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Abstract 

 

Herbivorous insects are characterized by a great diversity of host-plant associations, yet 

the processes driving host range evolution are not fully understood. In my dissertation, I 

investigated ecological factors influencing the host plant use in an introduced leafmining 

fly, Amauromyza flavifrons, from tritrophic perspectives.  

Amauromyza flavifrons has two host plants, Silene latifolia and Saponaria 

officinalis in the study locality. When given a choice female flies prefer to oviposit on Si. 

latifolia over Sa. officinalis. Consistent with the preference-performance hypothesis, 

larval survival was greater on Si. latifolia than on Sa. officinalis in the absence of natural 

enemies, indicating that Si. latifolia is a higher quality host for larval development.  

Parasitism was also lower in Si. latifolia than Sa. officinalis patches, supporting 

the enemy-free space (EFS) hypothesis. Ephemeral patches of Si. latifolia provided A. 

flavifrons with EFS probably because parasitoid populations could not accumulate, since 

A. flavifrons population crashes in the middle of the summer. Parasitism was not random, 

but selectively removed leafminers with prolonged larval development period. 

Thus,parasitism is likely to play a significant role in shaping the evolution of life history 

traits, as well as oviposition preference of A. flavifrons. 

Despite higher mortality on Sa. officinalis, the density of A. flavifrons in the field 

was higher in Sa. officinalis than Si. latifolia patches. Sa. officinalis formed denser and 

seasonally more stable patches than Si. latifolia, suggesting that females searching for 
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oviposition sites may locate Sa. officinalis patches more easily than Si. latifolia patches.  

Amauromyza flavifrons population as a whole continues to use both Si. latifolia 

and Sa. officinalis because specialization on either host may be less adaptive. I 

hypothesized that, although Si. latifolia is a better host for larval survival, females 

frequently accept Sa. officinalis due to its ease of host location. The pattern of host plant 

use in A. flavifrons is, therefore, shaped by overall trade-offs in fitness functions driven 

by multiple ecological forces. 
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Chapter 1 
 

Introduction 
 
 

Herbivorous insects are extremely species-rich, making up more than a quarter of all 

described species on earth (May 1990). Specialization on a diverse plant resource is a 

likely mechanism for this rapid divergence (Jaenike 1990). Specialized populations may 

become reproductively isolated if the host species occur in different geographic regions 

(Peterson & Denno 1998), or if insects mate assortatively on host plant species 

(Hawthorne & Via 2001, Carroll & Boyd 1992, Feder et al 1988). Although extreme 

specialization is thought to be an evolutionary ‘dead end’ (Kelley & Farrell 2000), host 

expansion can re-fuel the speciation process by providing necessary variation on which 

populations can become further specialized (Janz et al 2006). Thus, the processes of 

diversification in herbivorous insects may be driven by host expansion and specialization 

repeated over evolutionary timescales (Janz et al 2006).  

What processes, then, drive the evolution of host range in herbivorous insects? 

Host range is primarily constrained by the ability of insects to detoxify plant defense 

chemicals, as herbivores generally use host plant species that are taxonomically and/or 

chemically similar (Ehrlich & Raven 1964, Jaenike 1990). The realized host range of the 

insect herbivore in a given locality, however, may be much narrower, due to ecological 

interactions with their surrounding environment (Futuyma & Moreno 1988).  

Several factors have been proposed to influence the pattern of host plant use in 
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herbivorous insects (Fig. 1.1). First, the preference-performance hypothesis (PPH) 

predicts that females should prefer to oviposit on host species that are chemically and 

nutritionally suitable for larval development and survival (Thompson 1988). Second, 

females might oviposit on more abundant and persistent hosts because their host 

searching efficiency increases with host availability (Mayhew 1997). Third, intra-specific 

competition could reduce larval performance on densely populated hosts, thereby 

favoring host range expansion to include less populated host species (Rausher 1986). 

Fourth, the enemy-free space (EFS) hypothesis predicts that females should preferentially 

oviposit on host species on which larvae can better escape from predation or parasitism 

(Bernays & Graham 1988). Finally, female oviposition preference might be driven to 

maximize adult performance (i.e. longevity and egg production) rather than offspring 

performance (Scheirs & De Bruyn 2002).   

The aim of this dissertation was to investigate multiple ecological processes 

influencing the evolution of diet breadth in herbivorous insects. Using a tritrophic system 

involving host plants (Silene latifolia and Saponaria officinalis: Caryophyllaceae), the 

leafminer (Amauromyza flavifrons: Agromyzidae), and parasitoids of A. flavifrons, I 

tested three major hypotheses, including preference-performance, host plant availability, 

and enemy-free space hypotheses, which might explain the pattern of host plant use in A. 

flavifrons.  

 Amauromyza flavifrons is an oligophagous leafminer that feeds on multiple 

genera in the family Caryophyllaceae. It represents an ideal system for testing hypotheses 

on diet breadth evolution for several reasons. First, the leafmining habit allows accurate 

measurements of host use pattern and the performance of individual larvae (e.g. survival, 

parasitism, larval development, etc) because larvae are confined within a single mine 
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(Koricheva & Haukioja 1994). Their fates in the field are easily estimated by rearing field 

collected larvae in the laboratory. Second, the ease of maintaining a laboratory population 

makes it suitable for laboratory experiments, which can complement field observations. 

Third, A. flavifrons system in North America comprises a relatively simple food web 

because A. flavifrons is essentially the only herbivore on their host plants (Blair & Wolfe 

2004, Uesugi, personal observation). Both A. flavifrons and their host plant species were 

introduced from Europe, leaving behind other specialist herbivores. Yet, A. flavifrons is 

heavily attacked by multiple species of parasitic wasps, which may or may not be also 

introduced, making the test of enemy-free space hypothesis highly relevant. Finally, 

although the ecological interactions within the introduced range are relatively new, A. 

flavifrons population has been in this study area for approximately 100 generations (3-4 

generations per year), suggesting that the population may have become adapted to the 

local environment. The distinct leaf mines belonging to A. flavifrons appear on the 

herbarium specimens of Si. latifolia and Sa. officinalis from the early 1980’s in Michigan 

(Uesugi, personal observations), suggesting that A. flavifrons population has been 

established by then.   

 Using this system, I first tested the preference-performance hypothesis (PPH), 

predicting that females should prefer host plants that are more suitable for larval survival 

and development (Chapter 2). Because A. flavifrons females must make oviposition 

choices between host plant species, as well as among individual plants within each host 

species, PPH was tested at both inter- and intra-specific levels. I expected to obtain 

stronger support for PPH at the species level because females might be better able to 

discriminate between species-level host quality differences relative to within-species 

differences. Although not tested specifically, this chapter also provided evidence that 
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intra-specific competition could negatively affect larval performance.  

 In Chapter 3, I examined the natural pattern of host plant use by A. flavifrons in 

host patches of Si. latifolia and Sa. officinalis. The resource concentration hypothesis 

(Root 1973) predicts that herbivore density would be greater in larger and denser patches 

because they are more apparent and easier to locate by dispersing females. Females may 

also stay longer in such patches, resulting in the accumulation of herbivores. I applied 

this hypothesis to predict that host use would be enhanced for the host plant species that 

form larger, denser and temporally stable patches. 

The enemy-free space (EFS) hypothesis (Bernays & Graham 1988) was tested in 

Chapter 4 by comparing the levels of parasitism on A. flavifrons feeding on Si. latifolia 

and Sa. officinalis plants. Variation in parasitism is often attributed to the differences in 

plant chemical, nutritional, or morphological traits between host plant species (Feder 

1995, Freese 1995, Gruenhagen and Perring 2001, Mira and Bernays 2002, Oppenheim 

and Gould 2002, Koller et al 2007, Obermaier et al 2008). However, when host species 

grow in distinct patches, spatial heterogeneity in abundance of parasitoids may further 

modify the benefit of EFS. I investigated the relative importance of plant characteristics 

and spatial heterogeneity in providing EFS. This was done by testing the EFS hypothesis 

at two spatial scales: in a common garden where both host species were interspersed, and 

in natural patches distributed across the landscape where host species grew separately. I 

predicted spatial heterogeneity to confer EFS because host species differ in patch 

characteristics, which could result in parasitoid abundance variation among patches.  

Previous studies of EFS have considered only the number of individuals killed 

by natural enemies, ignoring which individuals are being eliminated (Berdegue et al 1996, 

Murphy 2004). In Chapter 5, I examined whether parasitoids could impose strong 
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selection pressure on the life history traits of A. flavifrons that facilitate enemy avoidance. 

Selection on life history traits was investigated by estimating selection gradients on four 

traits—development time, adult body size, mine size and host plant quality—that were 

expected to influence parasitoids’ prey searching behavior.  

Together, this research attempts to provide a comprehensive examination of 

multiple ecological forces driving the evolution of diet breadth in a local population of A. 

flavifrons. By coupling field observations with laboratory and field experiments, this 

study also attempts to explore the mechanisms responsible for generating such selective 

forces.  
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Figure 1.1: Proposed ecological factors influencing the pattern of host plant use by 
herbivorous insects. Host plant use is determined by local availability and predictability 
of the host plant species, as well as the oviposition preference of the females. Female 
preference, in turn, reflects the performance of their offspring, which is affected by plant 
quality as food, intra-specific competition, and the presence of natural enemies. Plant 
quality also affects oviposition preference via adult performance. Thick arrows indicate 
processes examined specifically in this study.   



 

Chapter 2 
 
 

Plant quality affects oviposition preference and larval performance of the leafminer 
Amauromyza flavifrons at the inter- and intra-specific levels 

 
 

ABSTRACT 

The preference-performance hypothesis (PPH) predicts that females should preferentially 

oviposit on host plants that enhance the performance of their offspring. In generalist 

insects, females must make such oviposition choices among host plant species, as well as 

among individual plants within host species. However, the PPH has rarely been tested at 

both inter- and intra-specific levels for the same herbivore species.  

Here, I use A. flavifrons Amauromyza flavifrons (Agromyzidae, Diptera) to test 

the PPH at inter- and intra-specific levels. Oviposition preference and larval performance 

were measured on two host plant species, Silene latifolia and Saponaria officinalis, each 

growing at varying levels of soil nitrogen to generate intra-specific variation in host 

quality.  

At the inter-specific level, oviposition preference favored Si. latifolia over Sa. 

officinalis, and this direction of preference was associated with increased larval survival 

on Si. latifolia. At the intra-specific level, preference and performance corresponded 

weakly on Si. latifolia, but were negatively associated on Sa. officinalis. Overall, the PPH 

was best supported at the inter-specific level, suggesting that the evolution of host 
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discrimination might be shaped by stronger selection at the species level, or that females 

are better able to discriminate between species-level host quality differences relative to 

within-species differences.  
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INTRODUCTION 
 

Selection of oviposition sites by herbivorous insects can have significant consequences 

for the performance of their offspring. Because plant nutritional and chemical quality is a 

key determinant of larval performance (Awmack & Leather 2002), the 

preference-performance hypothesis (PPH) predicts that females should preferentially 

oviposit on high quality plants that maximize larval growth (Jaenike 1978). The PPH has 

traditionally been tested at one of two hierarchical levels: 1) at the inter-specific level, by 

comparing preference and performance among multiple host plant species, or 2) at the 

intra-specific level, by comparing among individual plants within a single host plant 

species.  

At the inter-specific level, females often exhibit ranked preferences among host 

species, and in some cases, the rank order corresponds to the larval performance (Videla 

et al 2006, Travers-Martin 2008). More commonly, mismatches between preference and 

performance have been observed (Thompson 1988, Mayhew 1997, Courtney & Kibota 

1990), potentially because females might prefer low quality hosts if they are more 

abundant (West & Cunningham 2006), or if they provide enemy-free space (i.e. spatial 

refuge from predation or parasitism: Bernays & Graham 1998).  

Two hypotheses have been proposed to explain host use at the intra-specific 

level. The plant stress hypothesis (PSH) predicts that females should prefer stressed 

plants because they have a higher ratio of nutrients to chemical defenses, providing a 

better condition for larval growth (White 1984). In contrast, the plant vigor hypothesis 

(PVH) predicts that female preference and larval performance should be greater on 

vigorous plants because their nutritional quality is greater (Price 1991). Recent 
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meta-analyses have tested these hypotheses. Patterns of larval performance appear to 

contradict the PSH, with plant stress causing negative effects on larval performance 

(Huberty & Denno 2004). Support for PVH is more equivocal: herbivore females 

generally prefer to oviposit on vigorous plants, but larval performance was not 

consistently higher on such plant hosts (Cornelissen et al 2008). This lack of correlation 

between preference and performance may occur if females cannot properly assess the 

host plant suitability for larval development, due to temporal change in plant quality 

(Gripenberg et al 2008), or if different plant chemicals influence the preference and 

performance of the insects (Wise et al 2008).   

In generalist insects that feed on multiple host species, females must make 

oviposition choices at both hierarchical levels (Rausher 1983), yet the PPH has rarely 

been tested for a single herbivore species at both levels simultaneously (but see 

Koricheva & Haukioja 1994). Koricheva and Haukioja (1994) suggested that the 

relationship between preference and performance might differ at various levels of 

investigation if it is shaped by selective pressures that differ in strength. For example, 

natural selection may favor strong host discrimination at the inter-specific level to 

minimize the time lost in searching inappropriate host species (Papaj & Rausher 1983). In 

addition, generalist herbivores may be limited in their information processing ability so 

that they can discriminate among host species but not among individual plants (Bernays 

& Funk 1999, Talsma et al 2008). Thus, the PPH may be better supported at the 

inter-specific level than the intra-specific level.  

 The degree of correspondence between oviposition preference and larval 

performance at both inter- and intra-specific levels can be tested with A. flavifrons, 

Amauromyza flavifrons (Agromyzidae, Diptera). Leafminers are relevant for testing the 
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PPH because the oviposition choice of females is likely to strongly influence the 

performance of their larvae, which are sedentary and unable to move between hosts 

(Koricheva & Haukioja 1994, Gripenberg 2008). Amauromyza flavifrons is particularly 

appropriate for testing PPH at different hierarchical levels, because it is a generalist 

herbivore that feeds on multiple species of host plants within the family Caryophyllaceae 

(Spencer 1990). In the study area, A. flavifrons is most commonly found on two host 

species, Silene latifolia and Saponaria officinalis, which form separate monospecific 

patches across the landscape. Consequently, female A. flavifrons are confronted with 

oviposition decisions at both inter-specific (among plant patches) and intra-specific 

(within a patch) levels.  

 Here, I test the relationship between oviposition preference and larval 

performance in a common garden experiment. To test the PPH at both inter- and 

intra-specific levels, Si. latifolia and Sa. officinalis plants were grown under low and high 

nitrogen treatments to inflate within-species variation in plant quality. Oviposition 

preference was estimated using a natural population of A. flavifrons that had recently 

colonized the experimental plot. To measure the effect of plant quality alone, two 

measures of larval performance—larval survival and feeding efficiency—were estimated 

for a subset of host plants within enclosures, which prevented parasitism of A. flavifrons 

larvae. By contrasting patterns of host preference and larval performance among host 

species and nitrogen treatments, I address three questions:  

1) Do females oviposit more frequently on host plant species or individual plants on 

which larvae perform better?  

2) Which plant traits might mediate oviposition choice and larval performance 

between host species or between individual plants?  
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3) How do preference-performance relationships differ at inter- and intra-specific 

levels of oviposition decisions?    

 

METHODS 

Study system 

Amauromyza flavifrons is an introduced leafminer from Europe. Within the introduced 

range from southern Michigan, USA, A. flavifrons is commonly found on two plant 

species, Silene latifolia and Saponaria officinalis, which are also introduced from Europe. 

Plants in the family Caryophyllaceae are known to contain saponins (Jia et al 2002), a 

group of secondary chemicals that have distinctive foaming characteristics. Saponins 

often serve as defensive compounds against many generalist herbivores (Adel 2000, 

Agerbirk et al 2003, Agrell et al 2004, Golawska 2007), but their effect on saponin 

specialists, such as A. flavifrons, is not well understood.  

 

Field Experiment 

The common garden experiment was conducted in July 2007 at Matthaei Botanical 

Gardens (MBG) in Dixiboro, Michigan (42˚29’N, 83˚66’W). Plants used in the 

experiment were grown in pots in the greenhouse at MBG two months prior to the 

experiment. All Sa. officinalis plants originated from vegetative growth from a natural 

patch near MBG, and Si. latifolia plants were grown from seeds collected from another 

patch. For both host species, individual plants were divided into low and high nitrogen 

treatments to artificially inflate variation in plant quality within each species. The low 

and high nitrogen treatments, respectively, received 5 ml of 0.009 mol and 1.17 mol 

ammonium nitrate weekly.  
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In early July, these plants were exposed to laboratory-reared females for 

oviposition. Six potted plants of the same species and nitrogen treatment were placed in a 

plastic cage where eight 3 to 4 day-old mated females were released for 6 hrs to allow 

oviposition. Plants were then kept in the greenhouse under mesh cover for four days 

before they were exposed in the field. This was done so that larger experimental larvae 

could be distinguished from larvae subsequently oviposited by the wild population of A. 

flavifrons (Scheffer 1995). Most leaf mines were initiated by the fifth day and the number 

of initial mines was counted on each plant. To avoid direct competition among larvae, a 

single larva per leaf was allowed to develop and the rest were killed by a needle. Half of 

the plants were bagged with fine mesh (caged treatment) to examine larval performance 

in the absence of natural enemies. The other half was exposed to the natural population of 

leafmining fly (exposed treatment) to examine the mean oviposition preference of the 

females in the population.  

A total of 83 Sa. officinalis (16 high nitrogen/caged, 17 low nitrogen/caged, 24 

high nitrogen/exposed, 26 low nitrogen/exposed) and 69 Si. latifolia (13 high 

nitrogen/caged, 17 low nitrogen/caged, 17 high nitrogen/exposed, 22 low 

nitrogen/exposed) plants were placed in an open field under shade cloth at MBG in a 

completely randomized design. The shade cloth shielded plants from direct sunlight and 

created a homogeneous environment between caged and exposed treatments. Ambient 

temperature marginally increased in the caged relative to the exposed treatment (mean 

difference = 0.3 ˚C, t=2.2, P=0.35), and no differences in plant quality measures, 

including leaf C: N ratio, water content, specific leaf area (SLA), and saponin 

concentrations were observed between caging treatments (Si. latifolia: t < 1.5, P > 0.14, 

Sa. officinalis: t < 1.2, P > 0.24). Thus, environments for larval development were 
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approximately equivalent between caged and exposed plants of the same species and 

nitrogen treatments. 

All leaves were checked daily for leafminer development. Each leaf containing a 

larva at the last stage of development was individually collected in a Petri dish, where 

larva pupated. Collected leaves were brought to the laboratory and immediately 

photographed to estimate mine size at the time of leaf collection, which was used as an 

approximation of the amount of food resources consumed (Low 2009). Adobe Photoshop 

software was used to calculate mine area which served as the proxy of mine size.  

Larvae pupated within Petri dishes and were reared to adults at room 

temperature (25˚C) in the laboratory. Days from oviposition to pupation was defined as 

larval development time. Body size of the eclosed adult fly was estimated by 

measurements of thorax length, which was calculated with ImagePro program (Media 

Cybernetics Inc.), using the margin of the pronotum and scutelum as landmarks 

(Partridge & Fowler 1993). After all experimental larvae had pupated, the remaining 

leaves were checked for newly emerged mines a under dissecting scope to estimate the 

frequency of oviposition by the wild population of female flies. 

 

Plant quality analysis 

To examine how plant quality influences larval performance and oviposition preference, 

the following traits were measured for each plant: C: N ratio, water content, specific leaf 

area (SLA), and saponin concentration. To estimate the mean water content and SLA of 

each plant, I randomly collected five fully expanded leaves from the upper half of each 

plant, scanned individual leaves to calculate the leaf area, and measured wet and dry 

weights. The remainder of un-mined leaves were dried in a 50 ˚C oven and powdered to 

 14



 

use for the subsequent chemical analyses.  

Leaf C: N ratio was measured using a Perkins Elmer CNO analyzer. The 

presence of saponins in leaf samples were first qualitatively tested using the distinct 

foaming property of saponins (Bazzaz et al 1997). In a test tube, 20 mg of dried and 

powdered leaf sample was added with 1 ml of distilled water, and shaken vigorously for 

30 seconds. The height of foam was measured after 10 min. This qualitative analysis 

resulted in characteristic foaming in Sa. officinalis samples, but very little in Si. latifolia. 

Thus, a quantification of saponins was conducted solely for Sa. officinalis.  

The majority of saponins in Sa. officinalis have quillaic acid as an aglycone (Jia 

et al 1998, Rochd et al 2004). Thus, the concentration of quillaic acid saponins was 

measured here. Powdered leaf samples (200mg) were extracted with MeOH, and 

hydrolyzed with 2 ml of HCl at 80 ˚C for 8 hours to yield quillaic acid. The solution was 

neutralized by adding 1 mol KOH, and extracted with EtOAc (5 ml x 3). Dried 

compounds were re-suspended in MeOH containing the cardenolide digitoxin as an 

internal standard. Quillaic acid concentrations were estimated by reverse-phase 

high-performance liquid chromatography (HPLC) on a Waters Acquity UPLC with mass 

spectrometer (Waters Corporation, Milford, MA, USA), following methods in de Roode 

et al (2008). Saponin extract from Quillaja saponaria (Sigma-Aldrich) was used to 

generate standard curves relating the concentration of saponins and quillaic acid. Five 

concentrations of saponin extract (ranging from 1 to 8 mg/ml HCl) were hydrolyzed and 

analyzed with HPLC as described above. Using the standard curves, I estimated the 

amount of quillaic acid saponins in the leaf samples per gram of dry weight. 

 

Data Analysis 
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Oviposition frequency was estimated on each exposed plant as the number of 

new mines that appeared after plants were brought to the field to distinguish from 

experimental ones. Although the number of eggs were not counted directly, the mine 

counts are likely to reflect the number of eggs oviposited, since leafminer eggs hatch 

successfully even on plant species that are toxic for larval development (Beta vulgaris: 

Uesugi 2008). All mines including very small ones were detected under the dissecting 

scope, thus this method of assessing oviposition frequency is believed to be accurate. 

Because plants differed in available leaf areas for oviposition, oviposition frequency was 

expressed as the expected number of mines per 1000 cm2 leaf area. Hereafter, I define 

this measure as ‘oviposition preference’.  

Two measures of larval performance, larval survival rate and feeding efficiency 

of surviving individuals, were estimated on caged plants to determine the adverse effect 

of plant quality. Only plants from the caged treatment were used, because larvae on 

exposed plants were severely attacked by parasitoids, which can affect survival rate (see 

Chapter 3) as well as efficiency through non-random parasitism (see Chapter 4). The 

survival rate was estimated per plant, and calculated as the proportion of experimentally 

initiated larvae that survived to the adult stage. Feeding efficiency was calculated as 

))(cm size mine)((days) t timedevelopmen larval(
)(mmlength thorax Efficiency 2= . 

This variable estimates the final body size achieved by an individual controlling for the 

time spent feeding and the amount of resource consumed. Although this measure of 

efficiency differs from conventional measure of leaf-use efficiency in leafminers 

(calculated as larval mass / frass mass: Koricheva & Haukioja 1994), it incorporates 

multiple aspects of larval performance, and thus simplifies a measure of resource use in A. 
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flavifrons. Feeding efficiency was calculated for each surviving individual and averaged 

for each plant. Since feeding efficiency did not differ between females and males (t = 

0.76, P = 0.45), both sexes were pooled to calculate the means.  

To test the PPH at the inter-specific level, oviposition preference, larval survival 

and feeding efficiency were compared between host plant species after controlling for the 

effect of soil nitrogen level (nitrogen treatment) and the density of experimental larvae. 

The density was included in the analyses because it varied among individual plants 

regardless of plant species and nitrogen treatments, and because the presence of other 

larvae on the plant might affect both oviposition behavior and larval performance.  

Oviposition frequency was examined in exposed plants using a Generalized 

Linear Model (GLM) with Poisson distribution. Survival was tested in caged plants using 

a GLM with binomial distribution. Feeding efficiency was similarly tested for caged 

plants, but was analyzed using a General Linear Model (LM) because the variable was 

normally distributed. In all analyses, host plant species, nitrogen treatment and density 

were modeled as fixed factors. The measures of plant traits were compared between the 

host species and nitrogen treatments using a LM. To assess whether the host species were 

similarly affected by nitrogen treatments, species x nitrogen interactions were also 

included.   

To examine how A. flavifrons respond to within-species variation in plant traits, I 

examined oviposition, survival and efficiency separately for each host species. Because 

plant traits (C:N ratio, SLA, water content) were expected to be correlated with each 

other, Principal Component Analysis (PCA) was used to obtain independent axes 

describing the largest variability among plant samples. PCA was conducted separately for 

the host species, but caged and exposed plants within each species combined. This 
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method provided principal component axes shared between the exposed and caged plants, 

so that their effects on the preference and performance could be compared indirectly. The 

scores of the first and the second principal components (PC1 and PC2) were then used in 

multiple regression analysis as predictors of the oviposition preference, survival and 

efficiency. As in the between-species comparisons, the density of experimental larvae was 

also included as predictors, since the presence of other larvae on a plant may alter plant 

quality due to induced responses (Karban & Baldwin 1997). In Sa. officinalis, quillaic 

acid saponin concentration was also included in the model. The oviposition frequency 

was analyzed with a GLM with Poisson distribution, the survival was tested with a GLM 

with binomial distribution, and the efficiency was tested with a LM. All analyses were 

conducted in R version 2.6.1 (The R Foundation for Statistical Computing).  

   

RESULTS 

Inter-specific comparisons 

Oviposition preference was 301 % higher on Si. latifolia than on Sa. officinalis when 

nitrogen treatment and density were held constant (Table 2.1, Fig. 2.1a), suggesting a 

strong preference for the former host species. A significant, but smaller effect of nitrogen 

treatment (30 % increase on high compared to low nitrogen treatment) was also observed. 

Oviposition frequency was not affected by the density of experimental larvae.  

Larvae also survived better on Si. latifolia than on Sa. officinalis (Table 2.1, Fig. 

2.1b). The probability of survival was predicted to be 0.73 and 0.56 on Si. latifolia and Sa. 

officinalis, respectively, when nitrogen treatment and density were held constant. Survival 

was also strongly influenced by the nitrogen treatment and larval density (Table 2.1), 

suggesting that the conditions in which plants grow could obscure the effect of host plant 
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species differences. Feeding efficiency did not differ between host plant species, but 

marginally increased in the high nitrogen treatment, and significantly decreased with 

larval density (Table 2.1, Fig. 2.1c).  

Plant traits varied between host species and between nitrogen treatments (Table 

2.2, Fig. 2.2). Leaf C: N ratio and water content were greater in Sa. officinalis than in Si. 

latifolia, but the nitrogen treatments generated greater variation within each species, 

resulting in a large overlap between the host species (Fig 2.2a,c). Specific leaf area (SLA) 

was greater in Si. latifolia than Sa. officinalis, indicating that Si. latifolia has thinner 

leaves (Fig 2.2b). The high nitrogen treatment increased SLA in both species, but the 

effect of nitrogen treatment was smaller compared to the effect of host species. Finally, 

the presence of saponins was detected in Sa. officinalis from the distinct foaming in the 

aqueous solution, but only marginal foaming was detected in Si. latifolia (Fig. 2.2d). The 

foam height did not differ between nitrogen treatments, but the concentration of quillaic 

acid saponins measured in Sa. officinalis were greater in the low nitrogen treatment than 

the high nitrogen treatment (Fig. 2.2e).  

 

Intra-specific comparisons 

The principal component analysis for Si. latifolia plants produced the first and second 

axes (PC1sl and PC2sl) that accounted for 63.0 and 21.2 % of the trait variability. PC1sl 

was positively associated with C: N ratio and water content, and negatively associated 

with SLA. PC2sl was negatively associated C: N ratio and SLA (Table 2.3, Fig. 2.3a). 

PC1sl had slightly negative effects on oviposition preference, larval survival, and feeding 

efficiency, but none of the effects were significant (Table 2.4, Fig.2.4a). PC2sl had 

positive effects on all leafminer parameters, but only the efficiency was marginally 
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significant. The density of experimental larvae had negative effect on all, and the effect 

was significant on feeding efficiency.  

 In Sa. officinalis, the first and second axes (PC1so and PC2so) accounted for 74.7 

and 17.3 % of the trait variability. Similar to Si. latifolia, PC1so was positively associated 

with C: N ratio and water content, and negatively associated with SLA. PC2so was 

negatively associated with water content and SLA in Sa. officinalis (Table 2.3, Fig. 2.3b). 

PC1so had significantly negative effect on oviposition frequency, but positive effect on 

survival (Table 2.5, Fig 2.4b). PC2so had non-significant positive effects on oviposition 

and efficiency, but had significantly negative effect on survival. Larval density increased 

oviposition preference and reduced survival rate and efficiency, but the effect was 

significant only for the survival. Quillaic acid saponins affected oviposition negatively, 

and survival and efficiency positively, but these effects were not significant.   

 

DISCUSSION 

Inter-specific comparisons 

The preference-performance hypothesis (PPH: Jaenike 1978) predicts that females should 

preferentially oviposit on host plants that enhance offspring performance. At the 

inter-specific level, PPH was supported, since females oviposited more frequently on Si. 

latifolia, on which larvae survived better, compared to Sa. officinalis. There was no 

correspondence between oviposition preference and larval feeding efficiency, which did 

not differ between host plant species. Considering that mortality due to plant defense can 

be as high as 40 % on Sa. officinalis, strong discrimination against the host seems 

adaptive.  

While the nitrogen treatment was associated with oviposition preferences, plant 
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species identity was the most important predictor. This indicates that Si. latifolia is a 

preferred host to Sa. officinalis across a wide range of plant growth conditions, and that 

host discrimination in A. flavifrons occurs primarily at the species level. Such hierarchical 

preferences have been previously observed in other generalist insects (Courtney & Kibota 

1990). 

Larval survival was also strongly influenced by host variability within species, 

including soil nitrogen level and larval density. Consequently, while Si. latifolia will 

generally promote larval survival, differences in larval survival between host species can 

potentially be obscured by intra-specific plant variation. However, such an effect might 

be experimentally exaggerated, as soil nitrogen levels were artificially manipulated in this 

study. Field collected plants of Si. latifolia and Sa. officinalis had similar leaf C: N ratios 

as experimental plants in the high nitrogen treatment (see Fig. 4.1, Chapter 4), suggesting 

that survival difference between host species should generally be greater in natural 

conditions (see Fig.2.1b).  

Host species differed in saponin concentrations and specific leaf area (SLA), 

variables that could potentially be used by A. flavifrons females as cues for host 

discrimination. The concentration of total saponins (or foam height) was much greater in 

Sa. officinalis than in Si. latifolia, which raises the possibility that saponins may function 

as a deterrent for the ovipositing females. Although the effect of saponins on oviposition 

behavior is currently unclear in herbivorous insects, saponins are known to reduce 

feeding activities in pea aphids (Golawska 2007), and might represent a deterrent in A. 

flavifrons, where females feed on plant sap prior to oviposition.  

High SLA in Si. latifolia might also indicate reduced mechanical defense in this 

host (Agrawal & Fishbein 2008). For example, plant species in the Myrtaceae family are 
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more likely to be mined by leafminers if they have thinner leaves, presumably because 

thinner leaves have a thinner epidermis layer, which makes it easier for females to 

ovipuncture (Sinclair & Hughes 2008).  

 

Intra-specific comparisons 

On Si. latifolia, oviposition preference and larval performance showed a positive 

association. Multiple regression coefficients typically exhibited similar signs between 

preference and performance (Fig 2.4a). Although the trend was weak, preference and 

performance favored nutrient-rich plants (low C: N ratio and water content), which is 

consistent with the predictions of the plant vigor hypothesis (PVH: Price 1991). However, 

the plant variables examined here were relatively poor predictors of oviposition 

preference, suggesting that females do not strongly discriminate among individual Si. 

latifolia plants.  

Feeding efficiency on Si. latifolia was negatively associated with larval densities 

on individual plants. Direct larval competition was unlikely to explain this pattern 

because each leaf contained a single larva, thereby eliminating direct interference or 

exploitative competition between individuals. However, increased herbivory can 

potentially induce plant chemical defense or reduce plant quality by triggering a 

reallocation of nitrogen away from the leaves (Karban & Baldwin 1997). These factors 

might indirectly influence the growth of larvae on densely populated plants. Despite the 

negative effect of density, females did not discriminate between plants based on larval 

density, possibly because A. flavifrons females could not detect or respond to this 

variable. 

Oviposition preferences on Sa. officinalis did not correspond with larval 
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performance (Fig.2.4b). Instead, females showed a strong preference for high-nitrogen 

plants, which were detrimental for larval survival. This paradoxical oviposition choice 

can be explained if female behavior maximizes female performance at the expense of 

offspring performance (Scheirs & DeBruyn 2002). For example, Scheirs et al (2003) 

found that females of grass miners, Chromatomia nigra and C. milii, preferentially fed, 

oviposited, and survived longer on host plants with higher protein contents. The larval 

performance, however, did not correspond with the oviposition choice. Because female A. 

flavifrons feed on plant sap prior to oviposition, the nutritional value of the sap could 

influence their feeding behavior. Feeding frequency, in turn, can be correlated with the 

oviposition in females (Scheirs et al 2003, A. Uesugi, unpublished data). Females 

preferred plants rich in nitrogen, which could fulfill their nutritional requirements for egg 

production. Low water content was possibly preferred because essential nutrients in the 

sap were less diluted (Slanky and Weeler 1992). While the present study did not test 

whether feeding preferences improved female performance, several studies in agromyzid 

flies suggest that this is a likely possibility (Scheirs et al 2000, 2003, 2004).  

The negative effect of leaf nitrogen on larval survival was surprising because 

nitrogen is an essential nutrient for larval growth (Awmack & Leather 2002). The adverse 

effect of nitrogen in Sa. officinalis suggests that the host is potentially defended by 

nitrogen-based defense metabolites or plant defensive proteins (Awmack & Leather 

2002), which were not measured in this study. The contrasting effects of nitrogen on 

larval survival between Sa. officinalis and Si. latifolia suggest that plant species respond 

differently to nitrogen elevation (Awmack & Leather 2002), which makes it difficult for 

ovipositing females to predict plant quality suitable for the performance of their offspring 

(Wise et al 2008).  
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Saponaria officinalis also responded to herbivory with induced defense (Karban 

& Baldwin 1997), as evident from the negative effect of density on larval survival. This 

consequence of “indirect” competition is more severe on Sa. officinalis than on Si. 

latifolia, since it not only reduced the larval growth, but also increased mortality. 

Although the specific compounds increasing the larval mortality are not known, the 

results suggest that Sa. officinalis is chemically better defended against A. flavifrons 

compared to Si. latifolia.  

Levels of quillaic acid saponins, which are often used as defense chemicals 

against generalist herbivores (Adel 2000, Agerbirk et al 2003, Golawski 2007), did not 

influence patterns of oviposition or larval performance on Sa. officinalis. This lack of 

response suggests that saponins are not effective against herbivores that are adapted to 

saponins, such as A. flavifrons (Travers-Martin & Muller 2008). Alternatively, it is 

possible that within-species variation in saponins was too small to generate a strong 

effect on A. flavifrons. Saponins exhibited much more pronounced differences between Si. 

latifolia and Sa. officinalis, and might have stronger influence on oviposition behavior 

and larval performance at the inter-specific level. Future studies will be necessary to 

evaluate this possibility.   

 

Conclusion  

The common garden experiment revealed that A. flavifrons females preferentially 

oviposit on Si. latifolia relative to Sa. officinalis. The inter-specific comparisons showed 

that this oviposition preference was positively correlated with larval survival, supporting 

the PPH. At the intra-specific level, the association between preference and performance 
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was weak on Si. latifolia, and negative on Sa. officinalis. Thus, the PPH was better 

supported at the inter-specific rather than intra-specific level.  

This pattern may reflect neurological constraints on female oviposition behavior 

(Bernays & Funk 1999). In general, the ability to discriminate between conspecific plants 

decreases with increases in diet breadth (Janz & Nylin 1997). In generalist insects that 

feed on multiple host species, females might be capable of making adaptive choices at the 

host species level, but might not be able to differentiate within-species variation in plant 

quality due to limited ability to process finer scale information (Bernays & Funk 1999). 

The lack of strong discrimination among Si. latifolia plants, as well as oviposition 

“mistakes” made on Sa. officinalis, might be the result of neurological limitation of these 

insects.   

Natural selection may also favor stronger host discrimination at the species level 

so that females will not waste their time searching for hosts on poor quality species 

(Papaj & Rausher 1983). Selection on females to discriminate against Sa. officinalis may 

be exacerbated due to the negative consequence of female choice on larval survival. On 

Sa. officinalis, females chose plants that were detrimental to their offspring, thereby 

exaggerating survival differences between larvae on the two host species. Thus, 

preference-performance correlation at the intra-specific level might indirectly influence 

oviposition preference at the inter-specific level. However, more studies examining the 

PPH at both inter- and intra-specific levels are necessary to test this hypothesis.  

 

 25



 

 

 
 
 
 

 

 26



 

 

 
 
Figure 2.1: Oviposition preference (a), larval survival (b), and feeding efficiency (c) on Si. 
latifolia and Sa. officinalis. Open bars indicate plants in the low nitrogen treatment and 
closed bars indicate plants in the high nitrogen treatment. Error bars represent standard 
errors. Numbers above bars indicate samples size. See Table 2.1 for the significance of 
host species and nitrogen treatment effects. 
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Figure 2.2: Plant trait variations between host species and nitrogen treatments. Open and 
closed bars indicate low and high nitrogen treatments, respectively. C: N ratio (a), 
specific leaf area (SLA:b), leaf water content (c), and total saponin concentration (foam 
height: d) were measured for both host species, and quillaic acid saponin concentration 
(e) was measured for Sa. officinalis. Error bars indicate standard errors (n = 38 in Sa. 
officinalis in both low and high nitrogen treatments, and n = 38 and 29 in Si. latifolia for 
low and high nitrogen treatments). Different letters indicate significant contrasts at P < 
0.05. 
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a) 

 

 

b) 

Figure 2.3: PCA plots for Si. latifolia (a) and Sa. officinalis (b) showing plants in high 
nitrogen treatment (black dots: n = 29 in Si. latifolia and 39 in Sa. officinalis) and low 
nitrogen treatment (open circles: n = 38 in Si. latifolia and 39 in Sa. officinalis). Plant 
traits are projected onto the plots as arrows.  
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Figure 2.4: Effect size of predictors (PC1, PC2, larvae density and quillaic acid saponin 
concentration (in Sa. officinalis)) in multiple regression analyses. For Si. latifolia (a) and 
Sa. officinalis (b), Z values for oviposition preference (closed bars), larval survival (gray 
bars), and feeding efficiency (open bars) are plotted. 
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Table 2.1: Results of inter-specific comparisons by ANOVA. Effects of host plant species 
(Species), nitrogen treatment (N treatment) and larval density on oviposition frequency, 
larval survival and feeding efficiency.  
  Estimate Std. 

Error 
Z P 

Oviposition      
 Species 1.11 0.10 11.23 <0.0001 
 N treatment 0.27 0.12 2.21 0.027 
 density 0.05 0.05 1.01 0.31 
Survival      
 Species 0.75 0.21 3.61 0.0003 
 N treatment -0.50 0.18 -2.85 0.004  
 density -0.37 0.12 -3.24 0.001 
Efficiency      
 Species 0.00029 0.002 0.15 0.88 
 N treatment 0.0042 0.002 1.92 0.06 
 density -0.0039 0.001 -4.05 0.0002 
 
 
Table 2.2: Effects of host plant species and nitrogen treatment on leaf quality—C: N 
ratios, specific leaf area (SLA), water content, total saponins, and quillaic acid saponins 
(measured only for Sa. officinalis). 
 
plant trait species nitrogen species x nitrogen 

 t P t P t P 

C:N ratios -4.83 <0.0001 -16.9 <0.0001 0.69 0.49 

SLA 13.47 <0.0001 4.79 <0.0001 -1.40 0.16 

water content -0.58 0.56 -6.08 <0.0001 0.094 0.93 

total saponins -17.79 <0.0001 0.061 0.951 -0.019 0.99 

Qa saponins - - -2.13 0.041 - - 
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Table 2.3: PCA scores of plant traits in Si. latifolia and Sa. officinalis for the first and 
second principal components (PC1 and PC2).  

Si. latifolia Sa. officinalis  
PC1sl PC2sl PC1so PC2so 

CN 1.69 -1.13 2.08 -0.127 
water 1.81 -0.128 1.91 -1.05 
SLA -1.65 -1.30 -1.84 -1.23 
 
 
 
 
 
Table 2.4: Results of intra-specific comparisons in Si. latifolia. Effects of plant traits 
(PC1 and PC2) and larval density on oviposition preference, survival and efficiency.  
  Estimate Std.Error Z P 
Oviposition PC1 -0.056 0.16 -0.35 0.72 
 PC2 0.15 0.14 1.08 0.28 
 density -0.014 0.054 -0.27 0.79 
Survival PC1 -0.013 0.36 -0.038 0.97 
 PC2 0.21 0.39 0.54 0.59 
 density -0.088 0.16 -0.55 0.59 
Efficiency PC1 -0.0003 0.004 -0.081 0.94 
 PC2 0.007 0.004 1.75 0.093 
 density -0.005 0.0016 -2.95 0.0073 
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Table 2.5: Results of intra-specific comparisons in Sa. officinalis. Effects of plant traits 
(PC1 and PC2), larval density, and quillaic acid saponin concentration on oviposition 
preference, survival and efficiency. 
  Estimate Std.Error Z P 
Oviposition PC1 -0.58 0.21 -2.74 0.0061 
 PC2 0.16 0.17 0.92 0.36 
 density 0.19 0.13 1.51 0.13 
 saponins -5.87 10.1 -0.58 0.56 
Survival PC1 0.66 0.25 2.59 0.0096 
 PC2 -0.75 0.30 -2.47 0.014 
 density -0.60 0.21 -2.86 0.0042 
 saponins 7.92 11.5 0.69 0.49 
Efficiency PC1 -0.0016 0.0026 -0.66 0.51 
 PC2 0.0028 0.0031 0.89 0.38 
 density  -0.0012 0.0016 -0.75 0.46 
 saponins 0.0086 0.12 0.071 0.94 
 



 

Chapter 3 

 

Spatial and temporal heterogeneity in host plant availability influences the pattern 

of host plant use in the leafminer Amauromyza flavifrons 

 

ABSTRACT  

Spatial and temporal heterogeneity in resource availability is expected to influence the 

pattern of host plant use in herbivorous insects because selection favors female behaviors 

that maximize host searching efficiency. In this study, I investigated whether the 

characteristics of host plant patches (i.e. size, density and seasonal availability of 

resources) could influence the host use pattern of the leafminer Amauromyza flavifrons 

between its host plant species, Saponaria officinalis and Silene latifolia. 

Although Sa. officinalis is an inferior host to Si. latifolia, the density of A. 

flavifrons was consistently higher in patches of Sa. officinalis compared to Si. latifolia. 

This pattern may be explained by the resource concentration hypothesis that females can 

find dense and persistent patches of Sa. officinalis more easily and stay longer to oviposit 

than on the sparse and ephemeral patches of Si. latifolia. 
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INTRODUCTION 

The availability of suitable host plants for herbivorous insects often varies spatially and 

temporally across the landscape, and ovipositing females may modify their host range to 

maximize their fitness gain (Mayhew 1997). In herbivorous insects, females generally 

exhibit ranked preference for host plant species according to the plant quality for 

offspring performance (Jaenike 1978). However, herbivores are often found feeding on 

low-quality hosts, if preferred hosts are rare and females are limited in host searching 

time (Levins & MacArthur 1969, Mayhew 1997, West & Cunningham 2002). This is 

because the cost of searching outweighs the loss of fitness from accepting the low-quality 

host (Levins & MacArthur 1969). For example, females of Pieris oleraceae from areas 

heavily invaded by garlic mustard were found to readily use the abundant host, on which 

larvae survived poorly compared to their native host (Keeler & Chew 2008).   

In spatially heterogeneous environments where host species grow in distinct 

patches, host searching efficiency may be influenced by how apparent patches are to the 

searching females (Root 1973, Kareiva 1983). Previous studies showed higher 

colonization rates by insects when patch size and/or plant density per patch were greater 

(Hamback & Englund 2005, Heisswolf et al 2009). This resource concentration 

hypothesis (Root 1973) also predicts that females should stay longer in larger and denser 

patches to oviposit, resulting in accumulation of herbivore populations. Although 

previous studies testing the hypothesis investigated the colonization of a single plant 

species by monophagous herbivores, patch characteristics could vary among host plant 

species, and influence the choice between host plant species in generalist insects.  

Similarly, temporal variation in host abundance should influence oviposition 

behavior, such that host species that are more ephemeral should be used less than 
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persistent hosts. For example, in the checkerspot butterfly, Euphydryas chalcedona, 

females frequently used a nutritionally poor host in the field because a superior host was 

ephemeral (Williams 1983). The pattern of host plant use by herbivores, therefore, may 

be strongly influenced by the spatial and temporal variation in the relative abundance of 

host plant species (Mayhew 1997).  

In this study, I investigated how the resource availability and seasonal 

persistence of the host plant species influence the pattern of host plant use in A. flavifrons 

Amauromyza flavifrons (Diptera: Agromyzidae). A. flavifrons is oligophagous, feeding on 

multiple host plants within the family Caryophyllaceae (Spencer 1990). In the study area 

in southeast Michigan, A. flavifrons commonly feed on two host species, Silene latifolia 

and Saponaria officinalis. In a common garden experiment where both hosts are equally 

abundant, females prefer to oviposit on Si. latifolia to Sa. officinalis because Si. latifolia 

is a higher quality host for larval development (see Chapter 2).  

Spatial variation in host plant availability is expected to influence the host use of 

A. flavifrons in the field because Si. latifolia and Sa. officinalis commonly grow in 

separate patches across the landscape. Because A. flavifrons has 3-4 generations a year (A. 

Uesugi, personal observations), the temporal pattern of host plant availability is also 

likely to influence host plant use. I predicted that host use would be enhanced for the host 

species that forms larger, denser and temporally stable patches. 

 

METHODS 

Field surveys 

Field surveys were conducted from 2006-2008 in Washtenaw Co. Michigan in six and 

eight patches of Sa. officinalis and Si. latifolia, respectively. The number of patches that 
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were visited differed between years because some patches disappeared and some were 

added over the study years. All patches used in this study had only one of the two host 

species growing. Patches of Sa. officinalis were found along road sides, while Si. latifolia 

grew predominantly in the edges of old fields and agricultural fields. Patches were 

separated at least by 1 km (Fig. 3.1).   

In Sa. officinalis patches and small Si. latifolia patches, the patch size was 

estimated by directly measuring the length and width of the area covered by the plant 

species. Direct measurement was not possible in large patches of Si. latifolia that 

extended over agricultural fields, thus the area was estimated using aerial photos 

(available from www.Google Earth.com). In each patch, shoot density was estimated in 

early June 2007. Because Sa. officinalis patches were much denser than Si. latifolia 

patches, shoot density was estimated using 10 replicated quadrats of 1 m2 in Sa. 

officinalis patches, and two replicates of 2 m x 5 m transects in Si. latifolia patches. The 

density was calculated as the number of shoots per square meter.  

To monitor temporal change in leaf availability, study patches were visited at the 

beginning of each month from June to August 2007. These visits corresponded 

approximately to the peak mining activity of each leafminer generation. In each patch, 20 

shoots of host plants were randomly selected and the number of healthy, non-senescent 

leaves was counted. The mean number of leaves per shoot was calculated for the 

subsequent analysis.  

The density of leafminers was estimated per patch per generation from 

2006-2008. All patches were visited within three days at the peak of mining activity 

during each generation. The density was estimated as the number of mines found during 

30 minutes of observation time. Along a transect line, I randomly selected a nearest shoot 
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every 50 cm, carefully checked all leaves on the shoot, and collected leaves that 

contained mines. The time required for checking one leaf was assumed to be consistent 

among host plant patches and visits within a patch over time because censuses were 

conducted by a single observer. Mines of all sizes were collected, including ones that 

larvae had exited. However, empty mines that had turned brown were excluded because 

they are likely to be old mines made by individuals from previous generations, which 

would result in overestimation of the density in later seasons.  

 

Data Analyses 

Patch sizes and shoot densities were compared between Sa. officinalis and Si. latifolia 

patches using the Mann-Whitney test. The non-parametric test was used because these 

patch characteristics were not normally distributed. Seasonal changes in leaf availability 

and leafminer density were examined using a Linear Mixed Model. Because not all 

patches were visited every year, I modeled patch as subject group. Host plant species and 

the number of generations were entered as fixed factors and year as a random factor.  

 

RESULTS 

Patch sizes were marginally greater for Si. latifolia than for Sa. officinalis (U = 11, P = 

0.059), but Si. latifolia patches were variable in size (Fig. 3.2a). Shoot density within a 

patch was greater in Sa. officinalis than in Si. latifolia patches (U = 0, P < 0.0001, 

Fig.3.2b). The number of leaves per shoot was greater in Sa. officinalis than in Si. 

latifolia across three leafminer generations (species effect: F1,13.5 = 131.5, P < 0.0001, Fig. 

3.3). No significant effect of generation was detected when the two host species were 

considered together (generation effect: F1,18.5 = 0.69, P = 0.51). However, the pattern of 
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leaf availability differed between the host plant species. In Sa. officinalis, the leaf number 

increased in July but decreased in August, whereas in Si. latifolia the leaf number 

dropped in July and August. In Si. latifolia patches found in agricultural fields, plants 

themselves disappeared in later generations because the host plant was harvested along 

with the crop plants. Si. latifolia patches in old fields persisted, but most leaves senesced 

by the beginning of the July generation. This phenological differences between host 

species resulted in significant host species x generation interactions (species x generation: 

F1,19.6 = 48.1, P < 0.0001).  

The density of A. flavifrons fluctuated over time and space (Fig. 3.4). Density 

was consistently higher in Sa. officinalis than in Si. latifolia patches throughout the 

generations (species effect: F1,44= 137.4, P < 0.0001). The density also changed among 

generations (generation effect: F1,44= 3.8, P = 0.032). The density in Sa. officinalis 

increased with generations, but A. flavifrons disappeared from Si. latifolia patches in July 

and August generations, resulting in significant species x generation interactions (species 

x generation: F1,44 = 21.9, P < 0.0001).  

 

DISCUSSION  

The density of A. flavifrons in natural patches was consistently higher in Sa. officinalis 

than Si. latifolia patches. This host use pattern did not agree with the pattern of 

oviposition preference for Si. latifolia over Sa. officinalis observed in the common garden 

experiment (see Chapter 2). Instead, the pattern may be explained by the resource 

concentration hypothesis (Root 1973), suggesting that females can easily find and stay 

longer in larger and denser patches. Sa. officinalis patches were considerably denser than 

Si. latifolia patches, possibly because Sa. officinalis spreads primarily through vegetative 
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growth, whereas Si. latifolia spreads mostly by seeds.  

Heisswolf et al (2009) found that the density of a leaf beetle Cassida 

canaliculata in patchy environments increased with patch size and host plant density, but 

the effect of plant density was much stronger. Similarly in A. flavifrons, plant density 

predicted leafminer density better than the patch size, since leafminer density was lower 

in Si. latifolia patches, which tended to be larger than Sa. officinalis patches. Visual and 

chemical cues from the plants may be more concentrated in denser patches and could aid 

females during host search (Bukovinszky et al 2005).  

Moreover, the associational resistance hypothesis (Root 1973) suggests that the 

presence of non-host species within a patch would make host searching by females more 

difficult as a result of visual or olfactory interference (Hamback et al 2000, Sholes 2008). 

While Sa. officinalis formed monospecific patches, Si. latifolia often grew interspersed 

among non-host species. The present study could not separate the effect of plant density 

and the presence of non-host species because dense patches of Sa. officinalis necessarily 

contained fewer non-host species. Nonetheless, these patch characteristics suggest that 

females could locate Sa. officinalis plants more efficiently than Si. latifolia plants. 

The temporal pattern of resource availability also seems to explain why A. 

flavifrons uses Sa. officinalis more frequently than Si. latifolia under natural conditions. 

Seasonal changes in leaf availability indicated that Sa. officinalis plants continue to 

produce new leaves throughout the generations of A. flavifrons, and that the host is 

seasonally predictable. Leafminer density increases in Sa. officinalis patches because the 

population can build up over generations.  

In contrast, Si. latifolia is an ephemeral host, available to A. flavifrons only 

during the first generation of the year in June. Because Si. latifolia senesces in early 
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summer, the first generation of leafminers developing in Si. latifolia patches must 

disperse to Sa. officinalis patches in the following generations to find host plants. 

Leafminer populations also do not persist and overwinter in Si. latifolia patches, thus 

these patches must be newly colonized every spring. Thus, even though Si. latifolia is a 

preferred host, A. flavifrons may be limited to use it due to costs associated with dispersal 

among host patches (Schtickzelle and Baguette 2003, Zera & Mole 1994,Yoder et al 

2004).   

Because Si. latifolia is available only during the first generation of the year, this 

host species may invoke less selection pressure on the behavior of females than does Sa. 

officinalis (Futuyma 1976). Thus, for the preference for Si. latifolia to be maintained in 

the population, the benefit of using the host must be substantial. Although leafminer 

larvae survive plant defense better on Si. latifolia than on Sa. officinalis, the survival 

difference (~20 % difference) does not seem sufficient to counteract the cost of host 

searching. The following chapter will examine how ecological interactions involving the 

third trophic levels might contribute to the shaping of oviposition preference in A. 

flavifrons.  
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Figure 3.1: Locations of Si. latifolia (open squares) and Sa. officinalis (black dots) 
patches surveyed. The study was carried out in Washtenaw Co., Michigan. 
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Figure 3.2: Box plots of patch size (a) and stem density (b) variation in Sa. officinalis and 
Si. latifolia. Lines inside the box indicate means, and circles show outliers. Species are 
marginally different in patch sizes (n = 15, U = 11, P = 0.059), and significantly different 
in stem densities (n = 15, U = 0, P < 0.0001). 
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Figure 3.3: The seasonal change in mean (±SE) leaf abundance in Sa. officinalis patches 

(black dots: n = 6) and in Si. latifolia patches (open circles: n = 9).  
 

 

 

Figure 3.4: The seasonal change in mean (±SE) leafminer density in Sa. officinalis 

patches (black dots: n = 6) and in Si. latifolia patches (open circles: n = 9).



 

 
Chapter 4 

 

Spatial heterogeneity in parasitism increases the impact of enemy-free space for the 

leafminer Amauromyza flavifrons 

 

 

ABSTRACT 

Host plant choice by herbivorous insects may be influenced by the presence of 

enemy-free space (EFS), a host plant on which herbivores may escape from their natural 

enemies. Variation in mortality from natural enemies is often attributed to differences in 

plant chemical, nutritional, or morphological traits between host plant species. However, 

when host species grow in distinct patches, spatial variation in abundance and 

composition of the enemies may further modify the benefit of EFS.  

This study investigated the relative importance of plant and patch characteristics 

in providing EFS for a leafminer Amauromyza flavifrons. The degree of parasitism was 

compared between a seasonally persistent host plant, Saponaria officinalis, and a 

seasonally ephemeral host, Silene latifolia, when both host species were interspersed in a 

common garden, and when they were growing separately in monospecific patches as 

occurs in nature.  

Overall mortality due to parasitism did not strongly differ between host species 

in the common garden, although mortality at larval stages was higher on Sa. officinalis 
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than on Si latifolia. This suggests that variation in plant traits alone does not create EFS 

for A. flavifrons. In contrast, overall parasitism was substantially lower in 

naturally-occurring patches of Si. latifolia than Sa. officinalis, and was independent of 

leafminer density, indicating that host plant specific habitat characteristics are responsible 

for providing EFS in Si. latifolia patches. This benefit of EFS may partly explain why A. 

flavifrons continues to feed on Si. latifolia even though it is an ephemeral and 

unpredictable resource.  
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INTRODUCTION 

For insect herbivores that encounter multiple host species across the landscape, 

oviposition choice by females plays an important role in determining the performance of 

their offspring (Jaenike 1990). Although host choice may be influenced primarily by host 

quality as food (Futuyma and Moreno 1988), accumulating evidence suggests that 

herbivores may preferentially feed on host plant species that reduce mortality from 

natural enemies, or providing “enemy free space” (EFS: Price et al 1980, Bernays and 

Graham 1988, Berdegue et al 1996).  

Mortality from natural enemies may differ between host plant species due to 

plant chemical, nutritional, or morphological traits that are specific to host species 

(Hunter 2003). For example, herbivores may find EFS on more toxic hosts where they 

obtain chemical compounds that can be sequestered for defense (Denno et al 1990, 

Bjorkman et al 1997, Nieminen et al 2003, Singer et al 2004). Structural refuges, such as 

large fruit or a protective calyx where enemies cannot reach, or leaf trichomes that hinder 

movement of enemies, can also provide herbivores with EFS (Feder 1995, Freese 1995, 

Gruenhagen and Perring 2001, Mira and Bernays 2002, Oppenheim and Gould 2002, 

Koller et al 2007, Obermaier et al 2008). When parasitoids use host plant specific 

olfactory cues to search for prey, herbivores may find EFS on plants that lack the 

chemical cues (Brown 1995, Gratton 2001). Finally, herbivores may escape from natural 

enemies by feeding on poor quality plants because enemies preferentially attack vigorous 

prey reared on high quality plants (Benrey and Denno1997, Teder and Tammaru 2002, 

Ode 2006, Koller et al 2007).   

When host species grow in spatially distinct patches, mortality from natural 

enemies could also differ due to spatial variation in abundance and composition of the 
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enemies among host patches (Yamaga and Ohgushi 1999, Ohsaki and Sato 1994, Murphy 

2004, Craig et al 2007, Wiklund and Friberg 2008). Spatial heterogeneity in enemy load 

may arise from density-dependent colonization of patches by natural enemies, such that 

highly mobile enemies aggregate in patches where herbivore density is high in order to 

increase their foraging efficiency (Umbanhowar et al 2003, Vanbergen et al 2007, Pareja 

et al 2008, Tentelier et al 2008). Such density-dependent foraging behavior of enemies 

provides spatial refuges for herbivores that feed in low density patches, regardless of 

plant species identity.  

In contrast, enemies may respond differently to the habitat characteristics where 

plant species grow, generating density-independent heterogeneity in enemy abundance. 

For example, certain host plant patches may be unsuitable for natural enemies (Yamaga 

and Ohgushi 1999, Murphy 2004, Craig et al 2007, Wiklund and Friberg 2008). A 

herbivorous lady beetle, Epilachna pustulosa, suffered much lower predation when 

feeding on blue cohosh than on alternative hosts because blue cohosh grows in dark 

understory forests, which predators tend to avoid (Yamaga and Ohgushi 1999). 

Alternatively, enemy populations may not build up in certain plant patches because host 

plants are ephemeral and herbivore populations do not persist over time (Ohsaki and Sato 

1999). The butterfly Pieris rapae, for example, is known to avoid parasitism by 

colonizing ephemeral patches, but suffer parasitism in permanent patches (Ohsaki and 

Sato 1994). Such spatial heterogeneity in enemy load is likely to have important 

implications for EFS and host plant choices by herbivorous insects, but previous studies 

rarely address these habitat effects.  

In this study, I investigate the relative importance of the habitat effect in creating 

EFS for a leafminer, Amauromyza flavifrons (Agromyzidae, Diptera). EFS may be 
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especially relevant for A. flavifrons because the larvae are heavily attacked by multiple 

species of parasitoids (Scheffer 1995), including idiobiont ectoparasitoids, which 

terminate their prey growth and feed externally, and koinobiont endoparasitoids, which 

allow the host to continue developing and feed within the host body (Askew and Shaw 

1986). A. flavifrons feed on multiple species of plants in the family Caryophyllaceae, but 

in this study area (southeastern Michigan) they feed mainly on two host species, 

Saponaria officinalis and Silene latifolia (Caryophyllaceae). Habitat effects could be 

potentially important in this system because these host plants generally grow in separate 

patches, although they are occasionally found growing intermixed. Sa. officinalis is a 

common and persistent host that are present throughout the summer and for all leafminer 

generations (3-4 generations per year). In contrast, Si. latifolia is seasonally ephemeral 

and available only during the first generation of each year in June, after which it 

senesces. 

To test for the relative contribution of plant and habitat effects in providing EFS, 

I compared parasitism on A. flavifrons at two spatial contexts: when both plant species 

are intermixed in a common garden, and when they grow in separate patches as occurs in 

nature. Discrepancy in parasitism on Sa. officinalis and Si. latifolia in the common garden 

represent the benefit of EFS acquired through differences in plant traits alone, whereas 

parasitism differences between Sa. officinalis and Si. latifolia patches at a larger spatial 

scale show the EFS resulting from the combination of plant traits and habitat 

characteristics. Thus, if the degree of EFS is similar in the common garden experiment 

and the among-patch comparisons, it will imply that variation in plant traits is responsible 

for EFS. The absence of EFS in the common garden, in turn, will suggest that variation in 

habitat characteristics provides A. flavifrons with EFS across the landscape. To 
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understand the mechanisms generating the spatial heterogeneity of parasitism among 

natural patches, I further tested whether parasitism is dependent or independent of the 

density of A. flavifrons.  

 

METHODS 

Common Garden Experiment 

The effect of plant traits alone on EFS was examined in a common garden experiment at 

Matthaei Botanical Gardens (MBG: University of Michigan) in July 2007. Mortality from 

parasitoids was estimated by contrasting leafminer mortality in the presence (“exposed 

treatment”) and absence (“caged treatment”) of parasitoids. This method was preferred to 

a commonly used method of estimating parasitism from the number of parasitoids 

emerged because larval mortality, which is often assumed to be caused by plant defense 

chemicals, can also result from adult parasitoids consuming A. flavifrons larvae for egg 

production (Heimpel and Collier 1996). Thus, the exposed and caged treatments allowed 

us to identify which categories of leafminer mortality are caused by parasitoids.    

 Plants used in the experiment were grown in individual pots in the greenhouse at 

MBG and fertilized with two levels of nitrogen: 5 ml of 1.17 mol and 0.009 mol 

ammonium nitrate solution weekly. Six potted plants of the same species and nitrogen 

treatment were placed in a plastic cage where eight mated females were released for 

oviposition for 6 hrs. To assure oviposition, new females fed with 30 % honey water were 

used for each oviposition trial. Plants containing A. flavifrons eggs were kept in the 

greenhouse under mesh cover for four days before they were exposed in the field. This 

was done so that larger experimental larvae could be distinguished from larvae 

subsequently oviposited by the wild population of A. flavifrons (Scheffer 1995).  
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To avoid competition among larvae, a single larva per leaf was allowed to 

develop and the rest were killed by a needle. Most eggs hatched by the fifth day, and 

plants were placed in an open field at MBG under shade cloth to shield them from direct 

sunlight. Half of the plants were bagged with fine mesh (caged treatment) and the other 

half were exposed to the natural level of parasitoids (exposed treatment). A total of 40 Sa. 

officinalis (16 caged, 24 exposed) and 30 Si. latifolia (13 caged, 17 exposed) plants were 

placed in the field in a completely randomized design. Larval development lasted 

approximately for two weeks. Each leaf containing a leafminer at the last stage of 

development was individually collected in a Petri dish. Pupae were reared at a room 

temperature in the laboratory, and emerging insects were recorded. To assess the 

mortality at larval stages, all leaves were checked for mines under a dissecting scope.  

  

Field survey of natural patches 

To compare parasitism between the two host species in naturally occurring patches, field 

surveys of Sa. officinalis and Si. latifolia patches were conducted in June 2006, 2007 and 

2008 in Washtenaw Co., Michigan in five to six patches per host plant species. This 

comparison was only relevant in the first generation of the year because A. flavifrons 

disappeared from the Si. latifolia patches as the host became unavailable by the second 

and third generations. Patches of Sa. officinalis were found along road sides, while Si. 

latifolia grew predominantly in the edge of large agricultural fields. All patches were 

separated at least by 1 km. Each patch was visited for 30 minutes and all leaves 

containing mines of A. flavifrons were collected.  

The leaves were brought back to the laboratory and were examined under a 

dissecting scope to determine the mortality at the larval stage. Leaves containing living 
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larvae were placed in a 0.5 ml microcentrifuge tubes and reared at a room temperature 

until adult eclosion. In 2006 field survey, I included larvae collected at earlier 

developmental stages, which is likely to underestimate the rate of endoparasitism because 

these larvae were not exposed to the parasitoid community during their entire larval 

development. For 2007 and 2008 survey, only larvae collected at the final instar stage 

were included in the calculation of leafminer fates.   

 

Leaf C: N ratio analysis 

To compare the quality of plants in the field and the common garden experiment, I 

measured leaf C: N ratios. In the common garden, all un-mined leaves from each plant 

were collected, whereas in the field, 50 leaves from various stems were collected per 

patch. All leaves were dried in a 50 ˚C oven, and the powdered material was analyzed 

using a Perkins Elmer CNO analyzer.  

   

Data Analysis 

In both host plant species, the C: N ratios of leaves collected from the natural patches 

were similar to that of common garden plants in the high nitrogen treatment (t < 1.2, P > 

0.2 for both species), but significantly differed from plants in the low nitrogen treatment 

(t > 8.2, P <0.0001 for both species: Fig. 4.1). Because the high nitrogen treatment better 

represents the plant condition that A. flavifrons and parasitoids encounter in the field, the 

following analyses were conducted using only data from the high nitrogen treatment in 

the common garden experiment.  

In both the common garden experiment and the field survey, the fate of each 
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larva was categorized as follows: 1) larval mortality when A. flavifrons larva is found 

dead inside its mine, 2) ectoparasitism when parasitoid larva develops on the dead 

leafminer larva, 3) endoparasitism when an adult parasitoid ecloses from A. flavifrons 

pupa, 4) pupal mortality when no insect ecloses from the pupa, and 5) leafminer survival 

when an adult leafmining fly ecloses from the pupa. Larval mortality and ectoparasitism 

were calculated in proportions to the number of total larvae initiated. Pupal mortality and 

endoparasitism were calculated in proportion to the number of total larvae that survived 

to pupation. All proportion data were arcsine-square root transformed. In the common 

garden experiment, each category of mortality was calculated for each potted plant. 

Larval and pupal mortality were tested for host plant species and caging treatments using 

two-way ANOVA, whereas ecto- and endoparasitism were tested only for host plant 

species with t-test, since no parasitism was observed in the caged treatment. In the field 

survey, mortality categories were calculated by patch by year, and compared between 

host plant species and survey years using Linear Mixed Model with patch as a random 

effect. The random effect was included because some patches, but not all, were visited 

multiple years.  

Parasitism risk within naturally-occurring patches may be dependent or 

independent of the density of A. flavifrons. I tested the predictions by fitting 

Mixed-effects logistic regression model with binomial errors and logit link functions to 

the parasitism data (Vanbergen et al 2007). Explanatory variables fitted as fixed effects 

were leafminer density and host plant species. Patch was fitted as a random effect to 

account for the multiple visits in some patches. Leafminer density was estimated from the 

number of mines collected during the 30 minutes of survey period and is expressed as 

number of mines per minute (see Chapter 2 for details). All analyses were done with 
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SPSS (SPSS Inc, Chicago) except for the test of density-dependence, which was 

conducted using Stata 10.0 (StataCorp LP, College Station).  

  

RESULTS 

Common Garden Experiment 

In caged treatment, larval mortality in the absence of parasitoids accounted for less than 

10% of total mortality and did not differ between host plant species (Table 4.1, Fig. 4.2a). 

This indicates that background larval mortality, likely caused by plant defense chemicals, 

is equivalent in both host species. In contrast, in the exposed treatment, the larval 

mortality was substantially greater on Sa. officinalis than on Si. latifolia (32% and 1% of 

total mortality, respectively). The significant cage-by-host plant interaction for larval 

mortality suggests that parasitoids preferentially kill leafminer larvae on Sa. officinalis. 

Similarly, ectoparasitism was evident only on Sa. officinalis in the exposed treatment, 

although it accounted for only 5% of total mortality (Fig. 4.2b). Endoparasitism was 

observed on both host plant species, but the magnitude did not differ significantly 

between the hosts (Table 4.1, Fig. 4.2c), suggesting that endoparasitoids select their prey 

irrespective of host plant species. Five morpho-species of endoparasitoids were recovered, 

including two Opius spp. (Family Braconidae), one Chrysocharis sp. (Eulophidae), and 

two Halicoptera spp. (Family Ptelomalidae). Finally, Pupal mortality was greater on Sa. 

officinalis than on Si. latifolia in both caged and exposed treatments (Fig.4.2d). The 

absence of the cage effect and cage-by-host plant interactions indicates that pupal 

mortality is not caused by parasitism, and that the host plant difference in pupal mortality 

is due to variation in plant nutritional or chemical quality alone. Because pupal mortality 

was not caused by parasitism, I excluded pupal mortality when estimating the total 
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mortality caused by parasitoids (total parasitism). Total parasitism did not differ between 

host plant species (Fig. 4.2e). 

  

Field survey 

Larval mortality (Fig. 4.3a) and endoparasitism (Fig. 4.3c) showed significant host plant 

species effects, whereas ectoparasitism (Fig. 4.3b) and pupal mortality (Fig. 4.3d) did not 

(Table 4.2). A significant year effect was observed for endoparasitism, ectoparasitism 

and pupal mortality, but host plant-by-year interactions were not significant, indicating 

that the differences between host plant species are consistent over three years (Table 4.2). 

Total parasitism was calculated for each patch by excluding pupal mortality, assuming 

that background mortalities in the natural patches are equivalent with that in the common 

garden. Total parasitism, the combination of endoparasitism and larval mortality, was 

substantially higher in Sa. officinalis patches (30.6 %) than in Si. latifolia patches (8.0 %; 

Fig. 4.3e).  

Mortality at larval stages (larval mortality and ectoparasitism: Fig. 4.4a) and 

endoparasitism (Fig. 4.4b) did not depend on A. flavifrons density within a patch, but 

depended on the host plant species identity (Table 4.3). On average across the three 

census years, mortality increased in Sa. officinalis compared to Si. latifolia patches by 

65.2 % at larval stages and 84.8 % by endoparasitoids. Together, total parasitism 

increased by 75.2% in Sa. officinalis patches (Table 4.3).  

 

DISCUSSION 

Enemy-free space (EFS) was found in patches of the ephemeral host, Si. latifolia. Field 

observations showed that total mortality due to parasitoids was 75 % lower in Si. latifolia 
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patches than in Sa. officinalis patches, and the pattern was consistent over three years. In 

contrast, total mortality from parasitoids between the host plant species did not differ in 

the common garden experiment where the habitat effect was removed. This suggests that 

differences in plant characteristics alone cannot account for the EFS observed in natural 

patches. These results support the hypothesis that spatial heterogeneity of parasitoid 

abundance, rather than plant traits, is largely responsible for generating EFS across the 

landscape.  

 Although the parasitoid community as a whole did not respond differently to the 

host plant species in the common garden, the examination of each mortality category 

suggests that some parasitoids preferentially attack leafminers based on plant traits. For 

example, larval mortality, which is frequently caused by female parasitoids feeding on 

leafminer larvae (Heimpel and Collier 1996), was substantially higher on Sa. officinalis 

than on Si. latifolia plants both in the common garden and in natural patches. 

Ectoparasitism was also higher on Sa. officinalis in the common garden, and may suggest 

that larval mortality was mostly caused by the female adults of these ectoparasitoids 

(Jervis et al 2008). One possible explanation for this female preference may be that 

leaves of Sa. officinalis are smooth without trichomes. In contrast, leaves of Si. latifolia 

are covered with trichomes, which have been shown to slow down parasitoid movements 

and thus negatively affect the overall searching efficiency (Gruenhagen and Perring 2001, 

Carrillo et al 2008). Trichomes may be especially problematic for these ectoparasitoids of 

A. flavifrons because they are smaller than endoparasitoids (A. Uesugi, personal 

observation). The level of endoparasitism did not differ between the host species in the 

common garden, suggesting that plant traits may not strongly influence the foraging 

activities of endoparasitoids. In fact, all endoparasitoid species were reared from both 
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host plant species. Unlike the common garden results, the field observation showed 

consistently higher endoparasitism in Sa. officinalis patches than Si. latifolia patches. 

This discrepancy in endoparasitism at the two spatial scales may suggest that the 

abundance of foraging endoparasitoids differ between the host patches. 

Mortality due to parasitism in naturally-occurring patches was not related to 

leafminer density. Other studies have demonstrated that foraging parasitoids may 

aggregate and spend longer time searching in patches with higher prey density to increase 

their foraging efficiency, resulting in density-dependent parasitism risk (Umbanhowar et 

al 2003, Vanbergen et al 2007, Pareja et al 2008, Tentelier et al 2008). But the lack of 

density-dependence in this study is not surprising because such density-dependent 

foraging requires parasitoids to move freely across plant patches (Taylor 1993). In fact, 

studies that use spatial scales less than 1 ha often show density-dependent parasitism 

(Ray and Hastings 1996, Vanbergen et al 2007, Pareja et al 2008), whereas studies 

conducted at larger spatial scales generally show no pattern of density-dependent 

parasitism (Esch et al 2005). Distances among the natural patches in this study were 

much greater than that of previous studies, and were most likely beyond the range of the 

typical dispersal abilities of parasitoids (Elzinga et al 2006).  

The variation in parasitism among naturally-occurring patches was predicted by 

plant species identity. This suggests that foraging parasitoids aggregate in Sa. officinalis 

patches, creating density-independent spatial heterogeneity in parasitism risk. Previous 

studies have suggested that enemy abundance might depend on the environmental 

conditions where host plants grow (Yamaga and Ohgushi 1999, Murphy 2004). Murphy 

(2004) demonstrated that a host shift by the Alaskan swallowtail butterfly, Papillio 

machaon, was driven by EFS on a novel host that grows in higher elevation where 
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predacious ants were scarce. However, such variation in environmental conditions is 

unlikely to exist between Si. latifolia and Sa. officinalis patches, because both hosts grow 

in similar habitats, such as on the edge of open fields or roadsides.  

A more likely explanation for the spatial heterogeneity in enemy load is that 

parasitoid populations cannot build up in Si. latifolia patches because the plant is 

ephemeral and senesces by the midsummer. As the plant resource diminishes, A. 

flavifrons and parasitoid populations must leave the patch or go extinct, and these patches 

must be newly colonized each spring. In contrast, A. flavifrons populations in Sa. 

officinalis patches persist throughout the season, allowing parasitoid populations to 

accumulate and overwinter in the patch. Thus, the insect populations are already present 

in Sa. officinalis patches in the following spring, and may serve as the source populations 

that disperse to Si. latifolia patches. Colonization of Si. latifolia patches by parasitoids 

may be particularly limited, because they can only colonize patches already occupied by 

A. flavifrons (Holt 2002). Although some specialist parasitoids are known to disperse as 

far as their prey (van Nouhuys and Hanski 2002, Esch et al 2005, Elzinga et al 2006), 

other parasitoids have limited dispersal ranges compared to their hosts (Ohsaki and Sato 

1994).  

Colonization of Si. latifolia patches may be further constrained by their lack of 

visibility to the foraging parasitoids. In contrast to Sa. officinalis that forms dense, 

monospecific patches, Si. latifolia plants often grow interspersed with non-host plants, 

such as alfalfa and barley in agricultural fields (see Chapter 2). A positive relationship 

between colonization probability and plant density or patch size has been demonstrated 

elsewhere (Elzinga et al 2007), potentially because plants in larger and denser patches 

emit more detectable volatile cues that parasitoids use to locate their prey (Pareja et al 
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2008). Similarly, Bukovinszky et al (2007) showed that parasitoids’ tendency to arrive a 

patch decreased with the presence of non-host plants within a patch. Thus, the low plant 

density and complexity of Si. latifolia patches may contribute to the low probability of 

colonization by parasitoids in this study. This limitation in parasitoid colonization, in turn, 

may create spatial refuge for A. flavifrons that successfully disperse to Si. latifolia 

patches.  

EFS in Si. latifolia patches may partly explain why A. flavifrons continues to use 

this ephemeral host, despite the theoretical expectation that herbivores should ignore rare 

and unstable hosts in order to increase the efficiency of locating suitable hosts (Bernays 

1998; West and Cunningham 2002). Increased diet breadth can be favored when the 

quality of the rare host is higher so that the benefit balances out the cost of host searching 

(West and Cunningham 2002). For example, the European grapevine moth (Lobesia 

botrana) does not specialize on grape, which is an abundant and predictable resource, but 

includes rare alternative hosts in their diet because larvae grow better on them (Thiery 

and Moreau 2005). My study is similar to Theiry and Moreau’s (2005) in that the plant 

quality of the ephemeral host, Si. latifolia, is higher than that of Sa. officinalis, favoring 

the inclusion of the ephemeral host into leafminer diet.  

But this study emphasizes that EFS can also increase the benefit of using the 

ephemeral host, and may have a significant impact on the host plant choice of A. 

flavifrons, because parasitoids impose substantial mortality. Furthermore, the presence of 

EFS on the ephemeral host suggests that the conditions that favor polyphagy may be 

broader than predicted by the models based on plant-herbivore interactions alone. For 

example, plant-herbivore interactions suggest that the ephemeral hosts are included only 

when they are higher in quality than the common hosts (West and Cunningham 2002). In 
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contrast, EFS can be potentially obtained on any ephemeral hosts regardless of their plant 

quality, and may expand the parameter space where ephemeral hosts are incorporated into 

herbivore diet. In addition, the plant phenology is consistent over years, and provides 

reliable EFS on the ephemeral host each year. This is in contrast to EFS based on plant 

trait effects, which often fluctuate in direction and strength over time (Heard et al 2006). 

Theoretical models of diet breadth evolution in herbivorous insects have rarely taken a 

tri-trophic perspective, but Singer and Stireman (2005) suggest that diet breadth 

expansion or initial host shifts to a novel plant is theoretically more plausible when EFS 

is considered. Therefore, the presence of EFS on rare plants may explain why some 

herbivorous insects maintain polyphagous habits in spite of costs associated with host 

searching.  
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Figure 4.1: Leaf C:N ratios of Sa. officinalis and Si. latifolia plants collected in natural 
patches (closed boxes) and plants used in the common garden experiment grown under 
high (gray boxes) and low (open boxes) nitrogen treatments. Different letters indicate 
significant differences within host species at P < 0.05, and numbers below indicate 
sample size. 
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Figure 4.2: Mean proportion (± SE) of larval mortality (a), ectoparasitism (b), 
endoparasitism (c), pupal mortality (d), and total parasitism (e) in the common garden 
experiment under caged and exposed treatments. Closed bars indicate Si. latifolia (caged: 
n = 12, exposed: n = 17) and open bars indicate Sa. officinalis (caged: n = 16, exposed: n 
= 23). Asterisks indicate differences between host plant species within caging treatments 
(*P < 0.05, **P < 0.01, ***P < 0.0001). 
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Figure 4.3: Mean proportion (± SE) of larval mortality (a), ectoparasitism (b), 
endoparasitism (c), pupal mortality (d), and total parasitism (e) between Si. latifolia 
(closed bars) and Sa. officinalis (open bars) patches in the field between year 2006 to 
2008. Asterisks indicate significance between host patches for each year (*P<0.05, 
**P<0.01), and numbers above bars in (a) indicate sample size. 
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Figure 4.4: Relationship between leafminer density and mortality at the larval stages (a: 
larval mortality and ectoparasitism) and endoparasitism (b). Black dots indicate Sa. 
officinalis patches (n = 13), and open squares indicate Si. latifolia patches (n = 15). Data 
from three years were pooled, and patch was considered as a random effect. 



 

Table 4.1: Effects of host plant species and caging treatment on leafminer mortality in the common garden experiment. Larval 
mortality and pupal mortality were tested with two-way ANOVA, and ectoparasitism, endoparasitism, and total parasitism were 
tested with t-test. 

 
 Larval mortality Ecto-parasitism Pupal mortality Endo-parasitism Total parasitism 
 F P t P F P t P t P 

Host 18.6 <0.0001 -4.22 0.006 15.4 <0.0001 0.003 0.99 -1.8 0.082 
Cage 3.9 0.055 - - 2.6 0.11 - - - - 

Host x Cage 6.7 0.012 - - 0.18 0.67 - - - - 
 
 
 
 

Table 4.2: Effects of host plant species and survey years on leafminer mortality in the field surveys of naturally-occurring patches. 
Each mortality category was tested with Linear-Mixed Model with patch as a random factor. 

 Larval mortality Ecto-parasitism Pupal mortality Endo-parasitism Total parasitism 
 F P F P F P F P F P 

Host 17.7 <0.0001 0.06 0.8 2.3 0.14 23.7 <0.0001 32.1 <0.0001
Year 1.9 0.17 5.6 0.01 4.4 0.025 4.2 0.03 4.4 0.025 

Host x Year 0.07 0.9 0.7 0.5 0.04 0.9 0.6 0.6 0.9 0.4 
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Table 4.3: Results of Mixed-effect logistic regression analysis testing for the density-dependence of parasitism in natural patches. 
Fixed effects tested here are A. flavifrons density (Density) and host plant species (Species). Patch was modeled as a random effect.  
 

Mortality category fixed effect Odds Ratio 95 % CI P 
Larval mortality and 
ectparasitism 

Density 
Species 

0.94 
0.35 

0.86 - 1.03 
0.21 - 0.59 

0.19 
<0.0001 

Endoparasitism Density 
Species 

1.04 
0.15 

0.93 - 1.16 
0.05 - 0.44 

0.48 
0.001 

Total parasitism Density 
Species 

0.95 
0.21 

0.89 - 1.02 
0.12 - 0.36 

0.16 
<0.0001 



 

Chapter 5 
 

Natural enemies mediate life-history traits in the leafminer Amauromyza flavifrons: 

Selection for shorter development time by parasitoids 

 

ABSTRACT 

Natural enemies are expected to impose strong selection on prey life history traits that 

facilitate enemy avoidance. Selection on life history traits by parasitism in A. flavifrons 

Amauromyza flavifrons was investigated by estimating selection gradients on four 

traits—development time, adult body size, mine size and host plant quality—under 

natural field conditions.  

Larval development time was under direct selection, supporting the slow-growth 

high-mortality (SGHM) hypothesis, which predicts that prolonged development time 

increases the probability of being attacked by parasitoids. There was no indirect selection 

on adult body size and mine size because these traits were not correlated with 

development time. The results indicate that the mechanism of enemy avoidance in A. 

flavifrons is to grow faster and thus narrow the window of vulnerability to parasitoid 

attack. Such non-random parasitism may play a significant role in shaping the evolution 

of life history traits of A. flavifrons.   
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INTRODUCTION 

Herbivorous insects often suffer substantial mortality from natural enemies (Hawkins et 

al 1997) and are expected to be under strong selection pressure to evade enemy attacks 

(Kraaijeveld and Godfray 2003). Herbivores may adapt by increasing their defenses, for 

example, by thickening gall walls (e.g. goldenrod gall flies, Eurosta solidaginis; 

Abrahamson et al 1989; Weis et al 1992), by increasing their ability to sequester plant 

defense chemicals (pipevine swallowtail, Battus philenor; Fordyce and Nice 2008), or by 

enhancing encapsulation of parasitoid eggs and larvae (e.g. Drosophila melanogaster; 

Kraiijeveld et al 1998; Fellowes and Godfray 2000). In herbivorous insects with limited 

direct defense mechanisms, predation and parasitism may impose selection on life history 

traits that increase enemy avoidance. However, few studies have examined the role of 

natural enemies as selective agents on such life history traits in herbivores (Kraaijeveld 

and Godfray 2003; Teder and Tammaru 2001).  

  Interactions between leafminers and parasitoids represent a great opportunity to 

examine selection on life history traits by natural enemies because leafminers are 

particularly susceptible to attacks from parasitic wasps (Hawkins et al 1997). Previous 

studies of parasitoid behavior suggest that parasitism potentially acts on multiple 

leafminer life-history traits (Hunter 2003), which leads to four hypotheses about how 

leafminers might adapt to decrease parasitoid-induced mortality. The slow-growth 

high-mortality (SGHM) hypothesis (Clancy and Price 1987; Benrey and Denno 1997; 

Williams 1999) suggests that prolonged development time will increase the risk of attack, 

thereby favoring individuals with shorter development times. The prey size hypothesis 

predicts that parasitoids preferentially attack larger prey because the size of the host 

influences the performance of parasitoid offspring (Wang and Messing 2004; Kraaijeveld 
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and Godfray 2003: hypothesis title is mine). This prey size preference by parasitoids 

would result in selection for smaller leafminer body size. The appearance hypothesis 

suggests that parasitoids selectively attack leafminers that make larger mines because 

they are more apparent and easier to detect (Stiling et al 1999; Cornelissen and Stiling 

2006: hypothesis title is mine). Parasitoid searching behavior based on visual cues (Ayabe 

and Ueno 2004) or chemical cues associated with mine size (Finidori-Logli et al 1996) 

may favor individuals that make smaller mines. The selection on mine size, in turn, may 

select for increased food assimilation efficiency in leafminers because more efficient 

individuals require less feeding (Stiling et al 1999). Finally, parasitism may have nothing 

to do with these life history traits but may depend on the quality of the plants upon which 

herbivores feed. According to the plant quality hypothesis, parasitoids may be attracted to 

high quality plants because herbivores that feed on these plants are likely to be better 

quality prey (Hunter and Price 1992; Mira and Bernays 2002; Walker et al 2008; 

hypothesis title is mine). Host plant choice by parasitoids may, in turn, indirectly 

influence oviposition preference of leafminers (Price et al 1980).  

Despite a wealth of studies of parasitoid behavior, most lack the ability to 

distinguish among these hypotheses because they do not simultaneously test associations 

between parasitoid-induced mortality and multiple life history traits of the prey. For 

example, Stiling et al (1999) observed an increase in parasitism of leafminers that made 

larger mines, providing support for the appearance hypothesis. However, increased 

parasitism could also be a result of prolonged development time or larger body size if 

these traits are correlated with mine size; neither of these traits was measured in the study. 

Even in studies that do measure multiple traits, identifying traits that directly influence 

parasitism rates is often difficult if these traits are correlated with each other (Clancy and 
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Price 1987; Auerbach and Alberts 1992; Cornellisen and Stiling 2006). Here, I investigate 

enemy-induced selection on the life history traits of a leafmining fly Amauromyza 

flavifrons Meigen (Agromyzidae; Diptera). The four hypotheses (above) were tested 

simultaneously to identify traits subject to direct and indirect selection from natural 

communities of parasitoids. The mode and strength of selection was also compared 

between two host plant species because overall parasitism rates differed between them.  

 

METHODS 

Study system 

Amauromyza flavifrons Meigen is a leafmining herbivore that feeds on multiple species 

of plants within the family Caryophyllaceae (Spencer 1990). In southeastern Michigan, 

USA, it is commonly found on two plant species, Silene latifolia and Saponaria 

officinalis. A. flavifrons is multivoltine having three to four generations per year. Adults 

emerge in early June and females lay eggs under the epidermis layer of a host plant leaf. 

Eggs hatch within 3-4 days and larvae mine for 7-12 days until they exit leaves to pupate 

in the soil. During its larval development, A. flavifrons may be heavily attacked by 

multiple species of parasitoids in the families Braconidae, Pteromalidae, and Eulophidae 

(Scheffer 1995). Early instars are subject to mortality by adult female parasitoids that 

feed on this larval stage (Jervis and Kidd 1986; Heimpel and Collier 1996). Late instars 

may be heavily parasitized, with parasitism rate reaching as high as 70% (Scheffer 1995). 

Despite high parasitism levels, larvae seem to lack direct defensive mechanisms; no 

occurrence of encapsulation of parasitoid eggs or larvae has been observed in the study 

area (A. Uesugi, personal observations). Its high risk of parasitism coupled with restricted 

movement during the larval period facilitates accurate measurement of each leafminer’s 
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fate and relevant life history traits, and makes this system ideal for examining selection 

on life history traits by parasitoids.  

 

Field Experiment 

A field experiment was conducted in July 2007 at Matthaei Botanical Gardens (MBG) in 

Dixboro, Michigan, to estimate the direction and strength of selection imposed by 

parasitism. Larvae of A. flavifrons were reared either on caged plants without parasitoids 

to provide “before selection” treatment, or on exposed plants with natural levels of 

parasitoids to provide an “after selection” treatment. Plants used in the experiment were 

grown individually in pots in the greenhouse under two nitrogen treatments: a low 

nitrogen treatment received 5 ml of 0.009 mol ammonium nitrate weekly, and a high 

nitrogen treatment received 5 ml of 1.17 mol ammonium nitrate. Nitrogen treatments 

were used to test the plant quality hypothesis, as well as to artificially create variation in 

leafminer life history traits, since leaf nitrogen levels are known to influence larval 

development time, body size, and mine size in other herbivorous insects (Stiling et al 

1999). All Sa. officinalis plants originated from vegetative growth from one natural patch 

and Si. latifolia plants were grown from seeds collected from another patch. Plants had 

been growing for two months prior to the experiment, and some Si. latifolia plants started 

flowering during the experiment.   

Females of the leafmining fly were collected from one Sa. officinalis patch at MBG 

in the previous generation. Six potted plants of the same species and nitrogen treatment 

were placed in a plastic cage where eight 3-4 day old mated females were released for 

oviposition for 6 hrs. To maximize oviposition, new females fed with 30 % honey water 

were used for each oviposition trial. Plants containing A. flavifrons eggs were kept in the 
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greenhouse under mesh cover for four days before they were exposed in the field. This 

was done so that larger experimental larvae could be distinguished from 

non-experimental larvae subsequently oviposited by the wild population of A. flavifrons 

(Scheffer 1995). To avoid competition among larvae, a single larva per leaf was allowed 

to develop and the rest were killed by a needle. Half of the plants were bagged with fine 

mesh (caged treatment) and the other half were not (exposed treatment). A total of 83 Sa. 

officinalis (16 high nitrogen/caged, 17 low nitrogen/caged, 24 high nitrogen/exposed, 26 

low nitrogen/exposed) and 69 Si. latifolia (13 high nitrogen /caged, 17 low nitrogen 

/caged, 17 high nitrogen /exposed, 22 low nitrogen /exposed) plants were placed in an 

open field under shade cloth at MBG in completely randomized design. The shade cloth 

shielded plants from direct sunlight and created relatively homogeneous environments 

between caged and exposed treatments. Ambient temperature increased in the caged 

treatment only slightly (mean difference = 0.3 ˚C, t=2.2, P=0.35), and no differences in 

plant quality, such as leaf C:N ratio, water content, and thickness, were observed (P > 0.2 

for all). Thus, differences in life history traits between surviving leafminer in the two 

treatments were assumed to be the result of selection by parasitism on parasitoid-exposed 

plants.  

All leaves were checked daily for leafminer development. Each leaf containing a 

large pre-pupal larva was individually collected in a Petri dish before it emerged from the 

leaf to pupate in the soil. Most larvae collected in this way pupated in their Petri dish 

within a day of collection, but ones that did not were excluded from the analysis because 

they were not exposed to the field conditions during their entire larval period. Larval 

development time was determined as days from oviposition to pupation. Leaves 

containing leafminer larvae were brought to the laboratory, and photographed 
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immediately to estimate mine size at the time of leaf collection. Adobe Photoshop 

software was used to calculate mine area which served as the proxy of mine size. Insects 

were reared to adults at room temperature (25˚C), and the body size of eclosed adult flies 

was estimated by measurements of thorax length, calculated with ImagePro program 

(Media Cybernetics Inc.), and using the margin of the pronotum and scutelum as 

landmarks (Partridge and Fowler 1993).  

The nutritional quality of each potted plant used in the experiment was estimated 

by measuring leaf C: N ratio. All un-mined leaves from each plant were collected, dried 

in a 50˚C oven, and analyzed using a Perkins Elmer CNO analyzer. Because leaves at 

different ages may vary in nitrogen levels (Ikonen 2002), this method does not capture 

the variation in C: N ratio experienced by individual larvae. However, most larvae were 

found on leaves of similar ages (i.e. mature leaves with no sign of senescence) which are 

assumed to have similar C: N ratios.  

 

Data analysis 

Because the proportion of larvae parasitized differed significantly between host plant 

species (Pearson’s X2= 19.9, P<0.0001) but did not differ between leafminer sexes 

(Pearson’s X2<0.1, P>0.2 on both host species), the following analyses were conducted 

separately for host species with both leafminer sexes combined. Qualitatively similar 

results were obtained when the sexes were analyzed separately.  

Selection gradients were estimated in multiple logistic regression analysis to 

identify traits under direct selection due to parasitism (Lande and Arnold 1983; Janzen 

and Stern 1998). Since the fitness measure used here is dichotomous (survived or dead), 

logistic regression was preferred over linear regression analysis (Janzen and Stern 1998). 
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The analysis was conducted with development time, body size, mine size and host plant 

quality (as estimated by C: N ratio) as predictors. To standardize the selection gradient so 

that it could be applied directly to micro-evolutionary equations, the average selection 

gradient, βavggrad, was calculated by multiplying coefficients with a conversion factor and 

σ, which is the standard deviation of the trait in the caged treatment (Janzen and Stern 

1998). To compare the magnitude of selection gradients between host plant species, 

separate analyses were conducted using a dataset with both host plant species combined. 

The multiple logistic regression analysis was conducted as above, but including 

species-by-trait interaction terms. 

The strength of total selection, including both direct and indirect selection, on 

each focal trait was estimated as a selection differential, s = ( z ’- z ), where z ’ and z  are 

the trait means in exposed and caged treatments, respectively (Lande and Arnold 1983). 

Selection differentials were standardized by dividing by σ, so that values could be 

compared between host plant species and traits under investigation (Lande and Arnold 

1983). The statistical significance of selection differentials was explored by a Linear 

Mixed Model with caging treatment as a fixed factor, and potted plant as a random factor. 

The random factor was added because larvae from one plant share the same environment, 

and thus are not independent. To compare the magnitude of selection differentials for 

each focal trait between host plant species, separate analyses were conducted using a 

dataset with both host species combined. The Linear Mixed Model was applied as above, 

but species-by-cage treatment interactions were additionally included.   

Phenotypic correlations among development time, adult body size and mine size 

were examined using data from caged treatment to exclude the potential effect of 

parasitism on trait correlations. Each pair of life history traits was tested using a multiple 
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linear regression model by controlling for leaf C: N ratio and leafminer sex, which are 

likely to influence trait values. When environmental variation is minimized, phenotypic 

correlations are shown to be reliable estimation of genetic correlations (Roff 2000). In 

addition, the effect of C: N ratio on the life history traits of A. flavifrons was assessed 

using regression analysis. All analyses were conducted in SPSS (SPSS Inc, Chicago).  

 

RESULTS 

Mortality due to parasitism was greater on Sa. officinalis (84.7 %) than on Si. latifolia 

(62.9 %) (Pearson’s X2= 45.0, P<0.0001). On Sa. officinalis, 268 out of 491 larvae 

survived to adulthood in the caged treatment, whereas 63 out of 754 survived in the 

exposed treatment. On Si. latifolia, 171 out of 251 larvae survived in the caged treatment, 

and 93 out of 368 survived in the exposed treatment.  

A multiple logistic regression analysis revealed that, on both host plant species, 

development time was the only significant predictor of parasitism rate (Table 5.1). The 

average selection gradient (βavggrad) was negative on both hosts (Fig. 5.1), indicating that 

parasitism rates increased with development time. The magnitude of the direct selection 

was slightly greater on Si. latifolia than on Sa. officinalis, but the difference was not 

significant (Table 5.2). Selection gradients for body size, mine size and host plant quality 

were not significant on either host plant species (Table 5.1 & 5.2).  

Selection differentials were significantly negative for development time on both 

host plant species (Table 5.3, Fig. 5.2a), indicating a total selection favoring shorter 

development time. On Sa. officinalis, the mean development time decreased by 0.38 days 

in the exposed compared to caged treatments, and on Si. latifolia, the mean development 

time decreased by 0.35 days. Standardized selection differentials (s’) indicated that the 
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intensity of total selection was slightly greater on Sa. officinalis than on Si. latifolia 

(Table 5.3), but the difference was not significant (Table 5.4). Selection differentials for 

adult body size, mine size and host plant quality were not significant (Table 5.3, Fig. 

5.2b,c,d). 

Phenotypic correlations between development time, adult body size and mine 

size were not significant on either host species (Table 5.5). On Si. latifolia, increased leaf 

nitrogen resulted in longer development time, larger adult size, and smaller mine size (F 

> 14, P < 0.0001 for all). On Sa. officinalis, in contrast, increased nitrogen levels 

decreased development time (F = 20, P < 0.0001), but did not affect adult body size or 

mine size (F < 0.18, P > 0.4). 

 

DISCUSSION 

Parasitism causes substantial mortality in A. flavifrons, predicting that selection by 

parasitoids should be an important force shaping the evolution of life history traits in this 

leafminer. The selection gradient analysis indicates that parasitism directly selects against 

individuals with long larval development times. While overall parasitism was greater on 

Sa. officinalis than on Si. latifolia plants, the intensity of the direct selection did not differ 

on the two hosts. Thus, A. flavifrons seems to experience similar selection pressures from 

parasitoids acting on development time regardless of host plant environment. The results 

support the slow-growth high-mortality (SGHM) hypothesis, which suggests that 

prolonged development time increases the probability of being attacked by parasitoids 

(Benrey and Denno 1997). The SGHM hypothesis has been tested elsewhere, but previous 

studies have found only equivocal support for the hypothesis (reviewed in Williams 

1999). Contrasting outcomes in previous studies may be partly explained by differences 
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in methodology. In this study, A. flavifrons were exposed to parasitoids during their entire 

larval development period. In contrast, other studies have exposed herbivores to natural 

enemies only during a part of their larval development period (Medina et al 2005; Benrey 

and Denno 1997; Lill and Marquis 2001; Loader and Damman 1991). Assuming that fast 

growing individuals have a smaller window of vulnerability to enemy attack, these 

studies used larvae developing at different rates, and exposed them to enemies for the 

same length of time. However, the assumption could be violated if the actual window of 

vulnerability is longer than the time exposed during experiments (Williams 1999; 

Fordyce and Nice 2008). Thus, selection for shorter development may be more prevalent 

than reported previously if the relationship between mortality risk and exposure time to 

enemies is accurately assessed. 

The SGHM hypothesis was supported by separate analyses for each host plant 

species, but did not hold when comparisons were made between the host plant species. 

Larvae develop faster on Sa. officinalis than on Si. latifolia (Fig. 5.2a), but suffer higher 

overall parasitism on Sa. officinalis. This pattern of parasitism may reflect a behavioral 

preference of parasitoids for Sa. officinalis, rather than their responses to the development 

time of A. flavifrons per se (Benrey and Denno 1997). Parasitoids may be more attracted 

to Sa. officinalis because it is a more abundant and predictable resource than Si. latifolia 

(see Chapter 4). Parasitoids may also attack A. flavifrons more efficiently on Sa. 

officinalis because it lacks leaf trichomes that hinder their movements (Carrillo et al 

2008; trichomes are present in Si. latifolia). Such interspecific variation in attractiveness 

to parasitoids may explain why the SGHM hypothesis is rarely supported in studies that 

employ among-host comparisons to infer the relationship between development time and 

parasitism rate (e.g. Medina et al 2005; Preszler and Boecklen 1994; Benrey and Denno 
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1997). Moreover, comparisons within a host species are more relevant in this system 

where host plant species grow in distinct patches. Since parasitoid mobility among host 

patches is likely to be limited (see Chapter 4), prey selection within each host patch 

should be relatively independent.  

The prey-size hypothesis was not supported in this study, as selection gradients 

on adult body size were not significant. This result differs from a study by Kraaijeveld 

and Godfray (2003), which reported that parasitoids selected against larger pupae in 

Drosophila melanogaster. Differences in the results might be explained by the types of 

parasitoids used in the two experiments. Pupal parasitoids are likely to prefer larger 

pupae because pupal size at the time of attack directly determines the maximum size of 

parasitoid offspring. A similar pattern is expected from other idiobiont parasitoids, which 

terminate prey growth and their larvae usually feed externally (Askew and Shaw 1986). 

Consequently, studies involving idiobiont parasitoids should generally support the 

prey-size hypothesis rather than the SGHM hypothesis (Clancy and Price 1987; 

Kraaijeveld and Godfray 2003; Wang and Messing 2004). In contrast, koinobiont 

parasitoids allow their insect hosts to continue developing while their larvae feed within 

the host’s body (Askew and Shaw 1986). Koinobionts may be less choosy because the 

prey size at the time of attack does not necessarily reflect its final size (Benrey and 

Denno 1997). Similarly, choosing larger prey is not important in predators because they 

can compensate for poor prey quality by increasing the number of prey consumed 

(Williams 1999). In this study, A. flavifrons was attacked by both idiobiont and 

koinobiont parasitoids, but 89 % of parasitism was caused by koinobiont species. 

Consequently, I found no support for the prey-size hypothesis. Because the outcome of 

selection is likely to vary depending on the composition of natural enemies, caution is 
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required when inferring the mode of selection in nature using laboratory experiments 

where herbivores are exposed to only a subset of enemies that occur in nature.  

The appearance hypothesis was also rejected, as parasitism risk was not 

associated with leafminer mine size. The lack of support suggests that the parasitoids did 

not use visual or chemical cues to locate their prey, as predicted by the hypothesis (Ayabe 

and Ueno 2004). Similarly, feeding activities, calculated as leaf area mined per day, did 

not predict parasitism risk (data not shown). High feeding activities are often associated 

with increased predation risk in free-ranging caterpillars (Gotthard 2000). However, 

natural enemies may not be able to detect such variation in the feeding activities of 

leafminers that feed in concealed environments.  

Leaf C: N ratios did not predict parasitism risk, contrary to expectations of the 

plant-quality hypothesis, which predicts that parasitoids will preferentially attack 

leafminers on high quality plants. There was no direct effect of leaf C: N ratios on 

parasitism, possibly because parasitoids were incapable of detecting the plant quality 

variation, or because C: N ratio was unrelated to the quality of leafminers as hosts. A. 

flavifrons adult size increased with leaf nitrogen levels on Si. latifolia, but no such 

correlation was found on Sa. officinalis (Table 1). This hypothesis also assumes that 

parasitoids prefer larger prey, which was also not supported in this study. Nevertheless, 

because nitrogen level was strongly correlated with leafminer development time, plant 

quality may indirectly influence the parasitism risk of A. flavifrons (Hunter 2003). 

However, the mechanisms underlying any effects of plant quality on development time 

are not clear at present—development time was positively correlated with plant C: N 

ratio on Sa. officinalis and negatively correlated with C: N ratio on Si. latifolia (Table 1). 

These data suggests a more complex relationship between plant quality and development 
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time in A. flavifrons. 

Life history traits are often correlated with one another such that direct selection 

acting on one trait can indirectly select for other traits (Lande and Arnold 1983). However, 

direct selection on larval development time did not result in significant selection 

differentials for other traits measured here. The absence of a positive association between 

development time and adult body size was particularly surprising because the resource 

allocation model predicts that increases in body size, which is positively correlated with 

fecundity in insects, should come at the cost of a longer feeding period during larval 

stages (Roff 1996).  

A slightly negative phenotypic correlation observed in this study may, instead, 

suggest that there is environmental or genetic variation in growth rates within populations, 

such that fast growing individuals attain larger body sizes in shorter periods of time than 

do slow growing individuals (Berner and Blackenhorn 2007). The present study partially 

accounts for environmental variations in growth rates by statistically controlling for 

nutrient levels experienced by developing larvae (i.e. leaf C: N ratio), though there are 

surely other, unmeasured sources of environmental variation in growth rate. Genetic 

variation in growth rates might be maintained in A. flavifrons populations if growth rate 

itself represents a tradeoff with other life history characters (Chippindale et al 1997; 

Sevenster and Van Alphen 1993; Gotthard 2000). The genetic variation might also be 

maintained at mutation-selection balance with the accumulation of deleterious mutations 

depressing growth rates (Charlesworth 1990; Houle 1991). In either case, parasitism that 

selects for shorter development time may potentially act on variation in growth rates and 

remove slow-growing individuals that end up smaller from the population.  

Overall, selection pressure on development time suggests that the mechanism of 
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enemy avoidance in A. flavifrons is to grow faster, thereby narrowing the window of 

vulnerability to parasitism. In herbivorous insects that lack direct defense mechanisms, 

this avoidance mechanism may be a common adaptation, particularly in herbivores that 

are attacked by a suite of generalist enemies that do not selectively attack prey based on 

its quality (Williams 1999). Quantitative host-parasitoid food webs often show that most 

parasitoids that attack leafminers are generalists (Lewis et al 2002, Hirao & Murakami 

2008). Whether herbivore population will respond to the selection from enemies will 

depend on the presence of additive genetic variation for this trait. Recent studies show 

that there exists ample additive genetic variation and high evolvability (ability to respond 

to selection; Houle 1992) for development time in many herbivorous insects, including 

potato beetles (Boman et al 2008), and a cactophilic fly, Drosophila buzzatii (Cortese et 

al 2002). Thus, herbivore populations exposed to intense parasitism or predation may 

potentially evolve shorter larval development period than populations that escape natural 

enemies.  
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Figure 5.1: Standardized selection gradients (βavggrad) for development time, adult body 
size, mine size and host plant quality (estimated as leaf C: N ratio) of A. flavifrons on Sa. 
offcinalis (closed bars: n = 78) and Si. latifolia (open bars: n = 67). Asterisks represent 
significance at P < 0.01.  
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Figure 5.2: Development time (a), body size (b: measured as thorax length), mine size (c), 
and leaf C:N ratio (d) of larvae survived to adult on Sa. officinalis (n = 78) and Si. 
latifolia (n = 67) in caged (closed bars) and exposed (open bars) treatments. Error bars 
indicate standard error. Asterisks represent significance at P < 0.01 between caged and 
exposed treatments within each host species. 
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Table 5.1: Standardized selection gradients (βavggrad) for the four focal traits analyzed 
separately for Si. latifolia and Sa. officinalis.  
 
host trait βavggrad, Z P 

Development time 
Body size 

-0.080 
-0.014 

-2.21 
-0.06 

0.027 
0.95 

Mine size -0.047 -1.72 0.084 

Si. latifolia 

Nitrogen level 0.007 -1.25 0.21 
Development time -0.067 -3.07 0.002 
Body size 0.002 -0.16 0.87 
Mine size 0.006 -0.23 0.81 

Sa. officinalis 

Nitrogen level 0.024 0.39 0.69 
 
 
 
 
 
Table 5.2: Results of analysis showing differences in selection gradients between host 
plant species, as indicated by host species x trait interactions. The analysis was conducted 
with both host species combined.  
 

 Estimate Std. error Z P 
Development time 0.16 0.14 1.18 0.23 

Body size -1.53 2.23 -0.69 0.49 
Mine size -0.16 0.16 -1.03 0.30 

Nitrogen level -0.027 0.022 -1.21 0.23 
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Table 5.3: Selection differentials (s’) for the four focal traits analyzed separately for Si. 
latifolia and Sa. officinalis. 
host trait s s’ F P 

Development time -0.35 -0.37 6.59 0.011 
Body size -0.001 -0.07 0.014 0.905 
Mine size -0.13 -0.16 1.31 0.253 

Si. latifolia 

C/N ratio 
0.11 0.02 0.027 0.87 

Development time
-0.38 -0.49 11.88 0.001 

Body size 0.001 0.04 0 0.98 
Mine size -0.04 -0.07 0.25 0.618 

Sa. 
officinalis 

C/N ratio 
0.67 0.13 0.72 0.40 

 
Table 5.4: Results of analyses showing differences in selection differentials between host 
plant species, as indicated by host species x caging treatment interactions. The analysis 
was conducted with both host species combined.   

 DF F P 
Development time 591 0.13 0.72 

Body size 588 0.01 0.92 
Mine size 564 0.37 0.55 

CN 580 0.29 0.59 
 
 
Table 5.5: Pair-wise phenotypic correlations between life history traits of A. flavifrons, 
and the relationship between the life history traits and C: N ratios. Values in the upper 
half of the table indicate standardized correlation coefficients when A. flavifrons 
developed on Sa. officinalis, and the lower half when they developed on Si. latifolia. 
***P<0.001 
 Dev. time Body size Mine size C:N ratio 
Dev. time  -0.085 -0.04 0.26*** 
Body size -0.02  0.03 -0.045 
Mine size 0.03 0.01  0.026 
C:N ratio -0.29*** -0.36*** 0.39***  



 

Chapter 6 
 

Conclusion 
 

The aim of this dissertation was to investigate multiple ecological processes influencing 

the evolution of diet breadth in herbivorous insects. Using a tritrophic system involving 

host plants (Silene latifolia and Saponaria officinalis), A. flavifrons (Amauromyza 

flavifrons), and parasitoids A. flavifrons, I tested three major hypotheses, including 

preference-performance, plant availability and enemy-free space hypotheses, which 

together explained the pattern of host plant use in A. flavifrons.  

 The common garden experiment showed that females preferentially oviposited 

on Si. latifolia over Sa. officinalis. Consistent with the preference-performance 

hypothesis (PPH), larval survival was greater on Si. latifolia than on Sa. officinalis in the 

absence of natural enemies. Increased larval mortality on Sa. officinalis could possibly be 

due to both constitutive and induced defense chemicals specific to the host species 

(Chapter 2).  

The mortality on Sa. officinalis was even greater in the presence of natural 

enemies, supporting the enemy-free space (EFS) hypothesis. While host species were not 

intrinsically different in the attractiveness to the parasitoids, parasitism rates were 

significantly lower in the natural patches of Si. latifolia compared to Sa. officinalis. One 

potential explanation for this difference is that parasitoid abundance was lower in Si. 

latifolia patches because parasitoid populations cannot accumulate due to their ephemeral 
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nature (Chapter 4). Parasitism on A. flavifrons did not occur randomly, but selected 

against individuals with longer larval development time (Chapter 5). Thus, parasitism is 

likely to play a significant role in shaping the evolution of oviposition preference as well 

as life history traits of A. flavifrons.  

Although leafminer larvae suffer higher mortality on Sa. officinalis compared to 

Si. latifolia, natural patches of Sa. officinalis supported higher leafminer density than Si. 

latifolia patches. The resource concentration hypothesis may explain this pattern: patches 

of Sa. officinalis were denser and seasonally more stable than Si. latifolia patches, 

suggesting that ovipositing females may locate Sa. officinalis patches more efficiently 

than Si. latifolia patches (Chapter 3).  

Overall, A. flavifrons population as a whole continues to use both Si. latifolia and 

Sa. officinalis due to a tradeoff in fitness functions: Sa. officinalis promotes host 

searching efficiency, whereas Si. latifolia enhances offspring performance. Although 

more available, the A. flavifrons population in southeast Michigan does not specialize on 

Sa. officinalis because when given choice, females prefer Si. latifolia over Sa. officinalis. 

And the oviposition preference seems to be maintained due to higher offspring survival 

on Si. latifolia. In natural patches, the risk of mortality inflicted by plant adverse effect 

was 1.23 fold higher on Sa. officinalis than on Si. latifolia. The risk of parasitism was 

even greater: larvae in Sa. officinalis patches were 2.26 fold higher risk of parasitism than 

larvae in Si. latifolia. This suggests that natural enemies might impose stronger selection 

on oviposition preference than plant chemical defense, further supporting the EFS 

hypothesis.  

Si. latifolia patches provide A. flavifrons with EFS because the patches are 

ephemeral and the enemy population cannot accumulate over time. Thus, as Si. latifolia 
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becomes more persistent and available across the landscape, EFS is expected to disappear, 

whereas the strength of EFS increases as the host becomes less available. This interaction 

between plant availability and EFS might explain why many insect herbivores include 

rare and ephemeral hosts in their diet (Theiry and Moreau 2005). The extent to which 

such an interaction broadens the condition of polyphagy can be examined by a modeling 

approach based on West and Cunningham (2002), but including the third trophic level 

into consideration.  

Due to higher larval survival, females should colonize Si. latifolia patches 

whenever the plants are available to take advantage of the higher offspring fitness. In the 

absence of costs associated with dispersal, one might expect A. flavifrons to exclusively 

use Si. latifolia patches in early spring. However, the density of A. flavifrons was 

consistently lower in natural patches of Si. latifolia compared to Sa. officinalis, 

suggesting that the cost of dispersal might be substantial. Given the benefit of using Si. 

latifolia, how costly can dispersal be in order to maintain the preference for the host? 

Future studies will examine the evolution of dispersal in a temporary and spatially 

heterogeneous environment (McPeek & Holt 1992, Ronce 2008) with A. flavifrons as a 

model system.  
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