M1 - Immunology, Winter 2008

Fantone, J.; Pietropaolo, M. T.
Arachidonic Acid Metabolites and Inflammation

Joseph Fantone, M.D.
Host Defense 2/12 10-11:00am
PLASMA DERIVED
- COMPLEMENT CASCADE
 C3a, C5a
- COAGULATION CASCADE
 Thrombin, plasmin

CELL-DERIVED
- VASOACTIVE AMINES
 histamine, serotonin
- OXYGEN METABOLITES
 hydrogen peroxide \((H_2O_2)\)
 superoxide anion \((O_2^-)\)
 hypochlorous acid \((HOCl^-)\)
- ARACHIDONIC ACID METABOLITES
 cyclooxygenase-derived
 lipoxygenase-derived
- CYTOKINES
 Interleukins
 Chemokines
 Interferons
 Tumor Necrosis Factor
 Growth Factors
Intended Learning Outcomes: To Understand The

• Primary inflammatory mediators derived from the metabolism of arachidonic acid including their primary cellular source and biological activity.

• Effects of nonsteroidal anti-inflammatory compounds on blocking the production of arachidonic acid metabolites during disease

• Mechanism of aspirin therapy and diets rich in fish containing high levels of omega 3 fatty acids as potentially important in lowering the incidence of cardiovascular disease.
YOU ARE WHAT YOU EAT
Phospholipid

Phospholipase A

Lysophospholipid + Arachidonic acid

Phospholipase C

Arachidonic acid + phosphoryl-R

Diacylglycerol

Diacylglyceride lipase

Arachidonic acid + OH-CH

Cyclooxygenase 1 + Lipoxygenase Products:

Cyclooxygenase 2
Leukotriene Synthesis

Arachidonic Acid

Lipoxygenase

5-HPETE

Leukotriene A (LTA)

Glutathione-S-transferase

Leukotriene B (LTB)

Leukotriene C (LTC)

Leukotriene D (LTD)
<table>
<thead>
<tr>
<th>CELL</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophils</td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Macrophage/Monocyte</td>
<td>Prostaglandins +</td>
</tr>
<tr>
<td></td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Platelets</td>
<td>Thromboxoxane</td>
</tr>
<tr>
<td>Endothelial Cells</td>
<td>Prostacyclin</td>
</tr>
</tbody>
</table>
ARACHIDONIC ACID

LIPOXYGENASE PATHWAY

5-HYDROPEROXIDEICOSATETRAENOIC ACID (5-HPETE)

LTA₄ (UNSTABLE)

LTA₄ (UNSTABLE)

LTC₄

LTC₄

LTD₄

LTD₄

LTE₄

LTE₄

PGD₂ → PGH₂

PGI₂ (UNSTABLE)

PGE₂

PGE₂

TXA₂ (UNSTABLE)

TXB₂
Biological Function

Cyclooxygenase-derived Products:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostaglandin E$_2$/Prostacyclin</td>
<td>Immunoregulatory</td>
</tr>
<tr>
<td></td>
<td>• Inhibits Immune cell activation</td>
</tr>
<tr>
<td></td>
<td>• Inhibits cytokine production</td>
</tr>
<tr>
<td></td>
<td>• Inhibits mast cell activation</td>
</tr>
<tr>
<td></td>
<td>Blocks platelet aggregation</td>
</tr>
<tr>
<td></td>
<td>Increases vasodilation</td>
</tr>
<tr>
<td></td>
<td>Stimulates adenylate cyclase</td>
</tr>
<tr>
<td>Thromboxxane</td>
<td>Causes vasoconstriction</td>
</tr>
<tr>
<td></td>
<td>Induces platelet aggregation</td>
</tr>
</tbody>
</table>
Biological Function

Lipoxygenase-derived Products:

<table>
<thead>
<tr>
<th>Leukotriene B$_4$</th>
<th>Neutrophil Activation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- degranulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mast cell activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- degranulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leukotriene C,D,E (SRS-A)</th>
<th>Causes smooth muscle contraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increases vascular permeability</td>
</tr>
</tbody>
</table>
In Vivo Effects of Arachidonic Acid Derived Products

• Regulates Thermostatic Set Point (Fever)
• Regulates Pain (Interacts with pain receptors)
• Regulates Blood Flow
• Regulates Leukocyte Activity
Rheumatoid Arthritis distorts joints

Source: http://www.nih.gov/
Immunopathology of Rheumatoid Arthritis

- Complement
 - Anti-altered IgG
 - Altered IgG
- Fixation Activation
- Chemotaxis
- Lysosomal Enzymes
 - Collagenase
 - Neutral Proteases
 - Phospholipase
- Cartilage
 - Subchondral bone plate

Nonsteroidal Anti-inflammatory Agents

Arachidonic acid

Prostaglandins

Nerve Sensitization

Vasodilation

Activated oxygen
(O_2, H_2O_2)

Source: Undetermined
Chemotactic Activity of LTB4
Pharmacologic Regulation of Arachidonic Acid-Derived Products

• Modulate Phospholipase activity:
 – Suppress the release of arachidonic acid (no substrate available)
 – Blocks both COX and LO-derived products

• Modulate Cyclooxygenase Activity:
 – Blocks Cyclooxygenase-derived products
 – COX-1 and COX-2 inhibitors

• Modulate specific enzymes down-stream from COX:
 – Thromboxane synthetase inhibitors

• Modulate lipoxygenase activity:
 – Block 5-lipoxygenase enzyme
 – Small molecule receptor antagonists for cysteiny1 leukotrienes
Non- Steroidal Anti-Inflammatory Compounds

- Aspirin (acetysalicylic acid)
- Ibuprofen (propionic acid derivatives)
- Indomethacin (indole derivatives)
- Tylenol (Acetominophen)
- COX-2 Inhibitors (Vioxx, celebrex, Bextra)
COX-2 Inhibitors

- **CELEBREX** (Celecoxib) Pfizer-(Pharmacia)
- **BEXTRA** (Valdecoxib) Pfizer
- **VIOXX** (Rofecoxib) Merck

Osteoarthritis
Rheumatoid arthritis
Primary dysmenorrhea
Pain management
Complications!!
ASPIRIN

INHIBITS CYCLO-OXYGENASE ENZYME IRREVERSIBLY BY ACETYLATING THE ENZYME AT THE ACTIVE SITE, THUS THE PRODUCTION OF ENDOPEROXIDES AND THEIR DERIVATIVES, INCLUDING PROSTAGLANDINS, THROMBOXANES, AND PROSTACYCLINS WILL BE INHIBITED.
Both inhibit cyclo-oxygenase activity by binding reversibly to the active site of the enzyme, thus blocking the formation of prostaglandins, thromboxanes, and prostacyclins.
AN ASPIRIN A DAY

Roughly 80 million aspirin tablets are consumed daily in the USA.
Of those:
72% are taken for disease prevention
28% are taken for pain
Reduce the risk of heart attack or stroke with……

Aspirin
THE HOMEOSTATIC BALANCE

PGI₂
ENDOTHELium

TXA₂
PLATELETS

BY: Gretaz GNU 1.2
Thrombus Formation

- Elastic Lamina
- Platelets
- Basement Membrane
- Endothelium
- Injury
- ADP
- Thromboxane
- Collagen
- Aggregation
- Organization
- Plaque
Can Aspirin Act As An Anti-thrombogenic Agent?

- Inhibits platelet aggregation by blocking platelet-derived thromboxane production
- Blocks platelet cyclooxygenase for the life of the platelet, as no new protein synthesis occurs
- Blocks endothelial cell-derived prostacyclin
- Suppression of endothelial cell-derived prostacyclin is short lived as endothelial cells can generate new cyclooxygenase enzyme
- Platelet activity is blocked more than endothelial cell activity
COX-2 inhibitors work by blocking COX-2 enzyme which is involved in the inflammation pathway. By sparing COX-1 gastrointestinal toxicity is reduced.

![Diagram of COX-1 and COX-2 pathways](image-url)
lipid mediators of Inflammation

Stimulus

+ Phospholipase

Cell membrane
Phospholipids

Arachidonic acid
Acute inflammation: lipid mediators

Stimulus

Cell membrane
Phospholipids

Arachidonic acid

Phospholipase

COX-1+2
Prostaglandins
Prostaglandin E₂
Prostacyclin PGI₂

COX-1
Thromboxanes
TXB₂

Lipooxigenases (5-LO)
Leukotrienes
LTB₄
LTC₄, LTD₄
Acute inflammation: lipid mediators

Stimulus

Phospholipase

Cell membrane
Phospholipids

Arachidonic acid

COX-1+2
Prostaglandins
Prostaglandin E$_2$
Prostacyclin PGI$_2$

COX-1
Thromboxanes
TXB$_2$

Lipooxigenases (5-LO)
Leukotrienes
LTB$_4$
LTC$_4$, LTD$_4$

Vasodilation, Increase vascular permeability, Control platelet aggregation, Chemotaxis, Pain, Fever
Acute inflammation: lipid mediators

An important role in vascular homeostasis

Endothelium

Prostacyclin PGI₂

Anti-thrombotic

Platelets

TXB₂

Pro-thrombotic
Acute inflammation: lipid mediators

Therapeutic targets

- **Endothelium**
 - COX-2
 - Prostacyclin PGI$_2$
 - Anti-thrombotic

- **Platelets**
 - COX-1
 - TXB2
 - Pro-thrombotic

COXIBs inhibit COX-2

NSAIDs inhibit both COX-1 and COX-2
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium

Platelets

COX-2

Ibuprofen*

COX-1

Prostacyclin PGI$_2$

TXB2

Anti-thrombotic

Pro-thrombotic

* Classical NSAID, it inhibits both COX enzymes
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium

Prostacyclin PGI₂

Aspirin inhibits COX-2 irreversibly

All cells but the platelet can resynthesize the enzymes

Platelets

TXB2

Aspirin inhibits COX-1 irreversibly

Anti-thrombotic

Pro-thrombotic
INFLAMMATORY MEDIATORS

PLASMA DERIVED
• COMPLEMENT CASCADE
 C3a, C5a
• COAGULATION CASCADE
 Thrombin, plasmin

CELL-DERIVED
• VASOACTIVE AMINES
 histamine, serotonin
• OXYGEN METABOLITES
 hydrogen peroxide (H$_2$O$_2$)
 superoxide anion (O$_2^-$)
 hypochlorous acid (HOCl$^-$)
• ARACHIDONIC ACID METABOLITES
 cyclooxygenase-derived
 lipoxygenase-derived
• CYTOKINES
 Interleukins
 Chemokines
 Interferons
 Tumor Necrosis Factor
 Growth Factors