2008-09

M1 - Immunology, Winter 2008

Fantone, J.; Pietropaolo, M. T.

http://hdl.handle.net/2027.42/64939
Arachidonic Acid Metabolites and Inflammation

Joseph Fantone, M.D.
Host Defense 2/12 10-11:00am
INFLAMMATORY MEDIATORS

PLASMA DERIVED
- COMPLEMENT CASCADE
 C3a, C5a
- COAGULATION CASCADE
 Thrombin, plasmin

CELL- DERIVED
- VASOACTIVE AMINES
 histamine, serotonin
- OXYGEN METABOLITES
 hydrogen peroxide (H₂O₂)
 superoxide anion (O₂⁻)
 hypochlorous acid (HOCl⁻)
- ARACHIDONIC ACID METABOLITES
 cyclooxygenase-derived
 lipoxygenase-derived
- CYTOKINES
 Interleukins
 Chemokines
 Interferons
 Tumor Necrosis Factor
 Growth Factors
Intended Learning Outcomes: To Understand The

• Primary inflammatory mediators derived from the metabolism of arachidonic acid including their primary cellular source and biological activity.

• Effects of nonsteroidal anti-inflammatory compounds on blocking the production of arachidonic acid metabolites during disease.

• Mechanism of aspirin therapy and diets rich in fish containing high levels of omega 3 fatty acids as potentially important in lowering the incidence of cardiovascular disease.
YOU ARE WHAT YOU EAT
ARACHIDONIC ACID

LIPOXGENASE PATHWAY

5-HYDROPEROXYEICOSATETRAENOIC ACID
(5-HPETE)

\[\text{LTA}_4 \] (UNSTABLE)

\[\text{LTB}_4 \]

\[\text{LTC}_4 \]

\[\text{LTD}_4 \]

\[\text{LTE}_4 \]

CYCLOOXYGENASE PATHWAY

\[\text{PGG}_2 \] \[\text{PGH}_2 \]

\[\text{PGI}_2 \] (UNSTABLE)

\[\text{PGE}_2 \]

\[\text{PGF}_{2\alpha} \]

\[\text{5-Keto PGF}_{1\alpha} \]

\[\text{TXA}_2 \] (UNSTABLE)

\[\text{TXB}_2 \]
Leukotriene Synthesis

Arachidonic Acid → 5-HPETE → Leukotriene A (LTA) → Leukotriene B (LTB) → Leukotriene C (LTC) → Leukotriene D (LTD)

Lipoxygenase

Glutathione-S-transferase
<table>
<thead>
<tr>
<th>CELL</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophils</td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Macrophage/Monocyte</td>
<td>Prostaglandins +</td>
</tr>
<tr>
<td></td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Platelets</td>
<td>Thromboxane</td>
</tr>
<tr>
<td>Endothelial Cells</td>
<td>Prostacyclin</td>
</tr>
</tbody>
</table>
Biological Function

Cyclooxygenase-derived Products:

Prostaglandin E₂/Prostacyclin
- Immunoregulatory
 - Inhibits Immune cell activation
 - Inhibits cytokine production
 - Inhibits mast cell activation
- Blocks platelet aggregation
- Increases vasodilation
- Stimulates adenylate cyclase

Thromboxane
- Causes vasoconstriction
- Induces platelet aggregation
Biological Function

Lipoxygenase-derived Products:

<table>
<thead>
<tr>
<th>Product</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukotriene B<sub>4</sub></td>
<td>Neutrophil Activation</td>
</tr>
<tr>
<td></td>
<td>- degranulation</td>
</tr>
<tr>
<td></td>
<td>Mast cell activation</td>
</tr>
<tr>
<td></td>
<td>- degranulation</td>
</tr>
<tr>
<td>Leukotriene C,D,E (SRS-A)</td>
<td>Causes smooth muscle contraction</td>
</tr>
<tr>
<td></td>
<td>Increases vascular permeability</td>
</tr>
</tbody>
</table>
In Vivo Effects of Arachidonic Acid Derived Products

• Regulates Thermostatic Set Point (Fever)
• Regulates Pain (Interacts with pain receptors)
• Regulates Blood Flow
• Regulates Leukocyte Activity
Hypothalamus

Production of Fever

Viruses
Bacteria
Toxins

Activated leukocytes → Endogenous pyrogen

Phagocytic leukocytes

Arachidonic Acid → Prostaglandin E2 → Temperature

Aspirin
NSAIDs

(e.g. Interleukin-1)

Shivering
Sweating
Vasomotor tone
Rheumatoid Arthritis distorts joints

Source: http://www.nih.gov/
Immunopathology of Rheumatoid Arthritis

1. Complement Fixation
2. Activation of Cells
3. Chemotaxis
4. Lysosomal Enzyme Release
5. Collagenase
6. Neutral Proteases
7. Phospholipase
8. Arachidonic Acid
9. Prostaglandins
10. Nerve Sensitization
11. Vasodilation

Cartilage Damage

Source: Undetermined
Chemotactic Activity of LTB4

BY: Greg Luerman
Pharmacologic Regulation of Arachidonic Acid-Derived Products

• Modulate Phospholipase activity:
 – Suppress the release of arachidonic acid (no substrate available)
 – Blocks both COX and LO-derived products

• Modulate Cyclooxygenase Activity:
 – Blocks Cyclooxygenase-derived products
 – COX-1 and COX-2 inhibitors

• Modulate specific enzymes down-stream from COX:
 – Thromboxane synthetase inhibitors

• Modulate lipoxygenase activity:
 – Block 5-lipoxygenase enzyme
 – Small molecule receptor antagonists for cysteiny1 leukotrienes
Non- Steroidal Anti-Inflammatory Compounds

- Aspirin (acetylsalicylic acid)
- Ibuprofen (propionic acid derivatives)
- Indomethacin (indole derivatives)
- Tylenol (Acetaminophen)
- COX-2 Inhibitors (Vioxx, celebrex, Bextra)
COX-2 Inhibitors

- **CELEBREX** (Celecoxib) Pfizer-(Pharmacia)
- **BEXTRA** (Valdecoxib) Pfizer
- **VIOXX** (Rofecoxib) Merck

Osteoarthritis
Rheumatoid arthritis
Primary dysmenorrhea
Pain management
Complications!!
INHIBITS CYCLO-OXYGENASE ENZYME IRREVERSIBLY BY ACETYLATING THE ENZYME AT THE ACTIVE SITE, THUS THE PRODUCTION OF ENDOPEROXIDES AND THEIR DERIVATIVES, INCLUDING PROSTAGLANDINS, THROMBOXANES, AND PROSTACYCLINS WILL BE INHIBITED.
BOTH INHIBIT CYCLO-OXYGENASE ACTIVITY BY BINDING REVERSIBLY TO THE ACTIVE SITE OF THE ENZYMES, THUS BLOCKING THE FORMATION OF PROSTAGLANDINS, THROMBOXANES, AND PROSTACYCLINS.
AN ASPIRIN A DAY

Roughly 80 million aspirin tablets are consumed daily in the USA. Of those:
- 72% are taken for disease prevention
- 28% are taken for pain
Reduce the risk of heart attack or stroke with……

Aspirin

BY: Chaval Btasil
http://creativecommons.org/licenses/by-sa/3.0/deed.en
THE HOMEOSTATIC BALANCE

PGI₂
ENDOTHELium

TXA₂
PLATELETS
Thrombus Formation

- Elastic Lamina
- Basement Membrane
- Endothelium
- Platelets
- Injury
- ADP
- Thromboxane
- Collagen
- Aggregation
- Organization
- Plaque

THROMBUS
Can Aspirin Act As An Anti-thrombogenic Agent?

- Inhibits platelet aggregation by blocking platelet-derived thromboxane production

- Blocks platelet cyclooxygenase for the life of the platelet, as no new protein synthesis occurs

- Blocks endothelial cell-derived prostacyclin

- Suppression of endothelial cell-derived prostacyclin is short lived as endothelial cells can generation new cyclooxygenase enzyme

- Platelet activity is blocked more than endothelial cell activity
COX-2 inhibitors work by blocking COX-2 enzyme which is involved in the inflammation pathway. By sparing COX-1 gastrointestinal toxicity is reduced.
lipid mediators of Inflammation

- Stimulus
- Phospholipase
- Cell membrane
 - Phospholipids
- Arachidonic acid
Acute inflammation: lipid mediators

Stimulus

+ Phospholipase

Cell membrane
Phospholipids

Arachidonic acid

COX-1+2
Prostaglandins
Prostaglandin E₂
Prostacyclin PGI₂

COX-1
Thromboxanes
TXB₂

Lipooxigenases (5-LO)
Leukotrienes
LTB₄
LTC₄, LTD₄
Acute inflammation: lipid mediators

Stimulus

Phospholipase

Arachidonic acid

Cell membrane
Phospholipids

Prostaglandins
COX-1+2
Prostaglandin E₂
Prostacyclin PGI₂

COX-1
Thromboxanes
TXB₂

Lipooxigenases (5-LO)
Leukotrienes
LTB₄
LTC₄, LTD₄

An important role in vascular homeostasis

Acute inflammation: lipid mediators

- **Endothelium**
 - Prostacyclin PGI$_2$
 - Anti-thrombotic

- **Platelets**
 - TXB2
 - Pro-thrombotic
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium

Prostaglandins

Platelets

Therapeutic targets

COX-2

Prostacyclin PGI₂

COX-1

TXB2

Anti-thrombotic

Pro-thrombotic

NSAIDs inhibit both COX-1 and COX-2;
COXIBs inhibit COX-2
Acute inflammation: lipid mediators

Therapeutic targets

- **Endothelium**
 - COX-2
 - Prostacyclin PGI₂
 - Anti-thrombotic

- **Platelets**
 - COX-1
 - TXB2
 - Pro-thrombotic

Ibuprofen

Ibuprofen:
- Classical NSAID, it inhibits both COX enzymes
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium

- COX-2
- Prostacyclin PGI₂

Platelets

- COX-1
- TXB₂

Anti-thrombotic

Pro-thrombotic

Vioxx®
Acute inflammation: lipid mediators

Therapeutic targets

Aspirin inhibits COX-2 irreversibly

- **Endothelium**
 - Prostacyclin PGI_2

All cells but the platelet can resynthesize the enzymes

- **Platelets**
 - TXB2

Aspirin inhibits COX-1 irreversibly

Anti-thrombotic

Pro-thrombotic
INFLAMMATORY MEDIATORS

PLASMA DERIVED
• COMPLEMENT CASCADE
 C3a, C5a
• COAGULATION CASCADE
 Thrombin, plasmin

CELL-DERIVED
• VASOACTIVE AMINES
 histamine, serotonin
• OXYGEN METABOLITES
 hydrogen peroxide (H$_2$O$_2$)
 superoxide anion (O$_2^-$)
 hypochlorous acid (HOCl$^-$)
• ARACHIDONIC ACID METABOLITES
 cyclooxygenase-derived
 lipoxygenase-derived
• CYTOKINES
 Interleukins
 Chemokines
 Interferons
 Tumor Necrosis Factor
 Growth Factors