ARCH 324 - Structures 2, Winter 2009

von Buelow, Peter

<http://hdl.handle.net/2027.42/64938>
http://hdl.handle.net/2027.42/64938

deepblue.lib.umich.edu
Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution 3.0 License. http://creativecommons.org/licenses/by/3.0/

© 2009, Peter Von Buelow

You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an endorsement by the University of Michigan. For more information about how to cite these materials visit https://open.umich.edu/education/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images that may be disturbing to some viewers.
Renforced Concrete by Ultimate Strength Design

- LRFD vs. ASD
- Failure Modes
- Flexure Equations
- Analysis of Rectangular Beams
- Design of Rectangular Beams
- Analysis of Non-rectangular Beams
- Design of Non-rectangular Beams
Allowable Stress – WSD (ASD)

\[f_{actual} \leq (F.S.) F_{failure} \]

- Actual loads used to determine stress
- Allowable stress reduced by factor of safety

Ultimate Strength – (LRFD)

- Loads increased depending on type load
 - \(\gamma \) Factors: DL=1.4 LL=1.7 WL=1.3
 - \(U=1.4DL+1.7LL \)
- Strength reduced depending on type force
 - \(\phi \) Factors: flexure=0.9 shear=0.85 column=0.7

Examples:

WSD

\[f_b \leq 0.45 f'_c \]

\[f_v \leq 0.1\sqrt{f'_c} \]

Ultimate Strength

\[M_u \leq 0.9 M_n \]

\[V_u \leq 0.85 V_n \]

\[P_u \leq 0.70 P_n \]
Strength Measurement

- Compressive strength
 - 12”x6” cylinder
 - 28 day moist cure
 - Ultimate (failure) strength

- Tensile strength
 - 12”x6” cylinder
 - 28 day moist cure
 - Ultimate (failure) strength
 - Split cylinder test
 - Ca. 10% to 20% of $f'c$

Photos: Source: Xb-70 (wikipedia)
Failure Modes

\[\rho = \frac{A_s}{bd} \]

- **No Reinforcing**
 - Brittle failure

- **Reinforcing < balance**
 - Steel yields before concrete fails
 - Ductile failure

- **Reinforcing = balance**
 - Concrete fails just as steel yields

- **Reinforcing > balance**
 - Concrete fails before steel yields
 - Sudden failure

\[\rho_{\text{min}} = \frac{200}{f_y} \]

\[\rho_{\text{max}} = 0.75 \rho_{\text{bal}} \]

\[\rho_{\text{bal}} = \left(\frac{0.85 \beta_1 f'_c}{f_y} \right) \left(\frac{87000}{87000 + f_y} \right) \]

\[\rho > \rho_{\text{max}} \quad \text{SuddenDeath!!} \]

Source: Polyparadigm (wikipedia)
\(\beta_1 \)

\(\beta_1 \) is a factor to account for the non-linear shape of the compression stress block.

\[a = \beta_1 c \]

<table>
<thead>
<tr>
<th>(f'c)</th>
<th>(\beta_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.85</td>
</tr>
<tr>
<td>1000</td>
<td>0.85</td>
</tr>
<tr>
<td>2000</td>
<td>0.85</td>
</tr>
<tr>
<td>3000</td>
<td>0.85</td>
</tr>
<tr>
<td>4000</td>
<td>0.85</td>
</tr>
<tr>
<td>5000</td>
<td>0.8</td>
</tr>
<tr>
<td>6000</td>
<td>0.75</td>
</tr>
<tr>
<td>7000</td>
<td>0.7</td>
</tr>
<tr>
<td>8000</td>
<td>0.65</td>
</tr>
<tr>
<td>9000</td>
<td>0.65</td>
</tr>
<tr>
<td>10000</td>
<td>0.65</td>
</tr>
</tbody>
</table>

\(\beta_1 \) vs. \(f'c \) (ksi)

Image Sources: University of Michigan, Department of Architecture
Flexure Equations

actual stress block

\[
\begin{align*}
C &= T \\
0.85f_c'ab &= A_sf_y \\
\text{solving for } a, \\
\rho &= \frac{A_s}{bd}
\end{align*}
\]

ACI equivalent stress block

\[
\begin{align*}
C &= 0.85f_c'ab \\
\alpha = \beta_c \\
M_n &= T\left(d - \frac{a}{2}\right) = A_sf_y\left(d - \frac{a}{2}\right) \\
M_u &= \phi M_n \\
M_u &= \phi A_s f_y \left(d - \frac{a}{2}\right) \\
M_u &= \phi A_s f_y \left(1 - 0.59\frac{\rho f_y}{f_c'}\right)
\end{align*}
\]

Image Sources: University of Michigan, Department of Architecture
Balance Condition

From similar triangles at balance condition:

\[
\frac{c}{d} = \frac{0.003}{0.003 + (f_y/E_s)} = \frac{0.003}{0.003 + (f_y/29 \times 10^6)}
\]

\[
c = \frac{87,000}{87,000 + f_y d}
\]

Use equation for a. Substitute into \(c = a/\beta_1 \)

\[
a = \frac{\rho f_y d}{0.85 f'_c'}
\]

\[
c = \frac{a}{\beta_1} = \frac{\rho f_y d}{0.85\beta_1 f'_c'}
\]

Equate expressions for c:

\[
\frac{\rho f_y d}{0.85\beta_1 f'_c'} = \frac{87,000}{87,000 + f_y d}
\]

\[
\rho_b = \left(\frac{0.85\beta_1 f'_c'}{f_y}\right) \left(\frac{87,000}{87,000 + f_y}\right)
\]

Table A.8 Balanced Ratio of Reinforcement \(\rho_b \) for Rectangular Sections with Tension Reinforcement Only

<table>
<thead>
<tr>
<th>(f'_c')</th>
<th>(f_y)</th>
<th>2,500 psi (17.2 MPa)</th>
<th>3,000 psi (20.7 MPa)</th>
<th>4,000 psi (27.6 MPa)</th>
<th>5,000 psi (34.5 MPa)</th>
<th>6,000 psi (41.4 MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1 = 0.85)</td>
<td>(\beta_1 = 0.85)</td>
<td>(\beta_1 = 0.85)</td>
<td>(\beta_1 = 0.80)</td>
<td>(\beta_1 = 0.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 40 40,000 psi (275.8 MPa)</td>
<td>0.75(\rho_b)</td>
<td>0.0309</td>
<td>0.0371</td>
<td>0.0495</td>
<td>0.0582</td>
<td>0.0655</td>
</tr>
<tr>
<td>Grade 50 50,000 psi (344.8 MPa)</td>
<td>0.75(\rho_b)</td>
<td>0.0229</td>
<td>0.0275</td>
<td>0.0367</td>
<td>0.0432</td>
<td>0.0486</td>
</tr>
<tr>
<td>Grade 60 60,000 psi (413.7 MPa)</td>
<td>0.75(\rho_b)</td>
<td>0.0115</td>
<td>0.0184</td>
<td>0.0216</td>
<td>0.0243</td>
<td>0.0243</td>
</tr>
<tr>
<td>Grade 75 75,000 psi (517.1 MPa)</td>
<td>0.75(\rho_b)</td>
<td>0.0089</td>
<td>0.0143</td>
<td>0.0168</td>
<td>0.0189</td>
<td>0.0189</td>
</tr>
</tbody>
</table>

Image Sources: University of Michigan, Department of Architecture
Rectangular Beam Analysis

Data:
- Section dimensions – b, h, d, (span)
- Steel area - As
- Material properties – f’c, fy

Required:
- Strength (of beam) Moment - Mn
- Required (by load) Moment – Mu
- Load capacity

1. Find $\rho = \frac{As}{bd}$
 (check $\rho_{min} < \rho < \rho_{max}$)
2. Find a
3. Find M_n
4. Calculate $Mu \leq \phi M_n$
5. Determine max. loading (or span)

Image Sources: University of Michigan, Department of Architecture
Rectangular Beam Analysis

Data:
• dimensions – b, h, d, (span)
• Steel area - As
• Material properties – f’c, fy

Required:
• Required Moment – Mu

1. Find \(\rho = \frac{A_s}{bd} \)
 (check \(\rho_{\text{min}} < \rho < \rho_{\text{max}} \))
Rectangular Beam Analysis cont.

2. Find a

\[a = \frac{A_s f_y}{0.85 f_c b} = \frac{(2.37)(60000)}{0.85(4000)(12)} = 3.49 \]

3. Find M_n

\[M_n = A_s f_y \left(d - \frac{a}{2} \right) \]

4. Find M_u

\[M_u = 0.9(2.37)(60000)(17.5 - \frac{3.49}{2}) \]

\[M_u = 2017000 \text{ in-lb} \]

\[M_u = 168 \text{ ft-k} \]
Slab Analysis

Data:
- Section dimensions – h, span take b = 12"
- Steel area - As
- Material properties – f’c, fy

Required:
- Required Moment – Mu
- Maximum LL in PSF
Slab Analysis

1. Find \(a \)
2. Find force \(T \)
3. Find moment arm \(z \)
4. Find strength moment \(M_n \)

\[
d = \frac{A_s f_y}{0.85 f'_c b} = \frac{0.5267(60)}{0.85(3)(12)} = 1.033''
\]

\[
T = A_s f_y = 0.5267(60) = 31.6 \text{ k}
\]

\[
z = d - \frac{a}{2} = 9.75 - \frac{1.033}{2} = 9.23''
\]

\[
M_n = Tz = 31.6(9.23) = 291.8 \text{ k''}
\]

\[
= 24317''\]
Slab Analysis

5. Find slab DL

6. Find Mu

7. Determine max. loading

\[W_{DL} = \gamma_c \frac{A}{144} = 150 \frac{11(12)}{144} = 137.5 \text{ PSF} \]

\[W_{UPL} = 1.4(W_{DL}) = 1.4(137.5) = 192.5 \]

\[W_{ULL} = 1.7(W_{UL}) \]

\[M_u = \left(\frac{W_{UPL} + W_{ULL}}{8} \right) L^2 = \frac{4}{8} M_n \]

\[0.9(243.17) = \frac{[192.5 + 1.7(W_{UL})]}{8} L^2 \]

\[W_{UL} = 204.6 \text{ PSF} \]
Rectangular Beam Design

Data:
- Load and Span
- Material properties – f’c, fy
- All section dimensions – b and h

Required:
- Steel area - As

1. Calculate the dead load and find Mu
2. \(d = h - \text{cover} - \text{stirrup} - \frac{d}{b}/2 \) (one layer)
3. Estimate moment arm jd (or z) \(\approx 0.9 \, d \) and find As
4. Use As to find a
5. Use a to find As (repeat…)
6. Choose bars for As and check \(\rho \) max & min
7. Check Mu<\(\phi \) Mn (final condition)

8. Design shear reinforcement (stirrups)
9. Check deflection, crack control, steel development length.

\[
M_u = \frac{(1.4w_{DL} + 1.7w_{LL})l^2}{8}
\]

\[
A_s = \frac{M_u}{\phi \, f_y \left(d - \frac{a}{2}\right)}
\]

\[
a = \frac{A_s f_y}{0.85 f'_c b}
\]

\[
M_n = A_s f_y \left(d - \frac{a}{2}\right)
\]
Rectangular Slab Design

Data:
- Load and Span
- Material properties – f’c, fy

Required:
- All section dimensions – h
- Steel area - As

1. Calculate the dead load and find Mu
2. Estimate moment arm jd (or z) \(\equiv 0.9 \, d \) and find As
3. Use As to find a
4. Use a to find As (repeat…)

DATA:
- One-way floor slab – Span = 18 Feet
- \(f_y = 60,000 \) psi
- \(f_c = 3000 \) psi
- \(\gamma_{con} = 150 \) ksf
- \(\rho = 0.5 \cdot \rho_{max} = 0.008 \)
- LL = 200 psf
- DL = Slab weight

REQUIRED: h and As

ASSUME h
\[h = \frac{f_{20}}{f} = 10.8 \text{ in. use 11"} \]

CALCULATE LOADS
\[DL = 137.5 \text{ ksf} \]
\[LL = 200 \text{ ksf} \]
\[W = 1.4(137) + 1.7(200) = 540 \text{ ksf} \]

CALCULATE Mu
\[Mu = \frac{W \cdot f_c^2}{8} = 21.7 \text{ ksf} \]

INITIAL AS TRIAL
\[As = \frac{Mu}{fy(d-\frac{a}{2})} \]
\[= \frac{21.7 \times 12}{0.9(60)(9)} = 0.536 \]

INITIAL a
\[a = \frac{As \cdot fy}{0.85 f_c b} = \frac{0.536(60)}{0.85(3)(12)} = 1.05" \]
3. Use A_s to find a
4. Use a to find A_s (repeat…)
5. Choose bars for A_s and check A_s min & A_s max
6. Check $M_u < \phi M_n$ (final condition)

7. Check deflection, crack control, steel development length.
Quiz 9

Can \(f = \frac{Mc}{I} \) be used in Ultimate Strength concrete beam calculations? (yes or no)

HINT:

WSD stress

Ultimate Strength stress

Source: University of Michigan, Department of Architecture
Rectangular Beam Design

Data:
- Load and Span
- Some section dimensions – b or d
- Material properties – f'_c, f_y

Required:
- Steel area - A_s
- Beam dimensions – b or d

1. Choose ρ (e.g. 0.5 ρ_{max} or 0.18f'_c/f_y)
2. Estimate the dead load and find M_u
3. Calculate bd^2
4. Choose b and solve for d
 - b is based on form size – try several to find best
5. Estimate h and correct weight and M_u
6. Find $A_s = \rho bd$
7. Choose bars for A_s and determine spacing and cover. Recheck h and weight.
8. Design shear reinforcement (stirrups)
9. Check deflection, crack control, steel development length.

$$M_u = \frac{(1.4w_{DL} + 1.7w_{LL})l^2}{8}$$

$$bd^2 = \frac{M_u}{\phi \rho f_y (1 - 0.59 \rho \left(f_y/ f'_c \right))}$$

$$A_s = \rho bd$$
Rectangular Beam Design

Data:
- Load and Span
- Material properties – f'c, fy

Required:
- Steel area - As
- Beam dimensions – b and d

1. Estimate the dead load and find Mu
2. Choose ρ (e.g. 0.5 ρ max or 0.18f’c/fy)

Factored LL = $P_e = 1.7(L) = 1.7(20) = 34 K$

Factored DL = $W_0 = 1.4(\text{applied load + beam weight estimate}) = 1.4(2 + 6) = 3.64 Kf'$

$$M_u = P_e d + \frac{w_0 d^2}{8} = 34(10) + \frac{3.64 \times 30^2}{8} = 340 + 409.5 = 749.5 \text{ k-ft}$$

$$\rho = \frac{0.18 f_c}{f_y} = .009$$
Rectangular Beam Design cont

3. Calculate bd^2

\[bd^2 = \frac{Mu}{fp f_y (1 - 0.59 \rho (f_y/f_c))} \]

\[bd^2 = \frac{8,994}{(0.9)(0.009)(60)(1 - 0.59(0.009)(60/3))} \]

\[bd^2 = 20.705 \text{ in}^3 \]

4. Choose b and solve for d

b is based on form size. Try several to find best

\[\begin{align*}
\text{Possibilities} & \quad b \quad \times \quad d \\
14'' & \quad 38.5'' \\
16'' & \quad 35.97'' \\
18'' & \quad 33.9''
\end{align*} \]
Rectangular Beam Design

5. Estimate h and correct weight and Mu
6. Find \(A_s = \rho \cdot b \cdot d \)
7. Choose bars for \(A_s \) and determine spacing and cover. Recheck h and weight.
8. Design shear reinforcement (stirrups)
9. Check deflection, crack control, steel development length.

\[
\rho = 0.009 = \frac{A_s}{b \cdot d}, \quad A_s = 0.009 \cdot b \cdot d = 0.009 \cdot 18 \cdot 3a
\]

\(A_s = 5.5 \text{ in}^2 \)

Table A-4

Use 7 x \#8 wires

Spaced with 1" between each bar

<table>
<thead>
<tr>
<th>Bar No.</th>
<th>Area (in.²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>0.58</td>
</tr>
<tr>
<td>4</td>
<td>0.78</td>
</tr>
<tr>
<td>5</td>
<td>0.98</td>
</tr>
<tr>
<td>6</td>
<td>1.18</td>
</tr>
<tr>
<td>7</td>
<td>1.37</td>
</tr>
<tr>
<td>8</td>
<td>1.57</td>
</tr>
<tr>
<td>9</td>
<td>1.77</td>
</tr>
<tr>
<td>10</td>
<td>1.96</td>
</tr>
<tr>
<td>11</td>
<td>2.16</td>
</tr>
<tr>
<td>12</td>
<td>2.36</td>
</tr>
<tr>
<td>13</td>
<td>2.55</td>
</tr>
<tr>
<td>14</td>
<td>2.75</td>
</tr>
</tbody>
</table>

Source: Jack C McCormac, 1978 Design of Reinforced Concrete, Harper and Row, 1978
Non-Rectangular Beam Analysis

Data:
• Section dimensions – b, h, d, (span)
• Steel area - As
• Material properties – f’c, fy

Required:
• Required Moment – Mu (or load, or span)

1. Draw and label diagrams for section and stress
 1. Determine b effective (for T-beams)
 2. Locate T and C (or C₁ and C₂)
2. Set T=C and write force equations (P=FA)
 1. T = As fy
 2. C = 0.85 f’c Ac
3. Determine the Ac required for C
4. Working from the top down, add up area to make Ac
5. Find moment arms (z) for each block of area
6. Find Mn = \[Mn = \sum Cz\]
7. Find Mu = \[\phi Mn\] \(\phi = 0.90\)
8. Check As min < As < As max

Source: University of Michigan, Department of Architecture
Analysis Example

Given: \(f'c = 3000 \text{ psi} \)
 \(f_y = 60 \text{ ksi} \)
 \(A_s = 6 \text{ in}^2 \)

Req’d: Capacity, \(\mu \)

1. Find \(T \)
2. Find \(C \) in terms of \(A_c \)
3. Set \(T = C \) and solve for \(A_c \)

\[
T = A_s f_y = 6 \text{ in}^2 \times (60000 \text{ psi})
T = 360000 k = 360 k
\]

\[
C = 0.85 f'c A_c = 0.85 (3000 \text{ psi}) A_c \text{ in}^2
C = (2550 A_c)^k = (2.55 A_c)^k
\]

\[
T = C
360 k = 2.55 A_c k
A_c = 142 \text{ in}^2
\]
Example

4. Draw section and determine areas to make A_c

5. Solve C for each area in compression.

\[
A_c = 142 = A_{c_1} + A_{c_2} + A_{c_3}
\]

\[
142 = 48 + 30 + A_{c_3}
\]

\[
A_{c_3} = 44 \text{ in}^2
\]

\[
C_1 = 48(2.55) = 122.4 \text{ k}
\]

\[
C_2 = 30(2.55) = 76.5 \text{ k}
\]

\[
C_3 = 44(2.55) = 113.2 \text{ k}
\]
Example

6. Determine moment arms to areas, z.

7. Calculate M_n by summing the Cz moments.

8. Find $M_u = \Box M_n$

\[
\begin{align*}
Z_1 &= 22 - 1.5 = 20.5'' \\
Z_2 &= 22 - (3+2.5) = 16.5'' \\
Z_3 &= 22 - (8+2) = 12.0'' \\
M_n &= \Sigma C_z \\
M_n &= (C_1Z_1) + (C_2Z_2) + (C_3Z_3) \\
M_n &= 2509 + 1262 + 1959 \\
M_n &= 5730 \\
M_u &= 0.9(5730) = 5157 \text{ k-ft}
\end{align*}
\]
Other Useful Tables:

Table A.1 Values of Modulus of Elasticity for Normal-Weight Concrete

<table>
<thead>
<tr>
<th>Customary Units</th>
<th>SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'_c (psi)</td>
<td>E'_c (psi)</td>
</tr>
<tr>
<td>3,000</td>
<td>3,140,000</td>
</tr>
<tr>
<td>3,500</td>
<td>3,390,000</td>
</tr>
<tr>
<td>4,000</td>
<td>3,620,000</td>
</tr>
<tr>
<td>4,500</td>
<td>3,850,000</td>
</tr>
<tr>
<td>5,000</td>
<td>4,050,000</td>
</tr>
</tbody>
</table>

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

<table>
<thead>
<tr>
<th>Bar No.</th>
<th>Customary Units</th>
<th>SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diameter (in.)</td>
<td>Cross-sectional Area (in.²)</td>
</tr>
<tr>
<td>3</td>
<td>0.375</td>
<td>0.11</td>
</tr>
<tr>
<td>4</td>
<td>0.500</td>
<td>0.20</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
<td>0.31</td>
</tr>
<tr>
<td>6</td>
<td>0.750</td>
<td>0.44</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
<td>0.60</td>
</tr>
<tr>
<td>8</td>
<td>1.000</td>
<td>0.79</td>
</tr>
<tr>
<td>9</td>
<td>1.128</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>1.270</td>
<td>1.27</td>
</tr>
<tr>
<td>11</td>
<td>1.410</td>
<td>1.56</td>
</tr>
<tr>
<td>12</td>
<td>1.693</td>
<td>2.25</td>
</tr>
<tr>
<td>14</td>
<td>2.257</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Table A.4 Areas of Groups of Standard Bars (in.²)

<table>
<thead>
<tr>
<th>Bar No.</th>
<th>Number of Bars</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.39 0.58 0.78 0.98 1.18 1.37 1.57 1.77 1.96 2.16 2.36 2.55 2.75</td>
</tr>
<tr>
<td>5</td>
<td>0.61 0.91 1.23 1.53 1.84 2.15 2.45 2.76 3.07 3.37 3.66 3.99 4.30</td>
</tr>
<tr>
<td>6</td>
<td>0.88 1.32 1.77 2.11 2.41 2.71 3.00 3.30 3.60 3.90 4.20 4.49 4.80</td>
</tr>
<tr>
<td>7</td>
<td>1.20 1.80 2.41 3.01 3.61 4.21 4.81 5.41 6.01 6.61 7.20 7.80 8.40</td>
</tr>
<tr>
<td>8</td>
<td>1.57 2.35 3.14 3.93 4.71 5.50 6.28 7.07 7.85 8.64 9.43 10.21 11.00</td>
</tr>
<tr>
<td>9</td>
<td>2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00</td>
</tr>
<tr>
<td>10</td>
<td>2.53 3.79 5.06 6.33 7.53 8.86 10.12 11.39 12.66 13.92 15.19 16.45 17.72</td>
</tr>
<tr>
<td>12</td>
<td>4.50 6.75 9.00 11.25 13.50 15.75 18.00 20.25 22.50 24.75 27.00 29.25 31.50</td>
</tr>
<tr>
<td>14</td>
<td>8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00 44.00 48.00 52.00 56.00</td>
</tr>
</tbody>
</table>

University of Michigan, TCAUP

Structures II

Slide 27/26