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Abstract – The invasive zebra mussel (Dreissena polymorpha) has negatively impacted many 

northern Michigan aquatic species in the past twenty years (Strayer, 2009). One of the species 

affected has been Stagnicola emerginata, a freshwater snail. This species of snail also acts as the 

intermediate host for a number of parasitic schistosome species which increase the size of the 

snail, possibly making them more vulnerable to zebra mussel colonization (Horak et al., 2002). 

The purpose of this study was to determine if there is a relationship between Schistosomatidae 

parasitism in the freshwater snail Stagnicola emarginata and attachment of Dreissena 

polymorpha. Snails were collected from Douglas Lake in northern Michigan lake, shed under 

artificial lighting to induce cercarial emergence, and observed to determine parasite infection. D. 

polymorpha attachment was noted before snail release. Findings indicate no significant 

relationship between schistosome parasitism and the presence of D. polymorpha. We suggest the 

absence of a relationship may be due to the schistosomes acting as prudent parasites. 
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INTRODUCTION 

 Since its introduction to the Great Lakes in 1988, Dreissena polymorpha, commonly 

known as the zebra mussel, has wreaked havoc upon populations of indigenous freshwater 

species, including the Stagnicola emarginata snail (M.D.N.R., 1995). Using byssel threads, 

juvenile D. polymorpha attach to a variety of aquatic objects, ranging from boat hulls to biotic 

life, such as snail shells (Stoeckel et al., 2004). The encumbrance caused by the attached D. 

polymorpha has presumably applied a strong selective pressure upon many snail species. 

Resultant morphological responses have occurred, including selection for decreased shell size as 

well as impeded growth rate and burrowing ability in related snail species (Van Appledorn et al., 

2007). It is possible that D. polymorpha attachment may limit S. emarginata’s burrowing to such 

an extent that it spends less time semi-submerged in the sand. As a result, S. emarginata may be 

exposed to increased parasitism.  

S. emarginata is afflicted by at least eight known trematode parasites in the 

Schistosomatidae family (Blankespoor and Keas, 1997). The schistosome begins its complex life 

cycle in waterfowl feces which contain fertilized schistosome eggs. Once in water, the eggs 

hatch to form miracidia, a ciliated transmission stage with an approximate twenty hour life span 

(Neuhaus, 1952). During this stage, the miracidia infects an intermediate mollusk host, such as S. 

emarginata. The miracidia develops into a sporocyst within the mollusk host and can survive in 

vitro up to ten weeks before individual cercariae emerge daily from the snail (Horák et al., 2002). 

The cercarial stage then penetrates a waterfowl definitive host and completes its life cycle.  
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While appearing to cause no physical injury to the snail host, the sporocyst does modify 

the snail’s internal physiology (Sluiters et al., 1980; Sluiters, 1981). Parasites can cause 

heightened respiration and heart rates as well as varied protein, carbohydrate, nitrogen, and lipid 

levels (Meyer et al., 1986; Thompson, 1997). A related snail species, Lymnaea stagnalis, has 

been shown to have increased shell and body size when parasitized, resulting in giant growth 

(McClelland and Bourns, 1969). Also, schistosomes have the ability to manipulate host 

neurological gene expression to their own benefit, as the parasite terminates host gamete 

reproduction and subsequently sequesters reproductive energy for itself (Hoek et al., 1997). A 

combination of these factors may reduce the snail’s ability to evade D. polymorpha attachment, 

since resultant shell gigantism may inhibit burrowing ability. If zebra mussels have a higher 

probability of attaching to larger objects than small ones, larger S. emarginata will be more 

prone to zebra mussels. The energy consumed by the parasite could also weaken S. emarginata 

and reduce its burrowing rate. 

The purpose of our study was to determine if there was a relationship between 

schistosome parasites in S. emarginata and D. polymorpha attachment. As both D. polymorpha 

attachment and schistosomal parasitism cause negative effects upon the snail host, we expected 

to observe a direct relationship between parasitism and D. polymorpha attachment. 

METHODS AND MATERIALS 

S. emarginata were collected on five separate occasions at five locations in White Goose 

Bay in Burt Lake, near Cheboygan, Michigan. Collection site locations were chosen based on 

zebra mussel abundance, sandy shores, depth, and presence of waterfowl, specifically the 

Common Merganser. Burt Lake was chosen over surrounding lakes since its D. polymorpha 

abundance is higher than most lakes, which made collection of S. emarginata with D. 
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polymorpha more probable (Cain et al., 2008). Sandy beaches were chosen as S. emarginata 

prefer sandy substrate as they are bottom feeders (Cain et al., 2008). As S. emarginata 

abundance does not increase with depth, our collections were limited to water approximately 1 m 

deep to simplify collection. The presence of waterfowl, specifically the Common Merganser, 

which is a definitive host of schistosome parasites, increased the possibility of collecting infected 

snails; Common Merganser was sighted in the Burt Lake area by a knowledgeable source the 

week prior to collection. Specimens were collected by hand between the hours of 6:00 AM and 

7:00 AM between July 19th and July 24 th. The snails were placed in buckets with lake water and 

transported to the lab.  

Shedding, the term given to when a parasite leaves the snail in an intermediate host, was 

completed using methods described by Blankespoor and Reimink (1998) (see Figure 1). Using 

forceps, individual snails were placed in plastic communion cups, which were half-filled with 

oxygenated, filtered water from Douglas Lake. Plexiglas disks with 55 circular cut-outs, each 

holding a communion cup, were used to hold the snails. Each disk was then placed into a 

wooden holder under a fluorescent light to induce cercarial shedding. Light was used to stimulate 

shedding as cercariae typically emerge within six hours after dawn, most likely due to sunlight 

(Anderson et al., 1976; Cort and Talbot, 1936). Shedding was permitted for 2 hrs, approximately 

from 8:00 AM to 10:00 AM.  
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Figure 1. Apparatus used to shed S. emarginata. Measurements are in cm unless stated otherwise 
(from Blankespoor and Reimink, 1998). 

 

Each communion cup was inspected using a Bausch and Lomb Stereo Zoom 4 dissecting 

microscope to determine cercarial presence or absence. The number of S. emarginata with D. 

polymorpha attached was also counted by hand and recorded. Snails were promptly returned to 

the collection buckets and subsequently released to their respective collection sites by 

approximately 1:00 PM.  A Chi-square test was used to determine if there was a significant 

difference between D polymorpha attachment and schistosome parasitism in S. emarginata.  

RESULTS 

Table 1 shows the relationship between S. emarginata, D. polymorpha, and schistosome 

parasites. As Table 1 conveys, approximately 2% of S. emarginata collected were parasitized, 

while approximately 22% had D. polymorpha attached. There appears to be no significant 

relationship between D. polymorpha attachment and schistosome parasitism on S. emarginata 

(Chi-square=0.663, N=2587, df=3, p=0.882).  
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Table 1. Total number of S. emarginata collected with and without D. polymorpha as well as 
with and without schistosome parasitism. Percentages are out of the total 2,587 snails collected. 

 D. polymorpha Present D. polymorpha Absent Total 

Schistosomes Absent 575 (22.2%) 1965 (76.0%) 2540 (98.2%) 

Schistosomes Present 13 (0.5%) 34 (1.3%) 47 (1.8%) 

Total 588 (22.7%) 1999 (77.3%)  

 

 DISCUSSION 

As apparent by the data, D. polymorpha attachment is not pervasive enough to negatively 

effect S. emarginata by causing increased schistosome infection; additionally, schistosome 

parasitism does not physically affect S. emarginata to a high enough degree to cause increased 

D. polymorpha attachment.  

Throughout the course of this study, several possible improvements have been noted 

which may prove useful in future investigations. As shown in Table 1, the rate of infection is 

limited, comprising only 47 of the 2,587 S. emarginata sampled. It is possible that due to the low 

rate of infection, an increased sample size would have been able to yield more conclusive data. 

The laboratory methods used to determine schistosome infection were possibly inaccurate, since 

it was difficult to confirm the presence of translucent cercariae using white light and clear cups. 

A more costly technique which has proved effective in detecting as few as one, and as many as 

three hundred cercariae, is a polymerase chain reaction assay (Driscoll et al., 2005). However, 

this level of sophistication was outside of the means of our study. An additional source of error 

may have involved the dislodgment of mussels from snail shells during transport. During 

collection, snails with D. polymorpha attached should have been placed in a container separate 

from snails without D. polymorpha. One-tailed schistosome cercariae, misidentified as annelids 
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or possibly a D. polymorpha larval stage, were also not counted. The one-tailed schistosome 

cercariae were noticeably abundant during sheddings and we hypothesize that data analysis 

would have been significantly affected if they had been included in data collection.  

After considering these errors, there is probably still cause for the lack of a relationship 

between schistosome parasitism and D. polymorpha attachment. Specifically, it is possible that 

the schistosome parasites may be acting as prudent parasites (Buckling and Brockhurst, 2008). 

The term “prudent parasitism” refers to parasitic organisms limiting their negative impact upon 

their host in order to avoid reducing their own fitness (Holmes, 1983). Thus, the parasite is 

‘prudent’ and does not fully exploit the host. In the schistosome and S. emarginata symbiosis, it 

would not be beneficial to the schistosomes to negatively affect the host’s ability to function to a 

degree where the host is unable to survive.  

Prudent parasitism has also been observed in relationships between parasitic 

schistosomes and their host snails (Minchella, 1985). Schistosomes are known to alter the 

physiology of S. emarginata in many ways, including its immune system (Coustau, 2008). Thus, 

schistosomes manipulate the immune system to the extent that their own safety is ensured, 

without compromising the ability to fight off other pathogens (Bayne et al., 2001). There are also 

many unknown effects of schistosomes on snail hosts, such as changes in metabolism, heart rate, 

and respiration (Meyer et al., 1986; Thompson, 1997). Nonetheless, the snail is seemingly as 

healthy as when not parasitized, possibly due to prudent parasitism (Sluiters et al., 1980; Sluiters, 

1981).  

It would not be difficult to imagine that the schistosomes are minimizing their effect on 

the behaviors and mechanisms S. emarginata uses to evade D. polymorpha attachment to 

propagate their own survival. D. polymorpha attachment would seemingly not be beneficial to 
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the schistosome, as D. polymorpha inhibits S. emarginata foraging and burrowing ability (Van 

Appledorn et al., 2007). Thus, less energy is yielded for the parasite to exploit and probability of 

predation increases, killing both the host and parasite. Therefore, as a parasite’s fate is tied 

closely to that of its host, it should minimize its effect on the host, as any detrimental effect 

would be analogous to committing a suicidal action upon itself.   

We made the initial assumption that gigantism, caused by the schistosome, may decrease 

burrowing ability; the incapability to burrow would then possibly result in increased D. 

polymorpha attachment. For that reason, it would be logical that the schistosomes increase shell 

size to a certain threshold, where the ability of S. emarginata to effectively evade D. polymorpha 

attachment is not inhibited.  

Similarly, the schistosome’s energy exploitation should be limited so as to allow S. 

emarginata to effectively avoid D. polymorpha attachment. It would not benefit S. emarginata to 

have the ability to burrow, but not the energy to do so. Therefore, the schistosome must utilize a 

portion of the host’s energy, but to a limit. This gives further cause to why the schistosome 

terminates the host gamete production (Hoek et al., 1997) and seizes the energy for itself: it is 

able to receive energy but does not interfere with the host’s ability to survive.  

It is probable to assume that highly virulent schistosomes that caused detrimental affects 

to S. emarginata were evolutionarily selected against. Specifically, they caused S. emarginata to 

die prematurely before they were able to fully exploit the host. Consequently, the schistosome 

parasite should be under selective pressure to become less virulent over time.  

A new paradigm of parasitic relationships theorizes that parasitic relationships will 

evolve over time to become progressively less virulent until the symbiosis becomes a mutualism. 

Two parameters to the theory exist: that the host population is not extensive and that dispersal 
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between hosts is difficult (Cain et al., 2008). In this case of the schistosomes, switching snail 

hosts is impossible; once the miracidia develop into sporocysts they are unable to switch 

intermediate hosts (Horak et al., 2002). 

Having no natural predators, D. polymorpha increases in population size every year, and 

consequently applies a stronger selective pressure on much abiotic and biotic freshwater life 

(Nalepa et al., 1996; Strayer, 1999; Van Appledorn, 2007). One may assume S. emarginata 

populations are unable to feed due to lack of detritus owed to increased consumption by D. 

polymorpha (Strayer 1999). In addition to the burden caused by attached D. polymorpha, then S. 

emarginata populations may decrease in size (Van Appledorn, 2007).  The reduction in number 

of S. emarginata may cause a stronger selective pressure on schistosome parasites, causing them 

to possibly exploit their host less and stay on the host for longer periods of time. However, the 

fact that schistosomes have complex life cycles conflicts with this hypothesis as the parasite 

would be unable to remain on one host and still produce offspring. Nonetheless, it may be 

possible that D. polymorpha could continue to apply selective pressure and cause the 

schistosome to become less virulent. It would be an interesting concept if one of North 

America’s most notorious invasive species may actually be indirectly benefiting an indigenous 

species.  
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