Objectives

The objectives of this lecture are to understand:

1. The Pathogenesis of Autoimmune Diabetes (Type 1A diabetes)
2. The role of T cells in Disease Pathogenesis
3. The role of Cytokines in Disease Pathogenesis
4. The role of Islet Autoantibodies
Diabetes Mellitus

A systemic disease with multiple metabolic abnormalities, chief among which is an elevation in plasma glucose.

In addition to the primary defect in carbohydrate metabolism defects in lipid metabolism are widespread, with elevations in plasma FFA and TG, and, in some circumstances, of ketones.
The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus

I. Type 1 diabetes
 A. Immune mediated
 B. Idiopathic

II. Type 2 diabetes

III. Other specific types
Regulation of Plasma Glucose

Steady State Plasma Glucose

Glucose Production

Glucose Disposal

Peripheral Tissues

Liver

β Cells
Regulation of Plasma Glucose

Glucose Production

Liver

Glucose Disposal

Peripheral Tissues
Diabetes Mellitus- Type 1

- Increased thirst (polydypsia)
- Increased urination (polyuria)
- Increased appetite (polyphagia)
- Weight loss
- Fatigue
- Rapid, early onset (before age 15)
Differences Between Type 1 and Type 2 Diabetes

<table>
<thead>
<tr>
<th></th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of onset</td>
<td>Young</td>
<td>Older</td>
</tr>
<tr>
<td>Type of onset</td>
<td>Acute</td>
<td>Insidious</td>
</tr>
<tr>
<td>Genetic background</td>
<td>HLA related</td>
<td>Not HLA related</td>
</tr>
<tr>
<td>Islet cell antibodies</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Insulin secretion</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Nutritional status</td>
<td>Thin</td>
<td>Obese</td>
</tr>
<tr>
<td>Insulin dependence</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Insulin resistance</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Responsiveness to Orals</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ketosis proneness</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Relative Proportions of Types 1 & 2 DM

95% Type 2
5% Type 1
Type 1 diabetes (IDDM)

Chronic autoimmune disease with juvenile onset, but may develop in adults as well as elderly (LADA).

Polygenic disease
- Strong MHC linkage
- Non-MHC genes

Autoimmune etiology
- Antibodies to islet autoantigens
- Autoreactive T cells

Immune-modulation alters the course of disease
- Antigen vaccination
- General immunosuppression
Stages in Development of Type 1 Diabetes

GENETICALLY AT RISK

BETA CELL MASS

GENETIC PREDISPOSITION

MULTIPLE ANTIBODY POSITIVE

INSULITIS

BETA CELL INJURY

LOSS OF FIRST PHASE
INSULIN RESPONSE

“PRE”-DIABETES

DIABETES

NEWLY DIAGNOSED DIABETES

G. Eisenbarth, NEJM, 1986
Type 1 diabetes: a chronic inflammatory disease of the islets

Genetic Susceptibility
Empiric risk of developing Type 1 diabetes

<table>
<thead>
<tr>
<th>Relative Type</th>
<th>Empiric Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>First degree relatives of T1DM probands*</td>
<td>5-7%</td>
</tr>
<tr>
<td>Individuals without relatives with T1DM*</td>
<td><1%</td>
</tr>
<tr>
<td>Children of affected father**</td>
<td>~6%</td>
</tr>
<tr>
<td>Children of affected mother**</td>
<td>~2%</td>
</tr>
</tbody>
</table>

These estimates are for North American Caucasian* and Scandinavian populations**
The Wellcome Trust Case Control Consortium (WTCCC) primary genome-wide association (GWA) scan in T1DM

HLA

Human Leukocyte Antigen

human MHC

cell-surface proteins

important in self vs. nonself distinction

present peptide antigens to T cells

CLASS I: A,B,C

CLASS II: DR,DQ,DP
The Human Leukocyte Antigen Complex (6p21.31)

Class II (1.1 Mb)
DP DQ DR

Class III (0.7 Mb)
B C

Class I (2.2Mb)
A

Complement and Cytokines

Frequent Recombination

Centromere

Recombination is Rare

Telomere

Class I-like genes and pseudogenes

Recombination is Rare
MHC Haplotype Sharing Increases DR3/4 Sibling Risk

Haplotype Determination:

Family A
- **Both Haplotypes Shared**: Siblings share both HLA-A and HLA-DRB1.
 - HLA-A: 1, 2
 - HLA-DRB1: 3, 4
- **Diabetic Proband**: HLA-A: 1, 29
- **DAISY Sibling**: HLA-A: 1, 29

Family B
- **One Haplotype Shared**: Siblings share one HLA-A or HLA-DRB1.
 - HLA-A: 2, 68
 - HLA-DRB1: 4, 6
- **Diabetic Proband**: HLA-A: 2, 30
- **DAISY Sibling**: HLA-A: 2, 30

Family C
- **No Haplotype Shared**: Siblings share neither HLA-A nor HLA-DRB1.
 - HLA-A: 2
 - HLA-DRB1: 3
- **Diabetic Proband**: HLA-A: 2
- **DAISY Sibling**: HLA-A: 2
MHC haplotype sharing increases risk in DR3/4-DQ8 siblings

% Autoantibody Positive

- Share 2
- Share 0 or 1

% Diabetic

- Share 2
- Share 0 or 1

Source: Aly T et al. PNAS, 2006
Multiple Factors May Drive Progressive Decline of β-Cell Function

- Hyperglycemia (glucose toxicity)
- Apoptosis/Necrosis
- Islet Autoantibodies
- Islet Neogenesis
- Autoreactive T cells
 - (Elevated cytokines IFNγ, IL-1β, TNFα, etc.)
- Environmental Factors
 - Hyperglycemia (glucose toxicity)
Environmental Factors
Congenital Rubella Syndrome

- 30% diabetic usually early T1DM, some T2DM
- incubation period 5-20 yrs
- HLA-DR3 or 3/4 in those with diabetes
- other autoimmune diseases (thyroid, AD)
- molecular mimicry with a 52kD autoantigen
- animal model - Syrian hamsters
- No diabetes after postnatal infection or MMR vaccination
Other Environmental factors involved in Type 1 diabetes pathogenesis

- Cocksakie B Virus? Molecular mimicry with the islet autoantigen glutamic acid decarboxylase (GAD)
- Enterovirus?
- Streptozotocine (low doses)?
Loss of self tolerance to self-antigens
Autoantigens in Diabetes

- Insulin
- Glutamic acid decarboxylase (GAD65)
- Islet autoantigen 512aa (ICA512/IA-2)
- Zinc Transporter Znt8
Is there a primary antigen or immune response to multiple antigens required for autoimmunity?

T cells specific for one antigen (insulin)

Insulitis

Epitope and antigen spreading, expansion

Diabetes

OR

T cells specific for multiple antigens

Insulitis

Expansion of T cells

Diabetes

Krishnamurthy et al. JCI:116:3258, 2006
Role of T cells
Pathogenic Cells in Type 1 diabetes

Cell-mediated Immunity

• CD4+ T cells-MHC class II molecules (APC) interaction
• CD8+ T cells-MHC class I molecules (APC) interaction
• NK cells ?
• Macrophages ?
• Dendritic cells ?
INSULITUS. PATIENT DIED FROM DKA
Type 1 diabetes pathogenesis: alteration between pathogenicity (T effector cells) and regulation (regulatory T cells)

T1D Development

Contributing Factors

Normal

Pathogenicity
Regulation

T1D Prone

Pathogenicity
Regulation

T1D Protected

Pathogenicity
Regulation
Example of regulatory T cell defect: X-linked autoimmunity-immunodeficiency syndrome (XLAAD)

Gene defect: FOXP3

- This genetic defect can lead to Type 1 diabetes in the presence of other autoimmune disorders for abnormalities in regulatory T cell maturation.
Regulatory T cells (Tregs)

Thymus

Periphery

Naïve CD4⁺

CD4⁺CD25⁺ FoxP3⁺

TGF-β1

Th2

Th1

Th17

Treg

FoxP3

TGF-β1 others
Role of cytokines
Differentiation of CD4+ T-cell Subsets

- IL-12 leads to Th1, which produces IFN-γ and IL-2, contributing to Cell-Mediated Immunity, Autoimmunity, Pro-Inflammation, and Allograft Rejection.
- IL-10 leads to Tr1, which produces IL-10 and TGF-β, acting as Suppressor/Regulatory, leading to Humoral Immunity and Anti-Inflammatory.
- IFN-α leads to Tn.
- IL-4 leads to Th2, which produces IL-4 and IL-5, contributing to Anti-Inflammatory.
- CD4+ T-cell

Legend:
- Th1: Th1 polarized cell
- Tr1: Tr1 polarized cell
- Th2: Th2 polarized cell
- Tn: Null cell
- IFN-γ, IL-2, IL-10, TGF-β, IL-4, IL-5
Oxidative Stress

IL-β, IFN-γ, TNF-α → Nitric Oxide (NO) production → β-cell death

Oxidative Stress
Role of autoantibodies
Cytoplasmic Islet-cell-antibody staining

Positive reaction

Negative reaction

Source: Diabetes Care, 1988
Islet Cell Autoantibody Assays

GAD65 Autoantibodies

IA-2 Autoantibodies

Immunoprecipitation of *in vitro* transcribed/translated \[^{35}\text{S-Met}\] labeled antigen using patient serum. [CV: inter-assay: 9.5%; intra–assay: 12.4%]

Insulin Autoantibodies (IAA)

New Radioimmunoassay [CV: inter-assay: 19.4%; intra-assay: 8%]

Islet Cell Antibodies (ICA)

Immunoperoxidase staining in rat and human pancreas
Prospective Studies in First Degree Relatives of T1DM Probands

Sibling/offspring cohort
Cumulative risk of developing clinical Type 1 diabetes in relatives of T1DM patients using islet autoantibodies (IAA, GAD65, IA-2, ICA)
Objective: To determine whether any immunomodulatory therapy can ameliorate insulin secretion in newly diagnosed T1DM (17-40 yr of age) and to ultimately prevent T1DM onset in first-degree relatives of T1DM probands. First trials in relatives started in 2003.

Criteria for enrolling T1DM patients in TrialNet: ≥ 2Ab to islet antigens.
Conclusions

• Type 1 diabetes mellitus is a polygenic disease. Although at least 19 T1DM-related candidate genes have been identified, polymorphic regions within the HLA complex confers the strongest diabetogenic effect.

• CD4+ and CD8+ T cell responses to islet autoantigens (insulin, GAD65 and IA-2) are pathogenic.

• A defect of Regulatory T cells in suppressing pathogenic autoimmune responses is associated with Type 1 diabetes.

• The proinflammatory cytokines IL-1β, IFN-γ and TNF-α can cause β cell death (increased NO production).

• Gene defects in FOXP3 and AIRE cause multiple autoimmune disease (APECED, APS-I respectively) including Type 1 diabetes.

• The presence of multiple autoantibodies to insulin, GAD65, IA-2 are high risk markers of Type 1 diabetes progression.