M1 - Immunology, Winter 2008

Fantone, J.; Pietropaolo, M. T.
The following information is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you have questions or concerns about this information or your medical condition. You assume all responsibility for use and potential liability associated with any use of the material.

Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content objects. Users of content are responsible for their compliance with applicable law. Mention of specific products in this recording solely represents the opinion of the speaker and does not represent an endorsement by the University of Michigan.

Viewer discretion advised: Material may contain medical images that may be disturbing to some viewers.
Arachidonic Acid Metabolites and Inflammation

Joseph Fantone, M.D.
Host Defense 2/12 10-11:00am
INFLAMMATORY MEDIATORS

PLASMA DERIVED
• COMPLEMENT CASCADE
 C3a, C5a
• COAGULATION CASCADE
 Thrombin, plasmin

CELL-DERIVED
• VASOACTIVE AMINES
 histamine, serotonin
• OXYGEN METABOLITES
 hydrogen peroxide (H_2O_2)
 superoxide anion (O_2^-)
 hypochlorous acid ($HOCI^-$)
• ARACHIDONIC ACID METABOLITES
 cyclooxygenase-derived
 lipoxygenase-derived
• CYTOKINES
 Interleukins
 Chemokines
 Interferons
 Tumor Necrosis Factor
 Growth Factors
Intended Learning Outcomes: To Understand The

• Primary inflammatory mediators derived from the metabolism of arachidonic acid including their primary cellular source and biological activity.

• Effects of nonsteroidal anti-inflammatory compounds on blocking the production of arachidonic acid metabolites during disease.

• Mechanism of aspirin therapy and diets rich in fish containing high levels of omega 3 fatty acids as potentially important in lowering the incidence of cardiovascular disease.
YOU ARE WHAT YOU EAT
Phospholipid

Arachidonic acid

CH₂O

CH₂-O-P-O-R

Lysophospholipid

Phospholipase A

+ Arachidonic acid

CH₂O

HO-CH

CH₂-O-P-O-R

Diacylglycerol

Phospholipase C

Arachidonic acid

CH₂O

CH₂-OH

+ phosphoryl-R

Diacylglyceride lipase

Arachidonic acid

CH₂O

HO-CH

CH₂-OH

Cyclooxygenase 1 + Lipooxygenase Products

Cyclooxygenase 2
Cell Membrane Phospholipids

Lipoxygenase Pathway
HETEs (mono & di)
Leukotriene (SRS-A)

Arachidonic Acid

PGG2 → PGH2

PGI2 unstable

PGE2 + TXA2 unstable

6-Keto PGF1α
Leukotriene Synthesis

Arachidonic Acid

Lipoxygenase

5-HPETE

Leukotriene A (LTA)

Glutathione-S-transferase

Leukotriene B (LTB)

Leukotriene C (LTC)

Leukotriene D (LTD)
<table>
<thead>
<tr>
<th>CELL</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophils</td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Macrophage/Monocyte</td>
<td>Prostaglandins +</td>
</tr>
<tr>
<td></td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Platelets</td>
<td>Thromboxane</td>
</tr>
<tr>
<td>Endothelial Cells</td>
<td>Prostacyclin</td>
</tr>
<tr>
<td>Biological Function</td>
<td>Cyclooxygenase-derived Products:</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>Prostaglandin E_2/Prostacyclin</td>
</tr>
<tr>
<td></td>
<td>Immuno regulatory</td>
</tr>
<tr>
<td></td>
<td>• Inhibits Immune cell activation</td>
</tr>
<tr>
<td></td>
<td>• Inhibits cytokine production</td>
</tr>
<tr>
<td></td>
<td>• Inhibits mast cell activation</td>
</tr>
<tr>
<td></td>
<td>Blocks platelet aggregation</td>
</tr>
<tr>
<td></td>
<td>Increases vasodilation</td>
</tr>
<tr>
<td></td>
<td>Stimulates adenylate cyclase</td>
</tr>
<tr>
<td></td>
<td>Thromboxane</td>
</tr>
<tr>
<td></td>
<td>Causes vasoconstriction</td>
</tr>
<tr>
<td></td>
<td>Induces platelet aggregation</td>
</tr>
</tbody>
</table>
Biological Function

Lipoxygenase-derived Products:

<table>
<thead>
<tr>
<th>Product</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukotriene B<sub>4</sub></td>
<td>Neutrophil Activation</td>
</tr>
<tr>
<td></td>
<td>- degranulation</td>
</tr>
<tr>
<td></td>
<td>Mast cell activation</td>
</tr>
<tr>
<td></td>
<td>- degranulation</td>
</tr>
<tr>
<td>Leukotriene C,D,E (SRS-A)</td>
<td>Causes smooth muscle contraction</td>
</tr>
<tr>
<td></td>
<td>Increases vascular permeability</td>
</tr>
</tbody>
</table>
In Vivo Effects of Arachidonic Acid Derived Products

• Regulates Thermostatic Set Point (Fever)
• Regulates Pain (Interacts with pain receptors)
• Regulates Blood Flow
• Regulates Leukocyte Activity
Production of Fever

Hypothalamus

- Arachidonic Acid
- Prostaglandin E2
- Temperature
- (e.g. Interleukin-1)

- Aspirin
- NSAIDs
- Shivering
- Sweating
- Vasomotor tone
Rheumatoid Arthritis distorts joints

Source: http://www.nih.gov/
Immunopathology of Rheumatoid Arthritis

- Complement
- Fixation Activation
- Chemotaxis
- Lysosomal Enzymes
- Collagenase Neutral Proteases Phospholipase
- Nonsteroidal Anti-inflammatory Agents
- Arachidonic acid Prostaglandins
- Nerve Sensitization Vasodilation
- Activated oxygen (O_2, H_2O_2)
- Cartilage
- Subchondral bone plate

Source: Undetermined
Chemotactic Activity of LTB4

BY: Greg Luerman

GNU 1.2

Pharmacologic Regulation of Arachidonic Acid-Derived Products

• Modulate Phospholipase activity:
 – Suppress the release of arachidonic acid (no substrate available)
 – Blocks both COX and LO-derived products

• Modulate Cyclooxygenase Activity:
 – Blocks Cyclooxygenase-derived products
 – COX-1 and COX-2 inhibitors

• Modulate specific enzymes down-stream from COX:
 – Thromboxane synthetase inhibitors

• Modulate lipoxygenase activity:
 – Block 5-lipoxygenase enzyme
 – Small molecule receptor antagonists for cysteiny1 leukotrienes
Non- Steroidal Anti-Inflammatory Compounds

• Aspirin (acetylsalicylic acid)
• Ibuprofen (propionic acid derivatives)
• Indomethacin (indole derivatives)
• Tylenol (Acetaminophen)
• COX-2 Inhibitors (Vioxx, celebrex, Bextra)
COX-2 Inhibitors

- **CELEBREX** (Celecoxib) Pfizer-(Pharmacia)
- **BEXTRA** (Valdecoxib) Pfizer
- **VIOXX** (Rofecoxib) Merck

Osteoarthritis
Rheumatoid arthritis
Primary dysmenorrhea
Pain management
Complications!!
ASPIRIN

INHIBITS CYCLO-OXYGENASE ENZYME IRREVERSIBLY BY ACETYLATING THE ENZYME AT THE ACTIVE SITE, THUS THE PRODUCTION OF ENDOPEROXIDES AND THEIR DERIVATIVES, INCLUDING PROSTAGLANDINS, THROMBOXANES, AND PROSTACYCLINS WILL BE INHIBITED.
BOTH INHIBIT CYCLO-OXYGENASE ACTIVITY BY BINDING REVERSIBLY TO THE ACTIVE SITE OF THE ENZYME, THUS BLOCKING THE FORMATION OF PROSTAGLANDINS, THROMBOXANES, AND PROSTACYCLINS.
AN ASPIRIN A DAY

Roughly 80 million aspirin tablets are consumed daily in the USA
Of those:
72% are taken for disease prevention
28% are taken for pain
Reduce the risk of heart attack or stroke with……

Aspirin

BY: Chaval Btasil
http://creativecommons.org/licenses/by-sa/3.0/deed.en
THE HOMEOSTATIC BALANCE

PGI₂
ENDOTHELium

TXA₂
PLATELETS

BY: Gretaz
GNU 1.2
Thrombus Formation

- Elastic Lamina
- Basement Membrane
- Endothelium
- platelets
- Thrombus
- ADP
- Thromboxane
- Collagen
- Aggregation
- Injury
- Organization
- Plaque
Can Aspirin Act As An Anti-thrombogenic Agent?

- Inhibits platelet aggregation by blocking platelet-derived thromboxane production

- Blocks platelet cyclooxygenase for the life of the platelet, as no new protein synthesis occurs

- Blocks endothelial cell-derived prostacyclin

- Suppression of endothelial cell-derived prostacyclin is short lived as endothelial cells can generate new cyclooxygenase enzyme

- Platelet activity is blocked more than endothelial cell activity
COX-2 inhibitors work by blocking COX-2 enzyme which is involved in the inflammation pathway. By sparing COX-1 gastrointestinal toxicity is reduced.

Physiologic Stimuli → COX-1 (constitutive) → Prostaglandin E₂ (Renal function) → Thromboxane A₂ (Platelet function) → Prostacycline (PGL₂) (Gastric Protection)

COX-2 (inducible) → Pro-inflammatory PGs and other inflammatory mediators → Inflammation

Inflammatory Stimuli
lipid mediators of Inflammation

Stimulus

+ Phospholipase

Cell membrane
Phospholipids

Arachidonic acid
Acute inflammation: lipid mediators

Stimulus

Phospholipase

Cell membrane
Phospholipids

Arachidonic acid

COX-1+2
Prostaglandins
Prostaglandin E\textsubscript{2}
Prostacyclin PGI\textsubscript{2}

COX-1
Thromboxanes
TXB\textsubscript{2}

Lipooxigenases (5-LO)
Leukotrienes
LTB\textsubscript{4}
LTC\textsubscript{4}, LTD\textsubscript{4}
Acute inflammation: lipid mediators

Stimulus

Cell membrane
Phospholipids

+ Phospholipase

Arachidonic acid

COX-1+2
- Prostaglandins
 - Prostaglandin E$_2$
 - Prostacyclin PGI$_2$

COX-1
- Thromboxanes
 - TXB$_2$

Lipooxygenases (5-LO)
- Leukotrienes
 - LTB$_4$
 - LTC$_4$, LTD$_4$

Vasodilation, increase vascular permeability, control platelet aggregation, chemotaxis, pain, fever
Acute inflammation: lipid mediators

An important role in vascular homeostasis

Endothelium

Prostacyclin PGI$_2$

Anti-thrombotic

Platelets

TXB2

Pro-thrombotic
Acute inflammation: lipid mediators

Endothelium

- **COX-2**
 - Prostacyclin PGI$_2$
 - Anti-thrombotic

Platelets

- **COX-1**
 - TXB2
 - Pro-thrombotic

Therapeutic targets

- NSAIDs inhibit both COX-1 and COX-2
- COXIBs inhibit COX-2
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium

- COX-2
- Prostacyclin PGI$_2$
- Anti-thrombotic

Platelets

- COX-1
- TXB2
- Pro-thrombotic

Ibuprofen* inhibits both COX enzymes.

Classical NSAID, it inhibits both COX enzymes
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium

COX-2

Prostacyclin PGI₂

Anti-thrombotic

Platelets

COX-1

TXB2

Pro-thrombotic

Vioxx®
Acute inflammation: lipid mediators

Therapeutic targets

- **Aspirin** inhibits COX-2 irreversibly
- All cells but the platelet can resynthesize the enzymes
- **Prostaglandin E1 (PGE1)**
- **Thromboxane A2 (TXA2)**

Endothelium

Platelets

Anti-thrombotic

Pro-thrombotic

Aspirin inhibits COX-1 irreversibly
INFLAMMATORY MEDIATORS

PLASMA DERIVED

• COMPLEMENT CASCADE
 C3a, C5a

• COAGULATION CASCADE
 Thrombin, plasmin

CELL-DERIVED

• VASOACTIVE AMINES
 histamine, serotonin

• OXYGEN METABOLITES
 hydrogen peroxide (H₂O₂)
 superoxide anion (O₂⁻)
 hypochlorous acid (HOCl⁻)

• ARACHIDONIC ACID METABOLITES
 cyclooxygenase-derived
 lipoxygenase-derived

• CYTOKINES
 Interleukins
 Chemokines
 Interferons
 Tumor Necrosis Factor
 Growth Factors