model 2 demand model case actually increased US fleet fuel

consumption.

The third scenario considered the design of a single midsize crossover vehicle using

HEV powertrain technology by a single designing firm. Market simulations were run

for changes in the demand model, the cost model. Vehicle designs for all scenarios were

large vehicles with marginal differences in powertrain variables. The BLP95 demand

model scenarios had larger changes in powertrain variables. Market outcomes such
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as vehicle price, sales volume, and firm profit were more varied.

The fourth scenario considered the design of a three midsize crossover vehicles

by three designing firms. Market simulations were run for changes in the demand

model for the case where all designing firms designed conventional vehicles. Market

simulations were run for changes in the demand model and the cost model and the

technology of the designing firm for the case where the designing firms each designed

a vehicle with a different technology. Vehicle designs for all scenarios were large

vehicles with marginal differences in powertrain variables. Market outcomes such

as vehicle price, sales volume, and firm profit were more varied. Particularly, the

pricing strategy and the sales volume changed for the HEV designing firm between

the empirical and the equilibrium cost models.

In general, the market simulations pushed the vehicle designs to the largest pos-

sible size, the smallest gradeability, and the lowest top speed allowed for the midsize

crossover segment. The market outcomes of price, sales volume, and profit were much

more varied across the scenarios than the vehicle designs.

Improving fuel economy of vehicles beyond market equilibrium may be good for

PR, but it may not improve the sales-weighted average vehicle fuel consumption rating

because of lost sales and reduces the total fuel consumption attributable to the firm’s

new car sales mostly by reducing the firm’s sales. The action may or may not reduce

the fuel consumption of the US fleet given a fixed set of new car buyers.

Areas for improvement include reestimating demand models with alternative-

specific constants in order to match historical sales. This could make interpretation

with respect to the real market more reliable. Continued exploration of consumer

utility specification is desired to better capture consumer decision-making behavior.

For example, the vehicle designs were constrained to remain in within a pre-defined

class through towing and size constraints rather than through consumer preferences.

The equilibrium cost model can be reestimated with the new demand models in or-
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der to reach reasonable (nonnegative) costs for each vehicle. Fixed costs, investment

costs, and platforming costs should all be considered in defining the producer’s deci-

sion paradigm. The HEV design and cost model should be revisited for technical and

economic validity.
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CHAPTER IX

Conclusions

9.1 Summary

This dissertation establishes a methodology for evaluating automotive vehicle de-

sign according to private (firm profit) and public (fuel consumption) criteria. The

methodology set forth relies on previously-made developments from engineering, eco-

nomics, and marketing. New work in this dissertation includes the development

of several models that can be applied to other similar problems. Specifically, the

problem formulation integrates models of demand, cost, and product performance

in order to implement a game-theoritic formulation of producer behavior where pro-

ducers choose the attributes of the products they produce and the prices they will

charge in order to maximize profit (Chapter 6). Two variations of a newly estimated

mixed-logit discrete choice model of new car buyer purchase behavior are developed

for incorporation as demand models (Chapter 4). Three cost model formulations

are developed and compared in the context of the problem formulation (Chapter

5). An explicit representation of an automotive manufacturer’s technology capabil-

ity in the form of a comprehensive yet stylized engineering performance model of a

midsize crossover vehicle is developed (Chapter 3). A methodology for developing

and estimating mixed-logit choice models accessible to the design for market systems

researcher is documented (Chapter 4).
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Novel measures for analyzing and comparing Pareto sets are developed (Chapter

7). These measures can be applied to studying the public versus private tradeoff in

the automotive industry or another industry. The application of these measures was

demonstrated for a simple nonlinear programming example and a simplified vehicle

design problem.

Hypothetical scenarios were evaluated in order to test the vehicle design problem

formulation involving the design of a single vehicle within a price-equilibrium market

context and the design of multiple same-segment vehicles within a price-equilibrium

market context (Chapter 8). The results of the market simulation are vehicle design

variables; vehicle attributes; vehicle prices; sales volumes; firm profits; and firm,

segment, and US fleet fuel consumption. These outputs allow the exploration of the

tradeoff between firm profit and fuel consumption. Similar models using the same

structure could be set up for a different market rather than the automotive vehicle

market. Measures for the private and public objectives could be defined and the

tradeoffs explored.

The differences in scenario outcomes based on differences in the demand and cost

models were explored. The results show that improving the fuel economy of a specific

vehicle does not always lead to a reduction in US fleet fuel consumption. This is

due to substitution patterns where new car buyers substitute toward less fuel efficient

vehicles.

There are several improvements that could be made to enable the market sim-

ulation results to be useful at a practical level. We feel that to be useful for real

market insights, the market simulations need to predict baseline market shares that

start from the real market position and profits should be projected at reasonable

levels. This could be accomplished in large measure by including alternative-specific

constants for the vehicle alternatives in the choice model estimation. Finally, the

difficult underlying question remains that is how well do the models produce realistic
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behavior as the design scenario deviates from the current market. The proposal of

two different demand models that produce very different substitution patterns based

on the same market data as shown in this dissertation is a start at addressing this

question.

9.2 Contributions

The primary contribution of this dissertation is that disparate developments from

several academic fields have been brought together in a single mathematical problem

formulation for a large-scale product development problem. The integrated problem

formulation will allow study of interdisciplinary issues related to product development

in a new way. While ongoing work from other researchers has similarly begun to

develop comprehensive problem formulations, one aspect that is new for this problem

formulation is that the vehicle design problem is set in the context of full market

price equilibrium. This work also demonstrates some of the challenges that must be

addressed in such formulations. Specifically, comparing the empirical cost model to

the equilibrium cost model shows that the empirical cost model resulted in grossly

inflated prices for the given demand model. The equilibrium cost model produced

realistic price projections. However, due to the irregularities of the equilibrium cost

model the scenarios with that model produced nonintuitive pricing behavior for the

case of multiple firms designing different technologies. Scenarios with the empirical

cost model, while producing inflated prices, maintained economic intuition. Problems

with both cost models may be addressed by developing demand models that match

sales data.

The demand models illustrated two points. The first point is that without alternative-

specific constants used to match demand model projected sales to actual market

sales the market outcomes of the hypothetical scenarios can not be interpreted in

the context of the real market. This has been known in marketing for some time.
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However, it has become common practice in the design for market systems engineer-

ing community to adopt demand models from the literature without employing the

alternative-specific constants for those models. The second point is that changes in

the functional form of the utility specification can alter substitution patterns–and

thus market outcomes–significantly even when both models appear to fit the under-

lying data similarly well. We showed this by estimating and then employing a model

with preference monotonic in vehicle footprint and another model where preference

was quadratic in vehicle footprint. In other words individual consumers had an ideal

vehicle footprint. While the two differing models did not result in large changes in

the designed vehicles, the vehicle price, sales volume, and the overall market fuel

consumptions changed much. This result has important implications for the public

versus private tradeoff. In one model a certain policy pursued by a firm or public

entity could be expected to improve the public objective. However, according to a

competing model, the same action could be detrimental. A first clue for effects such

as these can be gleaned at the level of the demand model by studying the own- and

cross-elasticities for the product attributes in addition to price.

A second contribution of the dissertation is the application of the notion that we

can explore the tradeoff between private interests and public interests by simulating

market response under different hypothetical scenarios. We can then gain deeper

insights by examining the tradeoff relationships between the different scenarios. New

local and global measures were defined or reemphasized for application in comparing

results of market simulations. The local measures are defined around a single Pareto

point. The global measures are defined by the ideal points of each objective and the

shape of the Pareto set.

These contributions have extended engineers’ capability for developing and ap-

plying choice models to design problems by illustrating the impact of choice model

specification and the pitfalls of adopting “off-the-shelf” models.
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9.3 Future Work

9.3.1 Modeling Framework

Several next steps can be taken to improve the modeling framework. Future work

remains to expand the engineering design model to encompass a broader range of

vehicle sizes and performance requirements. This is an important piece to fully explore

the implications of the differing demand models because the most dramatic differences

in elasticities of demand with respect to vehicle footprint occur for the luxury models

and for specialty market segments such as the two-seaters or minicompacts and the

pickup trucks. The engineering model must be capable of predicting performance for

these vehicles.

There remains much to be learned about the relationship between the consumer

utility function and the optimal vehicle design result. Perhaps studying the colinearity

of attributes such as high fuel economy and small size can be fruitful in understanding

how to pose a utility specification that better captures purchase behavior in the

context of the vehicle design.

Also, future work should study the difference in optimization outcomes between

a model that was estimated without alternative-specific constants and one with

alternative-specific constants. We expect that a model estimated with alternative-

specific constants will overcome many of the difficulties with unrealistic share predic-

tions and inflated profit margins.

The number of variables and the number of products designed can be increased.

Perhaps homotopy techniques can be applied for solving for Pareto points in order

to reduce the computational burden of performing a full design optimization with

nested price equilibrium calculations.

More work can be done to explore cost models and their implications for design

optimization.
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Comparing demand model prediction on data from another year is also an obvious

next step.

An obvious omission from the modeling framework has been the consideration

of the Corporate Average Fuel Economy Standard (CAFE) enforced in the United

States. This modeling piece has been avoided on a practical level because it com-

plicates the equilibrium cost model estimation significantly. It also complicates the

solution to the price equilibrium game. Another practical reason for avoiding CAFE

is that it is difficult to prescribe its effects for a given model year. Several automakers

(primarily European manufacturers) do not comply with CAFE and prefer to pay a

penalty. US manufacturers have traditionally kept CAFE. However, there is a compli-

cated bookkeeping for CAFE that allows manufacturers to carry over CAFE penalties

in one year and then make them up in a succeeding year. Still, Japanese manufactur-

ers historically exceeded the CAFE standard because they produced mostly smaller

cars. All of this does not yield easily to a neat mathematical description.

The traditional effect ascribed to CAFE by the US automakers is that they must

lower their prices on their most fuel efficient models in order to sell more of these

vehicles or raise prices on their least fuel efficient vehicles in order to sell less. Re-

gardless of the producer decisions the demand model estimation should be unaffected.

Consumers observe vehicle attributes and prices and make purchase decisions with

no consequence from CAFE. In this sense the demand models developed here are

reflective of the US market under CAFE.

The missing piece is to have a cost model that reflects producers’ costs and then

enforce (some) producers to abide by CAFE standards in any hypothetical market

scenario. The empirical cost model could be adjusted for CAFE by adjusting the firm

margin with respect to the dealer margin for fuel efficient vehicles. In the equilibrium

cost case, new maximum profit conditions need to be defined and solved given the

CAFE constraint on some firms. Enforcing CAFE during the price equilibrium cal-
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culations is more problematic and requires further research into a numerical method

that can make this problem tractable.

9.3.2 Enhancing Choice Paradigm

There are several aspects of the choice paradigm implied by the current approach

that should be reconsidered. One topic would be to compare exploded-logit with

stated consideration as pseudo observations (what we did in this dissertation) vs.

single purchase observations with conditional choice sets based on the stated consid-

ered vehicles.

There may also be a computationally efficient approach to expanding the vehicle

alternatives in the choice set to allow many more covariates by conditioning the choice

set in a smart way. This is an important step in the vehicle design problem because

being able to identify a greater number of vehicle attributes that influence choice will

allow the vehicle design decision space to grow.

There are three additional directions related to demand modeling that are high-

lighted here for consideration in future work to improve the performance of demand

models for design optimization studies.

The first is to consider alternative utility specifications that represent fundamen-

tally different decision-making behaviors. A body of research continues to show that

models incorporating heuristic decision rules can perform as well or better than mod-

els based on compensatory trades in many decision-making scenarios[Hauser et al. (In

Review)]. The evaluation methods presented here can be used to test such alternative

functional forms for various behavioral hypotheses. Areas for exploration in design

research include models with dummy-coded attribute levels similar to [Michalek et al.

(2005)] that allow highly nonlinear attribute weightings; rigorous exploration of pref-

erence thresholds and cutoffs continuing the work of Wassenar [Wassenaar et al.

(2005)]; and in place of random coefficients, random functional forms or stratified
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functional forms of utility based on demographics or latent class analysis, which al-

low different individuals to think about the same choice differently.

The second is to explore modifications to the representation of the the consumer

choice paradigm. The choice paradigm employed in conventional econometric de-

mand models of the automotive industry coincides with that of consumers making

compensatory choices across the entire new-vehicle fleet when making a purchase de-

cision. Enforcing this paradigm presumes consumers consider all new-vehicle makes

and models at the time of purchase. Researchers have suggested that this paradigm is

unrealistic from a cognitive-ability perspective, and it excludes a multistage decision

process where a consumer’s decision rules change from one stage to the next. An

alternative two-stage decision process, where the consumer first identifies a subset

of all possible alternatives as the consideration set and then makes compensatory

trades between the attributes of the consideration set, has shown some promise in

the choice modeling literature [Hauser and Wernerfelt (1990); Horowitz and Louviere

(1995)]. Additionally, incorporating the Heckman selection process [Heckman (1979)]

to reconcile differences between an overall population and a sub-population of prod-

uct purchasers (as we had with the new-car buyer survey) may yield fruit in treating

the outside good as it relates to setting overall market demand.

The third area is to compare fundamental limits of aggregate and disaggregate

data as well as revealed and stated-choice data. Individual-choice level or disaggregate

data are difficult and costly to obtain. However, when available, analysts derive

significant benefit. The theme for this work could be to describe the best demand

modeling behavior for design optimization to be expected from an aggregate vs. a

disaggregate source, and similarly what is the best modeling behavior that can be

derived from revealed choice vs. stated choice data in the context of design.
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9.3.3 Cost Modeling Improvements

Cost modeling could be enhanced by expanding the firm’s perspective to include

annual fixed costs and investment costs. This is particularly important for the auto-

motive industry where products are capital intensive and product decisions are made

with a long lead time. It will be a challenge to develop cost model forms that allow

incorporation of more supply side information (e.g., economies of scale, investment

costs, etc.) and that can maintain compatibility with the existing market equilibrium

simulations.

We also lack cost models that can be related back to technology design decisions

(i.e., engineering variables), but do not require the extensive proprietary data sources

held by manufacturer’s. The empirical cost model was a first step to develop suitable

models with publicly available data. An extension would be to identify the best meth-

ods for estimating costs empirically and the best sources of non-OEM-proprietary

data.

We made assumptions about the relationships between dealer and OEM profits.

More work can be done to explore these assumptions.

9.3.4 Expand Application Domains

The integration of demand, cost, and design into a maximum-profit-firm-design-

decision can be applied beyond the automotive industry. Other transportation and

energy related domains to consider would be vehicle and grid integration, consumer

electricity consumption, and multi-mode transportation systems. Consumer products

and other durable goods are also an obvious extension.
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APPENDIX A

Technical Report

NOTE: The nomenclature in this appendix does not match the nomenclature

used throughout the document. Instead notation that largely matches the Matlab

code implementation of the model has been preserved.

An engineering model was developed to represent the technical performance of

the vehicle. It calculates the characteristics listed in Table A.1 using using AVL

Cruise software package [16] powertrain simulations, curve-fits from empirical data,

and analytical expressions. Design variables and other model parameters are listed

in Table A.2. The gear shifting program is also specified as shown in Figure A.1.

Vehicle characteristics other than powertrain performance char-

acteristics

Engine sizing

{VehicleCG.m}

The engine configuration, engine bore, bore to stroke ratio, and the number

of cylinders are used to calculate other size related engine characteristics. The
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Table A.1: Vehicle characteristics computed by engineering model

Veh. Char.
Input to
Demand
Model

Units Description

MPG B&M, BLP [mi/gal] fuel economy
Acc060 B&M, BLP [s] 0-60 mph time
Styl1 B&M [-] exterior proportions
Size BLP [in2] exterior size

Acc3050 - [s] 30-50 mph accel. time while towing
Grad65Tow - [%] max grade at 65 mph while towing
MaxSpeed - [mph] vehicle top speed

CV I - [ft3] cargo volume index behind 2nd row
A147 - [◦] ramp breakover angle
A107 - [◦] angle of departure
A106 - [◦] angle of approach

CGlong - [mm] center of gravity in long. direction
CGvert - [mm] center of gravity in vert. direction

V ehMass - [kg] vehicle curbweight
GVWR - [kg] gross vehicle weight rating

V ehM%front - [%] percent vehicle mass on front wheels
EngLength - [mm] estimated engine length
FrontArea - [m2] frontal area
CrushSpace - [mm] crush space-bumper to driver heel
MaxDecel - [m/s2] est. peak decel. in front crash test

MG1 (HEV) [kW] peak power electric machine 1
MG2 (HEV) [kW] peak power electric machine 2

Table A.2: Partial list of vehicle parameters
Veh. Char. Design Var. Units Description

EngBore X [mm] engine bore
EngBoretoStroke X [-] bore to stroke ratio

FinalDrive X [-] final drive ratio
L103 X [mm] exterior length
W105 X [mm] exterior width
H101 X [mm] exterior height
L101 X [mm] wheelbase
PGR X(HEV) [-] planetary gear ratio
BPow X(HEV) [kW] peak battery power

EngNofCyl - [-] number of engine cylinders
GearRatio - [-] gear ratios (1-6)

V ehGTankV ol - [l] gas tank volume
L104 - [mm] dist. f. bumper to f. axle

H103-1 - [mm] dist. f. bumper to f. axle
H103-2 - [mm] dist. f. bumper to f. axle
H156 - [mm] dist. f. bumper to f. axle

V ehLegRoom1 - [mm] driver legroom
V ehLegRoom2 - [mm] 2nd row legroom

V ehHeelPointX - [mm]
longitudinal location of driver heel
point

MidRailThick - [mm] mid-rail thickness
MidRailWidth - [mm] mid-rail width
V ehTurnRad - [mm] minimum turn radius
WheelDiam - [mm] wheel diameter

H108 - [mm] tire static rolling radius
CD - [-] vehicle drag coefficient

V ehSeatCap - [-] max seating capacity
PassWeight - [lbm] average weight of vehicle occupant
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EngDepth equation assumes that the engine is a 60◦ vee configuration and provides

an estimate for the depth of the engine at the engine base. The EngExpMass calcu-

lation comes from two linear regressions of engine data provided by Mike Anderson of

GM in a lecture slide from a guest lecture in AUTO 501, Fall 2006 (See Figure A.2).

The estimated length of the engines comes from summing the bore diameters, then

using a 10 mm cylinder offset for line, or 26 mm cylinder offset for vee engines1.

Additional length has been added to account for transmission package.

EngStroke [mm] = EngBore/EngBoretoStroke (A.1)

EngDisp [cc] = EngNofCyl × EngStroke/10× π(EngBore/2/10)2 (A.2)

EngDepth [mm] = 2EngBore cos (π/180× 30) + 50 (A.3)

EngExpMass [kg] = 2.2046(1− δEngV ee)
(

48.5
EngDisp

1000
+ 58

)
+2.2046δEngV ee

(
28.57

EngDisp

1000
+ 103.57)

)
(A.4)

EngLength [mm] = δEngV ee

(
EngNofCyl

2
(EngBore+ 10) + 16 + 25.4(3 + 6)

)
+(1− δEngV ee) (EngNofCyl(EngBore+ 10)− 10 + 25.4(3 + 6))

(A.5)

Powertrain width requirement

{VehicleCG.m}

The maximum tire steering angle and the lateral tire flop distance are used to

compute the powertrain width constraint. These values are a function of the mini-

mum vehicle turn radius and the tire radius. Inequality A.8 shows the constraint that

the powertrain and wheels must package within the overall vehicle width assuming

a transverse engine orientation following Figure A.32. The tire steering angle is the

1As per an example given from the Mike Anderson AUTO 501 slides
2Anderson, M., K, 2005, Powertrain Design and Integration, Lecture Slides, Automotive Engi-

neering 501, University of Michigan, guest lecture, Ann Arbor, MI, 7.
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ENGINE MASS AS A FUNCTION OF TECHNOLOGY AND MATERIALS
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ENGINE MASS AS A FRACTION OF VEHICLE MASS
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TRANSMISSION MASS AS A FRACTION OF VEHICLE MASS
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Figure A.2:
Engine mass as a function of configuration and displacement. Figures
and linear regressions of engine data provided by Mike Anderson of GM
in a lecture slide from a guest lecture in AUTO 501, Fall 2006

maximum steering angle of inside wheel required to achieve a given vehicle turning ra-

dius3. The tire flop is a distance in the vehicle width (transverse) dimension assumed

to be width needed for minimum turn radius + 1.5 inches.

TireSteerA [-] = arctan (L101/(V ehTurnRad−W101/2)) (A.6)

TireF lop [mm] = TireDynRollRad sinTireSteerA

+
8(25.4)

2
cosTireSteerA+ 1.5(25.4) (A.7)

W105− 254 ≥ 2TireF lop+ 2MidRailWidth

+EngLength+ 50.8 (A.8)

3This equation came from from Dr. Thomas Gillespie guest lecture slides in AUTO 501, Fall
2006
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CHARACTERISITICS

• Engine Orientation
(1) Transverse
(2) Longitudinal

• Engine Location
(1) Front-Engine
(2) Mid-Engine
(3) Rear-Engine

• Drivetrain Arrangement
(1) Two-Wheel Drive (2WD)

(a) Front-Wheel Drive (FWD)
(b) Rear-Wheel Drive (RWD)

(2) Four-Wheel Drive (4WD) or 
All-Wheel Drive (AWD)

(a) Part-Time Systems
(i)  Engaged Automatically 

Upon Demand
(ii) Engaged Manually by 

Operator
(b) Full-Time Systems

POWERTRAIN AND DRIVELINE CONFIGURATIONS

COMMON AUTOMOTIVE

ARRANGEMENTS

• Most Vehicles Are Front-Engine

• Small and Midsize Cars

! Transverse Front-Wheel 

Drive (TFWD)

! Optional On-Demand All-

Wheel Drive (TAWD)

• Luxury Cars, Trucks, and SUVs

! Longitudinal Rear-Wheel 

Drive (LRWD)

! Optional On-Demand or 

Full-Time All-Wheel Drive 

(LAWD)

• Some Large Cars

(Acura RL and Chrysler LH)

! Longitudinal Front-Wheel 

Drive (LFWD)
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TFWD VEHICLE SIDE VIEW PACKAGING
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TFWD VEHICLE PLAN VIEW PACKAGING
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CLEARANCES

Thermal Clearance

• 40 mm clearance is generally 

required between thermally 

sensitive components and exhaust 

manifolds or catalytic converters

! 25 mm clearance to a thin heat 

shield with a 15 mm air gap 

less the material thickness

Load Clearance

• 10 mm - 15 mm for manually 

loaded components

• 20 mm - 25 mm for automatically 

loaded components

Dynamic Clearance

• 10 mm between 

components when the 

powertrain moves and/or 

the suspension travels to 

full jounce or rebound due 

to:

! shipping loads 

! maximum acceleration, 

braking, or cornering

! driving over a pothole 

at high speed 

! rocking vehicle free of 

mud or snow

Figure A.3:
Powertrain packaging in vehicle width dimension. Figures provided by
Mike Anderson of GM in a lecture slide from a guest lecture in AUTO
501, Fall 2006

Other dimension conversions

{VehicleCG.m}

Three other dimension conversions are required for computing other vehicle char-

acteristics or for input into the AVL Cruise powertrain simulations. They are the

trackwidth W101, the vehicle frontal area V ehFrontArea, and the distance from the

234



front axle to the trailer hitch V ehHitchtoFAxle.

W101 [mm] = W105− 10× 25.4 (A.9)

V ehFrontArea [m2] =
W105

1000

H101

1000
− H156

1000

W101

1000
(A.10)

V ehHitchtoFAxle [mm] = L103 + 4× 25.4− L104 (A.11)

Vehicle mass properties

{VehicleCG.m}

NOTE: Throughout the Vehicle mass properties section all vehicle dimensions are

assumed to be given in inches unless otherwise stated, and all masses are assumed

to be given in pounds-mass. This is different than the rest of the report where the

default specifications are millimeters and kilograms.

Vehicle mass properties consist of the vehicle curbweight and gross vehicle weight

rating, the distribution of mass among vehicle subsystems, the spatial distribution

of mass throughout the vehicle, and the wheel assembly inertia. Derivation of each

property is given below.

Curbweight and GVWR

{VehicleCG.m}

A regression was fit (R2:0.92) to estimate curbweight for each light-duty truck

vehicle class using data for 2005 light-duty trucks from Ward’s automotive yearbook

[24]. Each of the 8 class was fit with one of three different forms of the regression

equation. Here, δFWD, δAWD, δ4WD, δRWD are dummy variables {0,1} for driveline

configuration; δCargo is a dummy variable for specifying cargo van vs. passenger van;

δTCrew, δTExtended, δTRegular are dummy variables for pickup cab configuration. The
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regression for the CUV class is a function of shadow area V ehPArea and engine

displacement. The regression for the LxSUV class which includes all sizes of luxury

SUVs and CUVs is a function of exterior box volume V ehPV ol and engine displace-

ment. The regressions for the remaining classes are functions of exterior box volume

and EngExpMass.

Table A.3 indicates the equation used for each class and the R2 value for each fit.

Table A.4 lists the coefficient values for the vehicle mass equations for each class.

V ehMass1 = C1

(
V ehPArea

100

)2

+ C2V ehPArea+ C3(1− δEngDiesel)
EngDisp

10

+C4δEngDiesel
EngDisp

10
+ C5δFWD + C6δAWD + C7δ4WD + C8δRWD

+C9δCargo + C10δTCrew + C11δTExtended + C12δTRegular + C13 (A.12)

V ehPArea =
L103

12
× W105

12
(A.13)

V ehMass2 = C1

(
V ehPV ol

100

)2

+ C2V ehPV ol + C3(1− δEngDiesel)EngExpMass

+C4δEngDiesel
EngDisp

10
+ C5δFWD + C6δAWD + C7δ4WD + C8δRWD

+C9δCargo + C10δTCrew + C11δTExtended + C12δTRegular + C13 (A.14)

V ehPV ol =
L103

12
× W105

12
× H101

12
(A.15)

V ehMass3 = C1

(
V ehPV ol

100

)2

+ C2V ehPV ol + C3(1− δEngDiesel)
EngDisp

10

+C4δEngDiesel
EngDisp

10
+ C5δFWD + C6δAWD + C7δ4WD + C8δRWD

+C9δCargo + C10δTCrew + C11δTExtended + C12δTRegular + C13 (A.16)

Gross vehicle weight rating (GVWR) is the total loaded weight of the vehicle in-

cluding the vehicle, occupants, and other payload that should not be exceeded during

operation of the vehicle. While this value is not critical to the vehicle simulations, is

a recognized vehicle specification. It serves as a check on the vehicle design to ensure

that the expected GVWR is sufficient for the expected vehicle capacity. GVWR is

estimated based on class average payload percentages of the GVWR. Table A.5 lists,

and Figure A.4 shows graphically, the average fraction of the GVWR that is allo-
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Table A.3: Vehicle curbweight regression equation by vehicle class
Class Eqn. R2 Sample

CUV 1 0.92 98
Lpkup 2 0.84 395
LSUV 2 0.94 78
LVAN 2 0.80 56

MSUV 2 0.90 127
Spkup 2 0.70 87
SVAN 2 0.56 70

LxSUV 3 0.83 68
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Figure A.4: Payload percent of GVWR by vehicle class and driveline

cated to payload (i.e., passengers and cargo) in terms of vehicle class and driveline

configuration.

GVWR is then assigned to a vehicle based on the following equation.

GVWR = V ehMass/(1− V ehPayload%) (A.17)

Payload capacity is determined by taking the difference of GVWR and V ehMass.

Minimum cargo capacity by mass is the difference between the payload capacity and
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the average fully occupied passenger weight.

V ehPayloadMass = GVWR− V ehMass (A.18)

V ehCargoFullMass = V ehPayloadMass− V ehSeatCap× 150 lbm

(A.19)

Mass breakdown

{VehicleCG.m}

Vehicle mass is distributed between the several vehicle subsystems using estimated

vehicle mass, GVWR, and estimated engine mass, and a baseline mass distribution4

(See Figure A.5). Powetrain mass is estimated and taken from the total vehicle mass,

then the remaining mass is divided between the remaining subsystems preserving the

same relative ratios as the parition given in Figure A.5. Figure A.6 shows an example

applied to the CUV segment. V ehMass, EngExpMass, and GVWR to estimate the

remaining mass of the vehicle. Powertrain mass for FWD vehicles excluding engine

is assumed to be 5% of vehicle curbweight5. Powertrain mass in Figure A.5 is 14%

and payload is 33% of GVWR, leaving 53% remaining. Payload mass was 25.2%,

and powertrain mass was 0.05 × V ehMass + EngExpMass(≈ 11.4%V ehMass) =

16.4%/(100− 25.2%) = 12.3% of GVWR in the crossover example. The mass of each

4Baseline mass distribution comes from a slide presented in AUTO 501 by guest lecturer Dr. Don
Malen. He proposed the distribution as“typical of a body-frame integral mid-size vehicle”

5Anderson, M., K, 2005, Powertrain Design and Integration, Lecture Slides, Automotive Engi-
neering 501, University of Michigan, guest lecture, Ann Arbor, MI, 25-64.
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Vehicle Mass by Subsystem
Typical Mid-size Body-Frame Integral Vehicle
from Auto. Engin. 501 Fall 2006, Don Malen

Payload
33%

Powertrain
14%

Body
13%

Suspension
10%

Trim
19%

Wheels and 
tires
5%

Bumpers
1%

Fuel & Exhaust
3%

Electrical
2%

Figure A.5: Mass breakdown by vehicle subsystem

subsystem given as a percentage of the remaining mass is then

Msubsystem% =
Msubsytembase%

100−Mpayloadbase%−Mpwtrnbase%

×(100−Mpayload%−Mpwtrn%) (A.20)

Mpwtrn% = MEngExpMass% +MDriveline% (A.21)

The subsystem mass percent breakdown as a percentage of GVWR (as shown in the

pie chart on the right in Figure A.6) is then electrical, 2%; body, 15%; suspension,

12%; trim, 22%; wheels, 6%; fuel and exhaust 4%; bumpers, 1%. The vehicle mass

is broken down further for some subsystems. V ehGasTMass is found from the fuel

and exhaust subsystem by

V ehGasTMass = V ehGasTV ol × V ehGasDens (A.22)
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Assumed Mid-size Crossover Vehicle 

Mass Distribution

Payload
26%

Powertrain
12%

Body
15%

Suspension
12%

Trim
22%

Wheels
6%

Other
63%

Bumpers
1% Fuel & Exhaust

4%

Electrical
2%

Figure A.6: Mass breakdown by vehicle subsystem for mid-size crossover

The remaining fuel and exhaust mass is assigned to the exhaust system

ExhaustMass = Mfuel&exhaust%− V ehGasTMass (A.23)

Wheel mass is 1/4 of the wheels subsystem and includes tire and wheel assembly.

WheelMass = MWheels%× V ehMass/4 (A.24)

We assume 20% of driveline mass is located at each axle. and that the remaining
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driveline mass is concentrated in the transmission box.

V ehFrontAxleMass = 0.2× 0.05× V ehMass (A.25)

V ehRearAxleMass = 0.2× 0.05× V ehMass (A.26)

TranMass = MDriveline%× V ehMass

−V ehFrontAxleMass− V ehRearAxleMass

(A.27)

Mass distribution

{VehicleCG.m}

The model estimates the longitudinal and vertical position of the vehicle center of

mass as measured from the ground plane and the frontmost point on a base equipped

model. The relationships developed here are derived by estimating mass allocations as

described in the previous section and the spatial distribution of this mass as described

in this section. Vehicle occupancy, passenger weight, driver and second row legroom,

and other vehicle dimensions are inputs.

One purpose of establishing center of mass position is to populate the center of

gravity table for the AVL Cruise software powertrain simulations. AVL Cruise in-

terpolates between the table values to find the values for the test specified vehicle

loads. Distributed or point loads, as appropriate, were postulated for each subsystem

mass (See Figures A.7 and A.8). Locations of passenger and cargo masses were in-

corporated for different loading conditions by considering legroom and overall vehicle

length. Three load cases (i.e., curbweight-no occupants; ≈half occupants-half cargo;

GVWR-full occupants-full cargo) are used to the center of mass positions and hitch

heights for each table entry. A sprung mass vertical deflection of 2 inches is assumed

between curbweight and GVWR. The relative percent weight on each axle is also
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Figure A.7: Sketch of vertical mass distribution

computed. The height from the ground to the top of the wheel (excluding tire), and

the height from ground to the top of the tire are give as follows.

V ehTopofWheel = H108 + 1/2V ehWheelDiam (A.28)

V ehTopofT ire = H108 + TireDynRollRad (A.29)

Legroom dimensions as specified on vehicle comparison websites are 10 inches greater

than corresponding SAE dimensions [SAE International (2005)]

L34 = V ehLegRoom1− 10 (A.30)

L51-2 = V ehLegRoom2− 10 (A.31)

L51-3 = V ehLegRoom3− 10 (A.32)

The distance from the ground H5, and the distance from the cabin floor H30 to the

seating guide reference points (SgRP or H-point) are defined as follows, where the -#
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Figure A.8: Sketch of longitudinal mass distribution

corresponds to row number.

H5-1 = H156 + 18 (A.33)

H5-2 = H5-1 + 2 (A.34)

H5-3 = H5-2 + 1 (A.35)

H30 = H5-1−H156− 5 (A.36)

The vertical position of the engine, transmission, front and rear suspension, and

additional transmission mass (e.g., associated with AWD or 4 WD vehicles), gas tank,

front and rear axles, height at the front of the hood, height at the cowl point, cargo
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load floor, front and rear bumper, and exhaust plumbing are assumed as follows.

EngY = V ehTopofT ire (A.37)

TranY = H103-1 + 8 (A.38)

SuspensionFrontY = V ehTopofWheel (A.39)

SuspensionRearY = V ehTopofWheel (A.40)

ExtraTranMassY = V ehTopofWheel (A.41)

V ehGasTY = V ehTopofT ire (A.42)

V ehFrontAxleY = H108 (A.43)

V ehRearAxleY = H108 (A.44)

V ehHoodHeight = 0.6H101 (A.45)

V ehCowlHeight = 0.7H101 (A.46)

V ehCargoY = H195 + 1/3(H101−H195) (A.47)

V ehBumperHeightFront = H103-1 + 6 (A.48)

V ehBumperHeightRear = H103-2 + 6 (A.49)

V ehExhaustY = H156 + 4 (A.50)

The longitudinal position of the engine, transmission, passengers on rows 1-3, rear
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axle, gas tank, cargo load floor behind row 2 and row 3 are assumed as follows.

EngX = 1/2V ehHeelPointX (A.51)

TranX = EngX + 10 (A.52)

V eh1RX = V ehHeelPointX − 81
25.4

cosA47 +
107
25.4

cos (90−A47)

+

√
L342 −

(
H30−

(
81

25.4
sinA47 +

107
25.4

sin (90−A47)
))2

(A.53)

V eh2RX = V eh1RX +
76

25.4
+

306− 81
25.4

+

√
V ehLegRoom22 −

(
H5-2−H156− 5− 107

25.4

)2

(A.54)

V eh3RX = V eh2RX +
76

25.4
+

306− 81
25.4

+

√
V ehLegRoom32 −

(
H5-3−H156− 5− 107

25.4

)2

(A.55)

V ehRearAxleX = L104 + L101 (A.56)

V ehGasTX = V ehRearAxleX + V ehWheelDiam/2 (A.57)

V ehCargoX2 = V eh2RX + 10 + 1/2(L103− (V eh2RX + 10)) (A.58)

V ehCargoX3 = V eh3RX + 10 + 1/2(L103− (V eh3RX + 10)) (A.59)

Several subsystems are treated as distributed loads including body, exhaust, trim,
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and electric. The vertical distributed loads are described as follows.

WBodyUnderHood = (BodyMass× V ehHeelPointX/L103)

/(V ehCowlHeight+ V ehHoodHeight(1− a)−H103− 1

+(a− 1)/(V ehCowlHeight− V ehHoodHeight)

(V ehCowlHeight2/2− V ehHoodHeight2/2)) (A.60)

bBodyUnderHood = WBodyUnderHood

(
1− V ehHoodHeight(a− 1)

V ehCowlHeight− V ehHoodHeight
)
(A.61)

WElectUnderHood = (0.66ElectMass)/(V ehCowlHeight−H103− 1) (A.62)

WTrim = TrimMass/(H101 + V ehCowlHeight(1− a)−H156

+(a− 1)/(H101− V ehCowlHeight)

×(H1012/2− V ehCowlHeight2/2)) (A.63)

bTrim = WTrim

(
1− V ehCowlHeight(a− 1)

H101− V ehCowlHeight
)

(A.64)

WBodyPostHeel = (L103− V ehHeelPointX)/L103BodyMass

/(H101 + V ehCowlHeight(1− a)−H156 + (a− 1)

/(H101− V ehCowlHeight)(H1012/2− V ehCowlHeight2/2))

(A.65)

bBodyPostHeel = WBodyPostHeel

(
1− V ehCowlHeight(a− 1)

H101− V ehCowlHeight
)

(A.66)

WElectPostHeel = (0.34ElectMass)/(H101−H156) (A.67)

The next step is to compute the mass weighted vertical center of mass locations for

each distributed load as follows, where a = 0.25 is a coefficient splitting trim and
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body weight in the vertical direction between above and below cowl point.

V GBodyUnderHood = WBodyUnderHood(1/2(V ehHoodHeight2 −H103-12)

+
a− 1

V ehCowlHeight− V ehHoodHeight
×(V ehCowlHeight3/3− V ehHoodHeight3/3))

+bBodyUnderHood/2(V ehCowlHeight2 − V ehHoodHeight2)

(A.68)

V CGElectUnderHood = WElectUnderHood(V ehCowlHeight2/2−H103− 12/2) (A.69)

V CGTrim = WTrim(1/2(V ehCowlHeight2 −H1562)

+
a− 1

(H101− V ehCowlHeight (H1013/3− V ehCowlHeight3/3))

+bTrim/2(H1012 − V ehCowlHeight2) (A.70)

V CGBodyPostHeel = WBodyPostHeel(1/2(V ehCowlHeight2 −H1562)

+
a− 1

H101− V ehCowlHeight (H1013/3− V ehCowlHeight3/3))

+bBodyPostHeel/2(H1012 − V ehCowlHeight2) (A.71)

V CGElectPostHeel = WElectPostHeel(H1012/2−H1562/2) (A.72)

The longitudinal distributed loads are described as follows.

WBody = BodyMass/L103 (A.73)

WExhaust = ExhaustMass/(L103− EngX) (A.74)

WTrimL = TrimMass/((V eh2RX − V ehHeelPointX)

+(L103− V eh2RX)) (A.75)

WElectUnderHoodL = 0.66ElectMass/V ehHeelPointX (A.76)

WElectPostHeelL = 0.34ElectMass/(L103− V ehHeelPointX)

The mass weighted longitudinal center of mass locations for each distributed load

are as follows, where b = 0.25 is a coefficient splitting trim weight between seat area
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and cargo area.

LCGBody = WBody(L1032/2) (A.77)

LCGExhaust = WExhaust(L1032/2− EngX2/2) (A.78)

LCGTrim = WTrimL(V eh2RX2/2− V ehHeelPointX2/2)

+b×WTrimL(L1032/2− V eh2RX2/2) (A.79)

LCGElectUnderHood = WElectUnderHoodL(V ehHeelPointX2/2) (A.80)

LCGElectPostHeel = WElectPostHeelL(L1032/2− V ehHeelPointX2/2)

The vertical position of the center of mass is found by summing the mass weighted

point and distributed loads and then dividing by the total mass of the system accord-

ing to the following expression.

CGvert = (EngY × EngExpMass+H5-1× PassWeight(δpass1 + δpass2)

+H5-2× PassWeight(δpass3 + δpass4 + δpass5)

+H5-3× PassWeight(δpass6 + δpass7 + δpass8 + δpass9)

+V ehGasTY × V ehGasTMass

+V ehFrontAxleY (2WheelMass+ V ehFrontAxleMass)

+V ehRearAxleY (2WheelMass+ V ehRearAxleMass)

+V ehCargoY × V ehCargoMass+ SuspenMass/2(SuspensionFrontY )

+SuspenMass/2(SuspensionRearY )

+ExtraTranMass× ExtraTranMassY + TranMass× TranY

+(ExhaustMass)× V ehExhaustY

+(0.5BumperMass)V ehBumperHeightFront

+(0.5BumperMass)V ehBumperHeightRear

+V ertCGBodyUnderHood+ V ertCGElectUnderHood+ V ertCGTrim

+V ertCGBodyPostHeel + V ertCGElectPostHeel)

/(V ehMass+ [PassWeight]pass + V ehCargoMass) (A.81)
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The longitudinal position of the center of mass is found by the following expression.

CGlong = (EngX × EngExpMass+ V eh1RX × PassWeight(δpass1 + δpass2)

+V eh2RX × PassWeight(δpass3 + δpass4 + δpass5)

+V eh3RX × PassWeight(δpass6 + δpass7 + δpass8 + δpass9)

+V ehGasTX × V ehGasTMass

+L104(2WheelMass+ V ehFrontAxleMass)

+V ehRearAxleX(2WheelMass+ V ehRearAxleMass)

+V ehCargoX × V ehCargoMass+ LongCGBody + LongCGExhaust

+LongCGTrimL+ LongCGElectUnderHoodL+ LongCGElectPostHeelL

+SuspenMass/2(L104) + SuspenMass/2(V ehRearAxleX)

+ExtraTranMass/2(L104) + ExtraTranMass/2(V ehRearAxleX)

+TranX × TranMass

+BumperMass/2(V ehBumperDepth/2)

+BumperMass/2(L103− V ehBumperDepth/2))

/(V ehMass+ [PassWeight]pass + V ehCargoMass) (A.82)

The relative mass split between the front and rear wheels can be found by solving

for the reaction forces at the wheels.

R2 = V ehMass(V ehLongCG− L104)/L101 (A.83)

R1 = V ehMass−R2 (A.84)

V ehM%Front = 100R1/V ehMass (A.85)

V ehM%Rear = 100R2/V ehMass (A.86)
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Wheel assembly inertia

{VehicleCG.m}

Wheel assembly inertia is an input to the AVL Cruise powertrain simulations.

This quantity is estimated by approximating the tire and the wheel as a ring and a

wheel respectively with mass evenly distributed throughout.

RubberInertia = TireMass

(
TireDynRollRad

1000

)2

×(1−
T ireDynRollRad

1000
− 25.4V ehWheelDiam

2×1000
T ireDynRollRad

1000

+
1

2
(
T ireDynRollRad

1000
− 25.4V ehWheelDiam

2×1000
T ireDynRollRad

1000

)2) (A.87)

RimInertia =
WheelMass− TireMass

2

(
25.4V ehWheelDiam

2× 1000

)2

(A.88)

WheelInertia = RubberInertia+RimInertia (A.89)

Angle of approach, departure, and ramp breakover

{VehicleCG.m}

SAE standard SAE J689 [SAE International (2005)] specifies minimum angles and

curb clearances evaluated at the manufacturer’s most severe design load, which we

take to be GVWR. Flexible bumper components should also be considered. Table A.6

lists the standards. Curbstone clearance height is measured behind the back wheels

and in front of the front wheels. The dimensions H103-1, H103-2 are chosen in our

model to represent curbstone clearance height. These SAE dimensions are specifically

assigned to the height between the ground and the front and rear fascia respectively,

but in application may not necessarily represent the shortest clearance height. Fig-
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Table A.6:
SAE J689 [SAE International (2005)] minimum standards for road clear-
ance vehicle geometry

SAE
Dim.

Standard Description

A106 16◦ Angle of approach
A107 13◦ Angle of departure
A147 12◦ Ramp breakover angle

H103-1 203mm Front curbstone clearance height
H103-2 203mm Rear curbstone clearance height

SAE J1100 Revised JUL2002

-45-

FIGURE 17—SIDE VIEW

FIGURE 18—SIDE VIEW

Figure A.9:
Vehicle side view from SAE J1100. Figure from [SAE International
(2005)]

ures A.9 & A.10 come from SAE J1100 and label dimensions used to evaluate SAE

J689 in our model.

The longitudinal distance measured from the front axle to the lowest point (ground

clearance) between the wheels. Although the ground clearance point is typically

biased towards the front axle, at present we assume it is located midway between

axles. L105 is the distance from the rear axle to the end of the back bumper.
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SAE J1100 Revised JUL2002

-49-

FIGURE 25—SIDE VIEW OF CHASSIS

FIGURE 26—REAR VIEW OF SIDE WINDOW SHOWING TUMBLEHOME

Figure A.10:
Chassis side view from SAE J1100. Figure from [SAE International
(2005)]

l2 = 1/2× L101 (A.90)

L105 = L103− L104− L101 (A.91)

Angle of approach

Required inputs for angle of approach calculation are the front ground clearance

height H103-1, the static loaded tire radius H108, the front overhang distance L104,

and the unloaded tire radius TireDynRollRad.

L104′ =
√
L1042 + (H108−H103-1)2 (A.92)

θ′8 = arccos (TireDynRollRad/L104′) (A.93)

θ7 = arcsin ((H108−H103-1)/L104′) (A.94)

θ0a = 90− θ7 − θ′8 (A.95)

L104bit = TireDynRollRad sin θ0a (A.96)

L104part = L104− L104bit (A.97)

L104′fa =

√
L104′2 − TireDynRollRad2 (A.98)

A106 = arccos (L104part/L104′fa) (A.99)
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Angle of departure

Required inputs for angle of departure calculation are rear ground clearance

H103-2, static loaded tire radius H108, distance from rear of vehicle to rear wheel

axle L105, and the unloaded tire radius TireDynRollRad.

L105′ =
√
L1052 + (H108−H103-2)2 (A.100)

if(
TireDynRollRad

L105′
> 1)

A107 = 90 (A.101)

else

θ′10 = arccos (TireDynRollRad/L105′) (A.102)

θ9 = arcsin ((H108−H103-2)/L105′) (A.103)

θ0d = 90− θ9 − θ′10 (A.104)

L105bit = TireDynRollRad sin θ0d (A.105)

L105part = L105− L105bit (A.106)

L105′rd =

√
L105′2 − TireDynRollRad2 (A.107)

A107 = arccos (L105part/L105′rd) (A.108)

Ramp breakover angle

Required inputs for ramp breakover anlge are ground clearance H156-3, static

loaded wheel radius H108, longitudinal distance from ground clearance to front wheel

axlel2, wheelbase L101, and the unloaded tire radius TireDynRollRad.
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l′2 =
√

(l22 + (H108−H156)2) (A.109)

θ′5 = arccos (TireDynRollRad/l′2) (A.110)

θ4 = arcsin ((H108−H156)/l′2) (A.111)

θ0 = 90− θ4 − θ′5 (A.112)

l2bit = TireDynRollRad sin θ0 (A.113)

l2part = l2 − l2bit (A.114)

l′2fb =

√
l′2

2 − TireDynRollRad2 (A.115)

θ6 = arcsin (l2part/l
′
2fb) (A.116)

l1 = L101− l2 (A.117)

l′1 =
√
l21 + (H108−H156)2 (A.118)

θ′2 = arccos (TireDynRollRad/l′1) (A.119)

θ1 = arccos ((H108−H156)/l′1) (A.120)

θ0r = 90− θ1 − θ′2 (A.121)

l1bit = TireDynRollRad sin θ0r (A.122)

l1part = l1 − l1bit (A.123)

l′1rb =

√
l′1

2 − TireDynRollRad2 (A.124)

θ3 = arcsin (l1part/l
′
1rb) (A.125)

A147 = 180− θ6 − θ3 (A.126)

Rollover

{Rollover.m}
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The NCAP rollover rating system6 was used to model a vehicles propensity for

rollover. The predicted ratings in the model rely on the static stability factor SSF

alone (i.e., no j-hook simulations have been developed). The star rating is a function of

a vehicle’s static stability factor according to the relationship plotted in Figure A.11.

The static stability factor is estimated as follows. A polynomial regression was fit

to approximate the relationship between rollover probability and static stability fac-

tor shown in Figure A.11. The verticle vehicle center of mass position used in the

calculations is for a fully loaded vehicle.

SSF =
W101× V ehHeighCG

2
(A.127)

RolloverScore = 16.094SSF 4 − 86.233SSF 3 + 173.3SSF 2

−155.14SSF + 52.444 (A.128)

RolloverStar = 5− floor(10×RolloverScore) (A.129)

Cargo Volume

{CargoVolume.m}

Cargo volume calculations follow SAE J1100 [SAE International (2005)]. This

standard includes 11 different formulas for computing a cargo volume index depend-

ing on the classification of the vehicle being measured. The pattern for the cargo

volume calculations is to take the product of a representative length, width, and

height. The various formulations are labeled in Table A.7 The formula included in

the model at this point is V-10 CVI-2 (station wagon CVI-maximum behind second

6NHTSA, “SaferCar.Gov Rollover - FAQs,” http://www.safercar.gov, 2008(2/4/2008)
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y = 16.094x4 - 86.233x3 + 173.3x2 - 155.14x + 52.444

R2 = 0.999

Figure A.11:
NCAP rollover crash ratings as a function of static stability factor. Fig-
ure from www.safercar.gov

Table A.7: SAE J1100 cargo volume index formulations [SAE International (2005)]
Index label Calculation Description

V1
Total volume of the individual pieces of
luggage plus H-boxes that can be stowed

This measure applies to hatchback and
stations wagons if they are partitioned
to secure hidden cargo

V2 (L204-1)×W3-2×H201 Station Wagon CVI-Maximum estimate

V3 L208-1+L209-1
2

×W3-2×H197-1 Hatchback CVI-Maximum estimate

V4
measured the same as V1 for any hid-
den cargo area below the load floor, the
rear of the front seat

This measure applies to hatchback and
stations wagons if they are partitioned
to secure hidden cargo

V5 L506×W500×H503 Open truck and MPV CVI-Maximum

V6 L202-1+L204-1
2

×W3-2 +W2012× H201+H505
2

Enclosed truck and MPV CVI - maximum
behind front seat

V7 L202-2+L204−2
2

× W3−3+W201
2

× H201+H505
2

Enclosed truck and MPV CVI - maximum
behind second seat

V9 L202-3+L204-3
2

× W3-3+W201
2

×H201 Enclosed truck and MPV - Maximum be-
hind third seat

V10 L204-2× W3-2+W201
2

×H201 Station wagon CVI-maximum behind sec-
ond seat

V11 L208-2+L209-2
2

×W3-2×H197-2 Hatchback cargo volume-maximum behind
second seat
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seat). Assuming the width of the interior between wheelhouse trim panel is the track

width - 20 inches:

W201 = W101− 20× 25.4 (A.130)

Assuming the interior width at the second row is ≈ track width:

W3-2 = W101 (A.131)

Assuming the interior width at third row is ≈ track width - 5 inches:

W3-3 = W101− 5× 25.4 (A.132)

Assuming cargo length from rearmost part of row 2 is Veh2RX-23 inches due to 15

inches to back of the seat and the seat recline angle, and 8 inches from rear bumper

and door:

L204-2 = L103− (V eh2RX − (15 + 8))25.4 (A.133)

Assuming cargo length from rearmost part of row 3 is Veh3RX-20 inches due to 12

inches from seat recline and 8 inches from rear bumper and door:

L204-3 = L103− (V eh3RX − (12 + 8))25.4 (A.134)

Assuming cargo load floor is at the same height as the top of the tire and there is a

3 inch thick headliner + roof hardware:

H201 = H101− (3 + V ehTopofT ire)25.4 (A.135)
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V-10: station wagon CVI-maximum behind second row seat:

CV I − 2m m3 =
L204-2× W3-2+W201

2
×H201

10003

CV I − 2 ft3 = CV I − 2m×
(

100

2.54× 12

)3

(A.136)

NOTE: The NCAP rollover star ratings, axle weight distributions (Equation A.85),

and cargo volume index CV I for several vehicles compared favorably with those pre-

dicted by the model giving confidence in the approach. However, the model consis-

tently underestimated both CV I and RolloverScore as compared to sampled midsize

crossovers. Cargo volume and rollover constraints were relaxed (g4(minCV I) from 32

ft3 to 29 ft3, g6(maxRolloverScore) from 0.1999–a 4-star rating–to 0.21) to account

for differences between the model and real world data.

Front crash

{FrontCrash.m}

The front crash model provides a back of the envelope check on powertrain pack-

aging and vehicle geometry to reasonably ensure an appropriate front crash test

score is acheivable. Parameter estimates required to complete the analysis include

V ehicleBumperDepth(8in), MidRailY Strength, SuspenDepth(5in), PassWeight,

EngDepth, TestFrontCrushEff , V ehMass, MidRailLoadFactor, MidRailWidth,

V ehHeelPointX, MidRailThick, V ehRadDepth(6in). It should be noted that com-

ponent dimensions represent the dimension in a longitudinal direction and represent

the sum of the “thickness” of the solid elements of the component.

MidRailLoadFactor is set equal to 1/2, implying that the mid-rails absorb 1/2

the total impact. TestFrontCrushEff is a factor related to the buckling efficiency

of the mid-rail design. We take a value of 0.7. Outputs predicted are the crush
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space available given driver heel point and underhood component sizes CrushSpace,

average load on a single mid-rail TestMidRailForceAvg, and peak acceleration in a

front crash AccelTestFront. MinCrushSpace reflects the minimum required crush

space to stop the vehicle in a front impact at a velocity of TestFrontV el, taken here

to be 35 mph.

Mid-rails are assumed to be square cross-sections. Average force calculations come

from a curve-fit supplied by an SAE paper7 for square tubes with thickness and width

constraints: (width/thick) > 62.5 and 1.5in < width < 3.75in. Model constraints are

placed on the minimum crush space and peak deceleration as shown in Section A.

EngDepth is given in millimeters and V ehMass is given in kg. MidRailThick and

MidRailWidth are given in millimeters. MidRailY Strength is given in N/mm2.

Other dimensions are given in inches and lbm respectively.

CrushSpace = V ehHeelPointX

−(25.4(V ehicleBumperDepth+ V ehRadDepth+ SuspenDepth)

+EngDepth) (A.137)

MinCrushSpace

(
V ehMass+

PassWeight

kgtolbs

)
× (0.44704TestFrontV el)2

/

(
2

1
MidRailLoadFactor

× 2TestMidRailForceAvg

)
(A.138)

TestMidRailForceAvg = 386(MidRailThick1.86)× (MidRailWidth0.14)

×(MidRailY Strength0.57) (A.139)

AccelTestFront =
1

MidRailLoadFactor
× 2TestMidRailForceAvg

/

(
TestFrontCrushEff

(
V ehMass+

PassWeight

kgtolbs

))
(A.140)

7H. F. Hahmood and A. Paluszny, “Design of Thin Walled Columns for Crash Energy Manage-
ment”, Society of Automotive Engineers Paper 811302
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Powertrain performance characteristics

Powertrain performance is evaluated by referencing results from vehicle simula-

tions conducted using AVL Cruise software. Typical procedure is to model the vehicle

powertrain of interest within Cruise. Next, determine parameters to vary (i.e., design

variables and other parameters of interest such as drag coefficient). Then, execute a

design of experiments to obtain simulation results for all powertrain performance mea-

sures. Finally, fit the data using polynomials and/or neural nets for implementation

with the other elements of the overall model.

Engine characteristics

{EngScaling.m}

{EngScalingTC.m}

{EngScalingHEV.m}

AVL Cruise characterizes engine performance by reference to engine maps derived

from experimental results of a baseline engine. Different baseline engine data are used

as baselines for fuel consumption maps and full load performance curves as well as

between naturally aspirated and turbo-charged direct injection engines. Engine maps

are scaled for each design iteration as functions of EngBore and EngBoretoStroke

following established scaling relationships8.

Using the peak mean piston speed and the engine geometry it is possible to cal-

culate the engine peak RPM.

RPMpeak = S̄ppeak/(2EngStroke× 10−3 −×60) (A.141)

8Chon, D. M., and Heywood, J. B., 2000, Performance Scaling of Spark-Ignition Engines: Corre-
lation and Historical Analysis of Production Engine Data, Technical Paper 2000-01-0565. Anderson,
M., K, 2005, Powertrain Design and Integration, Lecture Slides, Automotive Engineering 501, Uni-
versity of Michigan, guest lecture, Ann Arbor, MI, 25-64.
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We add 200 RPM to the peak power engine speed as an estimate of maximum engine

speed.

At a constant mean piston speed, fuel mass flow rate and the full load performance

torque curve are scaled as follows, where Ncyl is the number of cylinders of the engine.

Scaling mass flow rate in this way assumes that, at a given piston speed, BMEP is

constant between the base and the scaled engine. In most cases we assume both

base and scaled engines have the same peak BMEP, resulting in Equation A.143

simplifying to be the ratio of the engine displacements (evaluated at a constant mean

piston speed).

ṁnew

ṁbase

= EngBore2
newNcylnew/EngBore

2
baseNcylbase (A.142)

τnew
τbase

=
BMEPPpeaknewEngBore

3
newEngBoretoStrokebaseNcylnew

BMEPPpeakbaseEngBore
3
baseEngBoretoStrokenewNcylbase

(A.143)

Peak power is found by taking the scaled torque at the peak mean piston speed

from Equation A.143. Peak power given in horsepower is as follows.

Ppeak = τnewpeak ×RPMpeak/5252 (A.144)

The motoring curve, representing power losses in the engine at various speeds is up-

dated by scaling power loss by engine displacement ratio. Normalization by constant

piston speed is neglected for motoring curve. Engine idle fuel consumption is assumed

to be 1.5 liters per hour for the Cruise provided 2.5 liter V-6 engine. Idle fuel con-

sumption for unique engine designs is scaled by displacement ratio. The advanced

friction module found in Cruise, which incorporates engine and valvetrain architec-

ture, based on an SAE paper9 is used to integrate frictional engine losses into the

9Patton, K. J., Nitschke, R. G., and Heywood, J. B., 1989, Development and Evaluation of a
Friction Model for Spark-Ignition Engines, SAE Technical Paper.
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Table A.8: Engine characteristics for 2.5 l V6 naturally aspirated gasoline engine

Stroke 82.17mm
Bore 80.0mm
Displacement 2478cc
Bore to Stroke 0.97
Compression ratio 10.0
Idle speed 700rpm
Max engine speed 6000rpm

Table A.9:
Engine characteristics for 3.5 l V6 Duratec35 naturally aspirated gasoline
engine

Stroke 86.6mm
Bore 92.5mm
Displacement 3491cc
Bore to Stroke 1.07
Compression ratio 10.3
Idle speed 640rpm
Max engine speed 6500rpm

simulations.

Naturally aspirated spark-ignition

The fuel consumption map for the conventional vehicle is taken from a 2.5 l,

V-6 engine with BMEPPpeak=1068 kPa provided with the software. The full load

characteristic is scaled from the Duratec35 engine (BMEPPpeak=1085 kPa) used

in the Ford Edge. We assume the peak power brake mean effective pressure of the

vehicle engine (1085 kPa) and mean piston speed at peak power out (18.1 m/s) are

constant for all designs. Baseline engine details are summarized in Tables A.8-A.10.
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Table A.10:
Full load performance characteristic for 3.5 l V6 Duratec35 naturally
aspirated gasoline engine

RPM Torque (lb-ft) Power (hp) BMEP (kPa) Piston Speed (m/s)

1500 133 38 649 4.3
2000 197 75 962 5.8
2500 210 100 1025 7.2
3000 233 133 1138 8.7
3500 255 170 1245 10.1
4000 263 200 1284 11.6
4500 251 215 1226 13.0
5000 247 235 1206 14.5
5500 244 256 1191 15.9
6000 228 260 1113 17.3
6250 223 265 1089 18.1
6500 213 264 1040 18.8

Gas turbo direct injection

The GTDI baseline fuel consumption map is adapted from an SAE paper10. The

full load characteristic is adopted from a “best guess” transcription from the Eco-

Boost YouTube video hosted by Derek Kuzak. The GTDI engine is assumed to have

a peak mean piston speed of 16.7 m/s. Baseline engine details are summarized in

Tables A.12 & A.14. The fuel consumption map for the 2.0 l GTDI engine as inter-

polated by AVL Cruise is shown in Figure A.12

Additionally, AVL Cruise provides modules for modeling turbo-charger behavior.

The following figures represent the data included in the GTDI simulations. Fig-

ure A.13 was generated by examining load steps from 2 bar to full load for the engine

described in SAE 2006-01-126611. The authors presented results at various engine

speeds.

10Henning Kleeberg, Dean Tomazic, Oliver Lang, and Knut Habermann, ”Future Potential and
Development Methods for High Output Turbocharged Direct Injected Gasoline Engines,” SAE Paper
2006-01-0046

11W. Bandel, G. K. Fraidl, P. E. Kapus, and H. Sikinger, C. N. Cowland, “The Turbocharged
GDI Engine: Boosted Synergies for High Fuel Economy Plus Ultra-low Emission,” SAE Paper 2006-
01-1266
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Table A.11:
Full consumption map for 2.5 V6 naturally aspirated gasoline engine
from AVL Cruise

RPM BMEP (bar) Fuel Consumption (l/h) RPM BMEP (bar) Fuel Consumption (l/h)

700 -4 1.6 continued...
700 -0.5 1.61 3600 0.72 4.44
700 0 1.65 3600 2.41 6.396
700 1.6 1.88 3600 3.97 8.472
700 3.16 2.13 3600 7.04 12.18
700 4.55 2.496 3600 8.59 14.304
700 5.95 2.964 3600 10.31 16.572
700 7.32 3.552 3600 11.61 18.588
700 8.63 4.188 3600 14.68 24.804
700 9.3 4.788 3600 15.11 25.356
1200 -4 1.75 4150 -4 4.15
1200 -0.5 1.76 4150 -0.5 4.27
1200 0 1.8 4150 0 4.64
1200 0.35 1.93 4150 0.7 5.412
1200 1.82 2.35 4150 2.31 7.656
1200 3.32 2.784 4150 3.82 9.96
1200 4.73 3.516 4150 5.34 12.18
1200 6.17 4.248 4150 6.9 14.556
1200 7.59 4.968 4150 8.53 17.004
1200 8.9 5.868 4150 9.99 19.5
1200 10.21 6.6 4150 13.06 26.76
1200 10.88 6.72 4150 15.11 33.024
1700 -4 1.95 5050 -4 5.25
1700 -0.5 1.96 5050 -0.5 5.6
1700 0 2 5050 0 6
1700 0.42 2.16 5050 1.99 9.432
1700 2.06 2.85 5050 3.62 12.3
1700 3.54 3.72 5050 5.1 14.856
1700 4.89 4.608 5050 6.63 17.82
1700 6.33 5.532 5050 8.12 20.736
1700 7.83 6.516 5050 9.77 24.696
1700 9.48 7.704 5050 11.19 28.476
1700 10.93 9.432 5050 12.53 33.456
1700 12.3 10.62 5050 14.5 41.784
2550 -4 2.25 6000 -4 6.6
2550 -0.5 2.3 6000 -0.5 7.25
2550 0 2.45 6000 0 8
2550 0.73 2.976 6000 1.21 10.428
2550 2.3 4.2 6000 2.76 13.86
2550 3.8 5.688 6000 4.18 17.052
2550 5.25 7.008 6000 5.53 20.22
2550 6.71 8.304 6000 6.94 23.916
2550 8.21 9.828 6000 9.72 33.984
2550 9.55 10.992 6000 10.88 39.144
2550 12.4 15.096 6000 12.05 44.664
2550 14.29 17.592 6000 13.05 49.032
3000 -4 2.73
3000 -0.5 2.84
3000 0 3
3000 0.71 3.552
3000 2.42 5.208
3000 3.97 6.852
3000 5.49 8.412
3000 6.97 10.008
3000 8.41 11.508
3000 9.81 13.14
3000 11.29 14.844
3000 14.75 20.916
3600 -4 3.22
3600 -0.5 3.34
3600 0 3.67
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Figure A.12: Fuel consumption map for 2.0 l GTDI engine

0 

1 

2 

3 

4 

5 

6 

1000  1500  2000  2500  3000  3500  4000  4500 

Ti
m
e 
(s
) 

Engine speed (rpm) 

Boost pressure build up <me vs. rpm 

Figure A.13: Boost pressure build up time as a function of engine speed
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Table A.12: Engine characteristics for 2.0 l I-4 gas turbo direct injection engine

Stroke 83.34mm
Bore 87.4mm
Displacement 2000cc
Bore to Stroke 1.05
Compression ratio 9.8
Idle speed 850rpm
Max engine speed 6000rpm

Table A.13: Full consumption map for 2.0 l I-4 gas turbo direct injection engine
RPM Torque (lb-ft) Power (hp) BMEP (kPa) Piston Speed (m/s)

1000 150 29 1278 2.8
1650 280 88 2385 4.6
3000 275 157 2343 8.3
4000 272 207 2317 11.1
5400 265 272 2258 15.0
6000 240 274 2045 16.7

The operating points listed in Table A.15 were adopted for the 2.0 l EcoBoost con-

cept to estimate boost pressure and temperature after compressor from SAE Papers

2005-01-1144 & 2006-01-0046.

The data for boost pressure as a function of engine speed shown in Figure A.14

was modified after receiving feedback from Michael Shelby of Ford from the full load

operating points of the compressor as described in SAE 2005-01-114412.

Figure A.15 shows the air temperature exiting the turbo-charger and the inter-

cooler for various engine speeds. The air turbo-charger exit temperature data was

generated by taking the full load compressor operating points from the engine de-

scribed in SAE 2005-01-1144, SAE 2006-01-0046. Using the compressor map (also

given in the paper) for pressure and isentropic efficiency, temperature was computed

using ideal gas theory. The intercooler temperatures were generated by taking an

12Oliver Lang, Jos Geiger, Knut Habermann and Michael Wittler, “Boosting and Direct Injection
- Synergies for Future Gasoline Engines,” SAE Paper 2005-01-1144
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Table A.14:
Full load performance characteristic for 2.0 l I-4 gas turbo direct injection
engine

RPM BMEP (bar) Fuel Consumption (l/h) RPM BMEP (bar) Fuel Consumption (l/h)

1020 -2.17 0.51 continued...
1020 0 0.57 4080 -4 2.89
1020 0.56 0.64 4080 -0.5 2.97
1020 1.67 1.27 4080 0 3.23
1020 1.99 1.4 4080 1.34 6.09
1020 4.61 2.63 4080 2.6 7.92
1020 6.7 3.57 4080 6.3 14.37
1020 17.34 11.41 4080 8.56 18.23
2040 -4 1.22 4080 23.28 49.58
2040 -0.5 1.22 4225 22.62 49.88
2040 0 1.25 4371 8.92 20.34
2040 0.88 2 4662 9.61 23.39
2040 2.1 3.2 4808 0 3.68
2040 2.51 3.51 4808 1.8 7.65
2040 5.79 6.6 4808 4 11.82
2040 7.79 8.29 4808 6.87 18.47
2040 21.46 21.52 4808 19.23 48.27
2404 16.73 18.75 4881 18.55 47.26
2404 18.13 20.31 4954 16.5 42.65
2477 15.74 18.17 5100 -4 3.65
2477 18.8 21.7 5100 -0.5 3.89
2550 -4 1.56 5100 0 4.17
2550 -0.5 1.6 5100 1.38 7.84
2550 0 1.7 5100 2.92 11.11
2550 7.65 10.18 5100 4.25 14.91
2550 15.57 18.9 5100 8.25 23.2
2550 21.43 25.74 5100 11.69 30.67
2768 15.38 19.85 5172 23.16 66.99
2768 20.79 26.82 5245 9.03 26.5
3060 -4 1.9 5245 20.85 61.15
3060 -0.5 1.97 5391 9.83 29.64
3060 0 2.09 5391 18.96 57.17
3060 1.03 3.54 5537 11.77 36.45
3060 2.28 5.19 5537 14.54 45.03
3060 5.69 9.74 6120 -4 4.59
3060 7.93 12.67 6120 -0.5 5.04
3060 21.04 30 6120 0 5.56
3351 15.45 24.14 6120 1.39 9.51
3643 -4 2.24 6120 3.34 15.22
3643 -0.5 2.32 6120 8.32 35.01
3643 0 2.55
3643 15.75 26.73
3643 20.88 35.45
3788 16.43 29.01
3788 20.2 35.66

percentage difference from the charger outlet temperature. An initial guess for the

temperature difference across the intercooler was taken referencing the intercooler

described in SAE 2006-01-0046.
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Table A.15: Operating points for sample GTDI engine

P2/P1

Engine
speed
(RPM)

Volume
Flow
(m3/s)

ηisV
nredV x 103

(RPM)

1.27 1000 0.021 0.6 80
1.53 1250 0.028 0.62 106
1.5 1500 0.031 0.65 103
1.52 1750 0.042 0.675 106
1.56 2000 0.05 0.7 112
1.65 3000 0.065 0.715 122
1.62 3500 0.075 0.723 121
1.65 4000 0.085 0.721 124
1.7 4500 0.097 0.715 131
1.8 5000 0.112 0.69 143
1.75 5500 0.12 0.655 143
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Figure A.14: Relative boost pressure as a function of engine speed
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Figure A.15:
Turbo-charger and intercooler outlet temperatures at full load for vari-
ous engine speeds

AVL Cruise simulations

Vehicle simulations using AVL Cruise software were configured to represent a

standard automatic transmission front wheel drive vehicle with a gasoline engine. In

addition to powertrain specifications (i.e., gear ratios, gear shifting schedule, engine

number of cylinders, vee or inline configuration, bore, and stroke, valvetrain config-

uration, and final drive ratio.) Cruise also receives other vehicle inputs, including

curbweight, frontal area, drag coefficient, tire radius, and center of gravity location

under various loads. Over 30 AVL Cruise parameters were tuned for midsize crossover

vehicles based on data from one 2007 model. All other parameters in Cruise were

left at the default passenger vehicle levels. Section A shows how model parameters

are converted into three of the required Cruise inputs.

Five vehicle simulations were executed using Cruise: 1) FTP (US urban cycle) and

2) HFET (US highway driving cycle) can be used to estimate either the combined fuel

economy rating used for CAFE purposes or combined fuel economy rating according
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to 2008 EPA MPG-based guidelines13. 3) Shifting gears from standstill was used to

predict 0-60 acceleration and vehicle top speed; 4) shifting gears from 30-50 mph was

used to estimate 30-50 mph time with towing simulated by adding the max trailer

weight to the mass of the vehicle; 5) max gradeability estimates the percent grade

achievable at 65 mph with towing simulated using the virtual trailer option that

allows specification of trailer mass and an estimate of losses.

The engineering model as described above (including a call to the AVL Cruise

solver to execute the 5 simulations) was integrated using iSIGHT v10.0 system in-

tegration software. Latin hypercube design of experiments were executed for both

the naturally aspirated and (1000 runs) the GTDI vehicles (1600 runs). Execution

of 1 computer experiment run on a 3.6 GHz Pentium IV processor averaged slightly

over 30 seconds. Factors for the naturally aspirated engine vehicle included: CD

(vehicle drag coefficient), EngBore, FinalDrive, H101, L101, L103, W105, and

EngBoretoStroke. Factors for the GTDI engine vehicle included: . Design runs that

resulted in failed Cruise runs were removed from the data set. Simulations failed for

less than 10% of the runs, and failed runs typically corresponded to cases where a

combination of large vehicle size, small engine, and large final drive ratio resulted in

inability to achieve 65 mph in the acceleration test or a positive towing grade at 65

mph. The data from the computer experiments was then fit with surrogate models to

decrease computational speed for design optimization runs, and to allow integration

of the entire model in Matlab, thereby improving portability of the model.

The hybrid electric vehicle simulation is a backwards-looking simulation built by

visiting scholar Kukhyun Ahn based on his dissertation work. Similar to above, a

DOE was executed (500 runs), and the data was fit with surrogate models for each

simulation. Factors in the HEV DOE included: EngBore, FinalDrive, H101, pgratio,

batpower, L103, W105, and EngBoretoStroke. The outputs of the HEV simulation

13USEPA, 2006, Fuel Economy Labeling of Motor Vehicles: Revisions to Improve Calculation of
Fuel Economy Estimates; Final Rule, Federal Register, 71(248) pp. 77872-77969
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were scaled to account for losses not accounted for due to the backward-looking

simulator.

Combined fuel economy

{CombinedFuelEcon.m}

Combined fuel economy in miles/gallon is computed for both the CAFE re-

ported value and the 2008 window sticker value. The test values CycUSCity and

CycUSHwy are given in liters/100 km. The CAFE value is simply the harmonic

mean of the tested values according the following relationships.

MPGCycUSCity =
1

1.609344CycUSCity
100×3.786235

(A.145)

MPGCycUSHwy =
1

1.609344CycUSHwy
100×3.786235

(A.146)

CombinedMPG =
1

0.55
MPGCycUSCity

+ 0.45
MPGCycUSHwy

(A.147)

The window sticker value is found by adopting the “MPG-based method” from the

2008 guidelines for reporting window sticker fuel economy14. This method provides

a regression formula for adjusting the city and highway test values according to the

following relationships. The new method for reporting window sticker fuel economy

presents a different weighting of city vs. highway driving for the combined fuel econ-

omy (43% city, 57% highway). However, vehicles in 2008 are being reported using

the “MPG-based method” rather than the new tests, and the old ratios (55% city,

14USEPA, 2006, Fuel Economy Labeling of Motor Vehicles: Revisions to Improve Calculation of
Fuel Economy Estimates; Final Rule, Federal Register, 71(248) pp. 77872-77969
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45% highway) have been preserved in reporting.

MPGCycUSCity =
1

0.003259 + 1.18053(0.264115CycUSCity)
62.13712

(A.148)

MPGCycUSHwy =
1

0.001376 + 1.3466(0.264115CycUSHwy)
62.13712

(A.149)

CombinedMPG =
1

0.55
MPGCycUSCity

+ 0.45
MPGCycUSHwy

(A.150)

Range

{Range.m}

Vehicle range is estimated based on city and highway fuel economy and gas tank

volume. Gas tank volume is converted from liters3.

V ehCityRange = MPGCycUSCity × V ehGasTankV ol

×264.17 (A.151)

V ehHwyRange = MPGCycUSHwy × V ehGasTankV ol

×264.17 (A.152)

Surrogate models

{Acc0to60.m}

{Acc30to50Tow.m}

{CityHwyGrad.m}

{CityHwyGradTC.m}

{Acc0to60TC.m}

{TopSpeedTC.m}
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{AccelGradHEV.m}

{HEVUSHwy.m}

{HEVSimTopSpeed.m}

Surrogate models were obtained from the Cruise simulation data to reduce com-

putational expense (See Table A.16), using Latin hypercube experimental designs

(1000 Runs NA SI, 1600 Runs GTDI, 500 runs HEV). Failed runs were removed

from the data set before surrogate model fitting. For the NA SI and GTDI, satisfac-

tory polynomials were found for both driving cycles, the gradeability simulation, and

Acc3050Tow (R2: 0.998 City, 0.994 Hwy, 0.997 Grade, 0.998 3050). Two neural nets

were generated in Matlab, one for Acc060 and one for MaxSpeed, both of which had

R2 values for the training points and the test points above 0.99. For the HEV model,

satisfactory polynomials were found for all powertrain performance characteristics

except the CycUSHwy, and the MaxSpeed. These two outputs were fit with neural

nets.

The parameters for each polynomial are given below, grouped by powertrain tech-

nology

NA SI

For naturally aspirated spark-ignition vehicles polynomials were fit for CycUSCity,

CycUSHwy, and Grad65Tow. The elements of the polynomials are shown in N. The

values for each element correspond to the real values for a given design, however they

have been scaled between [0,2] based on upper and lower bounds for each element.

Values for the polynomial parameters are shown in CNASI . Variable upper and lower

bounds are given in Table A.17.
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Table A.16: Surrogate models by simulation and powertrain technology
Pwtrn Tech. Simulation Model type R2

NA SI CycUSCity Poly 0.998
CycUSHwy Poly 0.994

Acc060 NN 0.99
Acc3050Tow NN
Grad65Tow Poly 0.997
MaxSpeed NN 0.99

GTDI CycUSCity Poly 0.998
CycUSHwy Poly 0.995

Acc060 NN
Acc3050Tow Poly 0.998
Grad65Tow Poly 0.999
MaxSpeed NN

HEV CycUSCity Poly 0.99
CycUSHwy NN

Acc060 Poly 0.999
Acc3050Tow Poly 0.999
Grad65Tow Poly 0.99
MaxSpeed NN

MG1 Poly 1
MG2 Poly 1

Table A.17:
Upper and lower bounds on parameters for naturally aspirated V-6 en-
gines

EngBore

Eng
Bore
to
Stroke

Final
Drive

H101 L101 L103 W105 CD

Varlb = [ 86 0.95 1.1 1600 2286 3556 1600 0.33 ]
Varub = [ 100 1.18 4.0 1930 3048 5080 2000 0.42 ]
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N = [ 1

xV ehDragCoef

xEngBore

xFinalDrive

xH101

xL103

xW105

xEngBoretoStroke

xEngBore2

xFinalDrive2

xL1032

xEngBoretoStroke2

xEngBore× xFinalDrive
xEngBore× xEngBoretoStroke
xFinalDrive× xL103

xFinalDrive× xW105

xL103× xW105

xFinalDrive3 ]
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CNASI = [ 8.944 5.453 −2.410

0.1281 0.2881 −0.2008

1.371 0.7173 2.046

0.0730 0.4728 3.707

0.1120 0.2498 −0.1897

−0.0256 0.0 0.0530

0.1621 0.2968 −0.1428

−0.5295 −0.2377 −1.465

0.1070 0.0 0.2098

0.2054 0.1011 4.7509

0.0879 0.0544 0.0

0.0603 0.0 0.1735

0.090 0.0 0.6704

−0.126 0.0 −0.3412

0.0 0.0 −0.3506

0.0 0.0 −0.2292

0.1316 0.0913 0.0

0.0 0.0 −1.791 ]
CycUSCity

CycUSHwy

Grad65Tow

 = C′NASIN (A.153)

GTDI

For GTDI spark-ignition vehicles polynomials were fit for CycUSCity, CycUSHwy,
Grad65Tow, and Acc3050Tow. The elements of the polynomials are shown in G. The
values for each element correspond to the real values for a given design, however they
have been scaled between [0,2] based on upper and lower bounds for each element.
Values for the polynomial parameters are shown in CGTDI . Variable upper and lower
bounds are given in Table A.18.
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G = [ 1

xBore

xFD

xH101

xH156

xL103

xW105

xBoretoStroke

xV ehDrag

Gear1

Gear2

Gear3

Gear4

xBore2

xFD2

xL1032

xW1052

xEngBoretoStroke2

Gear12

Gear2

Gear42

xEngBore× xFinalDrive

xEngBore× xL103

xEngBore× xW105

xEngBore× xEngBoretoStroke

b× g1

b× g2

b× g3

b× g4

xFinalDrive× xL103

xFinalDrive× xW105

xFinalDrive× xEngBoretoStroke

fd× g1

fd× g2

fd× g3

fd× g4

xL103× xW105

xL103× xEngBoretoStroke

L103× g2

L103× g3

xW105× xEngBoretoStroke

w105× g2

w105× g3

xEngBoretoStroke× g2

xEngBoretoStroke× g3

xFD3

Gear23 ]
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CGT DI = [ 7.5368 5.9459 2.6084 8.1527

0.6725 0.4634 2.2639 −1.9052

−0.1582 0.4656 5.1671 −3.6308

0.0716 0.1517 −0.0846 0.0

0.0 −0.0353 0.0 0.0

0.1729 0.1058 0.0 0.2328

0.2423 0.3297 −0.0956 0.2386

−0.4781 −0.3029 −1.4864 1.2364

0.1775 0.3742 −0.2098 0.0

−0.0628 0.0 0.0 0.0

0.0291 0.0 0.0 −1.8901

0.0 0.0 1.6158 0.0

−0.1092 0.0535 .0 0.0

0.076 0.0216 0.1559 0.2151

0.3658 0.1388 −0.3177 1.1556

0.0319 0.0225 0.0 0.0267

0.0232 0.0 0.0 0.0

0.0935 0.0519 0.1971 0.0276

0.0273 0.0 0.0 0.0

0.0 0.0 0.0 0.3308

0.0289 0.0 0.0 0.0

0.1525 0.093 1.0083 0.687

0.0 0.0 −0.1223 −0.0675

0.0 0.0 −0.0918 −0.0506

−0.1421 −0.067 −0.3007 −0.2292

0.0215 0.0 0.0 0.0

0.0 0.0 0.0 0.3595

0.0 0.0 0.3651 0.0

0.0 −0.0237 0.0 0.0

−0.0298 −0.0299 −0.2106 −0.1111

−0.0227 −0.0241 −0.1453 −0.1106

−0.1386 −0.0595 −0.5439 −0.4629

0.0888 0.0 0.0 0.

0.0 0.0 0.0 0.4977

0.1203 0.0 0.6037 0.0336

0.0991 0.0 0.0 0.0

0.0796 0.0486 −0.0659 0.0607

0.0 0.0 0.0487 0.0459

0.0 0.0 0.0 −0.0606

0.0 0.0 −0.0815 0.0

0.0 0.0 0.0 0.044

0.0 0.0 0.0 −0.0488

0.0 0.0 −0.06780 .0

0.0 0.0 0.0 −0.2344

0.0 0.0 −0.1942 0.0

0.0 0.0 0.0744 −0.1144

0.0 00. 0.0 −0.0377 ]
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

CycUSCity

CycUSHwy

Grad65Tow

Acc3050 Tow


= C′GTDIG (A.154)

HEV

The HEV vehicle powertrain simulations were based on data generated from HEV

simulations developed by Kuhkyun Ahn. For HEV vehicles polynomials were fit for

CycUSCity, Acc060, Grad65Tow, Acc3050Tow, MG2, and MG1. The elements of

the polynomials are shown in H. The values for each element correspond to the real

values for a given design, however they have been scaled between [0,2] based on upper

and lower bounds for each element. Values for the polynomial parameters are shown

in CHEV . Variable upper and lower bounds are given in Table A.19.
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H = [ 1

xBore

xFD

xH101

xPGR

xBPow

xL103

xW105

xBoretoStroke

xFD2

xH1012

xPGR2

xBPow2

xL1032

xW1052

xBoretoStroke2

xBore× xFD

xBore× xBPow

xBore× xW 105

xBore× xBoretoStroke

xFD × xH101

xFD × xPGR

xFD × xBPow

xFD × xL103

xFD × xW105

xFD × xBoretoStroke

xPGR× xBPow

xBPow × xL103

xBPow × xW 105

xBPow × xBoretoStroke

xL103× xW105

xL103× xBoretoStroke

xW105× xBoretoStroke

xFD3

xH1013

xPGR3

xBoretoStroke3 ]

282



CHEV = [ 5.5377 7.8296 7.0946 5.2934 10.7896 6.2998

0.1535 0.6885 −0.2215 −0.2005 0.4452 0.4452

0.0708 1.4549 −0.8854 −0.4827 0.0 0.0

0.094 −0.1504 0.0 0.0 0.0 0.0

−0.0007 1.1733 −0.5106 −0.5057 0.0 0.0

−0.1178 −0.0578 −0.4582 −0.3931 1.0002 0.0

0.095 −0.2434 0.2365 0.0831 0.0 0.0

0.2278 −0.3431 0.2709 0.0916 0.0 0.0

−0.3065 −1.−655 0.368 0.4034 −0.9582 −0.9582

−0.0611 −0.4024 0.1878 0.0423 0.0 0.0

0.0 0.1074 0.0 0.0 0.0 0.0

0.0 −0.4385 0.0739 0.0492 0.0 0.0

0.0152 0.0 0.0265 0.0233 0.0 0.0

0.0196 −0.016 0.047 0.0183 0.0 0.0

0.0131 0.0 0.0 0.0 0.0 0.0

0.0345 0.3318 0.0 −0.0173 0.1076 0.1076

0.0 0.0274 0.0 0.0 0.0 0.0

−0.0164 0.0 0.0323 0.0274 0.0 0.0

0.0 −0.0198 0.0 0.0 0.0 0.0

−0.0195 −0.074 0.0 0.0 −0.0532 −0.0532

0.0 −0.0292 0.0 0.0 0.0 0.0

−0.0387 −0.416 0.0647 0.0767 0.0 0.0

0.0 0.0 0.0536 0.0379 0.0 0.0

0.0 0.0 −0.0359 0.0 0.0 0.0

0.0 0.0 −0.0287 0.0 0.0 0.0

0.0 −0.0468 0.0 0.0 0.0 0.0

0.0 0.0 0.0332 0.0381 0.0 0.0

0.0 0.0 −0.0355 −0.0161 0.0 0.0

0.0 0.0 −0.0224 0.0 0.0 0.0

0.0181 0.0 −0.0586 −0.0511 0.0 0.0

0.0505 −0.0485 0.1044 0.0419 0.0 0.0

0.0 0.0392 0.0381 0.0154 0.0 0.0

0.0 0.0388 0.0328 0.0155 0.0 0.0

0.0 0.0541 −0.0256 0.0 0.0 0.0

0.0 −0.0312 0.0 0.0 0.0 0.0

0.0 0.0778 0.0 0.0 0.0 0.0

0.0 −0.0629 0.0 0.0 0.0 0.0 ]



CycUSCity

Acc060

Grad65Tow

Acc3050Tow

MG2

MG1


= C′N (A.155)
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Engineering Performance Constraints

The constraint set is as follows.

g1 = 5%−Grad65Tow ≤ 0 (A.156)

g2 = 13◦ −A107 ≤ 0 (A.157)

g3 = 12◦ −A147 ≤ 0 (A.158)

g4 = 29 ft3 − CV I ≤ 0 (A.159)

g5 = CV I − 60 ft3 ≤ 0 (A.160)

g6 = Rollover − 0.1 ≤ 0 (A.161)

g7 = 50%− 100 (1− CGlong − L104/L101) ≤ 0 (A.162)

g8 = Payload+ V ehMass−GVWR ≤ 0 (A.163)

g9 = MinCrushSpace− CrushSpace ≤ 0 (A.164)

g10 = MaxDecel − 20(9.81 m/s2) ≤ 0 (A.165)

g11 = (2TireF lop+ 2MidRailWidth+ EngLength+ 50.8)

−(W105− 254) ≤ 0 (A.166)

g12 = L101 + L104− L103 ≤ 0 (A.167)

g13 = 115 mph−MaxSpeed ≤ 0 (A.168)

g14 = MinSitHeight−H101 ≤ 0 (A.169)

where
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Constraint Description
g1 : Min towing grade @ 65 mph
g2 : Min angle of departure
g3 : Min ramp breakover angle
g4 : Min cargo volume
g5 : Max cargo volume
g6 : Max rollover score
g7 : Min % weight on front wheels
g8 : Min payload capacity
g9 : Min front crash crush space
g10 : Max estimated deceleration
g11 : Max powertrain width
g12 : Max wheelbase
g13 : Min top speed
g14 : Min available passenger sitting height

Other constraints that have been included in the code, but are not typically em-

ployed in the model include:
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g15 = MinBoretoStroke− EngBoretoStroke (A.170)

g16 = EngBoretoStroke−MaxBoretoStroke (A.171)

g17 = MinEngDisp− EngDisp (A.172)

g18 = EngDisp−MaxEngDisp (A.173)

g19 = MinFinalDrive− FinalDrive (A.174)

g20 = FinalDrive−MaxFinalDrive (A.175)

g21 = GearBoxRatio(1)−Max1stGear (A.176)

g22 = Min6thGear −GearBoxRatio(6) (A.177)

g23 = MinGear1to2− (GearBRatio(1)−GearBRatio(2)) (A.178)

g24 = MinGear2to3− (GearBRatio(2)−GearBRatio(3)) (A.179)

g25 = MinGear3to4− (GearBRatio(3)−GearBRatio(4)) (A.180)

g26 = MinGear4to5− (GearBRatio(4)−GearBRatio(5)) (A.181)

g27 = MinGear5to6− (GearBRatio(5)−GearBRatio(6)) (A.182)

g28 = MinHwyRange− V ehHwyRange (A.183)

g29 = MinCityRange− V ehCityRange (A.184)

g30 = (TireDynRollRad + 10 ∗ 25.4)− L104 (A.185)

g31 = MinAofApr − A106 (A.186)

g32 = MinFrontClear −H103d1d3 (A.187)

g33 = MinRearClear −H103d2d3 (A.188)

g34 = MinDriverLegRoom− V ehLegRoom1 (A.189)

g35 = V ehLegRoom1−MaxDriverLegRoom (A.190)

g36 = Min2ndRLegRoom− V ehLegRoom2 (A.191)

g37 = V ehLegRoom2−Max2ndRLegRoom (A.192)

g38 = (W101 + 7 ∗ 25.4)−W105 (A.193)

g39 = Acc3050Tow −Max30to50 (A.194)

g40 = Acc060−Max0to60 (A.195)

g41 = (L104 + TireDynRollRad + 10 ∗ 25.4)

−V ehHeelPointX (A.196)

g42 = 62.5−MidRailWidth/MidRailThick (A.197)

g43 = MidRailWidth− 3.75 ∗ 25.4 (A.198)

g44 = 1.5 ∗ 25.4−MidRailWidth (A.199)

g45 = MPGConstraint− CombinedMPG (A.200)

if Powetrain = HEV

g46 = MinTopSpeed

−6700/FinalDrive ∗ .358 ∗ 2 ∗ pi/60 ∗ 3.6/1.60934 (A.201)

where
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Constraint Description

g15 : Min bore to stroke ratio
g16 : Max bore to stroke ratio
g17 : Min engine displacement
g18 : Max engine displacement
g19 ; Min final drive ratio
g20 : Max final drive ratio
g21 : Max 1st gear ratio
g22 : Min 6th gear ratio
g23 : Min difference 1st gear ratio to 2nd gear ratio
g24 : Min difference 2nd gear ratio to 3rd gear ratio
g25 : Min difference 3rd gear ratio to 4th gear ratio
g26 : Min difference 4th gear ratio to 5th gear ratio
g27 : Min difference 5th gear ratio to 6th gear ratio
g28 : Min vehicle range on highway
g29 : Min vehicle range in city
g30 : Min front wheel clearance
g31 : Min angle of approach
g32 : Min front ground clearance
g33 : Min rear ground clearance
g34 : Min driver leg room
g35 : Max driver leg room
g36 : Min 2nd row leg room
g37 : Max 2nd row legroom
g38 : Max wheel track width
g39 : Max 30 to 50 mph acceleration time @tow
g40 : Max 0 to 60 mph acceleration time
g41 : Min clearance between heelpoint and tire
g42 : Min midrail width to thickness ratio
g43 : Max midrail width
g44 : Min midrail width
g45 : Min miles per gallon
g46 : Max top speed limited by motor in HEV
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