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THE STRENGTH OF VERY SIENDER BEAMS!

By E. F. Masure

SUMMARY

The response of a slender beam to lateral loads and twist-
ing couples is affected by the presence of bending moments in the
plane of major stiffness much as the bending of beams may be in-
fluenced by the presence of axial forces, If, in addition, the
major bending moments are statically indeterminate, and if the
beam is sufficiently slender to admit relatively large lateral de-
formations, these may in turn affect the distribution of the prin-
cipal bending moments. The resulting nonlinear theory is the sub-
Jject of this paper.

After the establishment of the basic equations, it is shown
that the inclusion of nonlinear terms in the strain-displacement
relations corresponds generally to a stiffening of the structure
as compared with the familiar linear theory. The (redistributed)
major bending moments and reactions are shown to satisfy a minimum
principle which represents an extension of the classical Castigliano
Theorem. It is demonstrated further that, for increasing lateral
loads and torsional moments, a limiting major bending moment distri=-
bution is approached asymptotically. For certain singular cases,
the corresponding equilibrium configuration may not be unique, in
which case the possibility of a snap-through (Durchschlag) phenom-
enon arises,

The theory presented herein is corroborated experimentally

with a fair degree of accuracy. Elastic behavior is assumed
throughout .

1. INTRODUCTION AND ESTABLISHMENT OF BASIC EQUATIONS.

In the present paper, a beam will be referred to as being "slender"
when its moment of inertia Iy about the (vertical) y-axis is much smaller

than the moment of inertia Iy; in addition, its torsion constant K will be

Ilhig investigation was conducted under the sponsorship of the Office of
Ordnance Research, U. S. Army.

2Associate Professor of Engineering Mechanics, The University of Michigan,
Ann Arbor, Michigan,



assumed small in comparison with Iy. An example of a slender beam is furn-
ished by a rectangular beam, whose thickness t is small compared with its
depth h.

The response of such a beam to lateral loads and torsional couples in
the presence of bending moments about the x-axis has been the subject of
numerous investigations, of which [1] and [2]° may be mentioned here, It
is shown in these papers how the bending moments influence, and often ag-
gravate, the displacements of a slender beam. This is anaiogous to the be-
havior of beam-columns, whose response to loads in the presence of axial
forces is well known.

In all previous publications on the subject, the assumption is made
more or less tacitly that the bending moments are either statically determ=
inate or, in the event of statical indeterminacy in the major plane of stiff-
ness, that they may be computed on the basis of the conventional linear theory.
This may actually not be the case, 1In fact, if the lateral displacements u
and the rotations B are sufficiently large, the introduction of nonlinear
strain displacement relations may serve to modify the predicted moments.

This question is explored in detail in what follows. It is shown that a re=
distribution of bending moments takes place, which serves to stiffen the
structure relative to its predicted stiffness according to cOnventiohal theory.
For example, if there are no vertical loads acting on the beam, the linear
theory predicts, of course, vanishing bending moments everywhere in the ab-
sence of initial stresses. However, when certain nonlinear terms are in-
cluded in the analysis, such moments do arise, and approach limiting values

as the magnitude of the lateral loads and torques approaches infinity.

SNumbers in brackets refer to the Bibliography at the end of the paper.
Reference [2] contains a fairly comprehensive list of publications on
the subject.



Before proceeding to the analysis, it may be well to point out the
limitations of the proposed theory. Actually, the nonlinearity is partial
only in that the strain-displacement relations contain terms up to the
second order, but ignore those of higher order. Physically this implies
that the lateral displacements may be comparable to the thickness of the
beam, but are still assumed to be small in relation to its length. Theories
of an analogous nature are widely employed in connection with the analysis
of structural elements in which at least one dimension is much smaller than
the remaining dimensions; the best known example is probably the plate theory
of von Karmén [3]. Since, furthermore, the effect of plasticity in this pre-
sentation is ignored, it follows that the beam must be very slender to lend
physical significance to the proposed theory. In the numerical example
treated in a later section, appreciable deviations occur from linear theory
at fiber stresses of about 30,000 psi in a beam whose depth-thickness ratio
is 16:1.

In what follows, let a beam of the type shown in Fig. 1 be subjected to
lateral loads Aq and twisting couples At, in which g and t are given func-
tions of z (measured along the axis of the beam), and A is a multiplier which
is allowed to increase indefinitely. If Au(z) and AN3(z) are the horizontal
displacement and the rotation, respectively, u and B are governed by the e=-

gquations of equilibrium
(EL,u")” + PU” + [(M+ Py,)gj” = 9(z) (1)

(EF8)"- [GK-F P *2hr1)8'] '+ (114PL) U pap = t(z) (2)

where primes denote differentiation with respect to z. In these equations
P represents the axial force (measured positive in compression), M(z) the
bending moment about the centroidal x=-axis, and p(z) the given vertical
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load applied at a distance a above the shear center S, E and G are the usual
elastic constants, riis the warping constant, p is the radius of gyration
about S, and y, designates the position of S.u Finally, k is a cross=-section-

al constant and is defined by

/
= Y, - — 2 2 (5)
K= =7z [ Yo roam

which vanishes for sections symmetrical about the x-axis.

Equations (1), (2), and (3) are the fémiliar equations of lateral bend-
ing and torsion and are given, for example, in [4], although slight discrep-
ancies are present, as pointed out in [5]. Through a process which is en=
tirely analogous to the one employed in [5]5, it can be shown further that

the vertical displacement v(z) satisfies the relationship

V"= =M= 11" ) g, + A2(UB=HB7) (1)

in which the second term on the right side represents the effect of the non-
linearity in the strain-displacement relations. M¥(z) designates prestress-
ing moments (if any) and has been incorporated for the sake of completeness.
The inclusion of the nonlinear terms in Eq. (4) and the deletion of anal=-
ogous terms from Eqs. (1) and (2) imply that the vertical displacements are

much smaller than the horizontal and rotational displacements. This in turn

hThe assumption that S lies on~%he principal y axis introduces no signifi-
cant loss of generality.

5The writer is indebted to Professor E, Reissner for suggesting, as an al-
ternative, the derivation of these equations from large deflection plate
theory, This process can be carried out for the technically most signifi-
cant case of a thin rectangular beam and, with the exception of the intro-
duction of the term (1-u2)“1, leads to relationships which are identical
with Eqs. (1) and (2) (properly simplified for this case, of course),
However, the form of Eq. (4) is slightly modified by this procedure. This
discrepancy, which may affect the results somewhat in the presence of non-
uniform bending, is due to a minor variation in the basic assumptions under-
lying plate theory as compared with the Euler-Bernoulli beam theory on which
the present derivation is based.



requires that the beam be slender, as was outlined above. In the development
of Eq. (4) it is assumed further that the force P be much smaller than the
critical buckling force about the (strong) x-axis; in view of the slenderness
of the beam, however, this represents no added restriction.

The bending moments M(z) and M¥(z) satisfy the equations of equilibrium

M= -pE) MmM* =o (5)

and a set of appropriate natural boundary conditions. These, together with
Eq. (5), determine M and M* uniquely (the latter trivially) if the structure
is statically determinate relative to its major bending moments. In that
event, for given vertical load p(z) and axial force P, the "calibrated" func-
tions u(Z) and B(z) are also uniquely determined by Eq. (1) and (2) and the
associated boundary conditions. Hence the total response Au and AB increases
in proportion to the total lateral load and torque Ag and At, respectively,

A different picture is presented by a structure whose major bending mo=-
ments are statically redundant. In that case, the actual moment M(z) is
distinguished, among all moments satisfying Eq. (5) and boundary conditions,
by being associated with a geometrically compatible vertical deflection v(z).
Since the latter is related to M by means of Eq. (4), it becomes apparent that
increasing lateral loads and torques, as expressed by increasing values of A,
are accompanied by a redistribution of the principal bending moments. The
equations governing this redistribution are developed in the remainder of
this section,

In a structure of n®h degree of indeterminacy, the most general expres-

sion for M and M¥ is

M(Z) = Mo (Z)+ Ay Mx (Z)
rM*z)= N 14 (Z)

in which my(z) is governed, but not uniquely determined, by
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Voo
74 "“'f’ﬁv (Ta)
and the same boundary conditions which apply to M. The set of self-equilib-
rated moments mn(z) (r=1,2...n) satisfies

, (7o)
mpl=0 (r=42- )

and equivalent homogeneous boundary conditions. The set of numbers Ay
(r=1,2...n), as yet unknown, will hereafter be referred to as "redundant pa-
rameters," while A% (r=1,2...n) constitutes a set of "prestréssing parameters,"
Repeated Greek subscripts, as in Eq. (6), represent summation over the range 1
to n. It is finally convenient, and always possible, to select the set of

functions my(z) in such a way that the "orthonormality condition"

Ms dz /] (r=35
M__ —{ ( ) (/’:‘Sz/’z/..-n) (7(3)

EZ.  lo (r=s)

is satisfied,

The redundant parameters A, may now be determined by multiplying Eq. (7b)
by ;(z) and by integrating over the length of the structure; here v(z) repre-
sents any geometrically admissible vertical deflection function, that is, one
which is sufficiently smooth and satisfies the geometric boundary and contin-
uity conditions pertaining to the vertical deflection. In view of these re-

strictions, two integrations by parts lead to the relationships
Jm, vidz=0 (r=52"+°r) (8)

In particular, let v(z) be the actual deflection function v(z) satisfying

Eq. (4). Then, by Egs. (4), (6), and (Tc), Eq. (8) is converted into

s My 2

7, cr=r2-+71) )

M= An = A f M (U - kB2 Az -

There is no- generality lost in letting mo(z) be the actual bending moment,

derived on the basis of linear theory, in the beam in the absence of prestressing
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and of lateral loads and torques. In other words, let the set of redundant
parameters A, vanish when all prestressing parameters h; and the load parameter
A also vanish. When this is substituted in Eq. (9), it means that
f—%‘;—’z—dza—o (r=12+-n) (10)
In view finally of Eq. (10), which constitutes an expression of the well-known
and often used principle of virtual work, the "compatibility" conditions (9)

become

7\r—7\t=7\"[mr(u"ﬁ—x5'2)dz (r=rs2 1) (11)

2. DISCUSSION OF LARGE-DEFLECTION THEORY.

It is seen that there are as many Egqs. (11) as there are redundant pa-
rameters., Since the bending moment M(z) is expressed in the form (6a), it is
apparent that the nonlinear range is governed by the solution of the differ-
ential equations (1) and (2), in which M(z) satisfies simultaneously the com-
patibility equations derived above. The complexity of the resulting system
of equations is therefore evident, and hence the necessity of solving it by
inverse or trial-and-error methods.

This is relatively easy for singly redundant beams., In that case, a
value for A3 may be assumed arbitrarily at the start. With the bending moment
M(z) so chésen, Egs. (1) and (2) are solved and the solution (u,B) is inserted
in (the single) Eq. (11), which in turn is solved for the load parameter A.

If the value of N\ so obtained is real, and if the assumed moment M(z) is stat-
ically admissible in the sense defined later on in this section, then, by virtue
of the uniqueness of the solution (proved also below), a point has been estab-

lished in the load-response diagram., The latter may be completed by repeating



this process for different values of A;.

For higher degrees of redundancy the process may become prohibitively
laborious., However, some insight into the nonlinear behavior of the structure
may be gained by means of a number of principles which are developed in what
follows. In addition, it is possible that these principles may be instru-
mental in the reduction of the numerical labor involved.

To this end, let a quadratic form U be defined by
ZU(rtu B) =/(EI,U”2+ ErB’? +GhkpB'%)dz (12)
2 2 /2 2
"j[P(U' +PB°°) —2(/\//#/7){,)&//%’ 12HMB -/f&/.?JO/Z
In Eq. (12) the first integral represents the bending and torsional strain
energy, while the second integral can be shown to give the work done by the
vertical load p(z) and the axial force P. Also, a bending moment M(z) will

hereafter be referred to as being "statically admissible" if it satisfies the

equations of equilibrium (5) and the stability condition
UM upd) =0 (13)

for all non-trivial functions (4,B) which are geometrically admissible, that
is, which are sufficiently smooth and satisfy the pertinent geometric boundary
conditions.

If further the "potential energy" V is defined by

V(Mid 8)= UMt B) —/(7&/-##&)4’2 =UM A B)-Wids) (1)

in which the integral expression represents the work done by the lateral loads

and the torsional moments, it can readily be shown that

V(1 G E) Z VIt 4 6) (15)



if M is statically admissible and if (u,B) satisfy Egs. (1) and (2),6 It may
be noteworthy that the equality sign in (15) implies trivial equality between
(ﬁ,é) and (u,B), provided only the inequality (13) is admitted. Conversely,
if U=0 for, say, (uy,B1), then the equality (15) applies to any (G,é):(u,ﬁ) +
c(uy,B1), in which ¢ is an arbitrary number. The pair of functions (uy,B;)
represent the fundamental buckling mode of the beam,

With these definitions, let a bending moment ﬁ(z)=mo+iama be statically
admissible, relative to a given load, and let the functions (ﬁ,é) be associated
with M through the solution of Egs. (1) and (2). ILet further M and (u,B) rep-
resent, respectively, the correct bending moment and configuration for the same
load; this implies, of course, that Eqs. (6a) and (11) are also satisfied. Since

(u,B) are certainly geometrically admissible, it follows that
V(M)' Yy ﬂ) .—_—->_ V(/%' C_/-) ﬁ) (15a)

similarly to (15). But
V(M B)= V(1 U 8) + (Ag =Ax) [mules'p b ) oz
= VM U8) 4 S5 (Au-Ae) (A - A)

in which the second equality is in consequence of Eq. (11).
Moreover, if Eq. (1) is multiplied by u and Eq. (2) by B, and if several

integrations by parts are performed, it is readily demonstrated on account of

the boundary conditions that

Wu,8)=2U(M1; 4 8) (16)

O5ince Egs. (1) and (2) are the variational Euler eéquations of V, and since
the actual natural boundary conditions are the variational boundary con-
ditions of V, the correct solution (u,B) makes V stationary for all moments
satisfying the equations of equilibrium. The additional minimum principle
(15) represents an extension to the restricted class of moments which satisfy
also the stability condition (13).



An identical relationship applies to the system (M;ﬁ,é). Thus, in view of

the definition of V in Eq. (14), the inequality (15a) now becomes

V(K 6) Z UM ) = S (An=Au)( A= Aa) an)
or:

UG 8.8)* 5 A D3) 25 ) Z U1 48+ 5o ANt A T2

The last term on the right side of (1T7a) is positive definite. Hence, in
the absence of initial bending moments (h?:O), the following inequality is es-

tablished:

UM 8)4 55 UpM) S UM, B) +55 Us(#) (18)

with 2

— LMz
Uy (M) Z=
Uy, represents the familiar expression for the strain energy in bending about
the major axis. (18) follows from (1T7a) through the application of Egs. (6a),
(7c), and (10). An alternate statement of the inequality (18), which takes

account of Eq. (16), reads:
Wi, 8) + 5 Us(r) £ W(T,8)+ 55 Uy(F) (180)

These last two inequalities may be expressed‘in the following principle:

Of all statically admissible bending moments, the actual ohe corresponds
to the smallest value of k2U+Ub (or, alternately; of k2W+2Ub) if these values
are determined on the basis of a deflected configuration which is related to
the bending moments through the solution of Egqs. (1) and (2).

This minimum principle, it may be well to emphasize, relates to the dis-
tribution of the redundant moments rather than to the deflection configuration
itself; that the latter is itself governed by minimum principles is well-known

and was, in fact, utilized in the derivation of the present principle. It rep-
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resents an extension of the classical Castigliano "Theorem of Least Work"
into the nonlinear range. Indeed, the Theorem of Castigliano represents a
special case, which can be obtained from either (18) or (18a) by setting A
7

equal to zero,

To carry the discussion further, let the inequality (15a) be subtracted

from (15). This results in the relationship

- _ - -,2 N v 2
(?\r?\a)jmd(u’/ﬁ -hf)az 2 w—m«)/m(u@-/f@’) 2
If now both (M;u,B) and (ﬁ;a,é) are assumed to satisfy the conditions of com-

patibility (11), it follows that

- - " - -
O ) (e =Ag) Z (A=) (A=)

or, after some rearrangement of terms,

o = (/\o<—/\'~o<)()\o<->\_o<)
Obviously, the inequality above is impossible for real values of the redun-
dant parameters. On the other hand, the equality is possible only if M(z)
and ﬁ(z) are trivially identical. This in turn implies the following prin-
ciple:

If there exists a statically admissible bending moment which satisfies
the conditions of compatibility (11) relative to a configuration (u,B) which
is a solution of Egs. (1) and (2), that bending moment is the actual bending
moment and is unique.

In general, it follows from the uniqueness of the M(z) that u(z) and B(z)

7Actually, the customary statement of the Theorem of Castigliano implies not
a minimum, but only a stationary property of the strain energy in bending.
The present principle can be broadened in a similar fashion., In fact, if M
satisfies the equation of equilibrium (5), but not necessarily the stability
condition (13), the quantities dealt with in (18) and (18a) can be shown to
be stationary. In other words, if (u,B) as solved from Egs. (1) and (2) are
differentiable functions of A,, then the satisfaction of Eg. (11) ensures
that the derivative of (M2U+Uy) or of (K2W+2Ub) with respect to A, vanishes.
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are also unique, as discussed before. However, singular cases may occur in
which, owing to a condition of "neutral equilibrium," two equilibrium con-
figurations become possible. This was already hinted at following the estab-
lishment of the inequality (15). A detailed discussion of this question is
contained in the Appendix as well as in later sections in connection with fhe
numerical example and the report on the experiments.

Returning to the minimum principle established above, it is clear then
that any statically admissible bending moment furnishes an upper bound to the
two functions with which the principle deals. In what follows it will be the
object to derive also a lower bound and to discuss a possible application of
these bounds toward the simplification of the computational labor.

To this end, let a "kinematically admissible" bending moment M(z) be de-
fined as one which satisfies the equation of equilibrium (5) [and which,
therefore, can be expressed in terms of Eq. (6a) subject to Eq. (7)1, which
is compatible in the sense of satisfying Eq. (11) for some geometrically cone

8

sistent configuration (ﬁ,é), and which finally does not violate the inequality

U(M; d,B)-5w(d,g) £0 (19)

If this inequality is now subtracted from the inequality (15), in which the
actual state (Mju,B) is compared with the state (M;3,B), then, in view of Eq.

(16),
2(/\4~;\—o<)[ma(([/”(§—k,§’2)a/z~ W( J/é_) i "W((J, ﬁ) (20)

Wwhere Ay represents the set of redundant parameters designating M(z). The

integrals in (20) may be replaced in line with Eq. (11); after some rearrange-

8The concept of "kinematic" admissibility follows from the fact that if the
equality sign in (19) is satisfied the external work equals the "internal work."
Note, however, that the equations of equilibrium (1) and (2) need not be satis-
fied.
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ment of terms, this leads to

L _ X X U ) - X - * — -
W80 3 Q=2 ) =20) Z WG E)+ 55 (Au D) Os AW (A MO -)
in which the last term, as before, is positive definite. Hence, by the same

argument as the one employed previously

W(LE) + 2 U (M) 2 W(WE)+ 5 Up(M) (21)

or, in view of the relations (16) and (19)
UCH G @) + 55ty (1) Z U(M 1, ) 4 55 Uy () (21a)

Since the actual bending moment M(z) is also kinematically admissible, it
follows then that:
Of all kinematically admissible bending moments, the actual one corres-

ponds to the smallest possible value of the functions X*w 12U, or

NU+tU,.

It appears that this lower~bound principle may be useful in estimating
the nonlinear response of the structure. 1In fact, let an upper and a lower
bound be found for a given value of the load parameter A; an error estimate
has then been established. Since the bounds can be narrowed down arbitrarily,

a correct solution may presumably be approached in this fashion.

ASYMPTOTIC BEHAVIOR

As the load parameter A grows beyond bounds, the bending moment M(z) and
with it the deflection mode (u,B) usually approaches a limiting condition.
This asymptotic behavior is discussed in this section in regard to both the
governing equations and the appropriate energy principles.
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For given load p(z), it was shown in [5] that the stable domain [that
is, the one in which the inequality (13) is satisfied] is generally a closed
region in a space in which the coordinates of a point are given by the redun-
dant parameters A\, associated with.M(z) through Eq. (6). As p approaches an
ultimate value p,, this region shrinks to a point; for p > Pys DO statically
admissible bending moments are available any more. In the present paper, p
is assumed to be fixed and less than p,. Because of the boundedness of the
associated stable domain, it follows therefore that all the redundant pa-
rameters A, remain finite as the load parameter A goes to infinity.

This determines the form of the governing equations of the limiting
state. In fact, if A approaches infinity in Eq. (11) while the left side
remains bounded, the asymptotic deflection mode (ug,Bz) is seen to satisfy

the set of equations

Jm(uz"gz—kpf)dz =0 (r=1/,2°*°>n) (22)

together with the equations of equilibrium (1) and (2). It may be of some
interest to note that this system of equations does not contain the prestress-
ing parameters A¥ . In other words, the "final" state is independent of what-
ever initial stresses may exist in the structure (due to settlement of support,
temperature gradients, etc.), although the "history" of the structure does dis-
play such dependence,

By the same token, an asymptotic minimum principle can be derived. For
if A is permitted to approach infinity in the inequality (18), it follows (for

A%=0) that

U(/VZ; Ué/ﬁ() = U (ms; ¢4, /:’;)§U(/‘?, U, (g—) (23)
or

14



in which (M;ﬁ,é) represents, as before, any statically admissible bending
moment and associated deflection mode. The first equality in (23) follows
from Eq. (22). Accordingly:

The limiting bending moment is characterized by making U (or W) smaller
than does any other statically admissible bending moment.

In general, this minimum is in the interior of the region of stability.

It is approached asymptotically, and the corresponding configuration is unigue.
The existence of such an interior minimum is proved in the Appendix; also ex-
plored are certain singular cases, in which U may assume a minimum on the
boundary of the stable domain. Suffice it to state here that in that event

the limiting bending moment may be reached for a finite value of the load pa-
rameter A. Also, the deflection mode need not be unique in that case, as would
appear reasonable in view of the limitations on the uniqueness principle es-
tablished in the preceding section,

As before, the upper-bound principle expressed through (23) has a counter-
part in the form of a limiting lower-bound principle. This is derived readily
by considering (21), with A going to infinity. If then (ug,B.) represents any
pair of functions which, in addition to being otherwise acceptable, satisfies
the set of equations (22), and if this "collapse mode" furthermore satisfies

the condition9

2U(Mo; Y, 8) -~ W(th, B:) =0 (2k)

then
Unm.; te, g,) £ U (M5 Uy s Be)

or

W, 6:) = w(ty, s)

9Unless one of the terms in Eq. (24) vanishes, this condition can always be
satisfied by selecting the amplitude and sign of the assumed collapse mode
properly. This follows from the fact that U is quadratic, but W linear in
u and B,

15



In other words:

Of all collapse modes, the actual one corresponds to the largest value

of U (or W).

NUMERICAL EXAMPLE

In this section, the principles and equations of the preceding sections

are applied to an illustrative example, For this purpose, consider a beam

of length L which is of thin rectangular cross section ([7=0) and of second

degree of redundancy relative to bending in its major plane by virtue of be-

ing elastically restrained at both ends; however, only one degree of inde-

terminacy need be considered here owing to the complete symmetry of the prob-

lem,

Simple supports are provided at both ends, so far as lateral movement

is concerned; a single lateral force of magnitude A is applied halfway between

supports and at an eccentricity e above the center line. If, as before, the

total response is denoted by (Mi,A8), and if m is the restraint moment, then,

in the absence of the vertical load p(z), Eqs. (1) and (2) and the boundary

conditions take the following form:

£F7 O//V—' /77/3”=0
g } (0sz< k)

GAE" 4+ mu’=o
U(O):é/”(&) =ﬂ(0)=0

(%)= Egou ()= mp(S5)+ 15 = GhE (% )-S5 =0

(26)

In Eq. (26) the second set of boundary conditions follows from the symmetry

of the problem; hence the solution for (u,B) need only be considered for half

the beam, that is, from the left support (z=0) to the center (z=L/2).

For the case under consideration, the compatibility condition (11), in

the absence of prestressing, becomes

m=-2X(Eny ) v [ pe (e7)
16
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{ = Cr 2EX
Z

represents the degree of end restraint and varies from zero (no restraint) to

where

"

unity (full fixity). C denotes the "spring constant" and is measured in in.=-1b

per radian.

For the range between O and L/2, the solution of Eq. (26) is given by

wl)= A()-go)( 222t - 22)

8/3() A¢o/ [/ %a’) 5/n0f2L + Z/z (28)

in which
A=zer s ~--_‘i£z
and J?é:é;ﬂ‘ 7£ £ GK

¥ e(m 2_ 2
Ogaut=grex "7 ) <7
where my 1dent1f1es the moment associated with neutral equilibrium, and @ is
a dimensionless constant.

If Eq. (28) is substituted in Eq. (27), this can be shown to lead to the

relationship

5 L Flo (29)
Ao

Witk ) ,._,(/..¢q)/ﬂ-gng - ;—é(/-;ﬂw[#anf-f-g#hzgg/

This equation can be made dimensionless. In fact, let the dimensionless ratio

® be defined by

)
w = 78

L

/\L{

where Sy = 4- ___VIA_-_L_ = /

7 Esy si 43 :S( é:jr é;ﬂ:

with Sy and Sy designating, respectively, the section moduli about the y and
X axes, It is readily apparent that Sy represents the maximum fiber stress
in lateral bending, while s; is the maximum fiber stress associated with the

buckling moment m; . With these definitions, and in consideration of the re-
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lationship between the moments of inertia and section moduli for rectangular

sections, Eq. (29) now takes the simple form:

(B w? = o S/ r¢at) (31)

As o (and hence the lateral load A\) approach zero, both numerator and denomi-
nator on the right side of Eq. (31) also approach zero., For very small values

of w, Eq. (31) can therefore be replaced, through the usual limit procedure, by
CrEme) w?=3x Cex << ) (31a)

Conversely, as the lateral load becomes increasingly large, it follows from

Eg. (31) that

M rex)=o (31b)
@ > c0
The best way to establish a functional relationship between ¢ and w is
probably to assume a value for the former and to solve for the latter by means
of Eq. (31), although, for small values of Q, the inverse procedure may be
followed through the use of Eq. (3la). The asymptotic magnitude of o (for
very large lateral loads) may be obtained from Eq. (31b); it can readily be
verified that the smallest positive root of Eq. (31b) is given by a=1/¢ for
¢ exceeding x, while, for ¢§ < x, the smallest root must be computed through
a trial-and-error process.

With the w-0 relationship thus established, the maximum lateral deflec-

tion, which occurs at the midpoint of the beam, is found to be

L3

Uquzﬂ(/‘¢“)(ﬁ”%“d/2)skt( FEELy (32)

Koy = %43 (1= #2)(Fon % = 35
In EBq. (32), the quantity A was defined in Eq. (28), while k, represents the

ratio between the computed maximum deflection and the equivalent value deter-
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mined on the basis of the linear theory, which does not predict the develop-
ment of restraining moments m (that is, a=0). For very small values of Q, Eq.

(32) can be approximated by

Koy=1- 2K =/= (T2) ¢P°W* C o << ) (322)

in which the second equality follows from Eg. (3la).
Similary, the maximum rotation occurs also at the middle of the beam and

is governed by the equation

Elopax =APK [Sp = (1-Pa) Ao JZ | = £
Ks=(2452) [ - (/- #%) fw;g]

'in which, similarly to the preceding equation, KB is defined as the ratio be-

e:

2GK (33)

tween the computed maximum rotation and the c¢orresponding rotation computed on
the basis of the linear theory. As before, for very small values of «, the

second equation of Eq. (33) can be approximated by
Ko=1-(%ep) = 1= (") ¥@*  (d<<n) 52)

Of some interest, finally, is the lateral deflection of the point of
application of the force itself. This is found by adding Egs. (32) and (33),

or
2

. Z
(U&= A [0 90 Fon s = (1-2PR) 5] = K o (147222
K= (24/3)(1#7282)7 [(-#2) % Fan S - (/- 2¢a) %J

(34)

Here, k is defined analogously to k, and KE For small values of «, this goes

over into

ol
K= /- ep)rr2gD = 1= (3) g 02 d D H w0 (A<T)  (3ha)

Tt may be worth noting that, from Eq. (34), dx/da can be shown to be

proportional to F(a). In other words, for very large values of w, dn/da
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vanishes. Since furthermore the second derivative is positive, it is seen
that the limiting value of k is an absolute minimum if only stable values of
@ (lying in the closed region between - and +x) are admitted in comparison.
This, however, is not surprising. ©Since Kk is a measure of the total work done
by the external force (all other terms being independent of &), this property
of k is a natural concomitant of the minimum principle expressed in the in-
equality (23a).

Some of the results of the preceding discussion become invalid for the
singular case of ¢=l/ﬂ, Physically this means that the force is applied at
a point which would not move if the beam were to buckle laterally under the
critical end moment my (0=x). This special case, which was briefly alluded
to in the previous section, is treated in a general fashion in the Appendix.
In its application to the illustrative example being discussed here, it is
analyzed fully in what follows; a comparison with the Appendix shows that the
general principles developed there are confirmed for the case under consideration.

It can be verified easily that F(a), which is defined in Eq. (29), has no
root in the range O < @ < n for the singular case of ¢=l/n, F(x) is indeterm-
inate, but the customary limit procedure leads to a value of l/ﬂ; hence, by
Eq. (31), the boundary of the stable range is reached when w assumes the finite
value governed by

WE=m7%%, (35)

while, by Egs. (32), (33), and (34) and similar limit procedures

Kulm) = 2844
Kg(m) = /- 752 (36)

K () =(/+7%p)~

Similarly, the deflection mode approaches the limiting functions
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3
— Iim ) = L
Ul Z) = ;7, U(Z) Iy

5/'/’) WZ/L z
3
77¢£.Z)/

For values of w > w,, the restraint moment m retains its critical value

)(57)

(9s2

WA

£
z

e = /im = 2 - S/ ]
fo(Z)= "1 e@(z) (7324, - 511 7Z))
my, or afn throughout., However, the solution (37) of Eq. (26) is no longer

unique; it can in general be expressed by

7

u(Z)

4

rELy (38)
%

Z
eB(Z)=cpB (7)+C oy cB(Z)

in which ¢ is an as yet arbitrary multiplier; the factor associated with c

uz)=L(z)+c

has been added for convenience, and (uy,B;) is the normalized buckling mode
given by
c/,(z)—_—(é)'l/"-yh 7Z/ =—eﬁ,/2/ (39)
The value of ¢ is now determined from the compatibility condition (27)
which, in view of Egs. (37), (38), and (39) and of the definitions of o and
w, becomes
Ci=/= 0T o pu?) (10)
Let a factor T S 1 be defined by
7 = ‘{%Z) (41)
where w, is given in Eq. (35) and represents (in review) the value of w as
a=nt 1s reached initially. Then c is related to T by the equation of the unit
circle
c*+ %=/ (42)
It is noted, and indeed expected from the discussion in the Appendix,
that for any value of T < i there are two possible values of c; in particular,
for T=0 (i.e., as the force A goes to infinity), c = + 1. In other words, two

distinet equilibrium configurations are now possible, which are not adjacent

21



to one another; thus, a "snap-through" (Durchschlag) phenomenon is to be ex-
pected.,
The reduction factors k are obtained by considering Egs. (37), (38), (39),

(41), and (42). This leads to the following set of relationships:

Ku=(4844) (/% J7-7%) L k= (252), O

ko= /- (%42)(12 /7 72) G IR Y ()
A s z—v0 6= 7rE s

K =

0
In other words, the limiting configurations represent either predominant

bending with little twisting, or else pure twist without any bending. Only

one value of k appears, however, since the transition from one configuration

to the others constitutes a rotation about the point of application of the force.
Moreover, this value of k remains constant once the condition Q=n, or w=w,, is
reached. For w > wy (T < 1), the force-displacement relationship is therefore
linear, but the apparent stiffness of the structure is almost double that pre-
dicted by the linear theory.

In concluding this section, it may be noted that, for sufficiently large
values of the applied force, the response of the structure is a discontinuous
function of the eccentricity e of the force, In fact, for "small" eccentri-
cities (g < 1/n), the configuration approaches one of mostly bending and little
twisting, the ratio being nearly independent of ¢, More surprisingly, perhaps,
the response for "large" eccentricities (g > 1/n) approaches one of pure twist
without any bending, the reduction factors k; and kg being zero and unity ir-
respective of the value of ¢, For the singular case (¢=l/ﬂ), the two possible
configurations discussed above represent limiting cases as the value of ¢ ap-
proaches l/ﬁ from below or from above, respectively.

This type of discontinuity seems to be one of the salient features which
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distinguishes the present theory from the conventional linear approach.

Other examples have been investigated and have been found to lead to similar
results. For example, if the same beam is subjected to two forces applied at
equal distances from the ends and at equal (nonvanishing) eccentricities, but
pulling in opposite directions, then the asymptotic response is found to be a
discontinuous function of the ratio of the magnitudes of the forces. 1In fact,
the larger of the two forces dominates the behavior entirely; singularity,

that is, snap-through, occurs when they are equal.

EXPERIMENTAL RESULTS

To obtain an experimental check on the results of the preceding section,

a test arrangement similar to the one described in [5] was employed. The beam
specimen used was a strap, one inch high and 1/16 inch thick, which was made

of heat-treated steel with a yield point of about 180,000 psi. Spanning a
distance of 20 in., it was elastically restrained at both ends in the verti-
cal plane, with the degree of end fixity y [see Eq. (27)] computed at 0.7k.
However, by loosening the clamps this end restraint could be removed entirely;
in this fashion, the beam was made statically determinate to provide a check
for the linear theory. The values for the elastic constants E and u (Poisson's
Ratio) were known to be 30,000,000 psi and 0.3, respectively; this establishes
the relationship A = 1.48w, in which A is the applied force measured in pounds,
and o is defined in Eq. (30).

A relatively rigid vertical bar was attached to the beam at midspan; this
bar was then subjected to a horizontal 1ateral force of increasing magnitude
and varying eccentricity. The results corresponding to eccentricities e of L4
in,, 8 in., and 12 in, are discussed in what follows; these eccentricities are

associated with values of ¢ equaling, very nearly, l/Eﬂ, l/ﬂ, and B/En, re-
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spectively, where the second value represents the singular case. The lateral
deflections Au and rotations A8, as well as the total displacement A(u+eB) of
the applied force, were measured in the usual manner by means of scales and
mirrors,

A comparison between the predicted and measured results is given in Figs.
2, 3, and 4, which correspond to the three types of eccentricites (small,
singular, and large) mentioned above, In each case, the curves give the com-
puted values of the reduction ratios on the basis of Egs. (32), (33), and
(34) as functions of the dimensionless loading parameter w [defined in Eq. (30)].
For the singular case of e=8", or ¢=l/ﬂ, the boundary of the stable domain is
reached for wo=4.06, as given in Eq. (35), with the associated reduction co-
efficients computed in accordance with Eq. (36). For values of w in excess of
Wy, these coefficients are governed by Eq. (43).

The experimental points shown in the figures represent average values
based on several test sequences. It is seen that reasonable agreement was
obtained for small and for large eccentricities. Such quantitative discrep-
ancies as do occur seem to be due to the effects of initial imperfections and
of prestressing moments; for large values of w, other non-linear factors which
were ignored in the present analysis cause further discrepancies. In fact,
since both the measured deflections and rotations were somewhat in excess of
the limitations laid down in the Introduction, a more accurate analysis, which
involves, for example, powers of u and B above the second, yields more com~
patible results. Nevertheless, there is excellent qualitative agreement be-
tween the theory and experiment; in particular, the discontinuous character
of the asymptotic solution is fully corroborated.

For the singular case (e=8", ¢=l/ﬂ) the agreement is confined to values
of w below wy. For larger values of w, two possible solutions (Durchschlag)

did indeed occur, but the quantitative agreement between the theory and the
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experimental values is poor. A possible explanation for this can be found in
the effect of initial imperfections. These imperfections, such as initial cur-
vatures, etc., become increasingly important as fhe boundary of the stable do-
main is approached, i.e., as the value of « approaches s, In fact, if Eq. (26)
is properly modified to include the effect of an initial deviation from perfect
shape, it can readily be verified that, in the general case, the solution
"blows up" as the support moments approach their critical values., In effect,
the orthogonality condition (A7) (see Appendix) is violated, which means that
neutral equilibrium is approached only as the load goes toward infinity, in-
stead of the finite value of w, predicted by the idealized theory. This may
explain why the double-valued equilibrium configuration was "delayed" beyond

its theoretical value,

CONCLUSION

It may be stated that the theory presented herein constitutes a third
approximation to the problem of a beam subjected to a combination of bending
and torsion., In the first approximation, the strains are assumed to be linear
functions of the displacements, while the equations of equilibrium refer to the
undistorted configuration. This leads to an entirely linear theory, to which
the principle of superposition applies. ©Such a theory, which is one commonly
used in ordinary design, is valid in case the lateral stiffness of the beam is
comparable in magnitude to its major stiffness,

When this condition is violated, the need for a second approximation
arises. In fact, the presence of large lateral deflections and rotations
makes it imperative that the equations of equilibrium be referred to the dis-
torted geometry. The resulting theory is still linear with respect to the

lateral loads and twisting couples; however, the effects of the vertical loads
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can no longer be added linearly.

The present, or third, approximation further abandons the assumption of
linear strain-displacement relations., This is a natural result of the presence
of large lateral displacements, in consequence of which the second approximation
appears to be illogical, This is not quite the case, however. Actually, at
least so far as the lateral displacements and rotations are concerned, the
results of the last two approximations are identical for beams which are stat-
ically determinate relative to moments in their major plane of stiffness. This
may provide an explanation as to why this point has been ignored heretofore.

In any event, it appears that, at least in the case of statically redundant
structures, the introduction of nonlinear strain-displacement relations leads

to substantial modifications in their predicted behavior.
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APPENDIX

In what follows it will be shown that, in general, the function U(M;u,B)
E?U(AT) [or, equivalently, W(Ar)] has an interior minimum, which is approached
asymptotically as the load parameter A goes beyond bounds. In addition, the
singular case, in which such an interior minimum may not exist, is explored

further.

To this end, consider again the region of stability, which will be assumed
to be bounded, as before. In the A.-space this region R is enclosed by the
boundary B, on which the homogeneous equations (1) and (2) admit a nontrivial
solution (u;,B3); on B the equilibrium is therefore "neutral," with (up,By)
representing the buckling mode. Moreover, in the general case, the inhomo-
geneous equations (1) and (2) admit no solution on B, while U grows beyond
bounds ‘as the stress point P (whose coordinates are the redundant parameters
Ar) approaches B, If now U can be shown to be convex, the existence of a
unique interior minimum can be postulated.

To show this, it is recalled, in line with footnote T, that if u and B
are differentiable functions of A,, then, by the inequality (18) or by an in-

dependent calculation,

U /| o / *
S5 =R s =T F e Ar) o

Consider now a plane which is tangent to U at some point (hr); its equation

is given by
UAr) = V) 25 (A = )
or, in view of Eq. (Al), by
- ;- *
U (Ay) = U(/\r)“’)\"é(/\o(”)\«)()\o(‘)\o() (A2)
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It follows therefore as a consequence of the inequality (17) that
U()‘/) g [jt()\l’) (A3)

In other words, the surface U does not cross any of its tangent planes; it is
therefore convex, and the existence of a unique interior minimum is proved,
provided all the other previous assumptions are found to hold also.

The exceptional (singular) case occurs when.the inhomogeneous equations
(1) and (2) do admit a finite solution. For the sake of simplicity, let Egs.

(1) and (2) be rewritten in the symbolic form

Ly(Myu, 8) =9 Lp( M w,p)=2 (inR) (ak)
and let, in accordance with the previous discussion,

LalM by B) = Ly(M; 4, ) =0 (on B) (45)
Then the system of equations

La(h, u, @)= 7 Log(M ;s B)=1C¢  (onB) (A6)

has a finite solution on that portion B' of B on which the "orthogonality

condition"

/(7u,+Zp,)c/z =0 (on B') (A7)

holds. Moreover, since U is finite on B', the existence of an interior minimum
can no longer be postulated.

For the purpose of studying singular behavior, let it be assumed that an
interior minimum does not exist; this means in turn that U has an exterior
minimum, which lies on B'. 1In that event, as the load factor A increases, the

stress point- P reaches some point on B', from which it proceeds along B' toward
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the minimum, If B' is represented by a single point, as in the case of the

illustrative example, the stress point stays fixed after reaching B' and the

structure exhibits the quasi-linear behavior discussed earlier in the paper.
After P has reached the boundary B', the most general solution of Eq.

(A6) subject to the condition (A7) can be expressed in the form

(U4 B) = {(l, (3.)+C(th, B:) (A8)

in which (ugy, B,) represents some solution of Eqs. (A6) and (uy,B1) is governed,
subject to an arbitrary multiplicative constant, by Eqs. (A5). It is convenient

to identify these functions further by the orthonormality conditions

j(uou,vt 4’4 p,)dz =0 (89)

Jcu 162820 dz =/
in which b is an arbitrary number having the dimension of a length. Except
for the sign of (uy,By), conditions (A9) determine all the functions uniquely
for given value of b,

Let the point at which the stress path "first" reaches the boundary B'
be designated by P', and let P' be associated with a load parameter A' and a
parameter c=c' [see (A8)]. Then the value of c' can be determined by a limit
process as follows:

While the stress point P is in the interior of the region of stability,
the solution of Eq. (Ak) can be represented.by Eq. (A8), subject to the or-

thonormality conditions (A9), if (u;,By) satisfies the equations

Ly (M 4, 8, ) =y, Lg=(r1;t, ) =wbpg, (A10)

in which p is the eigenvalue of the system (A10). This eigenvalue satisfies

the relationship

f[é"/Lu(/%‘U/)/—?//'f'[’;Lﬁ(/"/j 4, 5/)] adz = (Alla)
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which is obtained by multiplying both sides of Eq. (Al0) by u and By, re-
spectively, by integrating, and by considering the second equation of Eg. (AS).

Similarly, the condition
Jwtatrt4,0)1 815 (40, )] 72 = [lutatrt; ap.) 14 La08 thp) ot =0 BT)

is obtained, in which the second integral follows from the first through inte-
grations by parts. Finally, from Egs. (A4), (A8), (All), and the linearity of

the differential operators, the parameter c is seen to be given by the equation

C = (/—5)/(7u,+f/3,)dz | | (A12)

As the point P approaches the boundary B, the eigenvalue p approaches
zero and the factor c¢ increases generally beyond bounds. However, on B' the
numerator in Eq. (Al2) also vanishes, as postulated in Eq. (AT7); hence the
fraction becomes indeterminate, and the following relationship is established

by means of the usual limit considerations:
/='3 /I”” — ,o ’ 1 A.l
c M¢OC—¢/(7q+fﬁ)dz (A13)

In Eq. (Al3) and in what follows, a dot (such as in (i) signifies differentiation

[
along the path, that is, ahg -

The denominator in Eq. (Al3) is obtained from Eq. (Alla) thfough dif-

ferentiation. This leads to

M =f[il,tu(”';uuﬁ,) + B, Ls(M; Uy, ﬁ,)]dz
"'3’}[1411-(4(/"/; L;” ,9',) T A Lﬁ (/\7; l:/,, /é/)]dZ‘

t H u(msB,)" + 5:[‘”75 U:"+2(k”75 6.’)]} dz
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The last integral on the right side of (Alk4k) follows from the definitions of
Ly and Iy and from the fact that M=mg by Eq. (6a).

The first integral in (Alk) vanishes; this can be seen by substituting
Eq. (AlO0) and by differentiating the second equation of Eq. (A9) with respect
to Ng. The second integral vanishes similarly, since it can be converted in-
to the first integral (and hence zero) through four integrations by parts and

in view of the boundary conditions. Two more integrations by parts finally

convert the third integral into

M= ijs(u,” - KB")dz (a15)

The establishment of the numerator in Eq. (Al3) proceeds along analogous
lines. In fact, since (uy,B,) satisfies Eq. (Ak) at P' (for M=M;), it follows

that the relationship
] (94, +tB)dz = j[a, Lu(M; oy o)+ B Lo(M; th, Bo)] 2

. ¢ . .
_—.~.j[u,LM(M,.u,,/s,)+,3,pr,-u,,/:',)]dz
holds. The second equality in the preceding equation is the result of a number
of integrations by parts. However, if Eq. (AlO) is differentiated with respect

to Agy and if p is set~equal to zero, it follows that

Ly (M Uy 1) = Lu(My thp )+ (s B1)" =40 ¢
L (M B) = La(M s B) 4 s+ 2 (kms ) = 4 b,

on B'. When these relations are substituted in the last integral and the first
equation of Eq. (A9) is considered, then, after some more integrations by parts,

the relationéhip
j (44,t1p)42 = ,f Ms( '8 4uU B -2kpl p/)d2 (216)
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is established. Hence, by Eq. (A13), c' is expressed as the quotient of the
two integrals appearing on the right side of Egs. (A15) and (Al6).

Offhand, this quotient seems to depend on the direction of the approach
path, That this is not the case can be seen from the following considerations:

In the linear space in,which the stress point P is defined, the moment
component mg can in ‘general be expreséed in the fbrm W=7 Fey? in which the set
of 7. représents the direction cosines of the approach path relative to the
coordinate axes. Similarly, the integrals on the right side of Egs. (Al%) and
(A16) are representable as linear combinations involving these direction co-
Sines.

Now both denominator and numerator compqnents vanish for all directions
which are tangent to the boundary surface B'. Indeed, since p vanishes iden-
tically throughout B, (=0 for all directions other than the one normal to B.
Similarly, the numerator is different from zero only in the normal direction,
which can be verified by considering that the orthogonality condition (A7) is
satisfied identically on B'. Hence the direction of the approach path is im=-
material, and the limiting coefficient c' can finally be expressed by

[m/} (L/C,//ﬁf + 4/ //,’Sa - E/'( (30/ ,é’,/) dZ
C'=— (A17)

< Jmﬂ ‘(L‘/I,,{B/ \K/?,/z) dz

in which m, represents the moment component normal to B'.

After the bounding surface of instability B' has been reached (for A = A'),
the stress point P travels on B' as the load parameter A\ is increased further,
The response A(u,B) continues to satisfy Eq. (A8); when this is substituted in

the compatibility conditions (11), the following system -of equations is obtained:
* 2 ’ 2. ” y TPy
Ag-T =) /m,,(u,; fo- kB Dzt C N [ (' B2k B8, ) %

+ C2A* jm,, (U8 -kB/°)dz (A18n)
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Ne- g = /\met(u;’@, - kp.%) dz (A18t)

- The subscript n denotes the direction of the outer normal to B', while the sub-
script t designates the totality of all directions which are tangent to B' and
for which the condition (A7) is identically satisfied. In the set of equations
(A18t) only one integral appears on the right side; two more integrals, similar
in form to the second and third integrals in (Al8n), can be shown to vanish.
In general, P moves on B' in such a way as to minimize further the value
of U+Ub/?\.2° With A going to infinity, a limiting point P, is approached, which
corresponds to the smallest value of U on B'. This point is found by setting
the integrals appearing on the right side of the system of equations (A18t)
eqﬁal to zero;‘a limiting value of c is then obtained by substituting the func-
tions (ug,B,) éo determined in Eq. (Al8n). (Note that there are two solutions.)
In special cases the stress point P may remain at P'. This happens when
either P' is the only point on B' (such as in the illustrative example), or else
when P' happens to be the point associated with the lowest value of U on B';
this latter case occurs when the vector P¥P' is normal to the instability surface.
In either case, the finél state of stress designated by P' is generally reached
when the load parameter is.finite (A = A'). For A > A', the response functions
MugsB,) increase linearly with A similarly to a staticélly determinate structure.

However, as before, two solutions for c¢ are possible according to qu>(A18n)°lO

In other words, two distinct equilibrium configurations are possible such that

101y the (MycA\) plane, Eq. (Al8n) defines a hyperbola., This becomes apparent
from the fact that, if multiplied by two, the right side can be converted into
the form -A2W + cA2B + c2\2{, in which the dot represents differentiation in
the n-direction. It is clear that {1 is negative, since p is positive inside

the region of stability and negative outside of it. Similarly, W is seen to be
negative; indeed if it were positive then W would éxhibit an interior minimum,
in which case P would not reach (or stay) on the boundary. And finally, if W
were zero, P' would be reached only in the limit. The quadratic form has there-
fore a negative discriminant; hence it designates a hyperbola.
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one may be reached from the other only through a snap-through (Durchschlag)
process. As before, a limiting value of ¢ is approached as the parameter A

grows beyond bounds.

36



DISTRIBUTION LIST

No. of
Agencl

Commanding Officer

Office of Ordnance Research

Box CM, Duke Station

Durham, North Carolina 10

Chief of Ordnance

Department of the Army
Washington 25, D. C.

Attn: = ORDTB-PS 2

Deputy Chief of Staff for
Logistics
Department of the Army
Washington 25, D. C.
Attn: Res. Br., R and D
Div. 1

Commanding General

Aberdeen Proving Ground

Maryland

Attn: BRL, Tech. Info.Div. 1

Commanding Officer
Detroit Arsenal
Center Line, Michigan 1

Commanding General

Frankford Arsenal, Bridesburg Sta.
Philadelphia 37, Pennsylvania
Attn: ORDBA-LC 1

Commanding General

Redstone Arsenal

Huntsville, Alabama

Attn: C(RDDW-MR 1

Commanding General
White Sands Proving Ground
Las Cruces, New Mexico

Attn: CORDBS-TS-TIB 1
Commander

U. 8. Naval Proving Ground
Dahlgren, Virginia 1

Copies

57

No. of
Copies

Agency

Commanding General

Ordnance Weapons Command

Rock Island, Illinois

Attn: Research Branch 2

Chief, Detroit Ordnance
District
574 E. Woodbridge Street
Detroit 31, Michigan 2

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attn: ORDGU-SE
For transmittal to:
Canadian Joint Staff
2001 Connecticut Ave., N.W.
Washington 25, D. C. 1

Office of Naval Research
Washington 25, D. C.
Attn: Code 438 1

U. S. Naval Ordnance
Laboratory

White Oak, Silver Spring 19,
Maryland A

Attn: Library Division 1

Chief, Bureau of Ordnance (AD3)
Department of the Navy
Washington 25, D. C. 1

Director

Air University Library

Maxwell Alr Force Base

Alsbama 1

Commanding General

Air Research and Development
Command

P. 0. Box 1395

Baltimore 3, Maryland

Attn: RDTOIL (Tech. Library) 1



DISTRIBUTION LIST (Concluded)

No. of
Copies

Agency

Commanding Officer

Engineering Research and
Development Laboratories

Fort Belvoir, Virginia 1

The Director

Snow, Ice and Permafrost
Regearch Establishment

Corps of Engineers

1215 Washington Avenue

Wilmette, Illinois 1

Armed Services Technical
Information Agency

Document Service Center

Knott Building

4th and Main Streets

Dayton 2, Ohio 10

U. 5. Atomic Energy
Commission
Document Library
19th and Constitution
Avenue, N.W.
Washington 25, D. C. 1

Engineering Research Institute
Project File

The University of Michigan

Ann Arbor, Michigan 1

38

No. of
Agency Copies
Director
Applied Physics Laboratory
Johns Hopking University
8621 Georgia Avenue
Silver Spring 19, Maryland
Attn: Dr. R. C. Herman 1

Technical Information Service
P. 0. Box 62
Oak Ridge, Tennessee

Attn: Reference Branch 1
Director

National Bureau of Standards
Washington 25, D. C. 1

Corona Laboratories
National Bureau of Standards
Corona, California 1

Jet Propulsion Laboratory

California Institute of
Technology

4800 Oak Grove Drive

Pasadena 3, California

Attn: A. J. Stosick 1

Engineering Library
The University of Michigan
Ann Arbor, Michigan 1






