Composite Sections and Steel Beam Design

- Steel Beam Selection - ASD
- Composite Sections
- Analysis Method
Steel W-sections for beams and columns

Standard section shapes:
W – wide flange
S – american standard beam
C – american standard channel
L – angle
WT or ST – structural T
Pipe
Structural Tubing

Source: University of Michigan, Department of Architecture
Steel W-sections for beams and columns

Columns:
Closer to square
Thicker web & flange

Beams:
Deeper sections
Flange thicker than web
Steel W-sections for beams and columns

Columns:
- Closer to square
- Thicker web & flange

Beams:
- Deeper sections
- Flange thicker than web

CC:BY-SA Gregor_y (flickr)
http://creativecommons.org/licenses/by-sa/2.0/
Steel Beams by ASD

Yield Stress Values
- A36 Carbon Steel $ F_y = 36 \text{ ksi} $
- A992 High Strength $ F_y = 50 \text{ ksi} $

Allowable Flexure Stress
- $ F_b = 0.66 F_y $ $ = L_c $
 - Compact Section
 - Braced against LTB $(l < L_c)$
- $ F_b = 0.60 F_y $ $ = L_u $
 - Compact or Not
 - $ L_c < l < L_u $
- $ F_b < 0.60 F_y $
 - Compact or Not
 - LTB failure mode $(l > L_u)$

Allowable Shear Stress
- $ F_v = 0.40 F_y $
 - $ f_v = V / (t_w d) $
Section Modulus Table

- Calculate Required Moment
- Assume Allowable Stress
 - $F_b = 0.66F_y = 24$ ksi (A36)
 - $F_b = 0.60F_y = 21.6$ ksi (A36)
- Using the flexure equation,
 - set $fb = F_b$ and solve for S

$$f_b = \frac{Mc}{I} = \frac{M}{S} = F_b$$

$$S = \frac{M}{F_b}$$

- Choose a section based on S
 from the table (D-35 and D-36)
 - Bold faced sections are lighter
 - $F'\gamma$ is the stress up to which the section is compact ($\bullet \bullet$ is ok for all grades of F_y)

<table>
<thead>
<tr>
<th>S_x in. 2</th>
<th>Shape</th>
<th>$F'\gamma$ ksi</th>
<th>S_x in. 2</th>
<th>Shape</th>
<th>$F'\gamma$ ksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>W24x55**</td>
<td>57.6</td>
<td>114</td>
<td>W18x35**</td>
<td>21.3</td>
</tr>
<tr>
<td>112</td>
<td>W14x74**</td>
<td>56.5</td>
<td>112</td>
<td>W16x36**</td>
<td>20.0</td>
</tr>
<tr>
<td>112</td>
<td>W10x100**</td>
<td>54.6</td>
<td>111</td>
<td>W14x38**</td>
<td>18.8</td>
</tr>
<tr>
<td>108</td>
<td>W18x60**</td>
<td>54.9</td>
<td>108</td>
<td>W10x49**</td>
<td>53.0</td>
</tr>
<tr>
<td>107</td>
<td>W12x29**</td>
<td>52.0</td>
<td>107</td>
<td>W8x58**</td>
<td>18.2</td>
</tr>
<tr>
<td>103</td>
<td>W14x68**</td>
<td>51.9</td>
<td>103</td>
<td>W12x40**</td>
<td></td>
</tr>
<tr>
<td>98.5</td>
<td>W10x88**</td>
<td>49.1</td>
<td>98.5</td>
<td>W10x45**</td>
<td>17.1</td>
</tr>
<tr>
<td>98.3</td>
<td>W18x55**</td>
<td>48.6</td>
<td>97.4</td>
<td>W16x31**</td>
<td>16.7</td>
</tr>
<tr>
<td>97.4</td>
<td>W12x72**</td>
<td>47.2</td>
<td>94.5</td>
<td>W12x35**</td>
<td>14.8</td>
</tr>
<tr>
<td>92.2</td>
<td>W16x67**</td>
<td>43.3</td>
<td>92.2</td>
<td>W10x39**</td>
<td>13.8</td>
</tr>
<tr>
<td>92.2</td>
<td>W14x41**</td>
<td>42.1</td>
<td>88.8</td>
<td>W14x30**</td>
<td>13.4</td>
</tr>
<tr>
<td>87.9</td>
<td>W12x65**</td>
<td>38.6</td>
<td>87.9</td>
<td>W12x30**</td>
<td>11.8</td>
</tr>
<tr>
<td>85.9</td>
<td>W10x77**</td>
<td>38.4</td>
<td>81.6</td>
<td>W16x26**</td>
<td>10.9</td>
</tr>
<tr>
<td>81.6</td>
<td>W21x44**</td>
<td>35.5</td>
<td>81.6</td>
<td>W16x40**</td>
<td>10.2</td>
</tr>
<tr>
<td>80.0</td>
<td>W16x50**</td>
<td>35.3</td>
<td>78.8</td>
<td>W14x26**</td>
<td>9.91</td>
</tr>
<tr>
<td>78.8</td>
<td>W18x46**</td>
<td>35.0</td>
<td>78.0</td>
<td>W10x33**</td>
<td>9.72</td>
</tr>
<tr>
<td>77.8</td>
<td>W16x53**</td>
<td>33.4</td>
<td>77.8</td>
<td>W8x56**</td>
<td>9.63</td>
</tr>
<tr>
<td>75.7</td>
<td>W10x68**</td>
<td>32.4</td>
<td>75.7</td>
<td>W8x15**</td>
<td>8.61</td>
</tr>
<tr>
<td>72.7</td>
<td>W16x45**</td>
<td>31.2</td>
<td>72.7</td>
<td>W6x10**</td>
<td>7.81</td>
</tr>
<tr>
<td>70.6</td>
<td>W12x53**</td>
<td>29.0</td>
<td>70.6</td>
<td>W8x35**</td>
<td>7.31</td>
</tr>
<tr>
<td>70.3</td>
<td>W14x48**</td>
<td>27.9</td>
<td>70.3</td>
<td>W14x22**</td>
<td>5.56</td>
</tr>
<tr>
<td>68.4</td>
<td>W18x40**</td>
<td>27.5</td>
<td>68.4</td>
<td>W16x26**</td>
<td>5.46</td>
</tr>
<tr>
<td>66.7</td>
<td>W16x60**</td>
<td>25.4</td>
<td>66.7</td>
<td>W12x22**</td>
<td></td>
</tr>
<tr>
<td>64.7</td>
<td>W18x40**</td>
<td>24.3</td>
<td>64.7</td>
<td>W12x25**</td>
<td></td>
</tr>
<tr>
<td>62.7</td>
<td>W14x43**</td>
<td>23.2</td>
<td>62.7</td>
<td>W8x28**</td>
<td></td>
</tr>
<tr>
<td>60.4</td>
<td>W6x67**</td>
<td></td>
<td>60.4</td>
<td>W6x8**</td>
<td></td>
</tr>
<tr>
<td>60.0</td>
<td>W10x54**</td>
<td></td>
<td>60.0</td>
<td>W10x22**</td>
<td></td>
</tr>
<tr>
<td>58.1</td>
<td>W12x45**</td>
<td></td>
<td>58.1</td>
<td>W12x45**</td>
<td></td>
</tr>
</tbody>
</table>

Source: Structural Principles, I. Engel 1984
Example – Load Analysis of Steel Beam

1. Find the Section Modulus for the given section from the tables (D-35 and D-36).
2. Determine the maximum moment equation.

Given:
\[f_b = 24 \, \text{ksi} \]
\[W = 30 \times 116 \]

\[\frac{W}{2}l = 64 \] in

For \(W = 30 \times 116 \), from table D-35 we get,

\[S_x = 329 \, \text{in}^3 \]

For a simply supported, uniformly loaded beam,

\[\text{Maximum Moment} \quad M = \frac{Wl}{8} \]

Source: University of Michigan, Department of Architecture
3. Using the flexure equation, \(fb = F_b \), solve for the moment, \(M \).

5. Using the maximum moment equation, solve for the distributed loading, \(w \).

\[
\frac{fb}{E} = \frac{M}{I} = \frac{M}{\frac{5a}{12}} = F_b
\]

\[
M = 5a \times F_b
\]

\[
M = 329 \text{ in}^3 \times 24 \text{ (k/lin)}
\]

\[
M = 7896 \text{ k-in} = \frac{7896}{12}
\]

\[
M = 658 \text{ k-in}
\]

\[
M = \frac{Wl^2}{8}
\]

\[
W = \frac{M \times 8}{l}
\]

\[
W = 658 \text{ k-in} \times 8
\]

\[
W = 8225 \text{ k}
\]

\[
w = 1.28 \text{ KLF}
\]

Source: University of Michigan, Department of Architecture
1. Use the maximum moment equation, and solve for the moment, M.

2. Use the flexure equation to solve for S_x.

\[M = \frac{Wl^2}{8} \]

\[M = \frac{(1.25 \text{ kip} \cdot \text{ft})(32 \text{ ft})^2}{8} \]

\[M = 160 \text{ kip} \cdot \text{ft} \]

\[\frac{f_b}{f_y} = \frac{M}{S} \]

\[S = \frac{M}{f_b} = \frac{160 \text{ kip} \cdot \text{ft}}{30 \text{ ksi}} \]

\[S = 64 \text{ in}^3 \]
Design of Steel Beam

Example

3. Choose a section based on S_x from the table (D35 and D36).

4. Most economical section is: W16 x 40
 $S_x = 64.7 \text{ in}^3$

<table>
<thead>
<tr>
<th>S_x in.3</th>
<th>Shape</th>
<th>F_y ksi</th>
<th>S_x in.3</th>
<th>Shape</th>
<th>F_y ksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>W24x55**</td>
<td>57.8</td>
<td>W18x35**</td>
<td>21.3</td>
<td>W12x19**</td>
</tr>
<tr>
<td>112</td>
<td>W14x74**</td>
<td>56.5</td>
<td>W16x36**</td>
<td>20.9</td>
<td>W8x24**</td>
</tr>
<tr>
<td>112</td>
<td>W10x100**</td>
<td>54.6</td>
<td>W14x38**</td>
<td>18.8</td>
<td>W10x19**</td>
</tr>
<tr>
<td>111</td>
<td>W21x67**</td>
<td>54.6</td>
<td>W10x49**</td>
<td>18.2</td>
<td>W8x21**</td>
</tr>
<tr>
<td>108</td>
<td>W18x60**</td>
<td>52.0</td>
<td>W8x58**</td>
<td>17.1</td>
<td>W12x16**</td>
</tr>
<tr>
<td>107</td>
<td>W12x78**</td>
<td>51.9</td>
<td>W12x40**</td>
<td>16.7</td>
<td>W6x25**</td>
</tr>
<tr>
<td>103</td>
<td>W14x68**</td>
<td>49.1</td>
<td>W10x45**</td>
<td>16.2</td>
<td>W10x17**</td>
</tr>
<tr>
<td>98.5</td>
<td>W10x88**</td>
<td>48.6</td>
<td>W14x34**</td>
<td>15.2</td>
<td>W8x18**</td>
</tr>
<tr>
<td>98.3</td>
<td>W18x55**</td>
<td>47.2</td>
<td>W16x31**</td>
<td>14.9</td>
<td>W12x14**</td>
</tr>
<tr>
<td>97.4</td>
<td>W12x72**</td>
<td>45.8</td>
<td>W12x35**</td>
<td>13.8</td>
<td>W10x15**</td>
</tr>
<tr>
<td>94.5</td>
<td>W21x50**</td>
<td>43.3</td>
<td>W8x48**</td>
<td>13.4</td>
<td>W8x20**</td>
</tr>
<tr>
<td>92.2</td>
<td>W10x67**</td>
<td>42.1</td>
<td>W10x39**</td>
<td>11.8</td>
<td>W8x15**</td>
</tr>
<tr>
<td>92.2</td>
<td>W14x61**</td>
<td>42.0</td>
<td>W14x30**</td>
<td>10.9</td>
<td>W10x12**</td>
</tr>
<tr>
<td>88.8</td>
<td>W18x50**</td>
<td>38.6</td>
<td>W12x30**</td>
<td>10.2</td>
<td>W8x16**</td>
</tr>
<tr>
<td>87.9</td>
<td>W12x65**</td>
<td>38.4</td>
<td>W16x26**</td>
<td>10.2</td>
<td>W5x19**</td>
</tr>
<tr>
<td>85.0</td>
<td>W10x77**</td>
<td>35.5</td>
<td>W8x40**</td>
<td>9.91</td>
<td>W8x13**</td>
</tr>
<tr>
<td>81.6</td>
<td>W21x44**</td>
<td>35.3</td>
<td>W14x26**</td>
<td>9.72</td>
<td>W6x15**</td>
</tr>
<tr>
<td>61.0</td>
<td>W16x50**</td>
<td>35.0</td>
<td>W10x33**</td>
<td>9.63</td>
<td>M5x18.9**</td>
</tr>
<tr>
<td>78.8</td>
<td>W18x46**</td>
<td>32.4</td>
<td>W12x26**</td>
<td>8.51</td>
<td>W5x16**</td>
</tr>
<tr>
<td>78.0</td>
<td>W12x58**</td>
<td>32.4</td>
<td>W10x30**</td>
<td>7.81</td>
<td>W8x10**</td>
</tr>
<tr>
<td>77.8</td>
<td>W14x53**</td>
<td>31.2</td>
<td>W8x35**</td>
<td>7.31</td>
<td>W6x12**</td>
</tr>
<tr>
<td>75.7</td>
<td>W10x68**</td>
<td>29.0</td>
<td>W14x22**</td>
<td>5.58</td>
<td>W8x9**</td>
</tr>
<tr>
<td>72.7</td>
<td>W16x45**</td>
<td>29.0</td>
<td>W12x22**</td>
<td>5.46</td>
<td>W4x13**</td>
</tr>
<tr>
<td>70.6</td>
<td>W12x63**</td>
<td>27.9</td>
<td>W10x26**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.3</td>
<td>W14x48**</td>
<td>27.5</td>
<td>W8x31**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.4</td>
<td>W18x40**</td>
<td>26.4</td>
<td>W12x22**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.7</td>
<td>W10x60**</td>
<td>24.3</td>
<td>W8x28**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.7</td>
<td>W18x40**</td>
<td>23.2</td>
<td>W10x22**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.7</td>
<td>W12x50**</td>
<td>23.2</td>
<td>W10x22**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.7</td>
<td>W14x43**</td>
<td>23.2</td>
<td>W10x22**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.4</td>
<td>W8x57**</td>
<td>21.3</td>
<td>W12x19**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.0</td>
<td>W10x54**</td>
<td>21.3</td>
<td>W12x19**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.1</td>
<td>W12x45**</td>
<td>21.3</td>
<td>W12x19**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sections shown in **bold face** are "Weight Economy Sections."

**Theoretical maximum yield stress exceeds 60 ksi.

Source: I. Engel, Structural Principles, 1984
Design of Steel Beam

Example

5. Add member self load to M and recheck Fb (we skip this step here)

7. Check shear stress:

Allowable Stress

\[F_v = 0.40 \times (50 \text{ ksi}) \]

\[F_v = 20 \text{ ksi} \]

Actual Stress

\[V = \frac{wL}{2} = \frac{1.25 \text{k} \times 32'}{2} \]

\[V = 20 \text{k} \]

\[f_v = \frac{V}{t_w d} \]

\[f_v = \frac{20}{0.305 \times 16.01} = 4.09 \text{ ksi} \]

\[4.09 < 20 \text{ OK} \]
Design of Steel Beam

Example

6. Check Deflections
 calculate actual deflection
 compare to code limits
 if the actual deflection exceeds the code limit
 a stiffer section is needed

\[\Delta e = \frac{5wL^4}{384EI} \]
\[= \frac{5(1.25 \text{kips})(32')^4(1728)}{384(29000 \text{kips})(518 \text{in}^3)} \]
\[= 1.96'' \]

\[\frac{L}{240} = \frac{32'(12)}{240} = 1.6'' \]

\[\frac{L}{120} = \frac{32'(12)}{120} = 3.2'' \]

<table>
<thead>
<tr>
<th>Construction</th>
<th>LL</th>
<th>DL + LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof member supporting plaster, or floor member</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof members</td>
<td></td>
<td></td>
</tr>
<tr>
<td>supporting nonplastered ceilings</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>Roof members not supporting ceilings</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Exterior and Interior walls and Partitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with brittle finishes</td>
<td>L/240</td>
<td>—</td>
</tr>
<tr>
<td>Exterior and Interior walls and partitions with flexible finishes</td>
<td>L/120</td>
<td>—</td>
</tr>
<tr>
<td>Farm Buildings</td>
<td>—</td>
<td>L/180</td>
</tr>
<tr>
<td>Greenhouses</td>
<td>—</td>
<td>L/120</td>
</tr>
</tbody>
</table>

Source: Standard Building Code, 1991
Composite Design

Steel W section with concrete slab “attached” by shear studs.

The slab acts as a wider and thicker compression flange.
Effective Flange Width

Slab on both sides:
(Least of the three)
- Total width: \(\frac{1}{4} \) of the beam span
- Overhang: \(8 \times \) slab thickness
- Overhang: \(\frac{1}{2} \) the clear distance to next beam (i.e. the web on center spacing)

Slab on one side:
(Least of the three)
- Total width: \(\frac{1}{12} \) of the beam span
- Overhang: \(6 \times \) slab thickness
- Overhang: \(\frac{1}{2} \) the clear distance to next beam

Source: University of Michigan, Department of Architecture
Analysis Procedure

1. Define effective flange width
2. Calculate \(n = \frac{E_c}{E_s} \)
3. Transform Concrete width = \(n b_c \)
4. Calculate Transformed \(I_{tr} \)
 \textit{do NOT include concrete in tension}

5. If load is known, calculate stress

 \[f_{steel} = \frac{Mc}{I_{tr}} \]
 \[f_{conc} = \frac{Mc \cdot n}{I_{tr}} \]

6. If finding maximum load use allowable stresses. The lesser \(M \) will determine which material controls the section.

 \[M_s = \frac{F_{steel} I_{tr}}{c} \]
 \[M_c = \frac{F_{conc} I_{tr}}{c \cdot n} \]
Given:
- \(DL_{slab} = 62.5 \text{ psf} \)
- \(DL_{beam} = 135 \text{ plf} \)
- \(n = 1/9 \)
- \(f_{\text{steel}} = 24 \text{ ksi} \) (\(F_y = 36 \))
- \(f_{\text{conc}} = 1.35 \text{ ksi} \)

For this example the floor capacity is found for two different floor systems:

1. Find capacity of steel section independent from slab
2. Find capacity of steel and slab as a composite
Part 1 Non-composite Analysis

- Find section modulus, S_x in chart.
- Assume an allowable stress, F_b.
- Determine the total moment capacity of the section, M.
- Subtract the DL moment to find the remaining LL moment.
- Calculate LL capacity in PSF.

Source: University of Michigan, Department of Architecture
Part 2 - Composite Analysis

1. Determine effective width of slab.
 (using 90”y92”)

2. Find \(n = Ec/Es \) \((1/9)\)

3. Draw transformed section
 (transform the concrete)

4. Calculate Transformed \(I_x \):

 - Locate neutral axis.

Source: University of Michigan, Department of Architecture
4. Calculate Transformed I_x:

Use parallel axis theorem.

$$I_a = I_g + A d^2$$
5. Calculate moment capacity for steel and concrete each assuming full allowable stress level.

\[
M_c = \frac{f_c \pi r^2}{c_0} \\
M_c = \frac{1.35 (17001)}{11.47 (1/9)} = \frac{18008.9}{11.47} = 1500.74 \text{k-in} \\
M_s = \frac{f_s I_{tr}}{c} \\
M_s = \frac{24 (17001)}{29.08} = \frac{14081.08}{29.08} = 483.45 \text{k-in} \\
\therefore f_c = \frac{M_c}{I_{tr}} = \frac{(14081.08)(11.47)(1/9)}{17001} \\
\therefore f_c = 1.052 \text{ksi} \\
\]

6. Choose the smaller moment. It will control capacity.
Composite Analysis cont.

7. Subtract the DL moment to find the remaining LL moment.

\[M_{DL} = M_{T} - M_{DL} \]
\[M_{LL} = 1169 \text{kip-ft} - 420 \text{kip-ft} = 749 \text{kip-ft} \]

8. Calculate the LL in PSF based on the \(M_{LL} \).

\[\frac{w_u l^2}{8} = 748 \text{kip-ft} \]
\[w_u = \frac{(8)(748)}{60^2} = 1.55 \text{kip/ft} \]
\[P_{PSF} = \frac{1.55 \text{kip/ft} \times 13 \text{ft}}{13} = 1.57 \text{psf} \]

Source: University of Michigan, Department of Architecture