2009-01

ARCH 324 - Structures 2, Winter 2009

von Buelow, Peter

<http://hdl.handle.net/2027.42/64938>
http://hdl.handle.net/2027.42/64938
Composite Sections and Steel Beam Design

• Steel Beam Selection - ASD
• Composite Sections
• Analysis Method
Steel W-sections for beams and columns

Standard section shapes:
- W – wide flange
- S – american standard beam
- C – american standard channel
- L – angle
- WT or ST – structural T
- Pipe
- Structural Tubing

Source: University of Michigan, Department of Architecture
Steel W-sections for beams and columns

Columns:
Closer to square
Thicker web & flange

Beams:
Deeper sections
Flange thicker than web

Source: University of Michigan, Department of Architecture
Steel W-sections for beams and columns

Columns:
Closer to square
Thicker web & flange

Beams:
Deeper sections
Flange thicker than web
Steel Beams by ASD

Yield Stress Values
• A36 Carbon Steel \(F_y = 36 \text{ ksi} \)
• A992 High Strength \(F_y = 50 \text{ ksi} \)

Allowable Flexure Stress
• \(F_b = 0.66 \ F_y \)
 - Compact Section
 \(= L_c \)
 - Braced against LTB \(l < L_c \)
• \(F_b = 0.60 \ F_y \)
 - Compact or Not
 \(= L_u \)
 - \(L_c < l < L_u \)
• \(F_b < 0.60 \ F_y \)
 - Compact or Not
 - LTB failure mode \(l > L_u \)

Allowable Shear Stress
• \(F_v = 0.40 \ F_y \)
 - \(f_v = V/(t_w d) \)

Source: AISC, Manual of Steel Construction
Section Modulus Table

- Calculate Required Moment
- Assume Allowable Stress
 - \(F_b = 0.66F_y = 24 \text{ ksi (A36)} \)
 - \(F_b = 0.60F_y = 21.6 \text{ ksi (A36)} \)

- Using the flexure equation,
 - set \(f_b = F_b \) and solve for \(S \)

\[
f_b = \frac{Mc}{I} = \frac{M}{S} = F_b
\]

\[
S = \frac{M}{F_b}
\]

- Choose a section based on \(S \) from the table (D-35 and D-36)
 - Bold faced sections are lighter
 - \(F'y \) is the stress up to which the section is compact (\(\cdot \cdot \) is ok for all grades of \(F_y \))
Example – Load Analysis of Steel Beam

1. Find the Section Modulus for the given section from the tables (D-35 and D-36).

2. Determine the maximum moment equation.

Find Load w in KLF

GIVEN:
- $f_b = 24$ ksi
- $W = 30 \times 116$
- $l = 64$ ft

FOR $W = 30 \times 116$ from table D-35 we get,

$$S_x = 329 \text{ in}^3$$

For a simply supported, uniformly loaded beam,

$$M_{\text{max}} = \frac{Wl}{8}$$

Source: University of Michigan, Department of Architecture
Example – Load Analysis cont.

W30x116

3. Using the flexure equation, \(fb = F_b \), solve for the moment, \(M \).

\[
\frac{F_b}{5} = \frac{M}{6a} = F_b
\]

\[
M = 5a \times F_b
\]

\[
M = 329 \text{ in}^3 \times 24 \left(\frac{K}{\text{in}} \right) = 7896 \text{ in}^2 \left(\frac{K}{\text{in}} \right)
\]

\[
M = \frac{7896}{12} = 658 \frac{K}{\text{in}}
\]

5. Using the maximum moment equation, solve for the distributed loading, \(w \).

\[
M = \frac{Wl}{8} \quad W = \frac{Mx8}{l}
\]

\[
W = \frac{658 \frac{K}{\text{in}} \times 8}{64} = 8.225 \frac{K}{\text{in}}
\]

\[
w = 1.28 \text{ KLF}
\]

Source: University of Michigan, Department of Architecture
1. Use the maximum moment equation, and solve for the moment, M.

\[
M = \frac{WL^2}{8}
\]

\[
M = \frac{(1.25 \text{ kips})(32 \text{ ft})^2}{8}
\]

\[
M = 160 \text{ kip-ft}
\]

\[
f_b = \frac{M}{I} = \frac{M}{S}
\]

\[
S = \frac{M}{f_b} = \frac{160 \text{ kip-ft}}{30 \text{ ksf}}
\]

\[
S = 64 \text{ in}^3
\]

2. Use the flexure equation to solve for S_x.

Source: University of Michigan, Department of Architecture
Design of Steel Beam

Example

3. Choose a section based on S_x from the table (D35 and D36).

4. Most economical section is: W16 x 40 $S_x = 64.7 \text{ in}^3$
5. Add member self load to M and recheck Fb (we skip this step here)

7. Check shear stress:
 Allowable Stress
 $F_v = 0.40 \times F_y$
 $F_v = 20 \text{ ksi}$

Actual Stress
 $f_v = \frac{V}{t_w d}$
 $f_v = \frac{20}{(0.305 \times 16.01)} = 4.09 \text{ ksi}$

$f_v \leq F_v$

$4.09 < 20 \checkmark$
6. Check Deflections
 calculate actual deflection
 compare to code limits
 if the actual deflection exceeds the code limit
 a stiffer section is needed

\[\Delta_d = \frac{5wL^4}{384EI} \]

\[= \frac{5(1.25 \times 10^5)(32')^4(1728)}{384 (29000 \times 10^6)(518 \times 10^6)} \]

\[= 1.96'' \]

\[\frac{L}{240} = \frac{32'(12)}{240} = 1.6'' \]

\[\frac{L}{120} = \frac{32'(12)}{120} = 3.2'' \]

Construction Table

<table>
<thead>
<tr>
<th>Construction</th>
<th>LL</th>
<th>DL + LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof member supporting plaster, or floor member</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof members</td>
<td></td>
<td></td>
</tr>
<tr>
<td>supporting nonplastered ceilings</td>
<td>L/240</td>
<td></td>
</tr>
<tr>
<td>Roof members not supporting ceilings</td>
<td>L/180</td>
<td></td>
</tr>
<tr>
<td>Exterior and Interior walls and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partitions with brittle finishes</td>
<td>L/240</td>
<td></td>
</tr>
<tr>
<td>Exterior and Interior walls and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>partitions with flexible finishes</td>
<td>L/120</td>
<td></td>
</tr>
<tr>
<td>Farm Buildings</td>
<td></td>
<td>L/180</td>
</tr>
<tr>
<td>Greenhouses</td>
<td></td>
<td>L/120</td>
</tr>
</tbody>
</table>

Source: Standard Building Code, 1991
Composite Design

Steel W section with concrete slab “attached” by shear studs.

The slab acts as a wider and thicker compression flange.
Effective Flange Width

Slab on both sides:
(Least of the three)
- Total width: ¼ of the beam span
- Overhang: 8 x slab thickness
- Overhang: ½ the clear distance to next beam (i.e. the web on center spacing)

Slab on one side:
(Least of the three)
- Total width: 1/12 of the beam span
- Overhang: 6 x slab thickness
- Overhang: ½ the clear distance to next beam
Analysis Procedure

1. Define effective flange width
2. Calculate \(n = \frac{E_c}{E_s} \)
3. Transform Concrete width = \(n \ b_c \)
4. Calculate Transformed \(I_{tr} \)
 do NOT include concrete in tension
5. If load is known, calculate stress

 or
6. If finding maximum load use allowable stresses. The lesser \(M \) will determine which material controls the section.

\[
f_{steel} = \frac{M_c}{I_{tr}}
\]

\[
f_{conc} = \frac{M_c \cdot n}{I_{tr}}
\]

\[
M_s = \frac{F_{steel} I_{tr}}{c}
\]

\[
M_c = \frac{F_{conc} I_{tr}}{c \cdot n}
\]
Given:
- $DL_{\text{slab}} = 62.5 \text{ psf}$
- $DL_{\text{beam}} = 135 \text{ plf}$
- $n = 1/9$
- $f_{\text{steel}} = 24 \text{ ksi} \ (F_y = 36)$
- $f_{\text{conc}} = 1.35 \text{ ksi}$

For this example the floor capacity is found for two different floor systems:

1. Find capacity of steel section independent from slab
2. Find capacity of steel and slab as a composite

Source: University of Michigan, Department of Architecture
Part 1 Non-composite Analysis

- Find section modulus, S_x in chart.
- Assume an allowable stress, F_b.
- Determine the total moment capacity of the section, M.
- Subtract the DL moment to find the remaining LL moment.
- Calculate LL capacity in PSF.

\[
\begin{align*}
S_x &= 439 \text{in}^3 \\
F_b &= 24 \text{ksi (0.66 kN)} \\
M &= F_S = 24 \text{ksi} \times 439 \text{in}^3 = 10536 \text{ k-in} \\
M &= 878 \text{ k-in} \\
M_{T} &= M_{DA} + M_{u} \\
M_{DA} &= \frac{wL^2}{8} = \frac{0.9475 \times (60^2)}{8} = 426.4 \text{ k-in} \\
M_{u} &= M_{T} - M_{DA} = 878 - 426.4 = 451.6 \text{ k-in} \\
\frac{w_{u}L^2}{8} &= 451.6 \text{ k-in} \\
w_{u} &= \frac{(8 \times 451.6)}{60^2} = 1.008 \text{ k} \\
P_{SF_u} &= \frac{1003 \text{ psf}}{13} = 77.2 \text{ psf}
\end{align*}
\]

Source: University of Michigan, Department of Architecture
Part 2 - Composite Analysis

1. Determine effective width of slab.
 (using 90”y92”)

2. Find \(n = \frac{E_c}{E_s} \) (1/9)

3. Draw transformed section
 (transform the concrete)

4. Calculate Transformed \(I_x \):
 - Locate neutral axis.
Composite Analysis cont.

4. Calculate Transformed I_x:
 Use parallel axis theorem.

$$I_a = I_g + A d^2$$
5. Calculate moment capacity for steel and concrete each assuming full allowable stress level.

\[
M_c = \frac{f_c A_c}{c_0}\\
M_c = \frac{1.35 (17001)}{11.47 (1/9)} = 1808.9 \text{ k}-\text{ft} = 1500.7 \text{ k}-\text{in}
\]

\[
M_b = \frac{f_b A_b}{c}\\
M_b = \frac{24 (17001)}{29.08} = 1169.2 \text{ k}-\text{ft} = 1169.2 \text{ k}-\text{in}
\]

\[
\therefore f_c = 24 \text{ ksi}
\]

\[
\therefore f_b = \frac{M_c}{A_b} = \frac{(1808.9)(1/9)}{17001}\\
\therefore f_c = 1.052 \text{ ksi}
\]

6. Choose the smaller moment. It will control capacity.
7. Subtract the DL moment to find the remaining LL moment.

\[M_{DL} = M_t - M_{DL} \]
\[M_{LL} = 1169 \text{ k}^3 - 4260 \text{ k}^3 = 743 \text{ k}^3 \]

Source: University of Michigan, Department of Architecture

8. Calculate the LL in PSF based on the \(M_{LL} \).

\[\frac{w_u l^2}{8} = 743 \text{ k}^3 \]
\[w_u = \frac{(8)(743)}{60^2} = 1650 \text{ k}^3 \]
\[PSF_u = \frac{1650 \text{ psi}}{18} = 91 \text{ psi} \]

Source: University of Michigan, Department of Architecture