N 536 - Utilization of Nursing Research in Advanced Practice, Summer 2008

Tzeng, Huey-Ming

http://hdl.handle.net/2027.42/64943
Research Design

Contributors
Sonia A. Duffy, PhD, RN
Lisa Kane Low, PhD, CNM, FACNM
Huey-Ming Tzeng, PhD, RN
Design Characteristics

- Maximizes control over factors to increase the validity of the findings
- Guides the researcher in planning and implementing a study
Level of Control: Quantitative Research

- Descriptive
- Correlational
- Quasi-experimental
- Experimental

Increased Control with Design
Concepts Relevant to Research Design (1)

Causality

A \[\rightarrow\] B
Pressure \[\rightarrow\] Ulcer

Multicausality

Years smoking
High fat diet \[\rightarrow\] Heart disease
Limited exercise \[\rightarrow\] Heart disease
Concepts Relevant to Research Design (2)

- Probability: Likelihood of an outcome
- Bias: Slanting findings
- Manipulation: Treatment
- Control: All phases of design
Design Validity

- Measure of accuracy of a study

- Examined with critique of the following dimensions:
 - Statistical conclusion validity
 - Internal validity
 - Construct validity
 - External validity
Elements of a Strong Research Design (1)

- Controlling the environment of the study setting

- Levels of controlling:
 - Natural setting
 - Partially controlled setting: e.g., clinics
 - Highly controlled setting: e.g., laboratory
• Controlling the equivalence of subjects and groups
 ○ Random subject selection
 ○ Random assignment to groups
Elements of a Strong Research Design (3)

- **Controlling the treatment**
 - Choose a treatment based on research and practice
 - Develop a protocol for implementation
 - Document the implemented treatment
 - Use a check-list to determine the extent of completeness to which the treatment was implemented
 - Evaluate the treatment during the study
Elements of a Strong Research Design (4)

- Controlling measurement
 - Reliability
 - Validity
 - Number of measurement methods
 - Types of instruments
Elements of a Strong Research Design (5)

- Controlling extraneous variables
 - Identify and eliminate extraneous variables via sample criteria, choice of settings, or research design
 - Random sampling
 - Sample: Heterogenous, homogeneous, or matching
 - Statistical control
Problems with Study Designs

- Inappropriate for the study purpose or the research framework
- Poorly developed designs
- The research methods were poorly implemented
- Inadequate treatment, sample, or measurement methods
Selecting a Design

Is there a treatment?

- No
- Yes

Is the treatment tightly controlled by the researcher?

- No
- Yes

Is the primary purpose examination of relationships?

- No
- Yes

If No:
- Descriptive Design

If Yes and No:
- Will the sample be studied as a single group?

- No
- Yes

If No:
- Correlational Design

If Yes:
- Quasi-Experimental Study

If Yes and No:
- Will a randomly assigned control group be used?

- No
- Yes

If Yes and No:
- Is the original sample randomly selected?

- No
- Yes

If Yes and Yes:
- Experimental Study
Selecting a Descriptive Design

Examining sequences across time?

- No
 - One Group?
 - No
 - Comparative Descriptive Design
 - Yes
 - Descriptive Design

- Yes
 - Following same subjects across time?
 - No
 - Cross-sectional design
 - Yes
 - Data collected across time
 - No
 - Trend Analysis
 - Yes
 - Repeated measures of each subject
 - Yes
 - Yes
 - No
 - No

Single unit of study

Longitudinal Study

Case Study
A Typical Descriptive Design

Clarification → Measurement → Description → Interpretation

Phenomenon of Interest

Variable 1 → Description of Variable 1
Variable 2 → Description of Variable 2
Variable 3 → Description of Variable 3
Variable 4 → Description of Variable 4

Interpretation of Meaning
Development of Hypotheses
A Comparative Descriptive Design

Group I
{variables measured}

Describe

Comparison of Groups on Selected Variables

Interpretation of Meaning

Development of Hypotheses

Group II
{variables measured}

Describe

Describe
Selecting the Type of Correlational Design

Describe relationships between/among variables?
- Descriptive correlational design

Predict relationships between/among variables?
- Predictive correlational design

Test theoretically proposed Relationships?
- Model testing design
A Descriptive Correlational Design

Measurement

- **Research Variable 1**
 - Description of variable
 - Examination of relationship
 - Interpretation of meaning

- **Research Variable 2**
 - Description of variable
 - Development of hypotheses
A Predictive Design

Value of Intercept + Value of Independent Variable 1 + Value of Independent Variable 2 = Predicted Value of Dependent Variable
Selecting The Type of Quasi-Experimental Design

Control Group?
- No
 - Pretest?
 - No
 - One-group post-test only design
 - Yes
 - Repeated Measures?
 - No
 - Strategy for Comparison
 - No
 - Suggest Reevaluating design
 - One group pretest/post-test design
 - Yes
 - Compare treatment & control conditions?
 - Yes
 - Pretest?
Selecting The Type of Experimental Design

Pretest

No

Post-test only control group design

Yes

Repeated Measurements?

No

Examine effects of confounding variables?

No

Multiple sites?

Pretest/post-test control group design

Yes

Repeated measures design

Yes

Blocking?

No

Randomized clinical trials

Comparison of multiple levels of treatment

No

Examination of complex relationships among variables in relation to treatment

Yes

Nested Designs
Pretest-Post Test, Control Group Designs

<table>
<thead>
<tr>
<th>Randomly selected experimental group</th>
<th>Measurement of dependent variables</th>
<th>Manipulation of independent variables</th>
<th>Measurement of dependent variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomly selected control group</td>
<td>PRETEST</td>
<td>TREATMENT</td>
<td>POST-TEST</td>
</tr>
</tbody>
</table>

Treatment: Under control of researcher

Findings:
- Comparison of pretest and post-test scores
- Comparison of experimental and control groups
- Comparison of pretest-post-test differences between samples

Uncontrolled threats to validity:
- Testing
- Mortality

Instrumentation: Restricted generalizability as control increases
Post-Test-Only Control Group Design

Research Design

<table>
<thead>
<tr>
<th>Randomly selected experimental group</th>
<th>Measurement of independent variables</th>
<th>Randomly selected control group</th>
<th>Measurement of dependent variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TREATMENT</td>
<td></td>
<td>POST-TEST</td>
</tr>
<tr>
<td></td>
<td>POST-TEST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treatment: Under control of researcher

Findings: Comparison of experimental and control groups

Uncontrolled threats to validity: Instrumentation, Mortality, Limited generalizability as control increases
Nested Design

Pain Control Management

<table>
<thead>
<tr>
<th>Traditional care</th>
<th>Unit A</th>
<th>Unit B</th>
<th>Unit C</th>
<th>Unit D</th>
<th>Unit E</th>
<th>Unit F</th>
<th>Unit G</th>
<th>Unit H</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRN Medication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New approach: “Around the clock” medication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary Nursing Care

<table>
<thead>
<tr>
<th>Primary Care</th>
<th>No Primary Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit A</td>
<td>Unit B</td>
</tr>
<tr>
<td>Unit C</td>
<td>Unit D</td>
</tr>
<tr>
<td>Unit E</td>
<td>Unit F</td>
</tr>
<tr>
<td>Unit G</td>
<td>Unit H</td>
</tr>
</tbody>
</table>

Research Design
Advantages of Experimental Designs

- More controls in design and conducting a study
- Increased internally validity
 - Decreased threats to design validity
- Fewer rival hypotheses
Advantages of Quasi-Experimental Designs

- More practical
 - Ease of implementation
- More feasible
 - Resources, subjects, time, setting
- More generalizable
 - Comparable to practice
Developing the Design Section of Your Proposal

- Identify the design
 - Name it specifically

- Provide a map of the design
- Discuss your rationale for using this design
- Describe threats to the validity of the chosen design