ARCH 324 - Structures 2, Winter 2009

von Buelow, Peter

<http://hdl.handle.net/2027.42/64938>
http://hdl.handle.net/2027.42/64938
15-1

\(A_{s,2} \) find \(M_u \)

\[f'_{c} = 3000 \text{ PSI} \]
\[k_1 = 0.85 \]
\[f_y = 60 \text{ KSI} \]
\[A_s = 3 \times \# 8 \]

1) \(A_s = \# \text{bars (area of 16 bars)} \)
\[A_s = 3 \times (0.79) = 2.37 \text{ in}^2 \]
\[\text{from table p341} \]

2) find limit of \(a \) (depth of the stress block)

\[a = k_1 \left[\frac{87}{87+f_y} \right] d (0.75) \]

based on strength of concrete

\[a = 0.85 \left[\frac{87}{87+60} \right] 18 \times (0.75) \]
\[a = 6.79'' \]

using \(a = \frac{A_s f_y}{0.85 f'_{c} b} \)

\[c = \frac{0.85 f'_{c}}{0.85 f'_{c} b} \]
\[0.85 f'_{c} ab = A_s f_y \]

\[a = \frac{A_s f_y}{0.85 f'_{c} b} \]
\[a = \frac{2.37}{0.85 (3)(12)} = 4.65 < \text{limit so steel is yielding before compressive failure in concrete} \]
4) find moment capacity
\[M = A_s f_y d = 0.85 f_c a b j d \]
for a rectangular section \(j_d = d - a/2 \)

\[M = M_n = A_s f_y (d - \frac{a}{2}) = 2.37 \times (60) \times (18 - \frac{4.65}{2}) \]
\[M_n = 2228.99 \text{ kN} = 185.75 \text{k} \]

5) \(M_u = 0.9 M_n \)
\[M_u = 0.9 \times (185.75) = 167.18 \text{ kN} \]