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ABSTRACT

Possible definitions of time-dependent stability are discussed.
The response of simply supported columns to linearly attenuating
lateral and axial forces is computed and charted for a broad vari-
ety of parameters, including asymptotic cases. The equations gov-
erning columns of other boundary conditions are developed and their

solution is indicated. Special sections are devoted to multi-story
frames and arches.
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1. INTRODUCTION

The question of the stability of structures under time-dependent loads has
taken on increasing significance in recent years. Its fundamental importance
is self-evident. Except under very special circumstances, structures are ana-
lyzed and designed with respect to an assumed set of static loads, although the
actual loads to be withstood by the structures are almost invariably "time-
dependent." This procedure is normally Jjustified by the fact that the dynamic
character of the loads affects the response of the building only to a negligible
extent. Where such effects can no longer be safely ignored, they are often tak-
en into consideration through the expedient of "impact factors" or "equivalent
static forces." Nevertheless, the validity of such procedures is frequently
open to question.

When a structure is subjected to dynamic loads caused by blasts, a quasi-
static approach to the analysis becomes meaningless. Much research has been
conducted during the past ten years to determine the response of beams and
frames to blast loads, especially with regard to the influence of permanent
plastic deformations. On the other hand, the problem of the elastic stability
of such structural elements when subjected to blast loads has received rela-
tively little attention.

It seems likely that one of the reasons for this neglect is to be found in
the comparative difficulty which is inherent in such a study. In fact, the very
definition of stability under time-dependent loads requires clarification. For
this reason, the concept of stability under static loads is reviewed in what
follows immediately.

Let a structure, or a structural element such as a column, be subjected to
a set of static forces, and let the structure assume a certain equilibrium con-
figuration. For the sake of simplicity, this is frequently assumed to be the
original unstressed configuration, although the error thus introduced is not al-
ways negligible. When the loads are sufficiently small, the equilibrium of the
structure remains stable; it may become unstable, that is, the structure may
"buckle," when the loads reach or surpass a certain critical value. To find
this value, there are, in general, the following three avenues of approach.

1. The first, and most common, approach is that of investigating the pos-
sibility of an equilibrium configuration which is associated with the same set
of forces as the unbuckled configuration and which is "adjacent" to the latter.
This is the classical approach of Euler and leads to the formulation of an eigen-
value problem, in which the load parameter is the eigenvalue and the buckling
mode the eigenfunction. The smallest load parameter for which a nontrivial so-
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lution exists separates the stable from the unstable domain.

A slight variation of this line of attack is presented by investigating the
uniqueness of the load-deformation relationship. In this case, the smallest load
parameter for which a branch point (bifurcation point) may exist constitutes the
stability limit. In general, this formulation is identical with the previous
one, Differences may develop in the case of irreversible processes; an example
for this is furnished by the buckling of a column under axial force when the
(prebuckling) stress exceeds the elastic limit.

2. An alternate stability criterion is based on the potential energy. 1In
this case, the potential energy of the unbuckled configuration is compared with
that of all geometrically consistent neighboring configurations. So long as
these are all associated with an increase in the potential energy, the equilib-~
rium is said to be stable. If there is at least one configuration whose poten-
tial energy represents a decrease, the structure is in unstable equilibrium.
The two domains are separated by the case in which all configurations show an
increase except at least one for which the potential energy remains unchanged;
the force parameter associated with this case is the critical one.

This method of attack again leads to an eigenvalue problem, which is gen-
erally identical with the one mentioned above. However, the chief significance
of this approach seems to lie in its ready adaptability to approximate methods,
of which the one due to Rayleigh-Ritz is the best known.

3. The third approach is dynamic. Owing to its comparative mathematical
complexity, it is rarely employed, yet it represents the only physically meaning-
ful stability criterion. In essence, it consists in tracing the motion of a
structure after its equilibrium has been disturbed by a source of arbitrary
character and of arbitrary, but finite, magnitude and duration. If the ampli-
tude of this motion remaing finite with time, the equilibrium is called stable.
Conversely, if there exists at least one type of disturbance which causes motion
of indefinitely increasing amplitude, the structure is in unstable equilibrium.

An obvious difficulty immediately presents itself. Since the concept of
instability is linked to "large" amplitudes of motion, the governing equations
are almost invariably of nonlinear character; this in turn mskes the solution
prohibitively difficult. For this reason, the equations of the disturbed mo-
tion are usually linearized. As a result, the following contradiction presents
itself: the equations of motion are solved on the basis of assumed small ampli-
tudes, and the solution is then investigated relative to the possibility of large
amplitudes. Actually, the stability criterion so obtained is usually on the safe
side. It can be rationalized by letting the disturbance be very small and by
questioning whether the response remains also very small.

In the vast majority of cases, the three stability criteria described above
lead to identical results. In particular, this is true in the absence of non-
conservative or gyroscopic force systems. An example to the contrary is pre-



sented by the case of a cantilever column which is subJected at its free end to
a force whose magnitude is given and whose direction 1s specified to be tangent
to the column at the point of application of the force. In this case, the clas-
sical eigenvalue approach predicts stability for a force of arbitrarily large
magnitude, while the energy approach breaks down since the system is nonconser-
vative, and hence a potential energy cannot be defined. Nevertheless, the dy-
namic approach leads to a critical force of finite magnitudeol

It is almost self-evident that the two static avenues of attack, which serve
well in most static stability problems, become vacuous in the event of time-de-
pendent loads. The third, or dynamic, approach alone adapts itself to this prob-
lem. In fact, let the response of a structure to dynamic loads be computed; then
the motion so determined is considered stable if a slight change in the loads or
in the initial conditions corresponds to only a slight change in the response.

A few problems of this type have been studied in recent years, notably the case
of a column which is subjected to an axial force whose time-dependence is har-
monic.2 0ddly enough, the strict application of the present stability criterion
to this case leads to the improbable (and discouraging) result that all columns
are unstable under all circumstances. The authors relieve themselves of this
difficulty by calling the inevitable presence of friction to the rescue; in ad-
dition, they might also have cited the influence of nonlinear factors.

In studying the stability of structures under time-dependent loads, it had
originally been planned to apply criteria of the type discussed above. It can
be seen readily, however, that such an approach must fail in the case of blast-
type loads, whose outstanding characteristic feature is their (more or less
rapid) attenuation. This means that, after a sufficiently large time interval
has passed, the loads invariably become small enough to make the amplitude of
the motion bounded. Hence instability of the nature described above does not
occur, unless the kind of reasoning used in Ref. 2 is applied, in which case
again all structures are unstable. It is obvious that this is of no practical
use in the light of the purpose for which the present study was undertaken.

Rather, to lend realism to this investigation, it was decided to study the
response of structures which are subjected not only to dynamic lateral loads,
but also to axial forces varying with time. This does not represent a stabil-
ity problem in the strictest sense of the word; in fact, from a mathematical
point of view, the essential feature of the issue of stability-—namely, the
search for an eigenvalue which renders an essentially homogeneous system singu-
lar—has evaporated.

Nevertheless, no remorse need be felt at such an apparent deviation from
the straight path. Actually, all true stability problems represent a form of
mathematical fiction. For example, in the case of the classical column buck-
ling problem, it is assumed that, prior to buckling, the column is entirely
straight. This in turn implies that it is free from imperfections and that
the axial load is fully centric; this constitutes an obvious idealization of
the actual conditions. The physical significance of the idealized solution



lies in the fact that the axial force for which the theoretical column ceases to
be stable 1s also an upper bound to the carrying capacity of the actual column
(if nonlinear factors are ignored). In mathematical terms this means that when
a homogeneous system becomes singular (that is, it admits nontrivial solutions),
the solution of an associated inhomogeneous system in general passes beyond
bounds, This limiting condition, however, is the real object of the investiga-
tor's search; the associated eigenvalue problem is only a convenient method of
finding it.

The method, then, is not available for use in the current investigation, but
the object is essentially the same: to determine the behavior of structures and
of structural elements when exposed to blast-type loads, of both lateral and ax-
ial nature. The presence of these axial forces is an essential feature, and fur-
thermore one which permits the retention of the term "stability" in the title of
the report. Indeed, the magnitude of the axial forces may exceed their static
stability limit; it will be shown that this is permissible if they are of suffi-
ciently short duration.

A substantial portion of the report (and almost all its numerical data) con-
cerns itself with the case of a simply supported column under both lateral and
axial load, both of which attenuate linearly, although not necessarily at the
same rate. This may be considered a type of "pilot" problem, whose results,
properly modified, are reasonably applicable to all types of structures. Actu-
ally it will be seen that the simply supported column occupies a somewhat unique
position: the results obtained here are exact (within the limits of the present
theory, of course), whereas analogous results become approximate, although tech-
nically acceptable, for any other type of structure. .This 1is because, of all
possible structural combinations, the simply supported column alone exhibits
modes of vibration which are independent of the magnitude of the axial force.
The significance of this fact seems to have been pointed out for the first time
in Ref. 3.

Some simplifications have been introduced, but these are not considered un-
duly restrictive. The column is assumed to be initially perfectly straight; if
an initial crookedness is present, this can be handled readily through the addi-
tion of an equivalent lateral force, as was done, for example, in Ref. 4. The
axial force is assumed to be entirely centric; again, the existence of an eccen-
tricity leads to further equivalent lateral loads. The analysis is based on the
Bernoulli-Euler beam theory, which appears reasonable in view of the presumed
slenderness of the structure. Elastic behavior is postulated throughout; this
limits the discussion, but the inclusion of plastic deformations, difficult as
it is for the static buckling case, presents insurmountable mathematical obsta-
cles in the case of dynamic instability. Finally, the equations are linearized
thrbugh the customary use of an approximate expression for the curvature. This
implies that the lateral deformations are small compared with the length of the
column (not necessarily compared with its thickness!); if this were+to be violated,
the previous assumption of elasticity would become meaningless, except in the
case of unrealistically slender elements.
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2. SIMPLY. SUPPORTED COLUMNS

Let a simply supported column be subjected to a time-dependent axial force
P and a time-dependent lateral load intensity w. Let its deflection be desig-
nated by y and its mass per unit length by pu; E and I represent the usual mate-
rial and cross-sectional constants. If x is measured along the (undeflected)
column axis and t represents the time, then, with subscripts designating the
appropriate derivatives, the motion of the column is governed by

(Blygy)yx + P Vgx * B Y4t = W (2.1)

where y = y(x,t), P = P(t), p = u(x), and v = w(x,t).

For the case under consideration, let EI and u be constants. Also, if the
origin of the coordinate system is fixed at one end of the column, whose length
is called L, then the boundary conditions are as follows:

¥(0,t) = yuee(0,8) = y(L,t) = yglL,t) = 0 . (2.2)

In view of these boundary conditions, it is in general possible to expand
the response in the form

y(x,t) = X Q,(t) sin (nrx/L) . (2.3a)

n=1

-Similarly, let the loading function w be expressible in the convergent series

w(x,t) = X pn(t) sin (onx/L) , (2.3b)
n=1

where the coefficients p, are given, in the usual fashion, by

L
py(t) = 2/L \jf w(x,t) sin (nnx/L) dx (n=1,2,...) (2.3c)
0

When Egs. (2.3) are substituted in Eq. (2.1) and the coefficients of the
Fourier expansion are equated; it follows that, for each value of n,

4 2 n
(EIn*x*/1* - Po™®/1%)Q, + 0 Q) = 1y (n=1,2,...) ,
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in which primes designate derivatives with respect to t. To simplify this equa-
tion, it is convenient to introduce the following definitions:

P(t) = A(t)P, = N, n®0®EI/LZ

it

a2 (n*x*E1) /(uL*) (2.4)

p,(t) gy(t) (n**EI)/L*

The quantities A, and g, so defined are dimensionless since P, is the nth-eigen—
value for the static case and the coefficient of g, represents the (sinusoidal)
load associated with a unit deflection; @, 1is representative of the nth frequency
of vibration in the absence of axial forces.

With these definitions, the nt® mode Qn(t) is governed by

G +a2 (1 -nla, = of g . (2.5)

For the special case under consideration here, the axial force decreases linear-
ly from its maximum value at t=0 to zero at t=T. It is of course assumed that
T is large compared with the time that it takes an axial wave to travel across
the column; this assumption is already inherent in the derivation of Egq. (2.1).
In other words, let

A(E) = oy (1 - t/T) (0stsm)
(2.6)
M(t) = 0 (T = t)
Then, by Egs. (2.5) and (2.6):
ap +on [1 - o(1-t/m)1Q, = o2 g (8)  (0stsT)
(2.7)
b+ of = of gy(t) (T = t)

Furthermore, both Q, and Qﬁ are continuous at t=T.

Consider first the case of o' = 1. Then with the introduction of the di-
mensionless quantities

T, = 1- o, (1-t/T) (1-oy = T, = 1)
.8
Ky = apT/op =



the first of Egs. (2.7), after dropping the subscript n, assumes the form
Qrr + k27 q = k2 y (1-ast=s1) , (2.9)

vhere q(t) = Q(t) and y(r) = g(t).

The associated homogeneous equation

2 =
F..+X¥1tF = 0 (2.10a)

is satisfied by the two independent functions

Fi(r) = 13/2 Ji/s (e)
Fa(r) = 12 3.1/a (6) b . (2.10b)
with 6 = 2/3k3/2

Jil/g (8) represents Bessel functions of appropriate order.
If now q(7) is assumed to be of the form Ci(T)Fi(7) + Co{T)Fa(T) and the

usual "variation of parameter" method is applied, the response can be expressed
as follows:

T

a(r) = KBS f [F2(0) Falr) - Fa(r) Fi(0)] 7(0) a6 ,  (2.11a)
1-¢

where W is the Wronskian of the two functions in Eq. (2.10b) and is determined
by

W = FiFor - FoFar = kr3/2 [T1/a(0) Ji1/s(0) - Ji/a(0) J_1/3(0)]

- 33/2/(2n) . (2.11b)

In other words, W is a constant; its value is obtained through the use of the
well-known relationship

JM(O) J;u(@) - Jﬁ(@) J_u(@) = - 2 sin (ur)/n6 . (2.11c)

Equation (2.11a) gives the response for 7 = 1, that is, before the axial
force vanishes. It can readily be shown that the integral and its derivative
with respect to the upper limit vanish when 7 = 1-Q, or



a(i-a) = g (1-a) = 0O . (2.12)

This means that the structure starts from rest. If an initial displacement or
velocity is present, this can easily be accounted for through the inclusion of
linear combinations of F; and Fa.

A somewhat more interesting case occurs when O, > 1. This means the ini-
tial axial force exceeds the value which is associated with instebility in the
event of static buckling (T + ). As expected, the nature of the dynamic re-
sponse alsc changes drastically. In fact, if the definition of Ty from Eq.
(2.8) is used again (and if also the subscript n is deleted), it is seen that
T now assumes both positive and negative values; it increases monotonically,
passing through =zero at the instant when the axial force equals the static
buckling force.

It is convenient to separate the negative and positive domeins of t. As
for the former, let a new independent variable T be defined by means of

T o= -1 (0sT=a1) . (2.13)

With this definition, the governing Eq. (2.9) reads

2

Tz -k 7q = Ky (-1 27 20) ., (2,1}4)

In Eq. (2.14), q(7) is used for q(v); similarly 7(7) takes the place of (7).
The associated homogeneous equation

Fez - k® 7 F = 0 (2.152)

has the two independent sclutions

;
FuT) = -T2 1a (0)
Fa(T) = 74/2 135 (0) T. (2.15b)
with 6 = 2/3k78/2

In Egs. (2.15b), Ix1/a (0) represents modified Bessel functions of approp-
riate order. The signs were chosen for convenience with a view toward making
both Fi and Fo and their derivatives continuous at t=r=0 gince Fi-(0) = -F-7(0).
It may alsc be worth mentioning that the functions defined in Eqs. (2.15b) rep-
resent linear combinations of the well-known Airy functions Ai(t) and Bi(t).

Through a process which is analogous to the one used in the establishment
of Egs. (2.11), the response is now found to be
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1= 0 [ RO RO -ROREITE G, (2a6)
Q-1

where‘ﬁ is again the Wronskian and is defined by

W o= FiFor-Fafor = -W = +3%320 | (2.16b)

It is important to note that gq(7) as given in Eq. (2.16a) is valid for the range
o-1 27 2 0 only.

When T exceeds zero (T £ 0), the solution is given essentially by Egs.
(2.11). However, at 7=0, neither the response function g(0) nor its derivative
necessarily vanish. The initial conditions which led to the establishment of
Egs. (2.11) are therefore violated; hence the term AFi(t) + BFa(t) must be ad-
ded, with the constants A and B determined from the condition of continulty

a(o) = T(o) a.(0) = -1az(0) , (2.17)

in which the right sides are computed on the basis of Egs. (2.16). Since fi-
nally, by Egs. (2.10) and (2.15),

F;(0) = F;(0) F,.(0) = - Ei?(o) (1=1,2) ,  (2.18)
it follows that
~ -1 T -
a(t) = ¥2MdPa(r) 7(o) F1(o)do + v(o) F1(o)do
2 _/; i L/‘O 1 |
— ~O-1 T =
- Fir) ¥(0) Fo(o)do + 7(c) Fo(o)do | 5.(2.19)
i LJZ 2 Jg 2 |

The solution (2.19) applies to the range O = 1 £ 1. When T exceeds unity—
that is, when t exceeds T—the second of Eqs. (2.7) becomes valid. Since again
the continuity of the response and of its derivative is postulated, the solution
may now be written in the form:

t
Q(t) = o L/p sin w(t-8) g(s)ds + a.(1)/k sin w(t-T)
T

+ q(1) cos w(t-T) (t2T) . (2.20)



This is based on the fact that both the integral and its derivative with re-
spect tothe upper limit vanish for t=T; furthermore, Q(T) = q(1) and Q'(T) =
(a/T)a,(1). Equation (2.20) holds irrespective of whether the value of O does
.or does not exceed unity.

In concluding this phase of the work which is concerned with the estab-
lishment of the general equation of the response function, let the loading
function w be expressible in the form

wix,t) = w(x) £(t) ; (2.21)

then, in view of Egs. (2.3) and (2.4), the "generalized load" g, is given by

gp(t) = a £(t) y (1) = a, #(7) 7o(t) = a, @(r),
(2.22a)

where the constant &, is governed by

Y
]

L
= I%/(a%e%ED) (2/1) f w(x) sin (nex/L)ax . (2.220)
0

Moreover, if Qu(t) = q,(7) = q,(T) are defined for the case of ay=1, then, by
the principle of superposition,

yix,t) = 2 ay Qn(t) sin (nnx/L) . (2.23)
n=1

Unlike the time-dependence of the axial force, the time variation of the
lateral loading function f(t) poses no inherent difficulties. Since the prin-
ciple of superposition obviously holds in view of the linearity of the problem,
different cases may be treated separately through substitution in the general
solutions as given in Egs. (2.11), (2.16), etc.; the integrations may have to
be carried out numerically, however.

As an example in the present study, it is assumed that the lateral blast-
ing force attenuates linearly, although it may not necessarily vanish together
with the axial force. In other words,

]

£(t) 1-1/Ty (0=t=1,)
. (2,2ka)

= 0 (T4 = t)

When the variable T as defined in Eg. (2.8) is introduced again, f(t) assumes
the form:
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g(r) = 1-B + p/a - (B/a)T (1-a = v = 1-0 + B/Q)
(2.24p)
= 0 (1-0 + B/ax = 1)

where B = T/Ty. When 1 s O, 5{;) can be defined similarly.

It is convenient to consider the cases @=1 and @=t separately and then to
determine the response to the loading function given in Egs. (2.24) by super-
position. To this end, let ¢-¢ &n‘@é-;) be associated with the response func-
tion Q'(t) [or q'(r)]; then Egs. (2.11) can be integrated directly.

For the case of ¢ < 1, this leads to

9'(7) =1 + (kW) (1-) 7Y/ [3.2/a(00)3-1/a(6) + T2/a(00)T1/a(e)]

(2.25)

with o = (2/3)kr®/2 ana o, = (2/3)k(1-0)%/2 (l-asts1).

In the derivation of E (2. 25), a number of well-known Be sel 1dent1t1es were
utilized, such as x 2/3 J_l/s(x d/dx [x /3J2/3(x) ] and %2 Jl/s( = d/dx
[-x75_2/3(x)]. It is also recalled that J 2/a(x) = aJ1/3(x)/dax + (1/3x J/a(x
and.Jg/s(x) = -dJ. 1/3 x)/dx - (1/3x)J. 1/3 . As a consequence it follows that

(k/W)TS/E [J-z/s(X)J-l/s(X) + J2/3(X)J1/3(X)] = -1 .

It may also be worth mentioning that Eq. (2.25) can be derived directly by con-
sidering that g'=l is a particular integral of Eq. (2.9); the additional terms
are obtained in the usual fashion from the complementary solution by satisfy-
ing the initial conditions.

For the case of & > 1, a similar procedure is employed. This leads to

2(7) = 1+ (k/)T2(01) [T-2/a(8,)I-1/3(8) - Tz/a(8,)I2/a(8)]
- _ (2.26a)
with 8 = (2/3)6/2 o, = (2/5)k(a-l)3/2 (0-1 2 7 2 0)
Similarly,
a'(7) = 1+ (k/)73(a1) [1-2/3(0,)3-1/a(0) + I2/a(85)T1/a(0)]
(2.26b)



When =1, the solution can be obtained either from Eq. (2.26a) or (2.26b) through
a limiting process. The result is given below:

a'(t) = 1 - 1.07477 o%/3 3_1/3(0) (0sts1) , (2.27)

where 1.07T4T7 represents (ﬁ/jl/z) 2_2/3/1"(1/3)°
For the case @(7)=1, the response is designated by Q"(t)=y"(r). In that
case, an explicit representation of the integral formula in Eq. (2.11) is not

possible. Instead, the response can be written as follows:

a., fora<il,

a"(r) = (k/W)Tl/Z{[A(e) - A(0,)13-1/5(0) - [B(6) - B(6,)171/5(0) } ,
(2.28a)
in which
e
A(e) = f Ji/a(x)ax = 2 [J4/a(0) + J10/3(0) + Ji1g/3(0) + ...]
9 . (2.28p)
B(0) = L/“ J.1/a(x)ax = 2 [J2/3(0) + Jg/3(0) + J14/3(0) + ...]

Equations (2.280b) can be derived from the standard differentiation and recur-
sion formulas relating to Bessel functions. Similarly,

b, fora>1,

(1) = (/)72 {1R(3) - A8, 1I.1/(8) - [B(8) - B(So) 112/a(8) }
(-1 27 20) . (2.29a)

a"(r) = (/)72 {1a(0) - K(B,)11/a(0) - [B(6) + B(85)17a/a(e) }
(0=s7s=1) . (2.29b)

in which
_ e - - _ _
Afe) = f I1/a(x)dx = 2 [I4/5(8) - Ii0/3(6) + Iie/s(0) % ...]
- . (2.29¢)
- - e - - -
BO) = [ 1./s(RT = 2 [12/5(3) - To/s(8) + Tae/s(d) * ...]

12



Finally,

c., fora=1,
a"(r) = (/)72 [A(8)3-1/5(8) - B(8)J1/s(6)] (0=sr=1) . (2.30)

With q' and q" expressed through Eqs. (2.25) through (2.30), and in view
of Egs. (2.24), the actual response to a linearly decreasing lateral load can
finally be summarized in the following form:

1. Let T< T3, or B<1l; then

a(t) = (1-p + B/a)a"(r) - (B/a)q'(7) (0=t=7T)or (1-asts1)

Q(t) = (1-gt/T) + [a(1) - 1+B] cos w(t-T) (2.31)
+ [a:(1)/k + B/wT] sin w(t-T) (T=sts=sTy)

Q(t) =Q(T1) cos w(t-T1) + Q'(T1) /0 sin w(t-T1) (T1 = t) .

The first of these equations represents the forced vibration under linearly
decreasing axial force; the second represents the continued forced vibration
after the axial force has vanished; and the third is an expression of the en-
suing free vibration after the lateral force has vanished. In all cases the
constants were so chosen as to make the response and its derivative continuous.

2. When T > Ty, or B > 1, the response becomes a free vibration before
the axial force has disappeared. In that case, the three phases may be ex-
pressed as follows:

al7) = (1-p+B/a)q"(r) - (B/a)q'(T) (0=t=Ty) or (-0 = 75 1-040/B = T1)
a(r) = 1 §a(r1) [Far(ra)Pa(v)-Fac(r1)Fa(r)]
(Tos7s1)
+ a(r2) [Fa(r2)Fa(r)-Fa(ra)Fa(r) - (2.32)
Q(t) = a(1) cos w(t-T) + g (1)/k sin a(t-T) (T = t)

It may be noted that for the special case of T=T;, or B=l, the middle
phase in these equations disappears, while Egs. (2.31) and (2.32) coalesce.
Note also that if T3 < O, that is, if the lateral load vanishes before the
axial load has been reduced to its Euler value, the functions q, Fi, and Fao
must be replaced by their appropriate counterparts g, Fi, Fo, respectively.
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3. ASYMPTOTIC CONDITIONS

In this section, the results of the previous section will be examined in
the light of a number of extreme conditions. Such asymptotic analyses may be
useful in obtaining the response of the structure, at least from a qualitative
point of view, to very severe loading conditions which may otherwise defy ex-
act scrutiny. The following three limiting conditions will be investigated:

A. the lateral load is of impulsive character;

B. the axial force is of impulsive character; and

C. the axial force is of very long duration, without, of course,
actually lasting infinitely long. (This would imply a constant
axial force, for which the response can be found by elementary
methods. )

A. IMPULSIVE LATERATL LOAD

This case is by far the easiest to analyze and involves only a standard
limiting technique, which leads, as will be seen, to a conventional and easily
predictable result. To this end, let.the duration T; of the lateral load ap-

proach zero while its maximum value becomes infinitely large. In other words,
let

£f(t) = 2/(wTy) (1 - t/T1) (0= tsTy)

(3.1)
or @(v) = 2/(aT1) (1L - B + B/a - Br/at) (1-o0s 7 7y) ,

while T3 approaches zero or, conversely, B approaches infinity. Obviously this
implies that the total impulse

Ta
f f(t)at = 1/w

0

remains constant during the limiting process; the factor 2/w in Egs. (3.1) has
been added for convenience.

The response can now be determined by means of Egs. (2.11). In fact, let
Ti

a(t1) = 2K%/(aWTy) f

[Fa(0)Fa(T1) = Fa(T1)F2(0)] (?-B +2_B %)dc
1-Q 07 0

Then it follows from a mean value theorem that
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Similarly, the integral can be differentiated with respect to the upper
limit. When the same mean value theorem is applied again and the definition
of W is recalled, this results in

lim qT(Tl) = q'r(l"a) = k
oo .
. (3.2p)
or lim Q'(Ty) = Q'(0) = ®
B=)=oo N

. In other words, this case leads to a free vibration with initial values deter-
mined by means of Egs. (3.2). These values can readily be verified by means of
the standard impulse-momentum relationship.

B. IMPULSIVE AXIAL FORCE
Of somewhat heightened interest is the case of the axisl force becoming

very large while its duration shrinks to zero.* In other words, let the axial
force be given by

Mt) = 2/(wr) (1 - t/T) (3.3)

while T approaches zero. This case can be handled by expanding the solution
of Eq. (2.7) (with a=2/wl) in a power series in t/T near t=0. Two different
possibilities arise:

a. The bar is initially straight, while both the axial and lateral force

are applied simultaneously. With Q(0) = Q'(0) = 0, this power series then be-
comes

a(t) = o®t%/2 [1 - o®t%/12 (1 - 2/uT) + ...]

*Actually this contradicts a previous assumption that the duration of the force
is large compared with the time a traveling wave requires to traverse the bar.
However, while the limiting case is thus outside the exact scope of the pres-
ent study, the results of the latter seem nevertheless of interest in connec-
tion with impulses which are "short but not too short."
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In the limit, this leads to

1im Q(T) = Q(0) = ©
T0
. (5.1)
1im Q'(T) = Q (0) = 0
T+0 ]

This result is not entirely self-evident. It means that axial forces of arbi-
trarily large amplitude are without effect on the response of the structure
provided that their duration is sufficiently short. This explains why the ac-
companying charts show that the motion of the bar becomes increasingly inde-
pendent of & for decreasing values of k==wT/ao As a consequence, shock-type
axial forces need not be of concern to the designer (at least so far as the
phenomena being studied here are involved) if the structure is initially in an
unloaded state.

b. A more realistic condition prevails if it is assumed that the lateral
load has been applied prior to the application of the axial shock., With the
normalizations introduced in this report, this implies that the initial condi-
tions are expressed by Q(0) =1 and Q'(0) = 0. The power series expansion
then becomes

Q) 1+ wt3/T - 1/3 wt®/T° & ...

with the result that

lim Q(T) = Q(0) = 1

(3.5)
1im Q'(T) = Q'(0) =

In other words, the imposition of an axial shock, like that of a lateral
impulse, results in the establishment of an initial momentum in conformity with
Egs. (3.5). The ensuing motion is then of the same character as that of an un-
compressed bar, differing from the latter only through the imposition of a modi-
fied initial condition.

Two points of somewhat academic interest may be mentioned. Firstly, the
results of this section could have been obtained by expanding the general solu-
tion (involving modified Bessel functions) in a power series near T=0-1 and..by
proceeding to the appropriate limits. Secondly, it may be noted that, for the
case of the structure being initially not straight, the imposition of an axial
impulse results in the establishment of a lateral momentum. This apparent in-
consistency is resolved if it is remembered that the lateral end reactions are
affected by the axial force; the resulting lateral imbalance accounts for the
development of the momentum. '
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C. AXTAL FORCE OF VERY LONG DURATION

Another interesting problem arises when the duration of the axial force
becomes very long (without, of course, going to infinity). In the present dis-
cussion this is equivalent to letting k:(ﬂf/a become very large; in other words,
Eq. (2.9) must be integrated asymptotically.

Where the response q(t) is given specifically in closed form, this can be
achieved by means of the familiar asymptotic expansion formulas of Bessel func-
tions and Airy integrals. When the forcing function @(v) is a constant, the
resulting response q"(7) is not given in closed form and the corresponding asym-
totic expansion is not at once cbvious. .In any event, all these expansions
break down near 1=0, which occurs in case o exceeds unity. Attention is fur-
ther directed to the fact that it is desirable to discuss a general method which
is applicable even when the axial-force-time relationship is not linear.

There exist several classical methods of asymptotic integration, which are
discussed in the literature on the subject. For example, following Ref. 5
(pp. 523 ff.), one can expand the solutions Fi(r) and Fo(t) of Egs. (2.10a) in
a series of increasing negative powers of k, that is,

F(r) = n(r) ™) [1 4 £i(r)/k # £a(r) /KB 4 ..]

When this is substituted in Eq. (2.10a) and terms involving the same powers of
k are individually equated to zero, it follows that-

b

Fi(t) = T-l/4 cos @ £ ...
(v > 0) , (3.6a)

4=

Fo(r) = T=1/4 gin-g

if only the first term in the expansion is retained. By the same token, the
solution of Eq. (2.15a) is expanded into

i
=Y
b
\
BN
(1)
» |
4

Fa(T) T3
(T >0) . (3.6b)

I
_—l
]

t—!
~
KN

o
1
(]
14

Fao(T)

Within certain limits, the asymptotic solutions of the homogeneous equations
can thus be obtained for arbitrary force-time relationships, even if the direct
sclutions of the egquations themselves are not available in closed form.

It is interesting to note that at v=0 (or T=0), both types of expansion
(3.6a) and (3.6b) become invalid. Moreover, the character of the asymptotic
soluticns changes drastically as T changes sign, or, equivalently, as © is
evaluated along the real or the imaginary axis. This is known as "Stokes'
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Phenomenon" and has been the object of extensive studies, notably (in the more
recent past) by Langer6 and Kazarinoff.(

As a result of these studies, it has been shown that, in the neighborhood
of the singularity (in the present case the origin), the asymptotic solution
can be expressed in terms of Bessel functions of suitable order. For any first-
order singularity this turns out to be the Airy function; actually, the latter
represents the complete solution in the example presently under study. In other
words, the special functions given in Egs. (3.6) are replaced, near the origin,
by the general solutions of Eqs. (2.10) and (2.15); moreover, this replacement
applies also to any kind of force-time relationship which exhibits a first-
order singularity.

The actual response to a lateral load can now be determined,; for example,
through the method of parameter variation as before. This leads to integral
expressions of the type shown in Eq. (2.11), but employing now the asymptotic
forms of the pertinent functions. When Q is less than unity, no difficulty
is encountered in this process; the results are given as follows:

1 - <%:%>1/4 cos (0-0g) * ...

o

—_
._‘

p "
1}

T

. 1 =T =Ll (5.7
(1-a)~* l:}:_O_‘ - (ﬂ)“/“" cos (0-0g) * ]
T T

Both of these types of response are similar in form to that of a damped vibra-
tion.

ID-Q

—
-

—
]

When O exceeds unity, a similar simple integration is applicable as
long as T remains negative-——that is, before the axial force has decreased to
its critical Euler value. This leads to the following type of expansion:

q'(7)

1/a - -
1 - (9‘;—> cosh (6,-0) % ...
T

1/4
a"(T) (a-l)'l’[egi - <:%%> / cosh.(ag—a) * Do:]

As pointed out previously, the integration cannot be carried directly across
the singularity. However, with the asymptotic expansions replaced by the ap-
propriate exact solutions near the origin, the following solution can be ob-
tained after carrying out a number of limiting procedures:

-1 27 >0
(a g 2(3°8a)
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1/a 3 .
- <?:l / % cos (6 - n/k) £ ...

T

q'(r)

(0<Ts=1) . (5.80)

1}

a"(t) = (a1)7 (’%—)l/qr e% cos (0-m/b) * ...

A

Finally, in the special case of Q=1, the asymptotic response functions are given
by

a'(t) =1 - 1.07477 (e/n)l/z 9'1/6 cos (6-n/12) * ...

]

(0<r=1) . (3.9

°

0"(7) = - (1/7) (20/3)M2 0¥ cos (oum/b) % ...

The results of the last two sections are plotted in Figs. 1 to 7. The first
four figures show the time history of the column response to the lateral load
with O assuming the values 1/2, 1, 3/2, and 2 and oT taking on the values 1,

5, and 25, respectively; also shown, where possible, is the case of wT approach-
ing infinity. This seems to cover the extremes of a relatively very short

shock (wI' = 1) to that of a shock of fairly long duration. .The ordinate in
these charts is Q,, which represents (in review) the dynamic magnification over
the static case in the absence of an axial force. The abscissa is the dimension-~
less quantity t/Tp, in which Tp = Qﬂﬁw is the natural period of vibration, meas-
ured also in the absence of axial forces. The response curves are divided into
solid and dashed sections, the former applying to the time while the axial shock
is in effect and the latter to the residual motion after the axial force has dis-
appeared. It is noteworthy, although not unexpected, that the magnitude of the
response becomes increasingly sensitive to the duration of the shock with in-
creasing values of Q; on the other hand, the effect of the variation of the val-
ue of B seems to diminish as O increases.

Figures 5 and 6 show the response of the column to a lateral impulse of
magnitude l/oo° This occurs when the value of B is permitted to approach infin-
ity. Actually, these curves may be useful in predicting the behavior of the
structure when the duration of the lateral force is very much smaller than that
of the axial force; in that case it is reasonable to compute the response in
terms of the total impulse imparted to the structure. As pointed out previous-
ly, similar considerations apply if the axial force itself is of an impulsive
type provided that the structure is already deflected prior to the application
of the axial impulse.

Finally, Fig. 7 is constructed from the previous six figures by considering
the maximum response as a function of the various parameters. It can also be
used to compute the maximum stresses, which are proportional to the maximum cur-
vature. It is interesting to note that, for short axial shocks (¢E=1), the re-
sponse is fairly independent of the maximum value of the axial force, which is
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related to the parameter . This shows that little damage is to be expected
from an axial shock of large magnitude if the duration of the shock is suffi-
ciently short. It is as if the structure "had no time" to buckle before the
shock subsides; actually, as pointed out previously, an axial force of impul -
sive nature has no effect on a previously undeflected structure.

L, STRUCTURES OF ARBITRARY BOUNDARY CONDITIONS

In the preceding two sections, the simply supported column was singled
out for analysis because of its inherent simplicity. As will be seen in the
present section, the introduction of different boundary conditions, and in par-
ticular the analysis of continuous structures, leads to substantial computa-
tional difficulties. Briefly, this is due to the fact that, of all possible
structural elements, the simply supported column alone exhibits basic modes
of vibration which are independent of the magnitude of the axial force,

For the sake of reference, let the basic equation governing the response
y(x,t) be repeated here:

(EIyyy)yx + P Vgx + B Vgx = P(x,t) & (k.1)

‘It is convenient to introduce the following nondimensional quantities

1/2
¢ = x/L T = (0y) / t A1) = P/Py (k.2)
so that Eq. (4.1) assumes the form:
(EIy")" + A Pul2y" + u QuL* ¥ = p 1% , (4.3)

in which primes (") represent derivatives with respect to & and dots () deriv-
atives with respect to 7. The quantity i3 represents the square of the funda-
mental frequency of vibration of the structure in the absence of an axial force,
while Py is the lowest buckling force——that is, the force for which w; (the
square of the fundamental frequency) vanishes.

It will now be assumed that both y and p can be expanded in the pair of
infinite series

y(6,7) = ug(E,N)T(r)
5 (L.4)
p(e,m) = w(e)ugle,N)ealT)

in which the functions uy constitute the set of eigenfunctions satisfying, for
given value of A, the homogeneous differential equation
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(ETuf)" + A Pleu; -Lfpoguy = O (i=1,2,3...) (L4.5)

and associated boundary conditions. In Eg. (4.4) and in what follows, repeated
Greek subscripts denote summstion from one to infinity; it is presumed that all
the series converge uniformly to make the operations meaningful. It may also
be noted that, in general, the eigenfunctions u; depend on the value of the
parameter A.

From Eq. (4.4) it follows that

Vo= Uly + Vofe
) (4.6)

¥ = uofa + QVOia n + waia(i)g + Vofo N

in which vi(€,\) = du;/ON and wi(g,\) = Ov;/ON. When this is substituted in
Eg. (4.3), and Egs. (4.4) and (4.5) are considered, the ensuing equation is of
the form

1

(fé + & ﬂ%) Uy + va(Efaﬂ + fQX) + waia(i)z = Soga (4.7)
Qa1

It may also be noted here that the usual orthogonality relations are expressed
by

1
\/; uuiujdg = 513

1 1
"n - 2 taat 4
&/; EIuiujdg AP L L/; uiujdg s sij

" (4.8)

i
)
e

where aij represents the Kronecker delta.

The "generalized coordinates" f; appearing in Eq. (L4.7) can be separated
by multiplying the latter by pu; and by integrating over the range from- zero
to one. If the components a4 j and bij are defined by means of

1 1
ajy = b/1 by ug dg biy = b/\ bowyuyde (4.9)
0 0

and if the orthogonality conditions (4.8) are taken into consideration, this
operation leads to
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a0 . . ae . 2
£y o+ (0/Q)F) + 8y (2foh + TA) + by TN = gy/% - (k.10)
(1=1,2,3...)
In the special case of a linearly attenuating force, let
No= A(L-t/T) , (4.118)
and define the dimensionless constant k by
k = (a)Y2 T/A . (4.11v)
Then Eq. (4.10) simplifies to
£+ (0g/0)f; - (2/K)ag Ty + (1/k2)baifa = g/ . (4.12)

It may be noted that along with uy, vy, wy, and, consequently, with 8y} and bij:
the value of wj is also a function of N and hence of the time t.

To obtain specific formulas for the components &4y it is recalled that
Eq. (4.5) is identically satisfied for all values of N. If it is therefore dif-
ferentiated with respect to A, it follows that vy is governed by the equation

(EIv)" + NPaL®v) - uLioyvy = - Pal®u + ul®uy (k.13)

in which &i is used for dw;/d\. Let Eq. (4.13) be multiplied by uy and inte-
grated with respect to £ along the length of the structure. By means of several
integrations by parts, this can easily be shown to lead to

1 1 1 1

mHyn 2 u 2 1
\/; (EIuJ) vidE + ANPiL \/; ujvidg - miL4‘/; ouvidg = PiL k/; u{ujdg

% 1
+ Lﬁbi“/\ uuiujdg
0]

since all the boundary terms vanish regardless of the type of boundary conditions
employed. In view of Egs. (4.5), (4.8), and the definitions (4.9), this reduces
to

1
(wy-wp)ajy = Pl/Lajp ujulde + & By (4.1ka)
0
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In this equation the subscripts i and j refer to a pair of arbitrary integer
numbers. In particular, when i=j, this reduces to

1
dwg /AN = - Pl/sz/; (ui)gdg (1%1,2,.00) (4.1k4v)

*
O,
L

*

It is of interest to note that, as expected, g is negative. Its value can be
determined from Eq. (4.14b) for a specific value of A—that is, without finding
the solution of Eq. (4.5) for arbitrary values of A.

Returning to Eq. (4.1ka), let i be different from j; then

1
a1y = -ay = (Py/13) (wj-wi)‘lj; ujuldt (1£3) - (kolke)

Furthermore,

as. = 0 , (Lo1ka)

as can be seen by differentiating the first of Egqs. (4.8) with respect to A and
by considering again the definitions (4.9). In other words, the coefficients
84 3 form an infinite antisymmetric matrix.

The determination of the coefficient matrix bj s follows similar lines. 1In
fact, if Eq. (4.13) is differentiated with respect to A, the set of functions
Wy is seen to be governed by

*%
(BTvy)" + AL} - wLiwgwy = - 2Pan®v) + 2BiLfwv, + wsThyy ,  (L.15)

in whidaﬁ%_stands for &ﬁ/dxo As before, let this equation be multiplied by U
and integrated with respect to £ over the range of the structure. After some
integrations by parts and in view again of Egs. (4.5), (4.8), and (4.9), this
results in the system of equations

1

= 2 " *x
(wj—wi)bij = 2P, /L k/; ujv£d§ + 2058y 5 + Oy aij o (4.16)

The integral on the right side of this equation can be determined explicitly,
provided it is postulated that the functions ui(é,X) form a complete set. 1In
that case it follows from Eqs. (4.9) and from the first of the orthogonality re-
lations (4.8) that v{ may be written in the form

Vi = aia U_a o ()4'017)
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In other words,

1 1
> *
2P, /L k/; ujvidt = (2P1/L2)aiag/; ujugde = 2logwjlajgae - 2818

The second equality follows from Egqs. (4.14), while the last term on the right
side is added to account for the case Q=j in the summation. Summations and in-
tegrals have been freely interchanged, which is presumed legitimate here. Hence:

" *%
= 2&bi4bj)aij + 2(wa*”j)aioaja +®; 85 - (4.18a)

Again the cases i=zj and i#j will be considered separately. In the former
case Eq. (4.18a) leads to

ﬁﬁ. = - 2(ago1)ajepia s (4.180)
while in the latter case
bij = '2f($i4£j)/(wi*bjﬁaij -Qf(wa4bj)/(wi-wjﬂaiaaja (i#3) - (L.18e)

Finally, two differentiations of Eq. (4.8) with respect to A, and consideration
of Egqs. (4.8), (4.9), and (4.17) lead to

bss = - ai08i0 * ()-h]_Sd)

11

Note that bij is, in general, not antisymmetric; rather
blj + bji = = 2aiaaja b}
or, equivalently,

bij = daij/dh - aiaajao .

If the matrix b;4 is resolved into a symmetric component bij and an anti-
symmetric component bij’ then

b:s = bj’_

1] + oy

J J

b!. = =

i3 - aiaaja bji (4.19)

" n

i3 = '2{(wi*bj)/(wi*DJXhij ’[(a&u*”i*”j)/(wi*wjnaio@ja = - b3
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For the special case of a single span column of constant mass density u and
stiffness EI, the values of the coefficients ajj can be determined directly from
the boundary values of the modes u;. This is done by considering again Eq. (L.lke).
The integral on the right side of this equation can be evaluated through a re-
peated process of integrations by parts and through several substitutions of Eq.
(L.5)., Eventually this leads to the formula

N i 1
ay3 = (P/1?) (05=0;)™ [wjufusoyugu)) + (EL/L*) (wf'uf-uiuy) ], «(4.20)

It is of interest to note that, for the simply supported column (and for no
other type of support!), all the terms in Eq. (4.20) vanish. In other words, for
this case alone the modes uj are independent of the axial force parameter A.

This is why it is possible to give an explicit solution for the case of the sim-
ply supported column (as was done in the last two sections); it can readily be
verified that Egs. (4.10) or (4.12) are reduced to (2.5) or (2.7) if it is also
considered that in the case of simple supports the eigenvalues w; are linear
functions of A. A discussion of this gquestion can be found in Ref. 3.

The integration of the infinite set of Egs. (4.10) presents formidable nu-
merical difficulties. It must be remembered that, through the time-dependence
of the parameter A, all the coefficients wj, ajj, and bjj are also implicit func-
tions of time. The difficulty is compounded by the fact that the loading func-
tion g;(r) is computed from Egqs. (4.4) and (4.8), namely,

1
gy(7) f p(e,m) ug(en)de  (121,2,300.) - (4.21)
0

Since uy itself depends on A (hence on 7), it follows that even if the lateral
load is expressible in terms of a distribution function multiplied by a-—say,
linear=—time function, the generalized load gi takes on a more complicated form.

Fortunately these effects are all exceedingly small:. For example, the con-
stants aj s and bij (which vanish for the simply supported case) seem to be very
small for all other kinds of support. They have been computed, and are shown in
Tables I and II, for the case of a column of constant mass density and stiffness;
both of whose ends are fixed, for the condition of vanishing axial force. The
details of the calculations are omitted here because they are straightforward.
They consist in solving Eq. (4.5), with A=0 and subject to the proper boundary
conditions, in normalizing the solutions in the sense of the first of Egs. (4.8),
and in substituting the functions so determined in Egs. (L4.lkc) and (4.18c), re-

spectively. The expressions for @; and &j are obtained similarly.

In view of the smallness of these constants, it appears that an iterative
solution of Egs. (L4.10) should converge very rapidly. In other words, a first
approximation can be obtained by assuming all the constants 813 and bij to vanish,
that is,
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fg + (wi/al)fg = g;/% (i=1,2...) . (4.22a)

Successive corrections fg can then be introduced by letting

o n on1-]1 o n-1 ¢ n-=1 ,2,2
fg + (wi/ﬂl)fi = - agi(2f, 7 M+ Ty A) - b Ty (M), (4.22p)
(1=1,250003 n=1,2,000)
so that the final solution appears in the form
1 2 .
£y = fg + 5+ T3 + ouo (i=1,2.0.) (k,22¢)

Only a few terms need be included on the right side of Eq. (4.22b) because of
the repid convergence of the constants a3 j and bij toward zero. Morecver, the
solution of these equations amounts to the setting up of a Duhamel integral of
the type of Eq. (2019)(numerically, if necessary) since the complementary sclu-
tion of Eqs. (4.220) is the same for all values of n and is, in fact, equal to
that of Eq. (4.22a).

To find this complementary solution, the time-dependence of w; must first
be determined. As stated before, this is a linear relationship if the column
is simply supported; for all other boundary conditions, some variation from
linearity is to be expected. Figure 8 shows the solution for the first few
modes in the case of a column fixed at both ends; again the details of the com-
putations are omitted here because they are fairly obvious. 1In any event, it
is apparent from the figure that, at least for the case under consideration,
this variation from linearity is slight.

This suggests again an iterative approach. Using standard perturbation
techniques, let the w-N relationship be expressed by a dominant linear term and
some additional correction factors. If fy is similarly expanded and the coef-
ficients of like power are equated, there results a system of equations in which
the first equation is similar to Eq. (2.10a) [with solutions similar to Eq.
(2°lOb)], while the successively higher terms are cbtainable from the previous
ones by simple quadrature. It is anticipated that the convergence of this proc-
ess 1s again extremely rapid.

An inspection of Fig. 8 shows that for the first two modes the deviation
from linearity is too small to be appreciable on the chart. Actually, for A=0,
the calculations show that 51 = -0.970 Qy, while at A=1, the slope is governed
by'$1:=-10058 2. On the other hand, the nonlinearity becomes noticeable for
the third mode. At A=0, the slope is given by &g = -1.068 03 P,/P3, while for
A=l (that is, for wg=0), dg = -0.569 Qg P1/Ps. This sharp difference in the
slope is startling and seems to presage a much sharper deviation from straight-
ness than is actually shown in Fig. 8. However, the calculations show that the
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nonlinearity is confined largely to a small region near the buckling value of A
and is accompanied by a rapid variation in the mode us and hence by a compara-
tively large value ofﬁggo

5. RIGID FRAMES (MULTIPLE-STORY BENTS)

The results of the preceding section can be applied, at least theoretically,
to any type of structural configuration. In practice it appears likely that the
numerical difficulties, which are slready great for single-span columns (except
those with simple supports), become prohibitive for more complicated types of
structures. This is especially true in the case of multi-story bents, whose ex-
act analysis presents great computational obstacles even if the axial forces are
not time-dependent. It is the purpose of the present section to discuss this
problem and to suggest simplifications which, in conjunction with automatic com-
puting equipment, are believed to be capable of rendering the analysis more tract-
able. Briefly, the essence of the simplifying assumptions is the reduction of
the actual system to one of finite degrees of freedom, the number of these de-
grees being equal to the number of stories.

A typical column tier including the ith and (i+l)st story is shown in Fig.
9. The floors are numbered as shown, while AP; represents the axial forces in
the columns and V% and V% designate, respectively, the horizontal forces in the
columns Jjust above and below the ith floor and will be referred to as "shears"
in what follows.* In the case of free vibration with frequency (w)l/g/zﬂ, the
inertia force associated with the horizontal motion of the ith floor of mass
m; is represented by amjxi, in which x; represents the displacement amplitude
of that floor. All quantities, including the column moments, are assumed to be
positive if they are as shown in the figure.

It follows from the (dynamic) equilibrium of the columns that

7
Vo= V¢ - (1/bi41)APig1 (X541 - xi)
, ' (5.1)
_ 2 |
Vi o= vy = (I/nNPy (% - x5_7)

f 1
In these equations the shears Vg and.Vf represent the forces which are ob-

tained by considering only the effect of the end moments and of the inertia
forces in the column; they are given by expressions of the type (EILy")' + Py',
in which y is the horizontal displacement of the column between the floors and
is governed by an equation cof the type of Eq. (2.1).

*Strictly speaking, shears are defined as forces which are perpendicular to the
deflected column axis. The term is here applied to the horizontal forces for
the sake of brevity.
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The equilibrium of the ith floor is governed by the equation

(W -v) +omx; = O (1=1,2...n) , (5.2)
in which the summation extends over all the column tiers and n is the number of

moving floors of the building. Substitution of Egs. (5.1) in this equation
leads to the relationship

X3 X2 X2 X
u' 4! 1+l i A1 i-1 | _
L(vy) -v{ ) -n Rre L Py +A hel Z Piath, LPi|-n ” L Py +omix{ = O
(i=1,2...n) (5.3)

Now it can be shown that the first summation on the left side of Eq. (5.3)
can be expressed -in the form

Z (Vgr zi)

5 - Yy - ajoXy (5.4)

in which the "stiffness coefficients" ajj are functions of the axial force coef-
ficient A and of the frequency coefficient w. This has been done in Ref. 8 for
the case of a vibrating framework in the absence of axial forces and in Ref. 9
in the static case of axial forces producing buckling (w=0). The two cases
have been combined in Ref. 10, In brief review, the coefficients aj j can be
obtained, for an assumed value of N\ and ®, by introducing modified "slope-
deflection equations'" taking into account the effect of the axial forces and

of the inertia terms. The term a3 j is then found by subjecting the jth floor
to a unit lateral displacement (all other floors being held in place) and by
balancing the resulting moments until they are in equilibrium. From the shears
in the columns above and below the ith floor, it is then possible to compute
aijo

It is convenient to express Eq. (5.3) in matrix form. This leads to
K(h,w)x - \Lx - aMx = 0 (5.5a)

In this equation, x is a column vector, i.e.,

x = {xl} =11, (5.5b)

while K represents the stiffness matrix
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8311 812 00 1N

821 822 ... azn
K(kym) = [aij] = [aji] = o (5.5¢)
ani ane ... ann
-
The matrix M is the diagonal mass matrix
. ]
my O ...0
0 Mo +...0
Mo o= [my 845l = |7 27 ) (5.54)
0 O o My
- -

while L is almost diagonal and takes the form

—(??1 ¥ ZPg - ZP2
hq ho ho

ha . (5.5e)

Physically, the system of Egs. (5.5) takes into account the distributed
mass of the columns as well as the vertical inertia of the floor masses. In
other words, it is exact in the sense that it includes the infinite-degree-of-
freedom character of the actual structure. Its solution, for given constant
value of A, presents formidable numerical difficulties, however. This is due
to the fact that the eigenvalue w appears not only explicitly, but also implic-
itly through highly involved transcendental relations in the stiffness matrix
K, It is shown in the three references cited above that ® (or, for vanishing
w, the buckling parameter A\) can be bracketed between an upper and lower bound,
while the gap between these bounds may be narrowed down through an iterative
procedure.

A far-reaching simplification of Egqs. (5.5) is achieved if the stiffness
matrix K is computed without regard to the influence of ® and A\, that is, if
K(A,w) = K(0,0). This reduces the system to one of finite degrees of freedom
since, for given value of A, Egs. (5.5) exhibit only n eigenvalues ®wi. Phys-
ically this means that, by neglecting the column and wall inertia, the struc-
ture has been "stiffened." The effect of this stiffening process can be mini-
mized, however, by including in the floor masses half of the column and wall
masses above and below each floor. Based on this fictitious finite system of
masses, the computed vibration modes and frequencies have been shown8 to agree
well with the exact values, at least for the lowest modes of vibration.
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More serious is the neglect of the weakening effect of the axial forces in
the columns. This is demonstrated, for example, in the case of a single-story
structure; in which the cross beam is rigid. If the bottom of the column is
fixed; the exact critical buckling force is well known to be ﬂzEI/hg, in which
h is the story height. On the other hand, if the "beam-column" effect is ne-
glected, Eq. (5.5) (with w=0) leads to a buckling force of 12EI/h®wan increase
of over 20%. The same ratio prevails if the bottom of the column is hinged.

For multi-story structures the effect of this approximation is far less
pronounced; the same holds true if the cross beams are not assumed to be in-
finitely stiff. The reason is that in this case the actual buckling force is
considerably smaller than the critical Euler load for between-floor buckling;
hence the neglect of its effect is more easily Jjustified. Actual multi-story
structures, which are designed to resist wind, exhibit column stiffnesses which
are at least of comparable order as the beam stiffnesses. In other words, the
approximation described above is not likely to be serious for practical cases.

In view of the foregoing remarks, let the free vibration of the structure
be governed by the simplified equation

(K-AL -aM)x = 0 , (5.6)
in which K is now assumed to be the modified stiffness matrix and M the modified
mass matrix. TFor given value of A, this system of equations has a nontrivial
solution if, and only if,

f(A0) = |[K-AL -aM| = 0 . (5.7)

This represents the customary characteristic equation and governs the natural
frequency w(A\) as well as the mode x(M\).

In particular, let w, and g be two different eigenvalues associated, re-
spectively, with the modes x¥ and xS5. In other words, let

(K - \L - opM)xT

|
O

(5.8)
(K = AL - ogM)x®

I
(@]

If now, in the usual fashion, the first of Egs. (5.8) is premultiplied by x5
and the second by xT* (where the asterisk * denotes the transpose), and if one
equation is subtracted from the other, then

r* s _
X Mx = ars

(5.9)
T (K - \L)xS = p Bpg
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-These orthogonality conditions are based on the symmetry of K, L, and M; K=K¥

is an expression of Maxwell's reciprocal relations, while L=L¥* and M=M* is ob-
vious from inspection. The satisfaction of the first of Egs. (5.9) for r=s is
artificial and represents a convenient normalization of the modes.

These relationships are all well known. However, it is important to point
out that both the eigenvalues w, as well as the eigenvectors x¥ depend on the
parameter A and that furthermore Egs. (5.8) and (5.9) are identically satisfied
for all values of A.

To find the actual response of the structure to time-dependent lateral and
axial forces, let x(t) = xi(t)} be a vector representing the displacements of
the floors, and let p(t) = {Pi(t)} denote the lateral floor loads. In the spir-
it of the previous discussion, it is assumed here that these loads include all
the contributions of the half-stories above and below each floor. The system
of equations governing the motion is then expressed by

ME+ [K-Nt)LlIxk = p (5.10)
in which a dot above a letter represents differentiation with respect to t.

It is now convenient to introduce the "rotation" matrix
_ _ J
R(A) = [ry5] = [xf] . (5.11)

In terms of Eq. (5.11), the orthonormality conditions (5.9) can readily be shown
to take the form

R* MR = I = [8;,]
H : (5.12)
R¥ (K- AL)R = D = [0 8;3]

In Egs. (5.12) I is the unit matrix and D is a diagonal matrix. A new vector
@ = {¢i} is now introduced by means of

x = R
X = MR'§ +R ¢ , (5.13)

£ = NBR'$ + (N3G +20R'G +R Y

in which the second and third equations are obtained from the previous one by
differentiation with respect to t. A prime denotes differentiation with respect
to A, that is, R' = dR/d\.

When Eq. (5.13) is substituted in Eq. (5.10) and the latter is premulti-
plied by R*, then consideration of Egs. (5.12) leads to the following system of
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equations governing the response vector ¢z
¢ + DF + R*M (AR' + NZR") + 2L R*MR' § = R*p . (5.1k4)

The vector on the right side of this equation is usually called the "generalized
force." Note that, when A is not time-dependent, Eq. (5.14) reduces to the cus-
tomary normal-mode equation, which can be solved by direct quadrature through a

Duhamel -type integral.

To find the matrices R' and R", differentiate the two orthogonality rela-
tions (5.12) with respect to A. This leads to the two conditions

R'*MR + R*®M R' = 0
. (5.15)
R'* (K - \L)R + R* (K - AL)R' = D' + R¥L R
On account of the completeness of the vectors xr, it is possible to express the
matrix R' = [r{j] = [yi] in the form
R' = R A% (5.16a)

that is, in vector form,

v o= a. x% (5.16b)

in which A = [aij]° When this is substituted in Egs. (5.15) and Egqs. (5.12) are
considered, the first leads to

A+MA% = 0 (5.17a)
while the second, in view of Eq. (5.17a), becomes
AD-DA = D' +R¢LR , (5.170)
According to Eg. (5.17a), the matrix A is antisymmetric; hence
arp = 0 . (5.17c)
On the other hand, for r#s, Eq. (5.17b) implies that
Bpg = - Bgp = (x5*L, xT) /(wg~w,) (5.174)
while, from the same equation and for r=s,

-Xr*

W, = L x5 . (5.17e)

An interesting conclusion can be drawn from Egs. (5.17). In fact, consider
the second of Egs. (5.9) and let K and L be linearly dependent; then the numera-
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tor on the right side of Eq. (5.17d) vanishes. In other words, the modes x¥

are not functions of N if such linear dependence exists; in that case the eigen-
values W, are linear functions of A\ by Eq. (5.17e), and the system of Egs.
(5.14) becomes uncoupled in much the same way as in the case of a simply sup-
ported column in the previous sections.

The matrix R" is obtained by differentiating Eqs. (5.15) with respect to
Ao This leads to the relationships.

R*M R + 2 R"™MR'+ R*M R" = O

. (5.18)

R"™*(K-AL)R + 2 R"*(K-AL)R' + R*¥(K-AL)R"

= D" + 2 R'"YLR + 2 R¥LR'

As before, let the matrix R" = [rgj] = [zg] be of the form

R" = R B* , (5.19a)
which, in vector notation, means that

Zr = bra Xa 3 (5°l9b)

where B = [b;j]. In view of Egs. (5.19), (5.12), and (5.17), the two relation-
ships (5.18) now become, respectively,

B+B¥ = -2AA = 2AA (5.20a)
BD - DB = D" - 2AD' + 2D'A + 2A(AD-DA) . (5.20b)
Equation (5.20a) implies that
bpr = - 8pg 8pgy s (5.20¢)
while, for r#s, it follows from Egs. (5.20b) that
bpgloawg) = - 2(wl-wl)a., - 2(0ywg)anagy (5.204)

As a further consequence of Eq. (5.20b), the condition r=s implies that

o) = - 2wy )8y By o (5.20e)

Finally, by differentiating Eq. (5.17b) and after several substitutions of pre-
viously found results, it can be shown that

B o= A'+AA (5.20¢)
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that is,
brs = &rs - 8yq 8sq o (5.20g)

In other words, the matrix A may be thought of as representing a "rotation" of
the vector space for increasing values of A.

In view of Egs. (5.16a) and (5.19a), the basic equation of motion (5.1k4)
governing the vector ¢ can be simplified, by considering the first of Egs. (5.12),
to

§+D@ + (AA*+A2B*¥)J + 2% § = R* p . (5.21)

A further simplification takes place if A(t) varies linearly with time—that
is, if

Mt) = of1-t/T) & (5.222,)
In that case, the governing equation reduces to
d + (D/0)8 - 2(a*/x)§ + (1/62)B*¢ = (R*/Q)p , (5.22)

in which a dot (') signifies differentiation with respect to T. In this equation,
the parameters T, {};, and k are the same as used in the previous chapter and are
defined in Eqs. (4.2) and (4.11), respectively. Note that Eq. (5.22b) is in es-
sence the same as Eq. (4.12); its solution should therefore proceed along simi-
lar lines.

6. ARCHES

In the present section, the investigation of the prefious sections is ex-
tended to include the stability of arches. Obviously it is beyond the scope of
this study to make & thorough and exhaustive analysis of so broad a subject;
only an exploratory investigation is therefore attempted here. For example,
only circular arches will be considered in what follows, although other types,
€.g., parabolic ones, could at least theoretically be analyzed in the same man-
ner. Also, only motion within the plane of the arch is to be taken into con-
sideration; buckling out of the plane is governed by similar equations, although
the effect of torsion is normally to be taken into account.

In what follows, let u(@) represent the radial component and v(@) the tan-
gential component of the displacement of a generic point on the circular cen-
troidal axis of the arch; u is considered positive outward, and v is positive
if it is in the direction of increasing argument ©. Let N be the axial force
(in tension) and M the bending moment, which will be positive if associated
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with a compressive stress on the outside. If R is the radius of the undeformed
centroidal axis and p (as before) denotes the mass per unit length, then the
linearized equations of motion relative to the tangential and normal directions
of the deformed element are as follows:

[1 - (uR) - (v'/R)IN' - [1 - 2(u/R) - (u"/R) - (v'/R)I(M'/R) - uRV = -ptl(aé )
0.1
[1 - (w/R) - (w"/R)IN - (u'+")(M'/R) + [1 - 2(u/R) ~ 2(v/R)I(M'R) + 4Rl = -pyR

In Egs. (6.1), primes (') represent partial derivatives with respect to © while
dots (°) are time derivatives as before. The external pressure is included in
the form of its normal and tangential components p, and py, respectively.

Only "thin" arches are to be considered here—that is, arches whose thick-
ness h is much smaller than R. In view of this restriction, the force-displace-
ment relationships are given by

N = (EA/R) (ut+v')
. (6.2)
M = (EI/R®) (u+u")

Let Egs. (6.2) be substituted in Egs. (6.1) and consider the case of py=0 (call-
ing, for convenience, the normal pressure component p without subscript). If
furthermore the inertia term u¥ is neglected (which is plausible on physical
grounds) and if the mean axial strain N/EA is neglected in comparison with unity,
then the equations of motion reduce to

N' - (EI/R3) (u'+u®™) = O
: . (6.3)
N(1-u/R-u"/R) + EI/R® (u"+u'V) + uRi = -pR

In the present discussion, the stability of the "unbuckled" motion is to be
investigated. This is achieved by letting

N

NO + Niy
; (6.4)

u = uy +uy

in which Nj and u, represent the axial force and radial displacement, respectively,
prior to buckling. All quantities shown in Eqs. (6.4) are in general functions

of 8 and t. To simplify the present study, let the pressure p be independent of

© and let the structure be represented by a closed circular ring; in that case

No and u, are also independent of © and .are governed by the equations
No(l-u,/R) + uR #, = -pR
» (6.5)
No = (EA/R)u,
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or, equivalently, and subject to the same approximetion made previously,

(WRZ/EA)N, + Ny = -PR . . (6.6)

Equations (6.4), (6.5), and (6.6) are now substituted in Eq. (6.3), with
the subscript "1" dropped for convenience. After linearization with respect
to N and u, this becomes

N' - (EI/R®) (u'+u™) = O

n . (6.7)

N .- (u+tu")No/R + (EI/R®) (u"+u'V) + yRE = O

This can be solved by setting
u(e,t) = f(t) sin no (n=2,3000) (6.8a)
and, in view of the first of Egs. (6.7),

N(0,t) = - (n®-1) (EI/R®) f(t) sin no . (6.8p)

Substitution of Egs. (6.8) in the second of Eqs. (6.7) leads to
£ + (n2-1)/(uR®) [(n®-1) (EI/R®) + N )f = 0 , (6.9)

in which Ny(t) is governed by Eq. (6.6)

In the static case this leads to well-known results. In fact let p (and
hence Ny) be a constant; then f(t) is bounded if the coefficient of f in Eq.
(6.9) is positive-—-that is, if Ny > -(n2-1)EI/R2 or, in view of the first of
Eqs. (6.5), if p < (n2-1)EL/R®. The critical (static) pressure is obtained
by setting n=2,.

For the general dynamic case no universally applicable solution to Egs.
(6.6) and (6.9) can be given, of course. However, it is interesting, especial-
ly in view of the aims of the present study, to consider the effect of a short
shock-type pressure impulse, of the kind of time-dependence that has been in-

vestigated in the previous sections. In that case, after the shock has sub-
sided, there will remain a residual free vibration of the form

No(t) = A sin(wt-r) , (6.102)
where @ is given by
w? = EA/uRZ (6.10b)

When this is substituted in Eq. (6.9), the solution of the latter can be written
explicitly in terms of Mathieu functions,
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The question of the boundedness of these functions has been the object
of numerous studies, of which Ref. 2 was mentioned earlier. Hence it appears
that, for certain combinations of parameters, the type of instability mentioned
in the Introduction may actually take place, at least as applied to the case of
a circular ring. Of course the linearization of the relevant equations rules
out anything but "small" deformations; expressed in physical terms, the buck-
ling amplitudes must remain bounded on account of the boundedness of the energy
input. In other words, the additional energy must originate from the "unbuckled"
motion. However, since the latter is assoclated essentially with axial-stress
energy (which is relatively large), while the former involves primarily bending
energy, it appears reasonable that even a nonlinear investigation may disclose
inadmissibly large buckling amplitudes.

T. CONCLUSION

The foregoing study of the dynamic stability of structures is obviously
far from exhaustive. Its purpose has been exploratory, in the main; the sub-
ject matter is too broad, and the knowledge gathered thus far too scanty, to
permit anything more. In fact, many questions that are vital from a practical
point of view have been entirely ignored, prominent among them the issue of
the effect of yielding on the performance of structures under time-dependent
buckling conditions.

Chief emphasis has been placed on the derivation of the relevant equations
and on proposed methods of solving them. In general, these equations cannot
reasonably be solved without the aid of elaborate computational equipment; with
such equipment, on the other hand, no great difficulties are anticipated. If
iterative schemes are employed, they should converge quickly. Only in the case
of a single-span simply supported column has it been possible to obtain explicit
golutions, although even these are not necessarily in closed form. As pointed
out in -Section 5, similar possibilities exist for multi-story bents under se-
verely restricted conditions.

In general, time-dependent stability is difficult to define, let alone to
analyze. In view of the potential practical significance of the problem, a
testing program may be set up in which experimental results are obtained to
corroborate, if possible, the analytical predictions. It appears that this
type of program may be most fertile in connection with arches or shell-type
structures, whose resistance to blast loads may become a focal point of in-
terest.
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TABLE I

(hOOOnZ)(aij) for i, J =1, 2,....9
(A =0)
\§><1 1 2 3 ) 6 8 9
1 0 0 -0.689 -0.086 0 -0.020 0 -0.006
2 0 0 0 =0. 47k 0 ~0.089 -0.026 0
3  +0.689 0 0 =0.327 0  -0.078 0 ~0.027
b 0  +0.h7h 0 0 0 -0.2%3 -0.065 0
5  +0.086 0 +0.3%27 0 0 =0, 174 0 ~0.054
6 0  +0.089 0  +0.233 0 0 ~0.133 0
T +0.020 0 +0.078 0 +0.17h 0 0
8 0  +0.026 0  +0.065 0 +0.133
9 +0.006 0 +0.027 0 +0. 05k 0
TABIE II
(4000n" )%(bgy) for 1, § = 1, 2,....5
(A =0)
:f\é\ 1 2 3 u 5
1 -0.482 0 -8.002 0 =0.090
2 | 0 -0.234 0 ~3.073 0
3. +7. 944 0 -0.588 0 ~1.463
L 0 +3.028 0 =0.284 0
5 +0.138 0 +1.315 0 0,148
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