2008-07

N 536 - Utilization of Nursing Research in Advanced Practice, Summer 2008

Tzeng, Huey-Ming

http://hdl.handle.net/2027.42/64943
The following information is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you have questions or concerns about this information or your medical condition. You assume all responsibility for use and potential liability associated with any use of the material.

Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content objects. Users of content are responsible for their compliance with applicable law. Mention of specific products in this recording solely represents the opinion of the speaker and does not represent an endorsement by the University of Michigan.
Handout: Summary of Statistical Tests

A. Parametrical statistical tests

<table>
<thead>
<tr>
<th>Name (Test Statistic)</th>
<th>Purpose</th>
<th>Measurement Level *</th>
<th>Corresponding Index of Strength of Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-sample t-test (t) (rarely used)</td>
<td>To test the predicted value of a man for a population</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>t-test for independent groups (t), also called independent t-test</td>
<td>To test the difference between the means of 2 independent groups</td>
<td>N</td>
<td>_</td>
</tr>
<tr>
<td>t-test for dependent groups (t), also called paired t-test</td>
<td>To test the difference between the means of 2 related groups/sets of scores</td>
<td>N</td>
<td>_</td>
</tr>
<tr>
<td>Analysis of variance/ANOVA (F)</td>
<td>To test the difference among the means of 3 or more independent groups (one-way) or groups for 2 or more IVs (multi-way)</td>
<td>N</td>
<td>_</td>
</tr>
<tr>
<td>Repeated measures ANOVA/RANOVA (F)</td>
<td>To test the difference among means of 3 or more related groups/sets of scores</td>
<td>N</td>
<td>_</td>
</tr>
<tr>
<td>Pearson product moment correlation (r)</td>
<td>To test the existence of a relationship or correlation between two variables</td>
<td>I, R</td>
<td>_</td>
</tr>
</tbody>
</table>

Measurement level of Independent Variable (IV) and Dependent Variable (DV): N = Nominal, I = Interval, R = Ratio.
B. Non-parametrical statistical tests

<table>
<thead>
<tr>
<th>Name (Test Statistic)</th>
<th>Purpose</th>
<th>Measurement Level *</th>
<th>Corresponding Index of Strength of Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square goodness-of-fit test (χ^2)</td>
<td>To test the predicted value of a proportion for a population</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Chi-square test of independence (χ^2)</td>
<td>To test the difference in proportion in 2 or more independent groups</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Fisher’s exact test</td>
<td>To test the difference in proportions (2 X 2 table) when expected frequency for a cell < 5</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>McNemar test (χ^2)</td>
<td>To test the difference in proportions for 2 related groups (2 X 2 design)</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Cochran’s Q test (Q)</td>
<td>To test the difference in proportions for 3 or more related groups</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mann-Whitney U-test (U)</td>
<td>To test the difference in the ranks of scores of 2 independent groups</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>Kruskal-Wallis test (H)</td>
<td>To test the difference in the ranks of scores of 3 or more related groups</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>Wilcoxon signed ranks test (T or z)</td>
<td>To test the difference in the ranks of scores of 2 related groups</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>Friedman test (χ^2)</td>
<td>To test the difference in the ranks of scores of 3 or more related groups</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>Spearman’s rank order correlation (r_ς)</td>
<td>To test the existence of a correlation between two variables</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Kendall’s tau (τ)</td>
<td>To test the existence of a correlation between two variables</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
C. Multivariate statistical analyses

<table>
<thead>
<tr>
<th>Name</th>
<th>Purpose</th>
<th>Measurement Level *</th>
<th>Number of--</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IV</td>
<td>DV</td>
</tr>
<tr>
<td>Multiple correlation/regression</td>
<td>To test the relationship between 2 or more IVs and 1 DV; to predict a DV from 2 or more IVs</td>
<td>N, I, R</td>
<td>I, R</td>
</tr>
<tr>
<td>Analysis of covariance (ANCOVA)</td>
<td>To test the difference between the means of 2 or more groups, while controlling for 1 or more covariate</td>
<td>N</td>
<td>I, R</td>
</tr>
<tr>
<td>Multivariate analysis of variance (MANOVA)</td>
<td>To test the difference between the means of 2 or more groups for 2 or more DVs simultaneously</td>
<td>N</td>
<td>I, R</td>
</tr>
<tr>
<td>Multivariate analysis of covariance (MANCOVA)</td>
<td>To test the difference between the means of 2 or more groups for 2 or more DVs simultaneously, while controlling for 1+ covariate</td>
<td>N</td>
<td>I, R</td>
</tr>
<tr>
<td>Canonical analysis</td>
<td>To test the relationship between 2 sets of variables (variables on the right, variables on the left)</td>
<td>N, I, R</td>
<td>N, I, R</td>
</tr>
<tr>
<td>Factor analysis</td>
<td>To determine the dimensionality/structure of a set of variables</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>Discriminant analysis</td>
<td>To test the relationship between 2 or more IVs and 1 DV. To predict group membership; to classify cases into groups.</td>
<td>N, I, R</td>
<td>N</td>
</tr>
<tr>
<td>Logistic regression</td>
<td>To test the relationship between 2 or more IVs and 1 DV. To predict the probability of an event; to estimate relative risk.</td>
<td>N, I, R</td>
<td>N</td>
</tr>
</tbody>
</table>

Note. * Measurement level of the independent (IV), dependent variable, (DV), and covariates (Cov): N = Nominal, I = Interval, R = Ratio.
Selected Statistical Symbols

Note. This list contains some commonly used symbols in statistics, in approximate alphabetical order, with English and Greek letters intermixed. Non-letter symbols are placed at the end.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Regression constant, the intercept</td>
</tr>
<tr>
<td>α</td>
<td>Greek alpha; significance level in hypothesis testing, probability of Type 1 error</td>
</tr>
<tr>
<td>b</td>
<td>Regression coefficient, slope of the line</td>
</tr>
<tr>
<td>β</td>
<td>Greek beta, probability of a Type II error; also, a standardized regression coefficient (beta weights)</td>
</tr>
<tr>
<td>x²</td>
<td>Greek chi squared, a test statistic for several nonparametric tests</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval around estimate of a population parameter</td>
</tr>
<tr>
<td>df</td>
<td>Degrees of freedom</td>
</tr>
<tr>
<td>e</td>
<td>Base of natural logarithms, e = 2.7183</td>
</tr>
<tr>
<td>n²</td>
<td>Greek eta squared, index of variance accounted for in ANOVA context</td>
</tr>
<tr>
<td>f</td>
<td>Frequency (count) for a score value</td>
</tr>
<tr>
<td>F</td>
<td>Test statistic used in ANOVA, ANCOVA and other tests</td>
</tr>
<tr>
<td>γ</td>
<td>Greek gamma, population effect size</td>
</tr>
<tr>
<td>H₀</td>
<td>Null hypothesis</td>
</tr>
<tr>
<td>H₁</td>
<td>Alternative hypothesis; research hypothesis</td>
</tr>
<tr>
<td>λ</td>
<td>Greek lambda, a test statistic used in several multivariate analyses (Wilks’ lambda)</td>
</tr>
<tr>
<td>µ</td>
<td>Greek mu, the population mean</td>
</tr>
<tr>
<td>M</td>
<td>Sample mean (alternative symbol for (\bar{x}))</td>
</tr>
<tr>
<td>MS</td>
<td>Mean square, variance estimate in ANOVA</td>
</tr>
<tr>
<td>n</td>
<td>Number of cases in a subgroup of the sample</td>
</tr>
<tr>
<td>N</td>
<td>Total number of cases or sample members</td>
</tr>
<tr>
<td>p</td>
<td>Probability that observed data are consistent with null hypothesis</td>
</tr>
<tr>
<td>r</td>
<td>Sample Pearson product-moment correlation coefficient</td>
</tr>
<tr>
<td>rₛ</td>
<td>Spearman’s rank order correlation coefficient</td>
</tr>
<tr>
<td>R</td>
<td>Multiple correlation coefficient</td>
</tr>
<tr>
<td>R²</td>
<td>Coefficient of determination. Proportion of variance in Y attributable to Xs</td>
</tr>
<tr>
<td>Rₛ</td>
<td>Canonical correlation coefficient</td>
</tr>
<tr>
<td>ρ</td>
<td>Greek rho. population correlation coefficient</td>
</tr>
<tr>
<td>SD</td>
<td>Sample standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>σ</td>
<td>Greek sigma (lower case), population standard deviation</td>
</tr>
<tr>
<td>Σ</td>
<td>Greek sigma (upper case), sum of</td>
</tr>
<tr>
<td>SS</td>
<td>Sum of squares</td>
</tr>
<tr>
<td>t</td>
<td>Student’s t, a test statistic</td>
</tr>
<tr>
<td>U</td>
<td>Test statistic for the Mann-Whitney U-test</td>
</tr>
<tr>
<td>Y</td>
<td>Predicted value of Y, dependent variable in regression analysis</td>
</tr>
</tbody>
</table>