2008-07

N 536 - Utilization of Nursing Research in Advanced Practice, Summer 2008

Tzeng, Huey-Ming

http://hdl.handle.net/2027.42/64943
Research Design

Contributors
Sonia A. Duffy, PhD, RN
Lisa Kane Low, PhD, CNM, FACNM
Huey-Ming Tzeng, PhD, RN
Design Characteristics

- Maximizes control over factors to increase the validity of the findings
- Guides the researcher in planning and implementing a study
Level of Control: Quantitative Research

- Descriptive
- Correlational
- Quasi-experimental
- Experimental

Increased Control with Design
Concepts Relevant to Research Design (1)

Causality

A ⟷ B
Pressure ⟷ Ulcer

Multicausality

Years smoking ⟷ Heart disease
High fat diet ⟷ Heart disease
Limited exercise ⟷ Heart disease
Concepts Relevant to Research Design (2)

- Probability: Likelihood of an outcome
- Bias: Slanting findings
- Manipulation: Treatment
- Control: All phases of design
Design Validity

- Measure of accuracy of a study

- Examined with critique of the following dimensions:
 - Statistical conclusion validity
 - Internal validity
 - Construct validity
 - External validity
Elements of a Strong Research Design (1)

- **Controlling the environment of the study setting**

- **Levels of controlling:**
 - Natural setting
 - Partially controlled setting: e.g., clinics
 - Highly controlled setting: e.g., laboratory
Elements of a Strong Research Design (2)

- Controlling the equivalence of subjects and groups
 - Random subject selection
 - Random assignment to groups
Elements of a Strong Research Design (3)

- **Controlling the treatment**
 - Choose a treatment based on research and practice
 - Develop a protocol for implementation
 - Document the implemented treatment
 - Use a check-list to determine the extent of completeness to which the treatment was implemented
 - Evaluate the treatment during the study
Elements of a Strong Research Design (4)

- Controlling measurement
 - Reliability
 - Validity
 - Number of measurement methods
 - Types of instruments
Controlling extraneous variables

- Identify and eliminate extraneous variables via sample criteria, choice of settings, or research design
- Random sampling
- Sample: Heterogenous, homogeneous, or matching
- Statistical control
Problems with Study Designs

- Inappropriate for the study purpose or the research framework
- Poorly developed designs
- The research methods were poorly implemented
- Inadequate treatment, sample, or measurement methods
Selecting a Design

Is there a treatment?

No
Is the primary purpose examination of relationships?

No
Descriptive Design

Yes
Will the sample be studied as a single group?

No
Correlational Design

Yes
Quasi-Experimental Study

Is the treatment tightly controlled by the researcher?

No

Yes
Will a randomly assigned control group be used?

No

Yes
Is the original sample randomly selected?

No

Yes
Experimental Study
Selecting a Descriptive Design

Examine sequences across time?

- Yes
 Following same subjects across time?
 - Yes
 - Single unit of study
 - No
 Studying events partitioned across time?
 - Yes
 - Longitudinal Study
 - No
 Trend Analysis

- No
 One Group?
 - No
 Comparative Descriptive Design
 - Yes
 Descriptive Design

Cross-sectional design

Repeated measures of each subject

Yes

No

Longitudinal design with treatment partitioning

Cross-sectional design with treatment partitioning
A Typical Descriptive Design

Clarification → Measurement → Description → Interpretation

Phenomenon of Interest

- Variable 1
- Variable 2
- Variable 3
- Variable 4

Description of Variable 1
Description of Variable 2
Description of Variable 3
Description of Variable 4

Interpretation of Meaning
Development of Hypotheses
A Comparative Descriptive Design

Group I
{variables measured}

Describe

Comparison of Groups on Selected Variables

Interpretation of Meaning

Group II
{variables measured}

Describe

Development of Hypotheses
Selecting the Type of Correlational Design

<table>
<thead>
<tr>
<th>Describe relationships between/among variables?</th>
<th>Predict relationships between/among variables?</th>
<th>Test theoretically proposed Relationships?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive correlational design</td>
<td>Predictive correlational design</td>
<td>Model testing design</td>
</tr>
</tbody>
</table>
A Descriptive Correlational Design

Measurement

Research Variable 1 → Description of variable → Examination of Relationship → Interpretation of Meaning

Research Variable 2 → Description of variable → Development of Hypotheses
A Predictive Design

Value of Intercept + Value of Independent Variable 1 + Value of Independent Variable 2 = Predicted Value of Dependent Variable
Selecting The Type of Quasi-Experimental Design

- Control Group?
 - No
 - Pretest?
 - No
 - One-group post-test only design
 - Yes
 - Repeated Measures?
 - No
 - Strategy for Comparison
 - No
 - Suggest Reevaluating design
 - Yes
 - Compare treatment & control conditions?
 - Yes
 - Repeated Measures?
Selecting The Type of Experimental Design

- **Pretest**
 - No: Post-test only control group design
 - Yes:
 - **Repeated Measurements?**
 - No:
 - Examine effects of confounding variables?
 - No: Multiple sites?
 - Yes: Randomized Block Design
 - No: Examination of complex relationships among variables in relation to treatment
 - Yes: Randomized clinical trials
 - Yes: Comparison of multiple levels of treatment
 - Yes: Repeated measures design
Pretest-Post Test, Control Group Designs

<table>
<thead>
<tr>
<th>Measurement of dependent variables</th>
<th>Manipulation of independent variables</th>
<th>Measurement of dependent variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomly selected experimental group</td>
<td>PRETEST</td>
<td>TREATMENT</td>
</tr>
<tr>
<td>Randomly selected control group</td>
<td>PRETEST</td>
<td>POST-TEST</td>
</tr>
</tbody>
</table>

Treatment: Under control of researcher

Findings:
- Comparison of pretest and post-test scores
- Comparison of experimental and control groups
- Comparison of pretest-post-test differences between samples

Example: Your self (1990). The impact of group reminiscence counseling on a depressed elderly population.

Uncontrolled threats to validity:
- Testing
- Mortality

Instrumentation
- Restricted generalizability as control increases
Post-Test-Only Control Group Design

<table>
<thead>
<tr>
<th>Treatment:</th>
<th>Under control of researcher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findings:</td>
<td>Comparison of experimental and control groups</td>
</tr>
<tr>
<td>Uncontrolled threats to validity:</td>
<td>Instrumentation, Mortality, Limited generalizability as control increases</td>
</tr>
</tbody>
</table>

Randomly selected experimental group

- Measurement of independent variables
- TREATMENT

Randomly selected control group

- Measurement of dependent variables
- POST-TEST

- POST-TEST
<table>
<thead>
<tr>
<th>Pain Control Management</th>
<th>Primary Nursing Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional care</td>
<td>Primary Care</td>
</tr>
<tr>
<td>PRN Medication</td>
<td>Unit A</td>
</tr>
<tr>
<td>New approach: “Around the clock” medicine</td>
<td>Unit B</td>
</tr>
<tr>
<td></td>
<td>Unit C</td>
</tr>
<tr>
<td></td>
<td>Unit D</td>
</tr>
<tr>
<td></td>
<td>Unit E</td>
</tr>
<tr>
<td></td>
<td>Unit F</td>
</tr>
<tr>
<td></td>
<td>Unit G</td>
</tr>
<tr>
<td></td>
<td>Unit H</td>
</tr>
<tr>
<td></td>
<td>No Primary Care</td>
</tr>
<tr>
<td></td>
<td>Unit A</td>
</tr>
<tr>
<td></td>
<td>Unit B</td>
</tr>
<tr>
<td></td>
<td>Unit C</td>
</tr>
<tr>
<td></td>
<td>Unit D</td>
</tr>
<tr>
<td></td>
<td>Unit E</td>
</tr>
<tr>
<td></td>
<td>Unit F</td>
</tr>
<tr>
<td></td>
<td>Unit G</td>
</tr>
<tr>
<td></td>
<td>Unit H</td>
</tr>
</tbody>
</table>
Advantages of Experimental Designs

- More controls in design and conducting a study
- Increased internally validity
 - Decreased threats to design validity
- Fewer rival hypotheses
Advantages of Quasi-Experimental Designs

- More practical
 - Ease of implementation
- More feasible
 - Resources, subjects, time, setting
- More generalizable
 - Comparable to practice
Developing the Design Section of Your Proposal

- Identify the design
 - Name it specifically
- Provide a map of the design
- Discuss your rationale for using this design
- Describe threats to the validity of the chosen design