Junctional adhesion molecule-A is abnormally expressed in diffuse cutaneous systemic sclerosis skin and mediates myeloid cell adhesion

Y Hou, B J Rabquer, M L Gerber, et al.

Ann Rheum Dis 2010 69: 249-254 originally published online January 19, 2009
doi: 10.1136/ard.2008.102624
Junctional adhesion molecule-A is abnormally expressed in diffuse cutaneous systemic sclerosis skin and mediates myeloid cell adhesion

Y Hou, B J Rabquer, M L Gerber, F Del Galdo, S A Jimenez, G K Haines III, W G Barr, M C Massa, J R Seibold, A E Koch

ABSTRACT

Objective: To investigate the role of junctional adhesion molecule-A (JAM-A) in the pathogenesis of systemic sclerosis (SSc).

Methods: Biopsy specimens from proximal and distal arm skin and serum were obtained from patients with SSc and normal volunteers. To determine the expression of JAM-A on SSc dermal fibroblasts and in SSc skin, cell surface ELISAs and immunohistology were performed. An ELISA was designed to determine the amount of soluble JAM-A (sJAM-A) in serum. Myeloid U937 cell–SSc dermal fibroblast and skin adhesion assays were performed to determine the role of JAM-A in myeloid cell adhesion.

Results: The stratum granulosum and dermal endothelial cells (ECs) from distal arm SSc skin exhibited significantly decreased expression of JAM-A in comparison with normal volunteers. However, sJAM-A was increased in the serum of patients with SSc compared with normal volunteers. Conversely, JAM-A was increased on the surface of SSc compared with normal dermal fibroblasts. JAM-A accounted for a significant portion of U937 binding to SSc dermal fibroblasts. In addition, JAM-A contributed to U937 adhesion to both distal and proximal SSc skin.

Conclusions: JAM-A expression is dysregulated in SSc skin. Decreased expression of JAM-A on SSc ECs may result in a reduced response to proangiogenic basic fibroblast growth factor. Increased JAM-A expression on SSc fibroblasts may serve to retain myeloid cells, which in turn secrete angiogenic factors.

The pathogenesis of systemic sclerosis (SSc) is complex and remains incompletely understood; however, fibroblasts, monocytes and endothelial cells (ECs) seem to be key players. These cells facilitate excessive synthesis of extracellular matrix proteins and deposition of increased amounts of collagen, immune activation and vascular damage, all of which are known to be important in the development of this illness.1

Adhesion molecules have multiple roles in angiogenesis. Specific adhesion molecule expression can mediate angiogenesis indirectly by promoting the migration of monocytes.2 These monocytes are then capable of becoming tissue macrophages and secreting angiogenic factors. Cellular adhesion molecules may have a role in the immunopathogenesis of SSc.3 We and others have shown that several adhesion molecules are overexpressed in SSc skin.4, 5 A number of soluble adhesion molecules are also elevated in SSc.6

Junctional adhesion molecule-A (JAM-A) has been implicated in a variety of physiological and pathological processes involving cellular adhesion, tight junction assembly and leukocyte transmigration.3–7 It facilitates leukocyte adhesion and transmigration through its interaction with lymphocyte function-associated antigen-1 (LFA-1). JAM-A has been shown to play a part in angiogenesis.6

As SSc is characterised by both inflammatory cell infiltration and vasculopathy, we hypothesised that JAM-A may have a role in its pathogenesis. Here we demonstrate aberrant expression of JAM-A in SSc skin and soluble JAM-A (sJAM-A) in SSc serum. Moreover, we show a novel role for JAM-A in mediating myeloid cell adhesion to SSc skin.

MATERIALS AND METHODS

Patients and controls

Skin punch biopsy specimens and peripheral blood samples were obtained from subjects with SSc (all with diffuse disease) and control subjects. All patients with SSc fulfilled the American College of Rheumatology criteria for SSc and also met the criteria for diffuse SSc.1, 6 Biopsy specimens were taken with full informed consent and this study was approved by the institutional review board.

Immunohistology

We performed immunohistological staining on cryosections from SSc and normal skin, as described previously.8 Goat anti-human JAM-A antibody (R&D Systems, Minneapolis, Minnesota, USA) was used as a primary antibody. The slides were read by a pathologist under blinded conditions. For JAM-A staining, the percentage of positive cells was calculated semiquantitatively as stained cells in proportion to all cells of a distinctive subset. We also used a similar method with an anti-von Willebrand factor antibody to identify endothelial cells. Blood vessels were scored using a scale of 0–4: 0, avascular; 1, slight decrease; 2, normal; 3, slight increase; 4, marked increase.

Immunofluorescence

We performed immunofluorescence on cryosections from SSc and normal skin. Sections were fixed with 4% formalin and blocked with 20% fetal bovine serum and 5% donkey serum. Goat anti-human JAM-A antibody (R&D Systems) and mouse anti-human von Willebrand factor (Dako, Denmark) were used as primary antibodies. Fluorescent conjugated secondary antibodies were...
purchased from Molecular Probes (Eugene, Oregon, USA). 4',6-
Diamidino-2-phenylindole was used to stain cell nuclei. Images
were taken at 400×.

Cell lysis and western blotting
Normal and SSc dermal fibroblast cell lines were established as
described previously.11 Cell lysis and western blotting were
performed as described.10 Membranes were probed with anti-
human JAM-A antibody (R&D Systems). Denitometric analy-
sis of the bands was performed using UN-SCAN-IT software,
version 5.1 (Silk Scientific).

Cell surface ELISA
Cell surface ELISAs were performed as previously described.10
Dermal fibroblasts were plated in 96-well plates, stimulated
with tumour necrosis factor α (TNFα), or interleukin 1β (IL1β),
or interferon γ (all 25 ng/ml, R&D Systems) or incubated in
serum-free RPMI for 24 h. The fibroblasts were incubated with
anti-human JAM-A antibody (R&D Systems) or goat IgG.

Human dermal microvascular endothelial cell (HMVEC) cell
culture
HMVECs were obtained from Lonza (Basel, Switzerland) and
cultured using EBM complete media (Lonza). The cells were
serum starved overnight and then stimulated with either TNFα
or IL1β. Supernatants were collected and concentrated using
Amicon ultra filters (Millipore, Billerica, Massachusetts, USA).

Serum JAM-A ELISA
Ninety-six-well microplates were coated with anti-human
JAM-A antibody (R&D Systems) and blocked with 1% bovine
serum albumin in phosphate-buffered saline. A sample or
standard (R&D Systems) was added, followed by the addition
of mouse anti-human JAM-A antibody (Santa Cruz, Santa
Cruz, California, USA), anti-mouse biotinylated antibody
(Vector Laboratories, Burlingame, California, USA), streptavi-
din-horseradish peroxidase (R&D Systems), tetramethylbenzi-
dine substrate solution and 2N H2SO4. The absorbance of each
well was read using a microplate reader at 450/570 nm. The
diction limit of the sJAM-A ELISA was 0.3 ng/ml.

U937 cell–fibroblast adhesion assay
Adhesion assays were performed as previously described using
myeloid U937 cells.10 These cells are human histiocytic
lymphoma cells that are myeloid. Combinations of JAM-A
neutralising antibody (Santa Cruz, mouse antibody to human
CD11a (GeneTex, Irvine, California, USA), neutralising mouse
anti-human intercellular adhesion molecule-1 (ICAM-1) anti-
body (R&D Systems), or mouse IgG were used. The inhibitory
effect of neutralising antibody treatment was given as the
percentage of maximal binding, which was defined as the number of adherent
cells in the control antibody-treated sections.

Statistical analysis
Student t tests were performed and p values <0.05 were
considered significant. All values presented were the mean
(SEM).

RESULTS
Patient characteristics
The SSc group comprised 18 women and two men (52.5 (1.8)
years), while the normal control group consisted of seven men
and three women (51.2 (4.4) years). The mean disease duration
of the SSc group was 3.7 (0.8) years. Punch biopsy specimens
were taken from clinically less affected proximal arm skin
(mean skin score 1.2 (0.2)) and affected distal forearm skin (2.0
(0.2)). The proximal biopsy site was far away from the leading
gend of the distal area.

SSc distal arm skin had significantly fewer blood vessels than
normal skin
Our work confirmed that in our patient population SSc distal
arm skin has significantly fewer blood vessels (blood vessel
score = 1.7) than normal skin (blood vessel score = 2.0, p<0.05)
(fig 1).12 In addition, we found that SSc proximal arm skin
(blood vessel scale score = 1.9) had a blood vessel score between
that of SSc distal skin and normal skin.

JAM-A is abnormally expressed in SSc skin
JAM-A expression in normal and SSc skin was evaluated using
immunohistostaining and immunofluorescence. JAM-A is
expressed on dermal ECs, fibroblasts, macrophages and in
the epidermis (fig 2). Moreover, dual immunofluorescence
using anti-JAM-A and anti-von Willebrand factor antibodies
further indicated that JAM-A is expressed on dermal ECs. As
shown in fig 2I, quantification of JAM-A immunohistology
further demonstrated that SSc dermal ECs exhibited significantly
decreased expression of JAM-A (mean of 71%) compared with
normal controls (mean of 95%, p<0.05). In addition, JAM-A
was less expressed in the stratum granulosum of the epidermis
of distal SSc skin (mean of 50%) than in normal skin (mean of
98%, p<0.05, fig 2I). In contrast, SSc dermal perivascular
macrophages expressed increased levels of JAM-A (12% in
distal skin and 18% in proximal skin) compared with normal

![Figure 1](https://example.com/figure1.png)

Figure 1 Distal systemic sclerosis (SSc) skin has fewer blood vessels than normal skin. n = the number of patients.
skin (mean of 4%, both p<0.05) (data not shown). Similarly, SSc subepidermal macrophages expressed increased levels of JAM-A (mean of 8% in distal skin and mean of 8% in proximal skin) compared with normal skin (mean of 3%, both p<0.05) (data not shown).

JAM-A was more highly expressed on dermal SSc fibroblasts than on normal dermal fibroblasts
JAM-A was more highly expressed on dermal SSc fibroblasts than on normal fibroblasts (fig 3A). Western blotting resulted in similar results (fig 3B). However, the expression of JAM-A on either SSc or normal dermal fibroblasts was not inducible by TNFα, interferon γ, or IL1β (data not shown).

Elevated sJAM-A in SSc serum
A sJAM-A ELISA was designed and serum JAM-A was detected in all normal volunteers and patients with SSc. The concentration of sJAM-A in the serum of patients with SSc was 2.4 (0.4) ng/ml, whereas the concentration for normal controls was 1.0 (0.2) ng/ml (p<0.05) (fig 4A).

sJAM-A is secreted by ECs
sJAM-A was detectable in the culture supernatant of HMVECs (fig 4B). Moreover, stimulation with TNFα resulted in a significant increase of sJAM-A in HMVEC culture supernatants (p<0.05).

JAM-A mediates myeloid U937 cell binding to SSc dermal fibroblasts
We found that SSc dermal fibroblasts bound a greater number of myeloid U937 cells than normal dermal fibroblasts (p<0.05) (data not shown). Moreover, JAM-A accounted for a significant portion of U937 binding to SSc dermal fibroblasts. U937 binding to SSc dermal fibroblasts was inhibited by neutralising anti-JAM-A antibody treatment (86% of maximal binding, p<0.05) (fig 5). Neutralising antibody against the JAM-A ligand LFA-1 also inhibited U937 cell binding to SSc dermal fibroblasts (90% of maximal binding, p<0.05). Similarly, neutralising antibody against the LFA-1 receptor ICAM-1 inhibited U937 cell binding to SSc dermal fibroblasts (83% of maximal binding). A combination of neutralising antibodies against JAM-A, LFA-1 and ICAM-1 inhibited U937 cell binding to SSc dermal fibroblasts (100% of maximal binding).

Figure 2 Immunohistological and immunofluorescence analysis of junctional adhesion molecule-A (JAM-A) on normal and systemic sclerosis (SSc) skin. Representative photos of JAM-A immunohistological staining in endothelial cells of normal skin (A), proximal SSc skin (B), distal SSc skin (C) and of the isotype control (D) are shown, all at ×200. Arrows indicate positive JAM-A staining of vasculature. Representative photos of dual immunofluorescence staining of JAM-A and von Willebrand factor (vWF) in normal skin (E), proximal SSc skin (F), distal SSc skin (G) and of the isotype control (H) are shown, all at ×400. Arrows indicate dermal blood vessels. (I) Dermal endothelial cells from proximal and distal SSc skin exhibited decreased expression of JAM-A compared with normal skin. (J) JAM-A was less expressed in the stratum granulosum of SSc skin than in normal skin. n = the number of patients.
and ICAM-1 resulted in the greatest inhibition of U937 cell binding to SSC dermal fibroblasts (73% of maximal binding).

JAM-A contributes to U937 cell adhesion to SSC skin

We found that similar to the results of the U937-fibroblast in vitro adhesion assay, anti-JAM-A neutralising antibody decreased U937 cell binding to SSC skin (fig 6). U937 cell binding to SSC proximal arm skin (44% of maximal binding, \(p < 0.05 \)) and distal forearm skin (61% of maximal binding, \(p < 0.05 \)) was inhibited by anti-JAM-A antibody treatment. Collectively, these results indicate that JAM-A plays an important role in myeloid cell adhesion to SSC skin.

DISCUSSION

The aetiology and pathogenesis of SSC remains unknown. Nonetheless, signs of vascular injury and devascularisation of affected organs in association with evidence of profound endothelial dysfunction are well documented. Adhesion molecules, molecules known to promote both inflammatory cell infiltration and angiogenesis, may have a role in the pathogenesis of SSC.3

Our results demonstrated that dermal ECs from SSC skin exhibit decreased expression of JAM-A compared with ECs in normal skin. Decreased JAM-A expression increases permeability. Blocking JAM-A expression caused a decrease in neutrophil and monocyte extravasation in several models, including inflammatory meningitis, peritonitis and ischaemia-reperfusion injury.15-18 These findings suggest that the downregulation of JAM-A expression on SSC dermal ECs may effect the influx of leukocytes into SSC skin.

In addition, JAM-A is a proangiogenic adhesion molecule. It forms a complex with integrin \(\alpha_v\beta_3 \) and mediates basic fibroblast growth factor (bFGF)-induced angiogenesis.3 JAM-A overexpression on ECs induces both EC proliferation and migration on vitronectin. In addition, inhibition of JAM-A signalling blocks bFGF-induced EC proliferation, tube formation and in vivo angiogenesis.8,17 Our results demonstrate that JAM-A is downregulated on SSC dermal ECs and therefore may not be able to respond to bFGF and mediate angiogenesis.

Soluble adhesion molecules have also been shown to be elevated in patients with SSC. Recently, Cavusoglu et al observed significantly higher levels of plasma sJAM-A in patients with advanced coronary artery disease and indicated that JAM-A may be an important mediator of the effects of inflammation on the vessel wall.19 Our results show that the concentration of sJAM-A in the serum of patients with SSC is elevated compared with normal serum. Moreover, we demonstrated that sJAM-A can be secreted by cultured ECs. This is the first study to suggest a link between serum sJAM-A concentration and SSC and further study is needed to determine if the
Figure 5 Junctional adhesion molecule-A (JAM-A) mediates adhesion of U937 cells to systemic sclerosis (SSc) dermal fibroblasts. U937 binding to SSc dermal fibroblasts was inhibited by anti-JAM-A antibody and anti-LFA-1 antibody (A). U937 cell binding to SSc dermal fibroblasts was inhibited by anti-ICAM-1 antibody and a combination of anti-ICAM-1, LFA-1 and JAM-A antibodies (B). LFA-1, lymphocyte function-associated antigen-1; ICAM-1, intercellular adhesion molecule-1; n = the number of different fibroblast cell lines from patients with SSc.

Figure 6 Junctional adhesion molecule-A (JAM-A) mediates adhesion of U937 cells to systemic sclerosis (SSc) skin. (A) U937 binding to SSc proximal arm skin and distal arm skin sections was inhibited by anti-JAM-A antibody treatment. Representative photos of the effect of anti-JAM-A on U937 cell adhesion to distal SSc skin (B), proximal SSc skin (C) and in the presence of an IgG control in place of anti-JAM-A (D) are shown, all at ×100. n = the number of patients.
concentration of serum sJAM-A correlates with additional clinical manifestations of SSC.

Previous studies have shown that SSC peripheral blood mononuclear cells and SSC dermal fibroblasts are hyperadhesive. Here we found that JAM-A is overexpressed on SSC dermal fibroblasts and mediates the adhesion of myeloid U937 cells to both SSC dermal fibroblasts and proximal and distal SSC skin. As myeloid cells mature into monocytes and macrophages that have the potential to secrete a variety of angiogenic factors, our results have particular importance to the pathogenesis of SSC.

Our study suggests that JAM-A plays multiple roles in the pathogenesis of SSC. The reduced expression of JAM-A on the surface of ECs may contribute to dysregulated angiogenesis in SSC skin, as JAM-A EC expression is required for bFGF-induced angiogenesis. Moreover, the elevated SSC serum levels of sJAM-A could be the result of the characteristic EC injury in SSC, further strengthening the suggestion of JAM-A as a vascular disease marker. In contrast, JAM-A exemplifies the dual nature of an adhesion molecule, as our results demonstrate its importance in mediating myeloid cell retention in SSC skin. Collectively, these results suggest that JAM-A is dysregulated on multiple cell types in SSC and that further study of its role in SSC skin angiogenesis is warranted.

Funding: This work was supported by NIH grants AI-40987 and AR-48267, the Office of Research and Development, Medical Research Service, Department of Veterans Affairs, the Frederick G L Huetwell and William D Robinson, MD, Professorship in Rheumatology, Scleroderma Research Foundation, NIH General Clinical Research Center grant M01-RR-00042, NIH Center for Translational Science Activities grant UL1-RR-024986 and by funding from the Scleroderma Center of the University of Michigan.

Competing interests: None.

Ethics approval: Ethics committee approval from the University of Michigan.

Patient consent: Patient consent received.

REFERENCES