Phagocytic Cells: Mechanisms of Bacterial Killing and Tissue Injury

BY: Akshat

BY: Arria Belli

J. Fantone, M.D.
2/12/08
9:00-10:00am
Phagocytic Cells: Mechanisms of Bacterial Killing and Tissue Injury

• Learning Outcomes:
 – To understand the pathophysiologic role of phagocytic cells in host defense.
 – To understand the role of reactive oxygen metabolites and lysosomal granules in phagocytic cell function
Phagocytic Cells

• Peripheral Blood Leukocytes (nrml. 4.5-11,000 cells/ul)
 – Lymphocytes (~ 30%)
 – Granulocytes (~ 70%)

• Granulocytes:
 – Neutrophils (~ 60% of total leukocytes in blood)
 – Eosinophils (~ 3%)
 – Basophils (<1%, rare)
 – Monocytes (~ 6%)
 – Monocytes → Macrophages (tissues)

• Kupffer cells (lining liver sinusoids)
Lymphocyte

Platelets

Source: Undetermined
Monocyte

Source: Undetermined
Neutrophils and Macrophages

• Function:
 – Ingest foreign material
 – Kill bacteria and other microbes
 – Degrade necrotic tissue and foreign antigens

• Tissue damage during prolonged inflammation
Neutrophil Recruitment

Selectins/Addressins \rightarrow β_2-Integrin/ICAM-1

- flow
- rolling
- adhesion
- transmigration

inflammatory mediators

endothelium

- phagocytosis
- oxidant production
- lysosomal granules

Tissue Injury (e.g. Bacterial infection)

chemoattractant (e.g. IL-8, C5a)
Phagocytic Cell Activation: Chemotactic Factors

C5a

plasma membrane

G-protein tyrosine kinases

protein phosphorylation

phosphoinositide metabolism

↑ IP3

↑ Ca^{2+}

functional responses

Other receptors:
Toll-like receptor
Mannose receptor
Phagocytic Cell Functional Responses

- Adhesion (localization)
- Chemotaxis (migration)
- Phagocytosis
- NADPH oxidase activation
- Lysosomal granule fusion: degranulation
Opsonization and Phagocytosis

- Fc receptors for antibody
- Complement receptors: (e.g. C3b)
- Other
 - receptors for collectins (e.g. mannose-binding protein)
NEUTROPHIL PHAGOCYTOSIS OF OPSONIZED BACTERIA

Source: Undetermined
cell phagocytosis

Oxygen radicals

Elastase
Collagenase
Acid hydrolases

Source: Undetermined
Respiratory Burst: NADPH Oxidase

![Graph showing oxygen levels over time for normal and patient groups. The graph indicates a decrease in oxygen levels over time with a stimulus added at the 0-minute mark. The patient group shows a steeper decrease compared to the normal group.](image)
Reactive Oxygen Metabolites

Superoxide anion: O_2^-

Hydrogen peroxide: H_2O_2

Hydroxyl radical: $OH^.$

Hypochlorous acid: $HOCl$

myeloperoxidase = MPO

Chronic Granulomatous Disease of Childhood (CGD): deficiency of NADPH Oxidase
Nitric Oxide (NO •) Synthase

L-arginine \rightarrow NO • \rightarrow hydroxyl radical
peroxynitrites

- Endothelial cell
- Macrophages (inducible): intracellular cytotoxic agent
- Nervous system
Oxidant Targets

a) unsaturated lipids: lipid peroxidation
 LOOH = lipid hydroperoxides

c) proteins
 - sulfhydryl groups
 - methionine
 - tyrosine

d) nucleic acids
Degranulation

- **Bactericidal proteins** (e.g. defensins)
- **Proteases**
 - serine proteases (e.g. elastase)
 - metalloproteinases (e.g. collagenase, gelatinase)
- **Acid hydrolases**
Protective Mechanisms

Anti-oxidant: specific vs. non-specific

Specific enzymes:

Superoxide dismutase: \(2\text{O}_2^- + 2\text{H}^+ \rightarrow \text{H}_2\text{O}_2 + \text{O}_2\)

Catalase: \(2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2\)

Glutathione peroxidase: \(\text{H}_2\text{O}_2 + 2\text{GSH} \rightarrow 2\text{H}_2\text{O} + \text{GSSG}\)

\(\text{LOOH} + 2\text{GSH} \rightarrow \text{H}_2\text{O} + \text{LOH} + \text{GSSG}\)

\(\text{LOOH} = \text{lipid hydroperoxides}\)
\(\text{GSH} = \text{reduced glutathione}\)
\(\text{GSSG} = \text{oxidized glutathione}\)
Non-specific scavengers:

- Vitamin E
- Vitamin C
- Beta-carotene
Anti-proteases

- α-1- anti-protease (anti-trypsin):
 – plasma protein
 – binds proteases including elastase
 – inactivated by oxidants

- α-2- macroglobulin
 – plasma protein
 – binds proteases

- TIMPs: tissue inhibitors of metalloproteinases
 – cell derived
Synergism: Inactivation of alpha-1-Anti-trypsin

1. HOCl Dependent

PMNs → HOCl → a-1-antitrypsin (active) → a-1-antitrypsin (inactive)

2. Metalloproteinase Dependent

PMNs → Metalloproteinase (collagenase) → a-1-antitrypsin (active) → a-1-antitrypsin (inactive)
Case: A 3 year old boy is brought to the emergency department

- **CC:** a productive cough, fever (temp 102.1 C), and headache.
- **PEx:** healthy boy with rales present on auscultation of the left lower chest.
- **CxR:** intra-alveolar infiltrate in the left lower lobe.
- **Hx:** mother reports multiple episodes (approx. 5 per year) of recurrent bacterial infections including otitis media, sinusitis, pneumonia, and purulent skin lesions. These infections usually responded to antibiotic treatment.
List three different mechanisms that could account for this patient's increased susceptibility to bacterial infection:

1. __________________________________

2. __________________________________

3. __________________________________
Neutrophil Recruitment

Selectins/Addressins $\rightarrow \beta_2$-Integrin/ICAM-1

flow \rightarrow rolling \rightarrow adhesion \rightarrow transmigration

Tissue Injury (e.g. Bacterial infection)

- phagocytosis
- oxidant production
- lysosomal granules

inflammatory mediators

chemoattractant (e.g. IL-8, C5a)
Different mechanisms that could account for this patients increased susceptibility to bacterial infection:

1. Lack of neutrophils: leukopenia
2. Defective neutrophil function
 - Adhesion / migration
 - Phagocytosis
 - Bacterial killing
3. Lack of chemoattractants: deficiency
4. Lack of opsoninization of bacteria
 - antibody deficiency / complement def.
Additional References:

Phagocytic Cells:
Parham, The Immune System (2nd ed.): pgs. 15-17, 202-209.