ARCH 324 - Structures 2, Winter 2009

von Buelow, Peter

<http://hdl.handle.net/2027.42/64938>
http://hdl.handle.net/2027.42/64938
Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/

© 2009, Peter Von Buelow

You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an endorsement by the University of Michigan. For more information about how to cite these materials visit https://open.umich.edu/education/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images that may be disturbing to some viewers.
 Reinforced Concrete by Ultimate Strength Design

• LRFD vs. ASD
• Failure Modes
• Flexure Equations
• Analysis of Rectangular Beams
• Design of Rectangular Beams
• Analysis of Non-rectangular Beams
• Design of Non-rectangular Beams
Allowable Stress – WSD (ASD)

\[f_{\text{actual}} \leq (F.S.)F_{\text{failure}} \]

- Actual loads used to determine stress
- Allowable stress reduced by factor of safety

Ultimate Strength – (LRFD)

- Loads increased depending on type load
 \(\gamma \) Factors: DL=1.4 LL=1.7 WL=1.3
 \(U=1.4DL+1.7LL \)
- Strength reduced depending on type force
 \(\phi \) Factors: flexure=0.9 shear=0.85 column=0.7

\[M_u \leq \phi M_n \]

Examples:

WSD

\[f_b \leq 0.45 f'_c \]
\[f_v \leq 0.1 \sqrt{f'_c} \]

Ultimate Strength

\[M_u \leq 0.9 M_n \]
\[V_u \leq 0.85 V_n \]
\[P_u \leq 0.70 P_n \]
Strength Measurement

- Compressive strength
 - 12”x6” cylinder
 - 28 day moist cure
 - Ultimate (failure) strength

- Tensile strength
 - 12”x6” cylinder
 - 28 day moist cure
 - Ultimate (failure) strength
 - Split cylinder test
 - Ca. 10% to 20% of $f'c$

Photos: Source: Xb-70 (wikipedia)
Failure Modes

\[\rho = \frac{A_s}{bd} \]

- No Reinforcing
 - Brittle failure
- Reinforcing < balance
 - Steel yields before concrete fails
 - Ductile failure
- Reinforcing = balance
 - Concrete fails just as steel yields
- Reinforcing > balance
 - Concrete fails before steel yields
 - Sudden failure

\[\rho_{\text{min}} = \frac{200}{f_y} \]

\[\rho_{\text{max}} = 0.75 \rho_{\text{bal}} \]

\[\rho_{\text{bal}} = \left(\frac{0.85 \beta_1 f'_c}{f_y} \right) \left(\frac{87000}{87000 + f_y} \right) \]

\[\rho > \rho_{\text{max}} \quad \text{SuddenDeath!!} \]

Source: Polyparadigm (wikipedia)
\(\beta_1 \) is a factor to account for the non-linear shape of the compression stress block.

\[
a = \beta_1 c
\]

<table>
<thead>
<tr>
<th>(f'c)</th>
<th>(\beta_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.85</td>
</tr>
<tr>
<td>1000</td>
<td>0.85</td>
</tr>
<tr>
<td>2000</td>
<td>0.85</td>
</tr>
<tr>
<td>3000</td>
<td>0.85</td>
</tr>
<tr>
<td>4000</td>
<td>0.85</td>
</tr>
<tr>
<td>5000</td>
<td>0.8</td>
</tr>
<tr>
<td>6000</td>
<td>0.75</td>
</tr>
<tr>
<td>7000</td>
<td>0.7</td>
</tr>
<tr>
<td>8000</td>
<td>0.65</td>
</tr>
<tr>
<td>9000</td>
<td>0.65</td>
</tr>
<tr>
<td>10000</td>
<td>0.65</td>
</tr>
</tbody>
</table>

\(f_c' \) (ksi) vs. \(\beta_1 \)

Image Sources: University of Michigan, Department of Architecture
Flexure Equations

actual stress block

```
<table>
<thead>
<tr>
<th>Actual Stress Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85f'_c</td>
</tr>
<tr>
<td>a = \beta_c c</td>
</tr>
<tr>
<td>C = 0.85f'_c ab</td>
</tr>
</tbody>
</table>
```

ACI equivalent stress block

```
<table>
<thead>
<tr>
<th>ACI Equivalent Stress Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85f'_c</td>
</tr>
<tr>
<td>T = A_s f_y</td>
</tr>
</tbody>
</table>
```

\[C = T \]
\[0.85f'_c ab = A_s f_y \]

Solving for \(a \),
\[a = \frac{A_s f_y}{0.85f'_c b} = \frac{\rho f_y d}{0.85f'_c} \]

\[\rho = \frac{A_s}{bd} \]

\[M_n = T \left(d - \frac{a}{2} \right) = A_s f_y \left(d - \frac{a}{2} \right) \]

\[M_u = \phi M_n \]

\[M_u = \phi M_n = \phi A_s f_y \left(d - \frac{a}{2} \right) \]

\[M_u = \phi A_s f_y d \left(1 - 0.59 \frac{\rho f_y}{f'_c} \right) \]
Balance Condition

From similar triangles at balance condition:

\[
\frac{c}{d} = \frac{0.003}{0.003 + \left(\frac{f_y}{E_s}\right)} = \frac{0.003}{0.003 + \left(\frac{f_y}{29 \times 10^6}\right)}
\]

\[
c = \frac{87,000}{87,000 + f_y} d
\]

Use equation for \(a\). Substitute into \(c = a/\beta_1\):

\[
a = \frac{\rho f_y d}{0.85 f'_{c'}}
\]

\[
c = \frac{a}{\beta_1} = \frac{\rho f_y d}{0.85 \beta_1 f'_{c'}}
\]

Equate expressions for \(c\):

\[
\frac{\rho f_y d}{0.85 \beta_1 f'_{c'}} = \frac{87,000}{87,000 + f_y}
\]

\[
\rho_b = \left(\frac{0.85 \beta_1 f'_{c'}}{f_y}\right) \left(\frac{87,000}{87,000 + f_y}\right)
\]

| Table A.8 Balanced Ratio of Reinforcement \(\rho_b\) for Rectangular Sections with Tension Reinforcement Only |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|
| \(f_y\) | \(f'_{c'}\) | 2,500 psi (17.2 MPa) | 3,000 psi (20.7 MPa) | 4,000 psi (27.6 MPa) | 5,000 psi (34.5 MPa) | 6,000 psi (41.4 MPa) |
| Grade 40 40,000 psi (275.8 MPa) | \(\rho_b\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.80\) | \(\beta_1 = 0.75\) |
| | 0.0309 | 0.0371 | 0.0495 | 0.0582 | 0.0655 |
| | 0.0232 | 0.0278 | 0.0371 | 0.0437 | 0.0492 |
| | 0.0155 | 0.0186 | 0.0247 | 0.0291 | 0.0328 |
| Grade 50 50,000 psi (344.8 MPa) | \(\rho_b\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.80\) | \(\beta_1 = 0.75\) |
| | 0.0229 | 0.0275 | 0.0367 | 0.0432 | 0.0486 |
| | 0.0172 | 0.0206 | 0.0275 | 0.0324 | 0.0365 |
| | 0.0115 | 0.0138 | 0.0184 | 0.0216 | 0.0243 |
| Grade 60 60,000 psi (413.7 MPa) | \(\rho_b\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.80\) | \(\beta_1 = 0.75\) |
| | 0.0178 | 0.0214 | 0.0285 | 0.0335 | 0.0377 |
| | 0.0134 | 0.0161 | 0.0214 | 0.0252 | 0.0283 |
| | 0.0089 | 0.0107 | 0.0143 | 0.0168 | 0.0189 |
| Grade 75 75,000 psi (517.1 MPa) | \(\rho_b\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.85\) | \(\beta_1 = 0.80\) | \(\beta_1 = 0.75\) |
| | 0.0129 | 0.0155 | 0.0207 | 0.0243 | 0.0274 |
| | 0.0097 | 0.0116 | 0.0155 | 0.0182 | 0.0205 |
| | 0.0065 | 0.0078 | 0.0104 | 0.0122 | 0.0137 |
Rectangular Beam Analysis

Data:
- Section dimensions – b, h, d, (span)
- Steel area - As
- Material properties – f’c, fy

Required:
- Strength (of beam) Moment - Mn
- Required (by load) Moment – Mu
- Load capacity

1. Find \(\rho = \frac{A_s}{bd} \)
 (check \(\rho_{\text{min}} < \rho < \rho_{\text{max}} \))
2. Find a
3. Find Mn
4. Calculate Mu \(\leq \phi M_n \)
5. Determine max. loading (or span)

\[
a = \frac{A_s f_y}{0.85 f'_c b} \quad \text{or} \quad \frac{\rho f_y d}{0.85 f'_c}
\]

\[
M_n = A_s f_y \left(d - \frac{a}{2} \right)
\]

\[
M_u \leq \phi M_n
\]

\[
M_u = \frac{(1.4w_{DL} + 1.7w_{LL})l^2}{8}
\]

\[
1.7w_{LL} = \frac{M_u}{l^2} - 1.4w_{DL}
\]
Rectangular Beam Analysis

Data:
- dimensions – b, h, d, (span)
- Steel area - As
- Material properties – f'c, fy

Required:
- Required Moment – Mu

1. Find \(\rho = \frac{As}{bd} \)
 (check \(\rho_{\text{min}} < \rho < \rho_{\text{max}} \))
Rectangular Beam Analysis cont.

2. Find a

\[a = \frac{A_s f_y}{0.85 f_c b} = \frac{(2.37)(60000)}{0.85(4000)(12)} = 3.49 \]

3. Find \(M_n \)

\[M_n = A_s f_y (d - \frac{a}{2}) \]

4. Find \(M_u \)

\[M_u = \phi A_s f_y (d - \frac{a}{2}) \]

\[M_u = 0.9(2.37)(60000)(17.5 - \frac{3.49}{2}) \]

\[M_u = 2017000 \text{ in-lb} \]

\[M_u = 168 \text{ ft-k} \]
Slab Analysis

Data:
- Section dimensions – h, span
 take b = 12”
- Steel area - As
- Material properties – f’c, fy

Required:
- Required Moment – Mu
- Maximum LL in PSF

\[f_y = 60 \text{ ksi (GR 60)} \]
\[f'c = 3000 \text{ PSI} \]
\[c' = 150 \text{ PCF} \]
Slab Analysis

1. Find a
2. Find force T
3. Find moment arm z
4. Find strength moment Mn

\[a = \frac{A_s f_y}{0.85 f_c' b} = \frac{0.5267 (60)}{0.85 (3) (12)} = 1.033'' \]

\[d = \frac{0.85 f_c'}{0.85 f_c' a b} \]

\[z = d - \frac{a}{2} = 9.75 - \frac{1.033}{2} = 9.23'' \]

\[T = A_s f_y = 0.5267 (60) = 31.6 \text{ kN} \]

\[M_n = Tz = 31.6 (9.23) = 291.8 \text{ kNm} \]

\[= 24317'\text{ft-lb} \]
Slab Analysis

5. Find slab DL
6. Find Mu
7. Determine max. loading

\[w_{DL} = h_c \frac{\text{AREA}^2}{144} = 150 \frac{11(12)}{144} = 137.5 \text{ PSF} \]

\[w_{UPL} = 1.4 \cdot (w_{DL}) = 1.4(137.5) = 192.5 \]

\[w_{ULL} = 1.7 \cdot (w_{UL}) \]

\[M_u = \frac{(w_{UPL} + w_{ULL}) L^2}{8} = 4 \cdot M_n \]

\[0.9(24317) = \frac{[192.5 + 1.7(243.17)] 18^2}{8} \]

\[w_{LL} = 204.6 \text{ PSF} \]
Rectangular Beam Design

Data:
- Load and Span
- Material properties – f’c, fy
- All section dimensions – b and h

Required:
- Steel area - As

1. Calculate the dead load and find Mu
2. \[d = h – \text{cover} – \text{stirrup} – \frac{d_s}{2}\] (one layer)
3. Estimate moment arm jd (or z) \(\approx 0.9 \, d\) and find As
4. Use As to find a
5. Use a to find As (repeat…)
6. Choose bars for As and check \(\rho\) max & min
7. Check Mu<\(\phi\) Mn (final condition)

8. Design shear reinforcement (stirrups)
9. Check deflection, crack control, steel development length.
Rectangular Slab Design

Data:
- Load and Span
- Material properties – f'_{c}, f_{y}

Required:
- All section dimensions – h
- Steel area - A_{s}

1. Calculate the dead load and find M_u
2. Estimate moment arm j_d (or z) $\cong 0.9 \, d$ and find A_{s}
3. Use A_{s} to find a
4. Use a to find A_{s} (repeat...)

DATA:
- ONE-WAY FLOOR SLAB - SPAN = 18 FEET
 - $f_{y} = 60,000 \text{ psi}$
 - $f_{c}' = 3,000 \text{ psi}$
 - $20k = 150 \text{ kft}$
 - $\rho = \frac{1}{2} \rho_{max} = 0.008$

REQUIRED: h and A_{s}

ASSUME: h
- $h = \frac{f_{c}'}{20} = 10.8$ use 11”

CALCULATE LOADS
- $DL = 137.5 \text{ kips}$
- $LL = 200.0 \text{ kips}$
- $W = 1.4(137) + 1.7(200) = 540$

CALCULATE M_u
- $M_u = \frac{wL^{2}}{8} = 217 \text{ k-ft}$

INITIAL A_{s} TRIAL
- $A_{s} = \frac{M_{u}}{f_{y}(d - \frac{a}{2})}$
 - $A_{s} = \frac{217 \times 12}{.9(60)(9)} = 19.56$
- $A_{s} = 0.9d = 0.9(11 - .75 - .25) = 9”$

INITIAL a
- $a = \frac{A_{s}f_{y}}{.85f_{c}'} = \frac{9.536(60)}{.85(3)(12)} = 1.05”$
Rectangular Slab Design

3. Use As to find a
4. Use a to find As (repeat…)
5. Choose bars for As and check As min & As max
6. Check $M_u < \phi M_n$ (final condition)

7. Check deflection, crack control, steel development length.

\[
\begin{align*}
A_s &= \frac{M_u}{fy(d-\frac{a}{2})} = \frac{21.7 \times 12}{60(0.10 - \frac{1.5}{2})} = 1.508 \\
\phi &= \frac{508(60)}{0.85(3)(12)} = 0.998 \\
A_s &= \frac{21.7 \times 12}{0.9(60)(10 - \frac{1.5}{2})} = 1.507 \text{ in } \approx 1.508 \\
\end{align*}
\]

BAR SIZE & SPACING

- Using #4 bar
 \[
 \frac{0.507}{12''} : \frac{0.20}{5''} \\
 s = 4.7'' \\
 \text{ Use } \#4 @ 4'' o.c.
 \]
- Alternate - for max. s of 18''
 \[
 \frac{0.507}{12''} : \frac{0.20}{18''} \\
 s = \frac{0.761 \times 8}{0.79} @ 18'' o.c.
 \]

$A_{S_{\min}} = 0.018 bh = 1.24 < 1.5 \checkmark$
Quiz 9

Can \(f = \frac{Mc}{I} \) be used in Ult. Strength concrete beam calculations? (yes or no)

HINT:

WSD stress

Ult. Strength stress

Source: University of Michigan, Department of Architecture
Rectangular Beam Design

Data:
- Load and Span
- Some section dimensions – b or d
- Material properties – f’c, fy

Required:
- Steel area - As
- Beam dimensions – b or d

1. Choose ρ (e.g. 0.5 ρ_{max} or 0.18f’c/fy)
2. Estimate the dead load and find M_u
3. Calculate bd^2
4. Choose b and solve for d
 - b is based on form size – try several to find best
5. Estimate h and correct weight and M_u
6. Find $As = \rho bd$
7. Choose bars for As and determine spacing and cover. Recheck h and weight.
8. Design shear reinforcement (stirrups)
9. Check deflection, crack control, steel development length.

\[
M_u = \frac{(1.4w_{DL} + 1.7w_{LL})l^2}{8}
\]

\[
bd^2 = \frac{M_u}{\phi \rho f_y \left(1 - 0.59 \rho \left(\frac{f_y}{f_c}\right)\right)}
\]

\[
A_s = \rho bd
\]
Rectangular Beam Design

Data:
- Load and Span
- Material properties – f'c, fy

Required:
- Steel area - As
- Beam dimensions – b and d

1. Estimate the dead load and find Mu
2. Choose ρ (e.g. 0.5 ρ_{max} or 0.18$f'c/fy$)

\[
\text{Factored LL} = P_e = 1.7(L) = 1.7(20) = 34 \text{ k}
\]

\[
\text{Factored DL} = W_o = 1.4(\text{Applied load + beam weight estimate}) = 1.4(2.6) = 3.64 \text{ k/ft}
\]

\[
M_u = P_e d + \frac{W_o \rho^2}{8} = 34(10) + \frac{3.64 \times 30^2}{8} = 340 + 409.5 = 749.5 \text{ k-ft}
\]

\[
M_u = 8994000 \text{ in.-lb}
\]

\[
\rho = \frac{0.18f'c}{fy} = 0.009
\]
Rectangular Beam Design cont

3. Calculate \(bd^2 \)

\[
bd^2 = \frac{Mu}{f_y (1-0.59\rho (f_y/f_c))}
\]

\[
bd^2 = \frac{8994}{(0.9)(0.009)(60)(1-0.59(0.009)(60/3))}
\]

\[
bd^2 = 20705 \text{ in}^3
\]

4. Choose \(b \) and solve for \(d \)

\(b \) is based on form size. Try several to find best

Possibilities:

- \(14" \times 38.5" \)
- \(16" \times 35.97" \)
- \(18" \times 33.9" \)
5. Estimate h and correct weight and Mu

6. Find $A_s = \rho bd$

7. Choose bars for A_s and determine spacing and cover. Recheck h and weight.

8. Design shear reinforcement (stirrups)

9. Check deflection, crack control, steel development length.

Table A.4 Areas of Groups of Standard Bars (in.²)

<table>
<thead>
<tr>
<th>Bar No.</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.39</td>
<td>0.58</td>
<td>0.78</td>
<td>0.98</td>
<td>1.18</td>
<td>1.37</td>
<td>1.57</td>
<td>1.77</td>
<td>1.96</td>
<td>2.16</td>
<td>2.36</td>
<td>2.56</td>
<td>2.75</td>
</tr>
<tr>
<td>5</td>
<td>0.61</td>
<td>0.91</td>
<td>1.23</td>
<td>1.53</td>
<td>1.84</td>
<td>2.15</td>
<td>2.45</td>
<td>2.76</td>
<td>3.07</td>
<td>3.37</td>
<td>3.68</td>
<td>3.99</td>
<td>4.30</td>
</tr>
<tr>
<td>6</td>
<td>0.88</td>
<td>1.32</td>
<td>1.77</td>
<td>2.21</td>
<td>2.65</td>
<td>3.09</td>
<td>3.53</td>
<td>3.98</td>
<td>4.42</td>
<td>4.86</td>
<td>5.30</td>
<td>5.74</td>
<td>6.19</td>
</tr>
<tr>
<td>7</td>
<td>1.20</td>
<td>1.80</td>
<td>2.41</td>
<td>3.01</td>
<td>3.61</td>
<td>4.21</td>
<td>4.81</td>
<td>5.41</td>
<td>6.01</td>
<td>6.61</td>
<td>7.22</td>
<td>7.82</td>
<td>8.42</td>
</tr>
<tr>
<td>8</td>
<td>1.57</td>
<td>2.35</td>
<td>3.14</td>
<td>3.93</td>
<td>4.71</td>
<td>5.50</td>
<td>6.28</td>
<td>7.07</td>
<td>7.85</td>
<td>8.64</td>
<td>9.43</td>
<td>10.21</td>
<td>11.00</td>
</tr>
<tr>
<td>9</td>
<td>2.00</td>
<td>3.00</td>
<td>4.00</td>
<td>5.00</td>
<td>6.00</td>
<td>7.00</td>
<td>8.00</td>
<td>9.00</td>
<td>10.00</td>
<td>11.00</td>
<td>12.00</td>
<td>13.00</td>
<td>14.00</td>
</tr>
<tr>
<td>10</td>
<td>2.53</td>
<td>3.79</td>
<td>5.06</td>
<td>6.33</td>
<td>7.59</td>
<td>8.86</td>
<td>10.12</td>
<td>11.39</td>
<td>12.66</td>
<td>13.92</td>
<td>15.19</td>
<td>16.45</td>
<td>17.72</td>
</tr>
<tr>
<td>14</td>
<td>4.50</td>
<td>6.75</td>
<td>9.00</td>
<td>11.25</td>
<td>13.50</td>
<td>15.75</td>
<td>18.00</td>
<td>20.25</td>
<td>22.50</td>
<td>24.75</td>
<td>27.00</td>
<td>29.25</td>
<td>31.50</td>
</tr>
<tr>
<td>18</td>
<td>8.00</td>
<td>12.00</td>
<td>16.00</td>
<td>20.00</td>
<td>24.00</td>
<td>28.00</td>
<td>32.00</td>
<td>36.00</td>
<td>40.00</td>
<td>44.00</td>
<td>48.00</td>
<td>52.00</td>
<td>56.00</td>
</tr>
</tbody>
</table>

University of Michigan, TCAUP
Non-Rectangular Beam Analysis

Data:
- Section dimensions – b, h, d, (span)
- Steel area - As
- Material properties – f’c, fy

Required:
- Required Moment – Mu (or load, or span)

1. Draw and label diagrams for section and stress
 1. Determining b effective (for T-beams)
 2. Locate T and C (or C₁ and C₂)
2. Set T=C and write force equations (P=FA)
 1. T = As fy
 2. C = 0.85 f’c Ac
3. Determine the Ac required for C
4. Working from the top down, add up area to make Ac
5. Find moment arms (z) for each block of area
6. Find Mn = Cz
7. Find Mu = φ Mn φ =0.90
8. Check As min < As < As max

Source: University of Michigan, Department of Architecture
Analysis Example

Given:
\(f'c = 3000 \text{ psi} \)
\(f_y = 60 \text{ ksi} \)
\(A_s = 6 \text{ in}^2 \)

Req’d:
Capacity, \(\mu_u \)

1. Find \(T \)
2. Find \(C \) in terms of \(A_c \)
3. Set \(T = C \) and solve for \(A_c \)

\[
T = A_s f_y = 6 \text{ in}^2 (60000 \text{ psi}) = 360000 \text{ k}\text{N}
\]

\[
C = 0.85 f'c A_c = 0.85 (3000 \text{ psi}) A_c \text{ in}^2
\]

\[
C = (2550 A_c)^{1/\kappa} = (2.55 A_c)^{1/\kappa}
\]

\[
T = C
\]

\[
360000 \kappa = 2.55 A_c \kappa
\]

\[
A_c = 142 \text{ in}^2
\]

Source: University of Michigan, Department of Architecture
Example

4. Draw section and determine areas to make A_c

5. Solve C for each area in compression.

\[
A_c = 142 \text{ in}^2 = A_{c1} + A_{c2} + A_{c3}
\]
\[
142 = 48 + 30 + A_{c3}
\]
\[
A_{c3} = 44 \text{ in}^2
\]
\[
C_1 = 48(2.55) = 122.4 \text{ k}
\]
\[
C_2 = 30(2.55) = 76.5 \text{ k}
\]
\[
C_3 = 44(2.55) = 113.2 \text{ k}
\]
Example

6. Determine moment arms to areas, z.

7. Calculate M_n by summing the C_z moments.

8. Find $M_u = \frac{M_n}{\text{area}}$.
Other Useful Tables:

Table A.1 Values of Modulus of Elasticity for Normal-Weight Concrete

<table>
<thead>
<tr>
<th>Customary Units</th>
<th>SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'_c (psi)</td>
<td>E'_c (psi)</td>
</tr>
<tr>
<td>3,000</td>
<td>3,140,000</td>
</tr>
<tr>
<td>3,500</td>
<td>3,390,000</td>
</tr>
<tr>
<td>4,000</td>
<td>3,620,000</td>
</tr>
<tr>
<td>5,000</td>
<td>3,850,000</td>
</tr>
<tr>
<td>5,000</td>
<td>4,050,000</td>
</tr>
</tbody>
</table>

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

<table>
<thead>
<tr>
<th>Bar No.</th>
<th>Customary Units</th>
<th>SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diameter (in.)</td>
<td>Cross-sectional Area (in.2)</td>
</tr>
<tr>
<td>3</td>
<td>0.375</td>
<td>0.11</td>
</tr>
<tr>
<td>4</td>
<td>0.500</td>
<td>0.20</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
<td>0.31</td>
</tr>
<tr>
<td>6</td>
<td>0.750</td>
<td>0.44</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
<td>0.60</td>
</tr>
<tr>
<td>8</td>
<td>1.000</td>
<td>0.79</td>
</tr>
<tr>
<td>9</td>
<td>1.128</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>1.270</td>
<td>1.27</td>
</tr>
<tr>
<td>11</td>
<td>1.410</td>
<td>1.56</td>
</tr>
<tr>
<td>14</td>
<td>1.693</td>
<td>2.25</td>
</tr>
<tr>
<td>18</td>
<td>2.257</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Table A.3 Areas of Groups of Standard Bars (in.2)

<table>
<thead>
<tr>
<th>Number of Bars</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

University of Michigan, TCAUP Structures II Slide 27/26