2009-01

ARCH 324 - Structures 2, Winter 2009

von Buelow, Peter

<http://hdl.handle.net/2027.42/64938>
http://hdl.handle.net/2027.42/64938
Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution 3.0 License. http://creativecommons.org/licenses/by/3.0/

© 2009, Peter Von Buelow
Given: \(A_s = 2 \text{ in}^2 \)
\(f_y = 60 \text{ KSI} \)
\(f'c = 3 \text{ KSI} \)

Find \(M_u \)

Step 1:
\[A_c = \frac{A_s f_y}{0.85 f'c} \]
\[A_c = \frac{2(60)}{0.85(3)} \]

Step 2: Find where \(A_c \) lies on shape
\[47.06 - 24 = 23.06 \text{ in}^2 \]
\[16 \times 23.06 \quad x = 1.44 \]

Step 3: Since shape is not rectangular do not use \(\frac{a}{2} \) but rather find centroid of area
\[\bar{y} = \frac{\Sigma A d}{\Sigma A} \]
I'll choose top as baseline
d is distance fr. centroid of shape to baseline
\[\frac{24(2) + 23.04(3.72)}{24 + 23.04} = 2.84'' \text{ fr. top} \]

Step 4:
\[z = d - \bar{y} \]
\[z = 18 - 2.84 \quad z = 15.16'' \]

Step 5:
\[M_u = 0.9 A_s f_y z \]
\[0.9 \times 2 \times (60) \times 15.16 = 1637.28 \text{ KIN} \]
\[= 136.4 \text{ KFT} \]