M1 - Immunology, Winter 2008

Fantone, J.; Pietropaolo, M. T.

<http://hdl.handle.net/2027.42/64939>
http://hdl.handle.net/2027.42/64939
Arachidonic Acid Metabolites and Inflammation

Joseph Fantone, M.D.
Host Defense 2/12 10-11:00am
INFLAMMATORY MEDIATORS

PLASMA DERIVED
• COMPLEMENT CASCADE
 C3a, C5a
• COAGULATION CASCADE
 Thrombin, plasmin

CELL-DERIVED
• VASOACTIVE AMINES
 histamine, serotonin
• OXYGEN METABOLITES
 hydrogen peroxide (H$_2$O$_2$)
 superoxide anion (O$_2^-$)
 hypochlorous acid (HOCl$^-$)
• ARACHIDONIC ACID METABOLITES
 cyclooxygenase-derived
 lipoxygenase-derived
• CYTOKINES
 Interleukins
 Chemokines
 Interferons
 Tumor Necrosis Factor
 Growth Factors
Intended Learning Outcomes: To Understand The

- Primary inflammatory mediators derived from the metabolism of arachidonic acid including their primary cellular source and biological activity.

- Effects of nonsteroidal anti-inflammatory compounds on blocking the production of arachidonic acid metabolites during disease.

- Mechanism of aspirin therapy and diets rich in fish containing high levels of omega 3 fatty acids as potentially important in lowering the incidence of cardiovascular disease.
YOU ARE WHAT YOU EAT
Leukotriene Synthesis

Arachidonic Acid → 5-HPETE → Leukotriene A (LTA) → Leukotriene B (LTB) → Leukotriene C (LTC) → Leukotriene D (LTD)
<table>
<thead>
<tr>
<th>CELL</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophils</td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Macrophage/Monocyte</td>
<td>Prostaglandins +</td>
</tr>
<tr>
<td></td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Platelets</td>
<td>Thromboxane</td>
</tr>
<tr>
<td>Endothelial Cells</td>
<td>Prostacyclin</td>
</tr>
</tbody>
</table>
Biological Function

Cyclooxygenase-derived Products:

Prostaglandin E₂/Prostacyclin
- Immunoregulatory
 - Inhibits immune cell activation
 - Inhibits cytokine production
 - Inhibits mast cell activation
- Blocks platelet aggregation
- Increases vasodilation
- Stimulates adenylate cyclase

Thromboxane
- Causes vasoconstriction
- Induces platelet aggregation
Biological Function

Lipoxygenase-derived Products:

Leukotriene B_4
- Neutrophil Activation
 - degranulation

Mast cell activation
 - degranulation

Leukotriene C,D,E (SRS-A)
- Causes smooth muscle contraction
- Increases vascular permeability
In Vivo Effects of Arachidonic Acid Derived Products

• Regulates Thermostatic Set Point (Fever)
• Regulates Pain (Interacts with pain receptors)
• Regulates Blood Flow
• Regulates Leukocyte Activity
Hypothalamus

Viruses
Bacteria
Toxins

Activated leukocytes
Endogenous pyrogen

Phagocytic leukocytes

Arachidonic Acid
Prostaglandin E2
Temperature

Aspirin
NSAIDs

(e.g. Interleukin-1)

Shivering
Sweating
Vasomotor tone
Rheumatoid Arthritis distorts joints

Source: http://www.nih.gov/
Chemotactic Activity of LTB4

BY: Greg Luerman
GNU 1.2
Pharmacologic Regulation of Arachidonic Acid-Derived Products

• Modulate Phospholipase activity:
 – Suppress the release of arachidonic acid (no substrate available)
 – Blocks both COX and LO-derived products

• Modulate Cyclooxygenase Activity:
 – Blocks Cyclooxygenase-derived products
 – COX-1 and COX-2 inhibitors

• Modulate specific enzymes down-stream from COX:
 – Thromboxane synthetase inhibitors

• Modulate lipoxygenase activity:
 – Block 5-lipoxygenase enzyme
 – Small molecule receptor antagonists for cysteiny1 leukotrienes
Non-Steroidal Anti-Inflammatory Compounds

- Aspirin (acetylsalicylic acid)
- Ibuprofen (propionic acid derivatives)
- Indomethacin (indole derivatives)
- Tylenol (Acetaminophen)
- COX-2 Inhibitors (Vioxx, celebrex, Bextra)
COX-2 Inhibitors

- **CELEBREX** (Celecoxib) Pfizer-(Pharmacia)
- **BEXTRA** (Valdecoxib) Pfizer
- **VIOXX** (Rofecoxib) Merck

Osteoarthritis
Rheumatoid arthritis
Primary dysmenorrhea
Pain management
Complications!!
INHIBITS CYCLO-OXYGENASE ENZYME IRREVERSIBLY BY ACETYLATED THE ENZYME AT THE ACTIVE SITE, THUS THE PRODUCTION OF ENDPEROXIDES AND THEIR DERIVATIVES, INCLUDING PROSTAGLANDINS, THROMBOXANES, AND PROSTACYCLINS WILL BE INHIBITED.
INDOMETHACIN

IBUPROFEN

Both inhibit cyclo-oxygenase activity by binding reversibly to the active site of the enzyme, thus blocking the formation of prostaglandins, thromboxanes, and prostacyclinS.
AN ASPIRIN A DAY

Roughly 80 million aspirin tablets are consumed daily in the USA
Of those:
72% are taken for disease prevention
28% are taken for pain
Reduce the risk of heart attack or stroke with……
THE HOMEOSTATIC BALANCE

PGI₂
ENDOTHELium

TXA₂
PLATELETS

BY: Gretaz
GNU 1.2
Thrombus Formation

Elastic Lamina

Platelets

Endothelium

Basement Membrane

Injury

ADP

Thromboxane

Collagen

Aggregation

Organization

Plaque
Can Aspirin Act As An Anti-thrombogenic Agent?

- Inhibits platelet aggregation by blocking platelet-derived thromboxane production

- Blocks platelet cyclooxygenase for the life of the platelet, as no new protein synthesis occurs

- Blocks endothelial cell-derived prostacyclin

- Suppression of endothelial cell-derived prostacyclin is short lived as endothelial cells can generate new cyclooxygenase enzyme

- Platelet activity is blocked more than endothelial cell activity
COX-2 inhibitors work by blocking COX-2 enzyme which is involved in the inflammation pathway. By sparing COX-1 gastrointestinal toxicity is reduced.

Diagram:
- **Physiologic Stimuli** → **COX-1 (constitutive)**
 - **PG E₂** (Renal function)
 - Thromboxane A₂ (Platelet function)
 - Prostacycline (PGL₂) (Gastric Protection)
- **Inflammatory Stimuli** → **COX-2 (inducible)** → Pro-inflammatory PGs and other inflammatory mediators → Inflammation

Textual Explanation:
- COX-2 inhibitors block COX-2 enzyme which is involved in inflammation.
- By sparing COX-1, gastrointestinal toxicity is reduced.
- Physiologic stimuli lead to the production of PG E₂, Thromboxane A₂, and Prostacycline, each playing specific roles.
- Inflammatory stimuli activate COX-2, leading to pro-inflammatory PGs and other mediators, contributing to inflammation.
lipid mediators of Inflammation

Stimulus

+ Phospholipase

Cell membrane
Phospholipids

Arachidonic acid
Acute inflammation: lipid mediators

Stimulus + Phospholipase → Cell membrane Phospholipids → Arachidonic acid

COX-1+2 → Prostaglandins
- Prostaglandin E₂
- Prostacyclin PGI₂

COX-1 → Thromboxanes
- TXB₂

Lipooxigenases (5-LO) → Leukotrienes
- LTB₄
- LTC₄, LTD₄
Acute inflammation: lipid mediators

Stimulus

Phospholipase

Cell membrane
Phospholipids

Arachidonic acid

COX-1+2
Prostaglandins
Prostaglandin E₂
Prostacyclin PGI₂

COX-1
Thromboxanes
TXB₂

Lipooxigenases (5-LO)
Leukotrienes
LTB₄
LTC₄, LTD₄

Vasodilation, Increase vascular permeability, Control platelet aggregation, Chemotaxis, Pain, Fever
An important role in vascular homeostasis

Endothelium → Prostacyclin PGI$_2$ → Anti-thrombotic

Platelets → TXB2 → Pro-thrombotic
Prostacyclin PGI₂ and TXB₂ are lipid mediators involved in anti-thrombotic and pro-thrombotic processes.

- **Endothelium**: COX-2 produces Prostacyclin PGI₂, an anti-thrombotic mediator.
- **Platelets**: COX-1 produces TXB₂, a pro-thrombotic mediator.

Therapeutic targets

NSAIDs inhibit both COX-1 and COX-2; COXIBs inhibit COX-2.
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium

COX-2

Prostacyclin PGI$_2$

Anti-thrombotic

Ibuprofen*

Platelets

COX-1

TXB2

Pro-thrombotic

* Classical NSAID, it inhibits both COX enzymes
Acute inflammation: lipid mediators

Endothelium
- COX-2
- Prostacyclin PGI₂
- Anti-thrombotic

Platelets
- COX-1
- TXB2
- Pro-thrombotic

Therapeutic targets
- Vioxx®

Prostacyclin PGI₂ and TXB2 are involved in the regulation of thrombosis and inflammation.
Acute inflammation: lipid mediators

- **Prostacyclin PGI₂**
 - **Endothelium**
 - **Aspirin** inhibits COX-2 irreversibly
 - **Anti-thrombotic**

- **TXB₂**
 - **Platelets**
 - Aspirin inhibits COX-1 irreversibly
 - **Pro-thrombotic**

All cells but the platelet can resynthesize the enzymes.
INFLAMMATORY MEDIATORS

PLASMA DERIVED
• COMPLEMENT CASCADE
 C3a, C5a
• COAGULATION CASCADE
 Thrombin, plasmin

CELL-DERIVED
• VASOACTIVE AMINES
 histamine, serotonin
• OXYGEN METABOLITES
 hydrogen peroxide (H₂O₂)
 superoxide anion (O₂⁻)
 hypochlorous acid (HOCl⁻)
• ARACHIDONIC ACID METABOLITES
 cyclooxygenase-derived
 lipoxygenase-derived
• CYTOKINES
 Interleukins
 Chemokines
 Interferons
 Tumor Necrosis Factor
 Growth Factors