M1 - Immunology, Winter 2008

Fantone, J.; Pietropaolo, M. T.

http://hdl.handle.net/2027.42/64939
Arachidonic Acid Metabolites and Inflammation

Joseph Fantone, M.D.
Host Defense 2/12 10-11:00am
INFLAMMATORY MEDIATORS

PLASMA DERIVED
• COMPLEMENT CASCADE
 C3a, C5a
• COAGULATION CASCADE
 Thrombin, plasmin

CELL-DERIVED
• VASOACTIVE AMINES
 histamine, serotonin
• OXYGEN METABOLITES
 hydrogen peroxide (H₂O₂)
 superoxide anion (O₂⁻)
 hypochlorous acid (HOCl⁻)
• ARACHIDONIC ACID METABOLITES
 cyclooxygenase-derived
 lipoxygenase-derived
• CYTOKINES
 Interleukins
 Chemokines
 Interferons
 Tumor Necrosis Factor
 Growth Factors
Intended Learning Outcomes: To Understand The

- Primary inflammatory mediators derived from the metabolism of arachidonic acid including their primary cellular source and biological activity.

- Effects of nonsteroidal anti-inflammatory compounds on blocking the production of arachidonic acid metabolites during disease.

- Mechanism of aspirin therapy and diets rich in fish containing high levels of omega 3 fatty acids as potentially important in lowering the incidence of cardiovascular disease.
YOU ARE WHAT YOU EAT
Phospholipid

Phospholipase A

Lysophospholipid + Arachidonic acid

Phospholipase C

Diacylglycerol + phosphatidic acid

Diacylglyceride lipase

Arachidonic acid + H2O

Cyclooxygenase 1 + Lipooxygenase Products

Cyclooxygenase 2
STIMULI

Cell Membrane Phospholipids

PHOSPHOLIPASE A2

LIPOXYGENASE PATHWAY

HETEs [mono & di]

LEUKOTRIENE [SRS-A]

Arachidonic Acid

CYCLOOXYGENASE

PGG2 → PGH2

PGI2 UNSTABLE

PGE2

TXA2 UNSTABLE

6-Keto PGF1α

TXB2
Leukotriene Synthesis

Arachidonic Acid

5-HPETE

Leukotriene A (LTA)

Leukotriene B (LTB)

Leukotriene C (LTC)

Leukotriene D (LTD)

Lipoxygenase

Glutathione-S-transferase
<table>
<thead>
<tr>
<th>CELL</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophils</td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Macrophage/Monocyte</td>
<td>Prostaglandins +</td>
</tr>
<tr>
<td></td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Platelets</td>
<td>Thromboxoxane</td>
</tr>
<tr>
<td>Endothelial Cells</td>
<td>Prostacyclin</td>
</tr>
</tbody>
</table>
Biological Function

Cyclooxygenase-derived Products:

Prostaglandin E₂/Prostacyclin
- Immunoregulatory
 - Inhibits immune cell activation
 - Inhibits cytokine production
 - Inhibits mast cell activation
- Blocks platelet aggregation
- Increases vasodilation
- Stimulates adenylate cyclase

Thromboxane
- Causes vasoconstriction
- Induces platelet aggregation
Biological Function

Lipoxygenase-derived Products:

Leukotriene B_4 Neutrophil Activation
- degranulation

Mast cell activation
- degranulation

Leukotriene C,D,E (SRS-A) Causes smooth muscle contraction
Increases vascular permeability
In Vivo Effects of Arachidonic Acid Derived Products

• Regulates Thermostatic Set Point (Fever)
• Regulates Pain (Interacts with pain receptors)
• Regulates Blood Flow
• Regulates Leukocyte Activity
Hypothalamus

Production of Fever

Viruses
Bacteria
Toxins

Activated leukocytes
Endogenous pyrogen

Phagocytic leukocytes

Arachidonic Acid
Prostaglandin E2
Temperature

Aspirin
NSAIDs

Shivering
Sweating
Vasomotor tone

(e.g. Interleukin-1)
Rheumatoid Arthritis distorts joints

Source: http://www.nih.gov/
Immunopathology of Rheumatoid Arthritis

- Complement
- Fixation
- Activation
- Lysosomal Enzymes
 - Collagenase
 - Neutral Proteases
 - Phospholipase
- Activated oxygen
 - \(\text{O}_2, \text{H}_2\text{O}_2 \)
- Cartilage
- Nonsteroidal Anti-inflammatory Agents
 - Arachidonic acid
 - Prostaglandins
- Nerve Sensitization
 - Vasodilation

Source: Undetermined
Chemotactic Activity of LTB4

BY: Greg Luerman

GNU 1.2

Pharmacologic Regulation of Arachidonic Acid-Derived Products

• Modulate Phospholipase activity:
 – Suppress the release of arachidonic acid (no substrate available)
 – Blocks both COX and LO-derived products

• Modulate Cyclooxygenase Activity:
 – Blocks Cyclooxygenase-derived products
 – COX-1 and COX-2 inhibitors

• Modulate specific enzymes down-stream from COX:
 – Thromboxane synthetase inhibitors

• Modulate lipoxygenase activity:
 – Block 5-lipoxygenase enzyme
 – Small molecule receptor antagonists for cysteiny1 leukotrienes
Non- Steroidal Anti-Inflammatory Compounds

- Aspirin (acetysalicylic acid)
- Ibuprofen (propionic acid derivatives)
- Indomethacin (indole derivatives)
- Tylenol (Acetominophen)
- COX-2 Inhibitors (Vioxx, celebrex, Bextra)
COX-2 Inhibitors

- **CELEBREX** (Celecoxib) Pfizer-(Pharmacia)
- **BEXTRA** (Valdecoxib) Pfizer
- **VIOXX** (Rofecoxib) Merck

Osteoarthritis
Rheumatoid arthritis
Primary dysmenorrhea
Pain management
Complications!!
INHIBITS CYCLO-OXYGENASE ENZYME IRREVERSIBLY BY ACETYLATING THE ENZYME AT THE ACTIVE SITE, THUS THE PRODUCTION OF ENDOPEROXIDES AND THEIR DERIVATIVES, INCLUDING PROSTAGLANDINS, THROMBOXANES, AND PROSTACYCLINS WILL BE INHIBITED.
INDOMETHACIN

IBUPROFEN

BOTH INHIBIT CYCLO-OXYGENASE ACTIVITY BY BINDING REVERSIBLY TO THE ACTIVE SITE OF THE ENZYME, THUS BLOCKING THE FORMATION OF PROSTAGLANDINS, THROMBOXANES, AND PROSTACYCLINS.
AN ASPIRIN A DAY

Roughly 80 million aspirin tablets are consumed daily in the USA
Of those:
72% are taken for disease prevention
28% are taken for pain
Reduce the risk of heart attack or stroke with……

Aspirin
THE HOMEOSTATIC BALANCE

PGI₂
ENDOTHELium

TXA₂
PLATELETS
Thrombus Formation

Elastic Lamina

Basement Membrane

Endothelium

platelets

Injury

ADP

Thromboxane

Collagen

Aggregation

THROMBUS

Organization

Plaque
Can Aspirin Act As An Anti-thrombogenic Agent?

- Inhibits platelet aggregation by blocking platelet-derived thromboxane production

- Blocks platelet cyclooxygenase for the life of the platelet, as no new protein synthesis occurs

- Blocks endothelial cell-derived prostacyclin

- Suppression of endothelial cell-derived prostacyclin is short lived as endothelial cells can generation new cyclooxygenase enzyme

- Platelet activity is blocked more than endothelial cell activity
COX-2 inhibitors work by blocking COX-2 enzyme which is involved in the inflammation pathway. By sparing COX-1 gastrointestinal toxicity is reduced
l lipid mediators of Inflammation

Stimulus

Phospholipase

Cell membrane
Phospholipids

Arachidonic acid
Acute inflammation: lipid mediators

1. **Stimulus**

2. **Phospholipase**

3. **Cell membrane Phospholipids**

4. **Arachidonic acid**

5. **COX-1 + 2**
 - **Prostaglandins**
 - Prostaglandin E₂
 - Prostacyclin PGI₂

6. **COX-1**
 - **Thromboxanes**
 - TXB₂

7. **Lipooxigenases (5-LO)**
 - **Leukotrienes**
 - LTB₄
 - LTC₄, LTD₄
Arachidonic acid

Cell membrane
Phospholipids

Stimulus

Phospholipase

+ Arachidonic acid

COX-1+2
Prostaglandins
Prostaglandin E$_2$
Prostacyclin PGI$_2$

COX-1
Thromboxanes
TXB$_2$

Lipooxigenases (5-LO)
Leukotrienes
LTB$_4$
LTC$_4$, LTD$_4$

Vasodilation, Increase vascular permeability, Control platelet aggregation, Chemotaxis, Pain, Fever
Acute inflammation: lipid mediators

An important role in vascular homeostasis

Endothelium

Platelets

Prostacyclin PGI₂ ↔ TXB₂

Anti-thrombotic ↔ Pro-thrombotic
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium

COX-2

Prostacyclin \(\text{PGI}_2 \)

Anti-thrombotic

Platelets

COX-1

\(\text{TXB}_2 \)

Pro-thrombotic

NSAIDs inhibit both COX-1 and COX-2; COXIBs inhibit COX-2
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium

COX-2

Prostacyclin PGI₂

Anti-thrombotic

Platelets

Ibuprofen*

COX-1

TXB2

Pro-thrombotic

* Classical NSAID, it inhibits both COX enzymes
Acute inflammation: lipid mediators

- **Prostacyclin PGI\(_2\)**
- **TXB2**

Endothelium
- COX-2
- Prostacyclin PGI\(_2\)

Platelets
- COX-1
- TXB2

Therapeutic targets
- Vioxx®

Anti-thrombotic
- COX-2 inhibition

Pro-thrombotic
- COX-1 activity
Prostacyclin PGI$_2$ TXB2

Endothelium Platelets

Aspirin inhibits COX-2 irreversibly All cells but the platelet can resynthesize the enzymes Aspirin inhibits COX-1 irreversibly

Prostacyclin PGI$_2$ TXB2

Anti-thrombotic Pro-thrombotic

Therapeutic targets
INFLAMMATORY MEDIATORS

PLASMA DERIVED
- COMPLEMENT CASCADE
 C3a, C5a
- COAGULATION CASCADE
 Thrombin, plasmin

CELL-DERIVED
- VASOACTIVE AMINES
 histamine, serotonin
- OXYGEN METABOLITES
 hydrogen peroxide (H$_2$O$_2$)
 superoxide anion (O$_2^-$)
 hypochlorous acid (HOCl$^-$)
- ARACHIDONIC ACID METABOLITES
 cyclooxygenase-derived
 lipoxygenase-derived
- CYTOKINES
 Interleukins
 Chemokines
 Interferons
 Tumor Necrosis Factor
 Growth Factors