ARCH 324 - Structures 2, Winter 2009

von Buelow, Peter

<http://hdl.handle.net/2027.42/64938>
http://hdl.handle.net/2027.42/64938
Given:

- \(b_0 = 80'' \)
- \(w = 1.2 \text{ klf} \)
- \(L_1 = 24 \text{ ksf} \)
- \(F_o' = 1800 \text{ psi} \)
- \(n = 1/8 \)

Find:

1. Check the safety

 \(F_o' \geq F_o \)

 Allowable
 2. Actual

Step 1: Find \(M_{max} \)

- Since unsymmetrical loading, must use diag. 3.

\[\sum M_o = 0 = 16''(5') + 48''(20') - 32''(30') - R_R(40') \]

- \(R_R = 50k \)

\[\sum F_y = 0 = R_L - 16k - 48k - 32k + 50k \]

- \(R_L = 44k \)

Shear: Find \(x \) where \(V = 0 \)

- \(AV = \text{area loading} \)
- \(24x - 0 = 1.2 \text{ klf} \times (x) \)

- \(x = 20'' \)

From diag:

\[M_{max} = 455 \text{ kif} \]
STEP 2: TRANSFORM TO "HOMOGENEOUS" SECTION.

\[b_e = 80'' \]

\[n = \frac{1}{8} \]

GEOMETRY:

STEEL - LOOK UP IN TABLES. (P. 347)

For W24 x 68

\[b = 8.965'' \]

\[d = 23.78'' \]

\[A = 20.1 \text{ in}^2 \]

\[I = 1830 \text{ in}^4 \]

\[S = 154 \text{ in}^3 \]

CONCRETE - TRANSFORM TO STEEL

Transformed \(b_e = b_e \times n \)

\[= 80'' \left(\frac{1}{8} \right) = 10'' \]

STEP 3: FIND N.A.

\[\sum A_x = A \bar{x} \quad (p.40) \]

\[\bar{x} = \frac{\sum A_x \bar{x}}{A} = \frac{464 \text{ in}^3}{70.1 \text{ in}^2} = 6.62 \text{ in} \quad \text{FROM THE TOP} \]

STEP 4: FIND IT.R.

\[I_{tr} = I + A \bar{x}^2 \]

\[= \frac{b d^3}{12} \quad \text{for beam.} \]

- USE ONLY THE PORTION OF CONCRETE IN COMPRESSION, IGNORE CONC. BELOW N.A. (THIS CASE USE ALL THE CONC.)

\[C_L \]

\[I_{tr} = 4905 \text{ in}^4 \]

REFERENCE:

Reference point for calculations.
Step 5: FIND F_0

\[F_0 = \frac{M_c E_0}{I_T} \leq \text{General Equation} \]

Since working in " Psy " must connect conc. stress,

\[f_{c,\text{conk}} = \frac{M_c E_0}{I_T} = \frac{455 \times 6 \times (0.62'')(1/8) \times 12''}{4905 \text{ in}^4} = 921 \text{ psi} \]

\[f_{c,\text{stl}} = \frac{M_c I}{I_T} = \frac{455 \times 6 \times (22.17'' \times 12'')}{4905 \text{ in}^4} = 24.7 \text{ ksi} \]

Step 6: CHECK SAFETY

\[\frac{f_{c,\text{stl}}}{f_{c,\text{actual}}} \Rightarrow 24 \text{ ksi} \neq 24.7 \text{ ksi} \]

N.G. - STEEL FAILS!!

\[f_{c,\text{conc}} \geq f_{c,\text{actual}} \Rightarrow 1800 \text{ psi} \geq 921 \text{ psi} \text{ V.A.K.} \]

In conclusion, the beam is not adequately designed since steel fails.