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LATERAL BUCKLING OF PLANE FRAMEWORKS®

By E. F. Masur® and A. Cukurs>

SUMMARY

In current design practice it is generally assumed that a truss
is equally safe against buckling in and out of its plane if its mem-
bers have the same slenderness ratio in both directions. In this
paper it is shown that the argument may be inapplicable to the custom-
ary rigid Jjointed type of structure. In fact it is demonstrated that
this kind of truss, designed under present code requirements, may ex-
hibit a much smaller factor of safety against buckling normal to its
plane than in its plane.

The analysis of the lateral stability proceeds from the estab-
lishment of the basic equations to the derivation of a determinantal
form of stability criterion. An alternate approach, pursued further
in this paper because of its reduced numerical difficulty, utilizes
a generalized moment distribution technique in the analysis of the
response of the truss to applied unit couples whose planes are per-
pendicular to that of the structure. This results in the develop-
ment of a "series criterion" which represents an extension and gen-
eraglization of a similar criterion first proposed by Lundquist.

INTRODUCTION

In the design of a compression member of a steel truss, it is customary,
under present code requirements [1],4 to consider the allowable axial stress =
function of the largest slenderness ratio alone, without regard to the condition
of elastic restraint at the joints. It follows therefore that an "efficient"” mem-

ber should display approximately the same slenderness ratio with respect to both

lThis work was sponsored by the Office of Ordnance Research, U. S. Army.
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5Structural Engineer, Procon, Incorporated, Chicago, Illinois.

uNumbers in brackets refer to the bibliography at the end of the paper.






principal directions; this, 1t i1s felt, should insure an equal factor of safety
against buckling both in and out of the plane of the structure.

It is fairly obvious that this kind of reasoning cannot be applied to a
large and common class of trusses without major modification. Even in the event
of perfect pin connections at the Jjoints, the argument is valid only if the cen-
troid and shear center coincide. This is often not the case. The customary
double-angle type of section, for example, buckles laterally in a mode which
couples bending and twisting, and under an axial load which may be appreciably
smaller than the Euler load, which is based on a bending mode alone.

If the bars are held rigidly at the joints, this discrepancy is likely to
increase further. When buckling occurs in the elastic region (that is, for suf-
ficiently slender elements) the critical compressive stress depends to a large
extent on the degree of end restraint. This restraint, which is imposed on one
member by the adjoining members, is generally less effective relative to lateral
buckling that in relation to buckling in the plane of the structure. This is
especially true of double-angle sections, whose torsional stiffness is negligible
compared with their bending stiffness. It is therefore not implausible to expect
trusses composed of such members to exhibit a greater tendency to buckle normal
to their plane than in their own plane.

It is the purpose of this paper to investigate the conditions under which
this type of instability will occur. In order to facilitate the analysis, a
number of assumptions are made which, it is felt, are reasonable without reduc-
ing the generality of the approach to a significant extent. It 1s assumed, for
example, that the members of the truss are Jjoined rigidly at the panel points;
the effect of the gusset plates is therefore disregarded. It is postulated fur-
ther that the panel points are held rigidly against lateral translation by means
of lateral cross bracing, which, however, does not contribute to the rotational
joint stiffness. Since all members are composed of two angles, the further as-
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sumption that the shear center itself is held against lateral movement at the
Joints appears not unwarranted in view of the fact that the cross bracing is
ordinarily connected to the outstanding legs.

The analysis in the form presented here is not confined to double-angle

sections; it is restricted, however, to sections whose warping stiffness may be

considered negligible in comparison with their torsional and bending stiffnesses.

An extension to sections exhibiting appreciable warping resistance, such as, e.g.

I-beams, may be effected at the expense of some of the numerical simplicity. On
the other hand, this does not appear worthwhile since members of this type are
rarely slender enough to be in danger of elastic 'buckling, at least so far as
common structural practice is concerned.

It is finally assumed that, prior to lateral buckling, all members are sub-
Jjected only to axial forces through their centroids. This implies, of course,
that all external loads are applied at the joints, that all bars are initially
straight, and that the effect of the joint translations within the plane of the
framework may be neglected. Actually, "secondary moments" are inevitable and
are likely to affect the condition of lateral instability to a significant ex-
tent. Nevertheless, this omission i1s not considered serious, as will be dis-

cussed in the Conclusion.

ESTABLISHMENT OF BASIC EQUATIONS

In what follows, let a representative bar between Jjoints 1 and j buckle
laterally as shown in Fig. 1. The differential equations of equilibrium gov-
erning the displacements (u,v) of the shear center S and the rotation B are
well-known and are given, for example, in [2], p. 132. For the case under
consideration, in which the warping constant is assumed to vanish and in which,

by virtue of the symmetry of all sections, buckling in the plane of the frame-
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work is uncoupled and may therefore be ignored, they read:

EI, ulV + P u" + P y, B"

It
O

(1)

y

2

[
o

Pyou"+ (Pp -GK)B" (2)

In these equations, the axial force P is considered positive in compression.
E and G are the usual material constants, while Iy and K are, respectively, the
moment of inertia about the y-axis and the torsional stiffness constants.” The
radius of gyration about the shear center is designated by p, and Yo is the co-
ordinate of the shear center relative to the centrold C. Primes, as usual, in-
dicate differentiation with respect to the independent variable (z) along the
axis of the bar.

Egs. (1) and (2) can be simplified somewhat. If the dimensionless quantity

b is defined by

oy
= = (3)
GK/P - p
it follows, from Eq. (2), that
yp = (1)
and, upon substitution in Eg. (1), that
Ely ulV + N u" = 0 (5)

in which N is an "equivalent" axial force given by

N = P (1+y) (6)

5I‘o be on the safe side, K for the section is assumed to be twice the value of
the individual angle.






The general solution of these linear homogeneous equations is readily es-
tablished and involves six constants of integration. Basically, this process
should now be repeated with each member. There results a large number of con-
stants of integration, for which an equal number of linear homogeneous boundary
conditions is available. The problem is to determine the smallest load for which
the ensuing system of linear homogeneous equations admits a non-trivial solution;
in this fashion, a typical determinantal stability critevion iscestablished.

This represents a task of formidable numerical proportions. It can be
simplified greatly, however, through a systematizing procedure which is anal-
ogous to the establishment of modified "slope-deflection" equations. To this
end, the bar rotations B and © at the joints (representing twisting and bending
rotations, respectively) are introduced as independent variables, and Eqs. (4)

and (5) are solved subject to the boundary conditions.

u(0) = 0 u(l.) = O
u'(0) = ©1 j u'(L) = 031 (7)
B(O) = Byj B(L) = -Bji

in which L represents the length of the member. The choice of the sign conven-
tion is governed by considerations of consistency for the developments below,
The functions u(z) and B(z) are thus established in terms of the four end
rotations; their form is of no direct interest here and has therefore been omit-
ted. However, it is now possible to express the twisting moment T and bending

moment M at the joints in terms of these rotations. This is accomplished by

letting
75 = (CK - Pp°) B'(0) - Py, u'(0)
T, = (6K - Pp®) B'(L) - Py, ' (L) )
M;; = EI, u"(0)
Mji = EIy u" (L)






In view of these equations, the moment-rotation relationships take the fol-

lowing simple form in the case of prismatic bars:

Tig = -S¢ (Byy - Cy Byz)

Mij = -5y (855 - Cp O51)

(9)

with Tji and Mji obtained by inverting the subscripts (i,J) on the right side of
Egs. (9). It is of interest to note, and is physically plausible, that the

choice of the shear center as reference point has led to an uncoupling of twisting
and bending, so far as the joints are concerned. From this it is not to be in-
ferred, however, that there 1s no coupling all along the bar; on the contrary,
pure bending at the Joints, for example, produces bending and twisting, unless

the centroid and shear center coincide.

;

In Egs. (9), the "stiffness factors" S; and S, and the "carry-over factors'

Ct and C are given by the following equations:

SJC=GK-Pp2
C.t: -1

EIy sin¢ - ¢ cos¢
Smo= 3 2 - 2cosf - @ sing

¢ - sin¢
Co = Sing - @ cosf

g = N L2

E Iy

In these equations, the trigonometric functions are replaced by the appropriate
hyperbolic functions for negative values of N. When N vanishes, Sm and Cm assume
the conventional values of 4EI/L and 1/2, respectively. They have been tabulated,
with slight modifications, in [3] for both tensile and compressive axial forces.
With the Jjoint moments, both in twisting and in bending, thus established in

terms of the joint rotations by means of Eqs. (9), there remain two major consid-






erations to be observed. In the first place, the rotations (B 0. .) of all the

ij? 7ij
bars Jjoined at panel point 1 must be compatible with the rigidity of the joint;
in other words, the angles between the individual members must be preserved during
any rotation. OSecondly, the total of all the bending and twisting moments must be
in equilibrium.

To this end, it has been found that the employment of matrix notation leads
to compactness of both conceptual and computational labor. Consider, for ex-

ample, the typical bar connecting joints i and j (see Fig. 2), with its inclina-
) b

tion Q4

3 relative to the positive x-axis defined as shown. All rotations and

couples are assumed positive as indicated by the arrows, which are selected ac-
cording to the usual right-hand-screw convention. This agrees, it may be noted,
with the previous choice of boundary conditions and, in particular, with Egs. (9).

6

If now a moment vector m' and a rotation vector w' are defined by

m' = o' = (11)

and if, further, a "stiffness matrix" S' and a "carry-over matrix" C' are intro-

duced by means of

St o) —] o 0 }
SI — { c' == ' (l?)
0 st 0 Cp

then Eq. (9) may be written

mis; = -(S'wiy - C'S' wls) (13)

Let the rotation vector of a joint, if referred to the (x,y) coordinate sys-

6Where possible, the subscripts 1 and j, which identify the member but do not in-
dicate components, will be dropped if no lack of clarity results from this omis-
sion.






tem, be designated by w, and let similarly the moment vector m refer to the same

system, or

m = W = (14)

m' = Rm o' = Rw
(15)
m = R*nm' w = R*'
in which the rotation matrix R and its transpose R¥ are defined by
cos -sinc
R = (16)
sind cost

When Egs. (15) and (14) are substituted in Eg. (13), the "slope-deflection"

equations in the (x,y) coordinate system read

In Eq. (17), S and C are the stiffness and carry-over matrices in the new co-

ordinate system, that is,

S S [c
XX X XX X
S = 7 ¢ = 7 (18)
S S C C

yX Yy

which are related to the previous (primed) coordinate system by means of-the

transformation equations
S = R*S'R C = R*C'R (19)

Hence, by Egs. (12), (18), and (19), and after some trivial trigonometric trans-

formations:






Syx = 1/2 (St + Sy) + 1/2 (S - Sy) cos2x
S = 1/2 (8¢ + 8y) - 1/2 (8 - 8,) cosex (20)

Sy = Syy = -1/2 (sy - 8,,) sin2a

and an equivalent set of equations for the components of C. Since furthermore R
is orthogonal, i.e., RR¥ = I (the unit matrix), the matrix C'S' itself transforms
similarly to Eq. (20). Finally, in developing Eq. (17), use was made of the fact
that aji = aij + 1 and that therefore Rij:h“RjiE hence, in the new coordinate sys-
tem, the i,j subscripts continue to be interchangeable for the stiffness and carry-
over matrices.

In review, the relationships developed above insure that the end rotations

and O ; of all bars are compatible with a set of joint rotation vectors w; .

Pij J
The establishment of the equations of equilibrium is now straightforward, since
Eq. (17) expresses all the bar moment vectors with reference to the common (x,v)
coordinate system. If n is the number of joints that are free to rotate, the

following n vector equations (or 2n scalar equationg) follow therefore immedi-

;{: miy = 0 (i=1,2 ...n) (21)

where the summation extends over all the bars joined together at i.

ately:

The equations of equilibrium (21) now lead directly to the determinantal

stability criterion. In fact, define the "total joint stiffness" Ki; by

; fal Is
L
J
and let further
Kij = Cij8ij (i#3) (22b)






Then substitution of Eq. (17) in Egs. (21) results in the set of linear homogene-

ous equations

g Kij w3 = 0 (i=l,2 ...1’1) (25)
J
This system has a nontrivial solution if, and only if, the 2n x 2n determinant of

the coefficients of the Jjoint rotations vanishes. The structure is therefore in

neutral equilibrium under the smallest load for which

K35 = o (2k)

A SERIES CRITERION OF STABILITY

Eq. (24) represents a highly involved transcendental equation in terms of
the external loads; to find its smallest root (that is, the smallest multiplier
common to all loads) is therefore a task of forbidding numerical complexity. In
this section, an alternate approach is presented, which constitutes a generaliza-
tion of the "series criterion" of stability, which was first proposed by Lund-
quist Eh] in connection with the stability of frameworks against buckling in
their own plane.

Briefly, the suggested method proceeds as follows. Select a joint q (pref-
erably the one most likely to buckle) and apply at q a unit moment about the x-
axis. By means of a generalized moment distribution process which will be des-
cribed in detail further below, this moment is distributed among the bars joined
at g. This introduces unbalanced moments, generally about both the x and y axes,
at the far ends of these bars. Holding now Jjoint g fixed, these moments are all
distributed in successive steps until all the other Jjoints are balanced. If this

process converges,7 the only unbalanced Joint will finally be the original joint

7In case of divergence, the structure is known to be unstable; in fact, it is un-
stable even with Jjoint g fixed.
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q, toward which the residual moments ry, and ryx about the x- and y-axis, re-
spectively, have been "washed back." If the same procedure is now repeated for
an original applied unit moment about the y-axis at g, the wash-back moments will
be, say, Ty and Tyye Note that, in general, Txy £ Tyx-

If now the "residual matrix" r is defined by

r = (25)

then the structure is in general8 stable if, and only if, the matrix I - r has a

positive trace and determinant; hence

Tyx T ryy <2

(1 - rey) (1 - ryy) - Tyy Tyyx >0

constitutes the desired series criterion of stability.

Suppose now that, for a given load parameter, the procedure described above
yields a residual matrix which satisfies conditions (26); the structure is then
known to be stable for this sytem of loads, and the process is repeated for a
larger load multiplier, until one or the other of the conditions is violated.

The exact value of the load parameter associated with neutral equilibrium can nor-
mally be estimated with a fair degree of accuracy through interpolation.

The Jjoint balancing procedure itself represents an extension and generaliza-
tion of the familiar moment distribution method; the employment of matrix nota-
tion makes it possible to describe it in almost identical terms. In fact, let
the joint i undergo a rotation (vector) w;, while all other joints remain fixed.

It then follows, from Eq. (17), that each bar (i,j) exerts a moment -S;: w; on

J 1

8A possible, though unlikely, exception occurs when the lowest buckling mode does
not involve any Jjoint rotation of g about either axis. In that case, Egs. (26)
constitute a necessary, but not sufficient condition of stability.
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this joint, while at the far end of the bars, say at (j), an unbalanced moment
-(CS)ij w; is introduced. It may be worth repeating, at this time, that all the
vectors and matrices are expressed in relation to their common (x,y) coordinate
system.

If now the rotation w; is so chosen as to balance the joint, it follows that
all the new bar moments at i must equal the existing unbalanced moment mg . If,
further, the definition of the total Joint stiffness K;; is recalled as given by
Eq. (22a), the required joint rotation must be equal to (Kii)_lm? . Hence, when-

ever an unbalanced moment mg is removed at the joint i, while all the other Jjoints

remain temporarily fixed, the share taken by each bar at i is given by

ms = - 8;1(Kg ) md (27)

while the new unbalanced moment introduced at the far end j of the bar is gov-

erned by

mL.1 = Ci:s s s (28)

The matrix S;.(K L Eq. (27) may be interpreted as a "generalized dis-

J

tribution factor," while C.. in Eq. (28), as mentioned before, represents a ''gen-
) iJ ) )

ii)

eralized carry-over factor." In the problem under discussion, in which stability
rather than stresses are being investigated, some saving in labor can be effected
by combining steps (27) and (28)—that is, by transferring unbalanced momehnts:di-

rectly from one Jjoint to the other Jjoints. This i1s achieved by letting
ml% = -T.. Il'_ll:1 (293)

in which the "transfer matrix" T;; is defined by

J

Toi = Cix S:x (Kix) % (29b)

ij ig ~ig ii)

Note that this matrix is generally not symmetrical, nor is, in general, Tij equal

12






to Tji’

The numerical computation of the transfer matrices (two for each member of
the framework) and the ensuing moment distribution procedure are reasonably simple
and can be carried out on the slide rule. After all the matrices S and CS have
been determined by means of Egs. (20), the total joint stiffnesses K are calcu-
lated by adding the corresponding components of the stiffness matrices for any

one joint. Letting Kxx, Kxy = Kyx, and Kyy be the components of K for a given

panel point, the inverse (flexibility) matrix k1 is given by

B X

K
- vy X
kK1 o- l/kL v K = K, K. - K- (30)

'ny Kyx

It is presumed here that all total joint stiffness matrices are positive defi-
nite, since otherwise the structure is known to be unstable, necessitating a
(probably substantial) reduction in the load factor. Hence, k # O and g1
exists.

Let it now be assumed that the two moment distribution procedures have been
carried out and the residual matrix r has been established as described at the be-
ginning of this section. It is evident that if, instead of two unit moments, an
arbitrary moment m of components m, and my were applied at joint g, the residual
moment vector would be rm. Since further m = Ko, it follows that (I-r)kp is the
actual moment introduced at g. In other words, (I-r)K represents the equivalent
stiffness of the Joint q if all other Jjoints are free to rotate. The positive
definiteness of this matrix is therefore a necessary condition for the stability
of the structure. The sufficiency condition, which is subject to the exception

8

noted before,~ can be proved by extending the argument employed in a similar

problem in [5].
From this criterion of positive definiteness, conditions (26) can be derived
directly. Use is made here of the symmetry of (I-r)K, which is a consenquence of
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Maxwell's Theorem of Reciprocity and which, incidentally, also provides some means
of checking the numerical work. It follows that the stability of the structure
depends on the positiveness of the trace and determinant of (I-r)K. As for the
latter, since K itself has a positive determinant, |I-r| must also be positive.

In regard to the trace, let the coordinate system be rotated so that K assumes a
diagonal form; this is always possible on account of its symmetry. By examining
the form of (I-r)K in this coordinate system, and by considering further that the
diagonal terms of K are both positive, it can readily be verified that (I-r)K has
a positive trace if, and only if, the trace of (I-r) itself is positive in this,
and hence in the original, coordinate system. This completes the proof of the

inequalities (26).

NUMERICAL EXAMPLE

The method outlined above is now applied to the truss shown in Fig. 3. All
joints are connected rigidly and are prevented from lateral sway by means of cross
bracing (not shown), which, however, does not contribute to their rotational stiff-
ness. All gusset plates are assumed to be 1/2" thick.

The purpose of the study is to determine the factor of safety against buck-
ling—that is, the factor by which the given load must be multiplied to render the
equilibrium of the structure neutral. In particular, it will be shown that although
the compression members have been so selected as to make their L/r ratios about
equal, the danger of buckling out of the plane of the truss is considerably greater
than that within the plane,at least so far as the structure under consideration is
concerned.

As for the stability within the plane of the framework, the investigation pro-
ceeds along the familiar lines as outlined originally in Eﬁ]. The applied load

W = 50,000 1b was multiplied by several assumed values of the safety factor and, for
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each value, the stiffness and carry-over factors were computed with the aid of
[ﬁ]. A unit moment in the plane of the truss was then applied at joint B, dis-
tributed among the three members joined at B, and, with B fixed, the remaining
Jjoints were balanced. If the effect of yielding is disregarded, it was found that
the residual moment at joint B is 0.962 for a safety factor of 4.50, and 1.066 for
L.60. Hence, the load corresponding to plane instability lies between 225,000 and
230,000 1b.

The investigation of the lateral stability proceeded along an analogous path,
as described in the previous section. For an assumed load multiplier, the axial
bar forces were computed as well as the equivalent forces as given in Egs. (3)
and (6). The bending stiffness and carry-over factors S, and C were next de-
termined, as in the case of plane buckling. For the example of the double-angle
section as used here, a measure of simplification is introduced by the fact that
the torsional stiffness S; 1s negligible in comparison with Sm. The determination
of the S and CS matrices in the (x,y) coordinate system, as given by Egs. (20), is
simplified accordingly.

Table I shows a representative portion of the constants involved for an as-
sumed safety factor of 2.6. The material constants E and G were assumed to be
equal to 29 x 106 psi and 11.6 x 106 psi, respectively. Since only relative stiff-
nesses are of concern in connection with this study, a number of common factors
were disregarded in the establishment of S, . However, it is important to retain
the correct proportionality in computing S (not needed here) from Egs. (10),
particularly since the tables in [j] give values of Sm.which are only one-fourth
of those corresponding to Eqs. (10).

The total Jjoint stiffness is now determined by adding the corresponding com-
ponents of the S matrices of all the bars connected at a particular joint. For
example, the stiffness matrix K, of panel point A is obtained as the sum of SAB

and Spp; this leads to
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0.45 0.45

0.45 1.29
which is positive definite and has an inverse [see Eq. (50)]

3.40 -1.29

-1.29 1.29

The stiffness matrices of all the other Jjoints, and their inverse, are then com-

puted in the same fashion.

TABIE T

STIFFNESS AND CARRY-OVER CONSTANTS FOR A SAFETY FACTOR OF 2.6

Bar Force N

XX Xy yy | xx Xy yy
AB 91.9 105.2 3.62C 1.48 0.90 s 45 45 45 | 67T .67 .67

CB 91.9 105.2 3.62C 1.48 0.90 135 L5 oo-hs L5 | L6T - 67 .67

BD -130 -118 2.70 0.37 3%.40 - 90 3,40 0O 0 1.26 0O 0
AD - 65 - 63.4 L. 16T 0.26 0.84 0 0 0 8 1o 0 .22
D - 65 - 63.4 L4.,16r 0.26 0.8+ 180 © 0 8 |0 0 .20

The final step consists in the establishment of the transfer matrices de-
fined by Eqs. (29). This is achieved by multiplying the CS matrix of a member,
as given in Table I, by the inverse stiffness matrix of the Joint from which the
unbalanced moment is to be transferred. For example, TAB represents the effect

of the balancing of joint A on the unbalanced moment at B; it 1s given by

.67 .67 3.40 -1.29 1.42 0

-1
T = (CS)r K = =
4B AB TA .67 .67 || -1.29 1.29 1.42 0

16






It should be emphasized once again that two such transfer matrices must be com-
puted for each bar since, in general, T, # Tgac

Fig. 4 shows all the transfer coefficients for a safety factor of 2.6; it
also demonstrates the moment distribution procedure, which in this case turns
out to be exceptionally simple owing to the symmetry of the structure. A brief
description at this point, it 1s felt, may elucidate the simple, but perhaps
somewhat unfamiliar steps. The introduction and balancing of a unit moment
about the x-axis at point B produces unbalanced moments about both axes at Jjoints
A, D, and C, as shown in the first line. When the unbalanced moment m, = -0.15
at A is removed, the moments about both axes, which are transferred back to B,
are each equal to -(1.42)(-0.15) = +0.21; at the same time, a moment vector is
transferred to Jjoint D whose x-component is zero and whose y-component is given
-(-0.28)(-0.15) = -0.04. Similarly, the balancing of m, = -0.15 at A produces
(0,0) at B and (0, +0.04) at D.

The process 1s repeated for Joint C, with analogous results. The unbalanced
moments at D now are -0.29 and O, respectively, about the x-and y-axes. The re-
moval of the former introduces an unbalancing effect only at joint B, to which an
additional moment vector 1s transferred, whose x-component equals -(0.37)(-0.29) =
0.11 and whose y-component vanishes.

With all joints other than B balanced, it is seen that the latter is now
sub jected to a residual unbalanced moment whose components are 0.5% and O, re-
spectively. If the same process is carried out after an initial unit moment about
the y-axis is balanced at B, it can be demonstrated that the residual moment vec-

tor is given by (0, 2.10). Hence, the residual matrix, as defined by Eq. (25), is

which is seen to violate the stability criterion (26). In other words, the struc-

Ly






ture is laterally unstable under a load of 130,000 lb.
The same procedure, if carried out for a safety factor of 1.8 (correspond-

ing to a load of 90,000 1lb), leads to

which satisfies both criteria (26). The actual factor of safety of the structure
is therefore known to lie between 1.8 and 2.6. While its exact value is not im-
portant in connection with the general discussion in this paper, it does seem note-
worthy that it is very significantly smaller than its counterpart against plane

buckling.

CONCLUSION

As pointed out already in the Introduction, the present theory is based on
the assumption that, prior to lateral buckling, all members are subjected to axial
forces through their centroids. What effect, if any, the presence of so-called
secondary moments in the plane of the structure has on the condition of lateral
stability is difficult to assess without considering a specific example. It is
known, however [6], that structures whose bending moments are statically indeter-
minate do not ordinarily collapse under loads which are asscociated with incipient
lateral instability. The type of framework under consideration represents such
an example; hence, it 1s reasonable to expect the actual collapse load fo exceed
the theoretical buckling load.

In any event, the factor of safety which is computed on the basis of the
simplifying assumption of this paper must represent a lower bound to the factor
of safety based on the collapse load. Indeed, as pointed out in [6], any safety

factor based on statically admissible bending moments represents such a lower
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bound; obviously, a set of identically vanishing bending moments is statically
consistent in the absence of loads other than those applied at the Jjoints.
Whether the startlingly large discrepancy between the safety factors against
buckling in and out of the plane of the structure can be extended to trusses of
different geometry, or of greater torsional resistance, or composed of members
heavy enough to correspond to plastic buckling, can of course not be answered
summarily at this point. On the other hand, the results of this study seem to
indicate that the current design practice of equalizing the slenderness ratios
of compression members in both directions may not necessarily lead to an effi-
cient functioning of the structure. Perhaps it may not be unreasonable to sug-
gest that the pertinent features of the present code be subjected to further

scrutiny in this respect.
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