N 536 - Utilization of Nursing Research in Advanced Practice, Summer 2008

Tzeng, Huey-Ming

http://hdl.handle.net/2027.42/64943
Unless otherwise noted, the content of this course material is licensed under a Creative Commons 3.0 License.
http://creativecommons.org/licenses/by/3.0/

Copyright 2008, Huey-Ming Tzeng, Sonia A. Duffy, Lisa Kane Low.

The following information is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you have questions or concerns about this information or your medical condition. You assume all responsibility for use and potential liability associated with any use of the material.

Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content objects. Users of content are responsible for their compliance with applicable law. Mention of specific products in this recording solely represents the opinion of the speaker and does not represent an endorsement by the University of Michigan.
Research Design

Contributors
Sonia A. Duffy, PhD, RN
Lisa Kane Low, PhD, CNM, FACNM
Huey-Ming Tzeng, PhD, RN
Design Characteristics

- Maximizes control over factors to increase the validity of the findings
- Guides the researcher in planning and implementing a study
Level of Control: Quantitative Research

- Descriptive
- Correlational
- Quasi-experimental
- Experimental

Increased Control with Design
Concepts Relevant to Research Design (1)

Causality
A \[\rightarrow\] B
Pressure \[\rightarrow\] Ulcer

Multicausality
Years smoking \[\rightarrow\] Heart disease
High fat diet \[\rightarrow\] Heart disease
Limited exercise \[\rightarrow\] Heart disease
Concepts Relevant to Research Design (2)

- Probability: Likelihood of an outcome
- Bias: Slanting findings
- Manipulation: Treatment
- Control: All phases of design
Design Validity

- Measure of accuracy of a study

- Examined with critique of the following dimensions:
 - Statistical conclusion validity
 - Internal validity
 - Construct validity
 - External validity
Elements of a Strong Research Design (1)

- Controlling the environment of the study setting

- Levels of controlling:
 - Natural setting
 - Partially controlled setting: e.g., clinics
 - Highly controlled setting: e.g., laboratory
Elements of a Strong Research Design (2)

- Controlling the equivalence of subjects and groups
 - Random subject selection
 - Random assignment to groups
Elements of a Strong Research Design (3)

- Controlling the treatment
 - Choose a treatment based on research and practice
 - Develop a protocol for implementation
 - Document the implemented treatment
 - Use a check-list to determine the extent of completeness to which the treatment was implemented
 - Evaluate the treatment during the study
Elements of a Strong Research Design (4)

- **Controlling measurement**
 - Reliability
 - Validity
 - Number of measurement methods
 - Types of instruments
Elements of a Strong Research Design (5)

- Controlling extraneous variables
 - Identify and eliminate extraneous variables via sample criteria, choice of settings, or research design
 - Random sampling
 - Sample: Heterogenous, homogeneous, or matching
 - Statistical control
Problems with Study Designs

- Inappropriate for the study purpose or the research framework
- Poorly developed designs
- The research methods were poorly implemented
- Inadequate treatment, sample, or measurement methods
Selecting a Design

Is there a treatment?

- No
- Yes

Is the primary purpose examination of relationships?

- No
- Yes

Descriptive Design

Will the sample be studied as a single group?

- No
- Yes

Correlational Design

Quasi-Experimental Study

Is the treatment tightly controlled by the researcher?

- No
- Yes

Will a randomly assigned control group be used?

- No
- Yes

Is the original sample randomly selected?

- No
- Yes

Experimental Study
Selecting a Descriptive Design

Examining sequences across time?

- No
 - One Group?
 - No
 - Comparative Descriptive Design
 - Yes
 - Descriptive Design

- Yes
 - Following same subjects across time?
 - No
 - Data collected across time
 - No
 - Cross-sectional design
 - Yes
 - Studying events partitioned across time?
 - No
 - Trend Analysis
 - Yes
 - Repeated measures of each subject
 - No
 - Longitudinal Study
 - Yes
 - Case Study
A Typical Descriptive Design

- Phenomenon of Interest
 - Variable 1
 - Variable 2
 - Variable 3
 - Variable 4

- Clarification → Measurement → Description → Interpretation

 - Description of Variable 1
 - Description of Variable 2
 - Description of Variable 3
 - Description of Variable 4

- Interpretation of Meaning
- Development of Hypotheses
A Comparative Descriptive Design

Group I
{variables measured}

Group II
{variables measured}

Describe

Comparison of Groups on Selected Variables

Interpretation of Meaning

Development of Hypotheses
Selecting the Type of Correlational Design

<table>
<thead>
<tr>
<th>Describe relationships between/among variables?</th>
<th>Predict relationships between/among variables?</th>
<th>Test theoretically proposed Relationships?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive correlational design</td>
<td>Predictive correlational design</td>
<td>Model testing design</td>
</tr>
</tbody>
</table>
A Descriptive Correlational Design

Measurement

Research Variable 1

Description of variable

Examination of Relationship

Interpretation of Meaning

Development of Hypotheses

Research Variable 2

Description of variable
A Predictive Design

\[
\text{Value of Intercept} + \text{Value of Independent Variable 1} + \text{Value of Independent Variable 2} = \text{Predicted Value of Dependent Variable}
\]
Selecting The Type of Quasi-Experimental Design

Control Group?
 No
 Pretest?
 No
 One-group post-test only design
 Comparison with population values?
 No
 Repeated Measures?
 No
 Suggest Reevaluating design
 One group pretest/post-test design
 Yes
 Compare treatment & control conditions?
 Yes
 Pretest?
 No
 Strategy for Comparison
 No
 Yes
 Repeated Measures?
Selecting The Type of Experimental Design

- Pretest
 - No: Post-test only control group design
 - Yes: Repeated Measurements?
 - No: Examine effects of confounding variables?
 - No: Multiple sites?
 - No: Pretest/post-test control group design
 - Yes: Randomized clinical trials
 - No: Comparison of multiple levels of treatment
 - No: Examination of complex relationships among variables in relation to treatment
 - Yes: Nested Designs
 - Yes: Randomized Block Design
Pretest-Post Test, Control Group Designs

<table>
<thead>
<tr>
<th>Randomly selected experimental group</th>
<th>PRETEST</th>
<th>TREATMENT</th>
<th>POST-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomly selected control group</td>
<td>PRETEST</td>
<td></td>
<td>POST-TEST</td>
</tr>
</tbody>
</table>

Treatment:
Under control of researcher

Findings:
- Comparison of pretest and post-test scores
- Comparison of experimental and control groups
- Comparison of pretest-post-test differences between samples

Example:
Your self (1990). The impact of group reminiscence counseling on a depressed elderly population.

Uncontrolled threats to validity:
- Testing
- Mortality

Instrumentation:
- Restricted generalizability as control increases
Post-Test-Only Control Group Design

<table>
<thead>
<tr>
<th>Measurement of independent variables</th>
<th>Measurement of dependent variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomly selected experimental group</td>
<td>TREATMENT</td>
</tr>
<tr>
<td>Randomly selected control group</td>
<td></td>
</tr>
</tbody>
</table>

Treatment:
- Under control of researcher

Findings:
- Comparison of experimental and control groups

Example:

Uncontrolled threats to validity:
- Instrumentation
- Mortality
- Limited generalizability as control increases
<table>
<thead>
<tr>
<th></th>
<th>Pain Control Management</th>
<th>Primary Nursing Care</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unit A</td>
</tr>
<tr>
<td>Traditional care</td>
<td>Unit A</td>
<td></td>
</tr>
<tr>
<td>PRN Medication</td>
<td>Unit B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit D</td>
<td></td>
</tr>
<tr>
<td>New approach:</td>
<td>Unit E</td>
<td></td>
</tr>
<tr>
<td>“Around the clock”</td>
<td>Unit F</td>
<td></td>
</tr>
<tr>
<td>medication</td>
<td>Unit G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit H</td>
<td></td>
</tr>
</tbody>
</table>
Advantages of Experimental Designs

- More controls in design and conducting a study
- Increased internally validity
 - Decreased threats to design validity
- Fewer rival hypotheses
Advantages of Quasi-Experimental Designs

- More practical
 - Ease of implementation
- More feasible
 - Resources, subjects, time, setting
- More generalizable
 - Comparable to practice
Developing the Design Section of Your Proposal

- Identify the design
 - Name it specifically

- Provide a map of the design
- Discuss your rationale for using this design
- Describe threats to the validity of the chosen design