Research Design

Contributors
Sonia A. Duffy, PhD, RN
Lisa Kane Low, PhD, CNM, FACNM
Huey-Ming Tzeng, PhD, RN
Design Characteristics

- Maximizes control over factors to increase the validity of the findings

- Guides the researcher in planning and implementing a study
Level of Control: Quantitative Research

- Descriptive
- Correlational
- Quasi-experimental
- Experimental

Increased Control with Design
Concepts Relevant to Research Design (1)

Causality
A \rightarrow B
Pressure \rightarrow Ulcer

Multicausality
Years smoking \rightarrow Heart disease
High fat diet \rightarrow Heart disease
Limited exercise \rightarrow Heart disease
Concepts Relevant to Research Design (2)

- Probability: Likelihood of an outcome
- Bias: Slanting findings
- Manipulation: Treatment
- Control: All phases of design
Design Validity

• Measure of accuracy of a study

• Examined with critique of the following dimensions:
 o Statistical conclusion validity
 o Internal validity
 o Construct validity
 o External validity
Elements of a Strong Research Design (1)

- Controlling the environment of the study setting

- Levels of controlling:
 - Natural setting
 - Partially controlled setting: e.g., clinics
 - Highly controlled setting: e.g., laboratory
Elements of a Strong Research Design (2)

- Controlling the equivalence of subjects and groups
 - Random subject selection
 - Random assignment to groups
Elements of a Strong Research Design (3)

- **Controlling the treatment**
 - Choose a treatment based on research and practice
 - Develop a protocol for implementation
 - Document the implemented treatment
 - Use a check-list to determine the extent of completeness to which the treatment was implemented
 - Evaluate the treatment during the study
Elements of a Strong Research Design (4)

- Controlling measurement
 - Reliability
 - Validity
 - Number of measurement methods
 - Types of instruments
Elements of a Strong Research Design (5)

- **Controlling extraneous variables**
 - Identify and eliminate extraneous variables via sample criteria, choice of settings, or research design
 - Random sampling
 - Sample: Heterogenous, homogeneous, or matching
 - Statistical control
Problems with Study Designs

- Inappropriate for the study purpose or the research framework
- Poorly developed designs
- The research methods were poorly implemented
- Inadequate treatment, sample, or measurement methods
Selecting a Design

Is there a treatment?

No

Is the primary purpose examination of relationships?

No

Descriptive Design

Will the sample be studied as a single group?

No

Correlational Design

Yes

Quasi-Experimental Study

No

Is the treatment tightly controlled by the researcher?

No

Yes

Will a randomly assigned control group be used

No

Is the original sample randomly selected?

No

Yes

Experimental Study
A Typical Descriptive Design

Clarification ➔ Measurement ➔ Description ➔ Interpretation

Phenomenon of Interest

Variable 1

Variable 2

Variable 3

Variable 4

Description of Variable 1

Description of Variable 2

Description of Variable 3

Description of Variable 4

Interpretation of Meaning

Development of Hypotheses
A Comparative Descriptive Design

Group I
{variables measured}

Describe

Comparison of Groups on Selected Variables

Interpretation of Meaning

Group II
{variables measured}

Describe

Development of Hypotheses
Selecting the Type of Correlational Design

- Describe relationships between/among variables?
 - Descriptive correlational design

- Predict relationships between/among variables?
 - Predictive correlational design

- Test theoretically proposed Relationships?
 - Model testing design

Research Design
A Descriptive Correlational Design

Measurement

Research Variable 1

Description of variable

Examination of Relationship

Interpretation of Meaning

Description of variable

Research Variable 2

Development of Hypotheses

Research Design
A Predictive Design

Value of Intercept + Value of Independent Variable 1 + Value of Independent Variable 2 = Predicted Value of Dependent Variable
Selecting The Type of Quasi-Experimental Design

1. Control Group?
 - No
 - Pretest?
 - No
 - One-group post-test only design
 - Yes
 - Repeated Measures?
 - No
 - Strategy for Comparison
 - No
 - Suggest Reevaluating design
 - Yes
 - Compare treatment & control conditions?
 - Yes
 - Repeated Measures?
Selecting The Type of Experimental Design

- **Pretest**
 - No
 - Post-test only control group design
 - Yes
 - Repeated Measurements?
 - No
 - Examine effects of confounding variables?
 - No
 - Multiple sites?
 - No
 - Pretest/post-test control group design
 - Yes
 - Randomized clinical trials
 - Yes
 - Repeated measures design
 - Blocking?
 - No
 - Comparison of multiple levels of treatment
 - No
 - Examination of complex relationships among variables in relation to treatment
 - Yes
 - Nested Designs
 - Yes
 - Randomized Block Design
Pretest-Post Test, Control Group Designs

<table>
<thead>
<tr>
<th>Randomly selected experimental group</th>
<th>PRETEST</th>
<th>TREATMENT</th>
<th>POST-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomly selected control group</td>
<td>PRETEST</td>
<td></td>
<td>POST-TEST</td>
</tr>
</tbody>
</table>

- **Measurement of dependent variables**
- **Manipulation of independent variables**
- **Measurement of dependent variables**

Treatment: Under control of researcher

Findings:
- Comparison of pretest and post-test scores
- Comparison of experimental and control groups
- Comparison of pretest-post-test differences between samples

Example:
Your self (1990). The impact of group reminiscence counseling on a depressed elderly population.

Uncontrolled threats to validity:
- Testing
- Mortality

Instrumentation:
- Restricted generalizability as control increases
Post-Test-Only Control Group Design

<table>
<thead>
<tr>
<th>Randomly selected experimental group</th>
<th>Randomly selected control group</th>
<th>Measurement of independent variables</th>
<th>Measurement of dependent variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TREATMENT</td>
<td>POST-TEST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POST-TEST</td>
<td>POST-TEST</td>
</tr>
</tbody>
</table>

Treatment: Under control of researcher

Findings: Comparison of experimental and control groups

Uncontrolled threats to validity:
- Instrumentation
- Mortality
- Limited generalizability as control increases
<table>
<thead>
<tr>
<th>Pain Control Management</th>
<th>Primary Nursing Care</th>
<th>Primary Care</th>
<th>No Primary Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional care</td>
<td>Unit A</td>
<td>Unit B</td>
<td>Unit C</td>
</tr>
<tr>
<td>PRN Medication</td>
<td>Unit B</td>
<td></td>
<td>Unit C</td>
</tr>
<tr>
<td>New approach: “Around the clock” medication</td>
<td>Unit C</td>
<td>Unit D</td>
<td></td>
</tr>
</tbody>
</table>

New approach: “Around the clock” medication
Advantages of Experimental Designs

- More controls in design and conducting a study
- Increased internally validity
 - Decreased threats to design validity
- Fewer rival hypotheses
Advantages of Quasi-Experimental Designs

- More practical
 - Ease of implementation
- More feasible
 - Resources, subjects, time, setting
- More generalizable
 - Comparable to practice
Developing the Design Section of Your Proposal

- Identify the design
 - Name it specifically
- Provide a map of the design
- Discuss your rationale for using this design
- Describe threats to the validity of the chosen design