2008-07

N 536 - Utilization of Nursing Research in Advanced Practice, Summer 2008

Tzeng, Huey-Ming

http://hdl.handle.net/2027.42/64943
Research Design

Contributors
Sonia A. Duffy, PhD, RN
Lisa Kane Low, PhD, CNM, FACNM
Huey-Ming Tzeng, PhD, RN
Design Characteristics

- Maximizes control over factors to increase the validity of the findings
- Guides the researcher in planning and implementing a study
Level of Control: Quantitative Research

- Descriptive
- Correlational
- Quasi-experimental
- Experimental

Increased Control with Design
Concepts Relevant to Research Design (1)

Causality
A \rightarrow B
Pressure \rightarrow Ulcer

Multicausality
Years smoking \rightarrow Heart disease
High fat diet \rightarrow Heart disease
Limited exercise \rightarrow Heart disease
Concepts Relevant to Research Design (2)

- Probability: Likelihood of an outcome
- Bias: Slanting findings
- Manipulation: Treatment
- Control: All phases of design
Design Validity

- Measure of accuracy of a study

- Examined with critique of the following dimensions:
 - Statistical conclusion validity
 - Internal validity
 - Construct validity
 - External validity
Elements of a Strong Research Design (1)

- Controlling the environment of the study setting

- Levels of controlling:
 - Natural setting
 - Partially controlled setting: e.g., clinics
 - Highly controlled setting: e.g., laboratory
Elements of a Strong Research Design (2)

- Controlling the equivalence of subjects and groups
 - Random subject selection
 - Random assignment to groups
Elements of a Strong Research Design (3)

- Controlling the treatment
 - Choose a treatment based on research and practice
 - Develop a protocol for implementation
 - Document the implemented treatment
 - Use a check-list to determine the extent of completeness to which the treatment was implemented
 - Evaluate the treatment during the study
Elements of a Strong Research Design (4)

• **Controlling measurement**
 - Reliability
 - Validity
 - Number of measurement methods
 - Types of instruments
Elements of a Strong Research Design (5)

- Controlling extraneous variables
 - Identify and eliminate extraneous variables via sample criteria, choice of settings, or research design
 - Random sampling
 - Sample: Heterogenous, homogeneous, or matching
 - Statistical control
Problems with Study Designs

- Inappropriate for the study purpose or the research framework
- Poorly developed designs
- The research methods were poorly implemented
- Inadequate treatment, sample, or measurement methods
Selecting a Design

- **Is there a treatment?**
 - No
 - Yes
 - **Is the primary purpose examination of relationships?**
 - No
 - Yes
 - Descriptive Design
 - Will the sample be studied as a single group?
 - No
 - Yes
 - Quasi-Experimental Study
 - Will a randomly assigned control group be used
 - No
 - Yes
 - Is the original sample randomly selected?
 - No
 - Yes
 - Experimental Study
Selecting a Descriptive Design

- Examining sequences across time?
 - No
 - One Group?
 - No
 - Comparative Descriptive Design
 - Yes
 - Descriptive Design
 - Yes
 - Following same subjects across time?
 - No
 - Data collected across time
 - No
 - Cross-sectional design
 - Yes
 - Studying events partitioned across time?
 - No
 - Trend Analysis
 - Yes
 - Repeated measures of each subject
 - Yes
 - Single unit of study
 - No
 - Longitudinal Study
 - Yes
 - Case Study

Research Design

Cross-sectional design with treatment partitioning

Longitudinal design with treatment partitioning
A Typical Descriptive Design

Clarification ➔ Measurement ➔ Description ➔ Interpretation

Phenomenon of Interest

Variable 1
Description of Variable 1

Variable 2
Description of Variable 2

Variable 3
Description of Variable 3

Variable 4
Description of Variable 4

Interpretation of Meaning

Development of Hypotheses
A Comparative Descriptive Design

Group I {variables measured} → Describe → Comparison of Groups on Selected Variables → Interpretation of Meaning → Development of Hypotheses

Group II {variables measured} → Describe
Selecting the Type of Correlational Design

<table>
<thead>
<tr>
<th>Describe relationships between/among variables?</th>
<th>Predict relationships between/among variables?</th>
<th>Test theoretically proposed Relationships?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive correlational design</td>
<td>Predictive correlational design</td>
<td>Model testing design</td>
</tr>
</tbody>
</table>

Research Design
A Descriptive Correlational Design

Measurement

Research Variable 1

Description of variable

Examination of relationship

Interpretation of Meaning

Description of variable

Development of Hypotheses

Research Variable 2
A Predictive Design

Value of Intercept + Value of Independent Variable 1 + Value of Independent Variable 2 = Predicted Value of Dependent Variable
Selecting The Type of Quasi-Experimental Design

Control Group?
- No
 - Pretest?
 - No
 - One-group post-test only design
 - Yes
 - Repeated Measures?
 - No
 - Comparison with population values?
 - Yes
 - Strategy for Comparison
 - No
 - Suggest Reevaluating design
 - Yes
 - Compare treatment & control conditions?
 - Yes
 - Pretest?
 - No
 - Repeated Measures?
 - No
 - Strategy for Comparison
 - Yes
 - Repeated Measures?
Selecting The Type of Experimental Design

- Pretest
 - No
 - Post-test only control group design
 - Yes
 - Repeated Measurements?
 - No
 - Examine effects of confounding variables?
 - No
 - Multiple sites?
 - Pretest/post-test control group design
 - Randomized clinical trials
 - Yes
 - Blocking?
 - No
 - Comparison of multiple levels of treatment
 - Examination of complex relationships among variables in relation to treatment
 - Yes
 - Randomized Block Design
 - Nested Designs
 - Yes
 - Repeated measures design
Pretest-Post Test, Control Group Designs

<table>
<thead>
<tr>
<th>Randomly selected experimental group</th>
<th>Measurement of dependent variables</th>
<th>Manipulation of independent variables</th>
<th>Measurement of dependent variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomly selected control group</td>
<td>PRETEST</td>
<td>TREATMENT</td>
<td>POST-TEST</td>
</tr>
</tbody>
</table>

Treatment: Under control of researcher

Findings:
- Comparison of pretest and post-test scores
- Comparison of experimental and control groups
- Comparison of pretest-post-test differences between samples

Example: Your self (1990). The impact of group reminiscence counseling on a depressed elderly population.

Uncontrolled threats to validity:
- Testing
- Mortality

Instrumentation: Restricted generalizability as control increases
Post-Test-Only Control Group Design

<table>
<thead>
<tr>
<th>Randomly selected experimental group</th>
<th>Treatment (TREATMENT)</th>
<th>POST-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomly selected control group</td>
<td></td>
<td>POST-TEST</td>
</tr>
</tbody>
</table>

Measurement of independent variables
Measurement of dependent variables

- **Treatment:** Under control of researcher
- **Findings:** Comparison of experimental and control groups
- **Uncontrolled threats to validity:** Instrumentation, Mortality, Limited generalizability as control increases
Pain Control Management

<table>
<thead>
<tr>
<th>Traditional care</th>
<th>PRN Medication</th>
<th>New approach: “Around the clock” medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit A</td>
<td>Unit E</td>
<td>Unit E</td>
</tr>
<tr>
<td>Unit B</td>
<td>Unit F</td>
<td>Unit F</td>
</tr>
<tr>
<td>Unit C</td>
<td>Unit G</td>
<td>Unit G</td>
</tr>
<tr>
<td>Unit D</td>
<td>Unit H</td>
<td>Unit H</td>
</tr>
</tbody>
</table>

Primary Nursing Care

<table>
<thead>
<tr>
<th>Unit A</th>
<th>Unit B</th>
<th>Unit C</th>
<th>Unit D</th>
<th>Unit E</th>
<th>Unit F</th>
<th>Unit G</th>
<th>Unit H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary Care vs. No Primary Care

- **Primary Care**
 - Unit A
 - Unit B
 - Unit C
 - Unit D
 - Unit E
 - Unit F
 - Unit G
 - Unit H

- **No Primary Care**
 - Unit A
 - Unit B
 - Unit C
 - Unit D
 - Unit E
 - Unit F
 - Unit G
 - Unit H
Advantages of Experimental Designs

- More controls in design and conducting a study
- Increased internally validity
 - Decreased threats to design validity
- Fewer rival hypotheses
Advantages of Quasi-Experimental Designs

- **More practical**
 - Ease of implementation
- **More feasible**
 - Resources, subjects, time, setting
- **More generalizable**
 - Comparable to practice
Developing the Design Section of Your Proposal

- Identify the design
 - Name it specifically

- Provide a map of the design
- Discuss your rationale for using this design
- Describe threats to the validity of the chosen design