M1 - Renal, Fall 2007

Lyons, R.; Burney, R.

<http://hdl.handle.net/2027.42/64946>
http://hdl.handle.net/2027.42/64946
Nitrogen Metabolism (and Related Topics)

- Amino Acid Metabolism (Nitrogen metabolism)
- Folate Metabolism (“One-Carbon pathways”)
- Nucleotide Metabolism

Dr. Robert Lyons
Assistant Professor, Biological Chemistry
Director, DNA Sequencing Core
There are also PDF’s of class handouts with supplemental information available in the table of contents for this course.

Supplementary study material on the Web:
http://seqcore.brcf.med.umich.edu/mcb500
Protein Degradation:

• Endogenous proteins degrade continuously
 - Damaged
 - Mis-folded
 - Un-needed
• Dietary protein intake - mostly degraded

Nitrogen Balance - expresses the patient’s current status - are they *gaining* or *losing* net Nitrogen?
Transaminases Collect Amines

General reaction overview:

\[
R_1\text{-}C\text{-}\text{coo}^{(-)} + R_2\text{-}C\text{-}\text{coo}^{(-)} \rightarrow R_1\text{-}C\text{-}\text{coo}^{(-)} + R_2\text{-}C\text{-}\text{coo}^{(-)}
\]

\(\alpha\)-keto acid (typically \(\alpha\)-ketoglutarate) and amino acid (typically glutamate).

Details of reaction mechanism:

Amino acid

\[
\begin{align*}
& \quad \text{H} \\
& R-\text{C-} \text{coo}^{(-)} \\
& \quad \text{NH}_2 \\
& \quad + O \\
& \quad \text{CH}_3 \\
& \quad \text{pyridoxal phosphate}
\end{align*}
\]

\[
\text{H} + R-\text{C-} \text{coo}^{(-)} \rightarrow R-\text{C-} \text{coo}^{(-)}
\]

\[
\text{H} + R-\text{C-} \text{coo}^{(-)} \rightarrow R-\text{C-} \text{coo}^{(-)}
\]

\[
\text{H} + R-\text{C-} \text{coo}^{(-)} \rightarrow R-\text{C-} \text{coo}^{(-)}
\]

\[
\text{H}_2\text{O}
\]

\[
\alpha\text{-ketoo acid}
\]

\[
\begin{align*}
& \quad \text{R-} \text{C-} \text{coo}^{(-)} \\
& \quad + \text{NH}_2 \\
& \quad \text{HCH}_3 \\
& \quad \text{pyridoxamine phosphate}
\end{align*}
\]
Transfer the amine back to an acceptor α-keto acid

\[
\text{pyridoxamine phosphate} + \text{α-keto acid} \rightarrow \text{pyridoxal phosphate} + \text{amino acid}
\]
In peripheral tissues, transaminases *tend* to form Glutamate when they catabolize amino acids.

In other words, alpha-ketoglutarate is the preferred acceptor, and Glutamate is the resulting amino acid:

Some amino acid + α-ketoglutarate \(\rightarrow\) some alpha keto acid + Glutamate
Glutamate can donate its amines to form other amino acids as needed

A specific example - production of Aspartate in liver (described a few slides from now):

Glutamate + oxaloacetate \rightarrow α-ketoglutarate + aspartate
Getting Amines Into the Liver

Glutamate Dehydrogenase:

\[\text{glutamate} \xrightarrow{\text{NAD}(P)} \text{NAD}(P)H \]

\[\text{NAD}(P)H \xrightarrow{\text{mito}} \text{\(\alpha\)-ketoglutarate} + \text{ammonia} \]

Glutamine Synthetase:

\[\text{glutamate} \xrightarrow{\text{ATP} + \text{NH}_3} \text{glutamine} \]

\[\text{ADP} + \text{P}_i \]
In the Liver: Precursors for Urea Cycle

Glutamine is hydrolyzed to glutamate and ammonia:

Glutamate donates its amino group to form aspartate:

Glutamate-aspartate aminotransferase:

Ammonia can also be formed by the glutamate dehydrogenase reaction and several other reactions as well.
Carbamoyl phosphate synthetase I

bicarbonate \rightleftharpoons carbonyl phosphate \rightleftharpoons carbamate \rightleftharpoons carbamoyl phosphate
Ornithine Transcarbamoylase

Carbamoyl phosphate

Ornithine

Citrulline
Argininosuccinate synthetase

Citrulline → Argininosuccinate

\(-\text{boC} - \text{C} - \text{CH}_2\text{CH}_2\text{NH} - \text{C} - \text{NH}_2\)

aspartate

\(-\text{oC} - \text{C} - \text{CH}_2\text{CH}_2\text{NH} - \text{C} = \text{NH}_2^{(+)}\)

ATP → AMP + PP_1
Arginase

\[
\text{Arginine} \xrightarrow{\text{H}_2\text{O}} \text{Urea} \rightarrow \text{Ornithine}
\]
Getting Amines Into the Liver

Glutamate Dehydrogenase:

\[
\begin{align*}
\text{glutamate} & \xrightarrow{\text{NAD}(P)} \text{α-ketoglutarate} + \text{NH}_3 \\
\text{NAD}(P)H & \xrightarrow{\text{mito}} \text{NAD}(P)
\end{align*}
\]

Glutamine Synthetase:

\[
\begin{align*}
\text{glutamine} & \xrightarrow{\text{ATP} + \text{NH}_3} \text{glutamate} \\
\text{ADP} + P_i & \xrightarrow{\text{NH}_3} \text{glutamine}
\end{align*}
\]
The diagram illustrates the urea cycle and the synthesis of arginine and fumarate in liver mitochondria and cytoplasm. Here is a step-by-step explanation:

1. **2ATP + HCO₃⁻ + NH₃ → Carbamoyl phosphate**
 - Carbamoyl phosphate is formed from ATP, HCO₃⁻, and NH₃.

2. **2ADP + P₃ → NH₃**
 - NH₃ is released from the reaction.

3. **NH₃ + Carbamoyl phosphate → Ornithine**
 - Ornithine is produced from the reaction of NH₃ and carbamoyl phosphate.

 Ornithine is then converted to citrulline in the cytoplasm.

4. **Citrulline + ATP → Argininosuccinate**
 - Argininosuccinate is synthesized from citrulline and ATP.

5. **Argininosuccinate + H₂O → Arginine**
 - Arginine is produced from argininosuccinate.

6. **Arginine + ATP → Citrulline**
 - Citrulline is produced from arginine and ATP.

7. **Citrulline + Aspartate → Fumarate**
 - Fumarate is produced from citrulline and aspartate.

8. **Fumarate + H₂O → Pyruvate**
 - Pyruvate is produced from fumarate and water.

This cycle is crucial for the detoxification of ammonia and the production of urea and arginine.
CPS I is Stimulated by NAG

\[
\begin{align*}
\text{glutamate} & \quad + \quad \text{acetyl CoA} \\
\quad \text{N-acetyl glutamate (NAG)}
\end{align*}
\]

(repeating the figure from page 3 of your handout)
Complicating the picture: Other tissues may be involved
Why is Ammonia Toxic?
Why is Ammonia Toxic?

• Possible neurotoxic effects on glutamate levels (and also GABA) (due to shifting equilibria of reactions involving these compounds)
Why is Ammonia Toxic?

• Possible neurotoxic effects on glutamate levels (and also GABA)
 (due to shifting equilibria of reactions involving these compounds)

• Possible metabolic/energetics effects:
 - alpha-ketoglutarate levels
 - glutamate levels
 - glutamine
Inherited Defects of Urea Cycle Enzymes: Diagnosis

Defects are diagnosed based on the metabolites seen in the blood and/or urine.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPSD</td>
<td>No elevation except ammonia; diagnosed by elimination.</td>
</tr>
<tr>
<td>OTC</td>
<td>Elevated CP causes synthesis of Orotate</td>
</tr>
<tr>
<td>ASD</td>
<td>Elevated citrulline</td>
</tr>
<tr>
<td>ALD</td>
<td>Elevated argininosuccinate</td>
</tr>
<tr>
<td>AD</td>
<td>Elevated arginine</td>
</tr>
</tbody>
</table>
CPS I is Stimulated by NAG

(repeating the figure from page 3 of your handout)
Clinical Management of Urea Cycle Defects

• Dialysis to remove ammonia
• Provide the patient with alternative ways to excrete nitrogenous compounds:
 * Intravenous sodium benzoate or phenylacetate
 * Supplemental arginine

• Levulose - acidifies the gut
• Low protein diet
Degrading the Amino Acid Carbon Backbone
Easily-degraded products after transamination:

Glutaminase

Glutamine \rightarrow glutamate + ammonia

Asparaginase

Asparagine \rightarrow aspartate + ammonia
Many amino acids are purely glucogenic: Glutamate, aspartate, alanine, glutamine, asparagine,…

Some amino acids are both gluco- and ketogenic: Threonine, isoleucine, phenylalanine, tyrosine, tryptophan

The only PURELY ketogenic Amino Acids: leucine, lysine
Amino acids with 5-carbon backbones tend to form \(\alpha \)-ketoglutarate
Degradation and Biosynthesis of Serine and Glycine

Glycine Synthase:

Glycine

\[\text{H} \quad \text{C} \quad \text{NH}_3^{(+)} \]

\[\text{THF} \]

\[\text{N}^5\text{N}^0\text{-methylene THF} \]

\[\text{CO}_2 \quad + \quad \text{NH}_4^{(+)} \]

Serine Hydroxymethyltransferase:

Serine

\[\text{H}_2\text{O} \quad \text{S} \quad \text{O} \quad \text{C} \quad \text{C} \quad \text{H} \quad \text{N} \quad \text{H}_2^{(+)} \]

\[\text{THF} \]

\[\text{N}^5\text{N}^0\text{-methylene THF} \]

Serine Dehydratase:

Serine

\[\text{H}_2\text{O} \quad \text{S} \quad \text{O} \quad \text{C} \quad \text{C} \quad \text{H} \quad \text{N} \quad \text{H}_2^{(+)} \]

\[\text{H}_2\text{O} \quad \text{S} \quad \text{O} \quad \text{C} \quad \text{C} \quad \text{H}_2 \quad \text{N} \quad \text{H}_2^{(+)} \]
Methionine Cycle
And Biological Methyl Groups
Deficiency:
Alkaptonuria
"Ochronosis"

Phenylalanine and Tyrosine
(Normal path shown in black, pathological reaction shown in red)

Phenylalanine
\[\text{H} \text{C} \text{H} \text{C} \text{CO} \]
\[\text{NH}_3 \]
\[(+) \]

Tetrahydrobiopterin + O\(_2\)
\[\text{Dihydrobiopterin} + \text{H}_2\text{O} \]

Enzyme: Phenylalanine hydroxylase

Tyrosine
\[\text{HO} \text{H} \text{C} \text{H} \text{C} \text{CO} \]
\[\text{NH}_3 \]
\[(+) \]

Homogentisate

Phenylketonuria
(no phenylalanine hydroxylase)

Phenylpyruvate
\[\text{H} \text{C} \text{H} \text{C} \text{CO} \]
\[\text{O} \]

Deficiency:
Alkaptonuria
"Ochronosis"

Enzyme: homogentisate dioxygenase
(You don’t need to know the rest)
Branched Chain Amino Acids

Isoleucine

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH} & \quad \text{CH} \quad \text{COO} \\
\text{CH}_3 & \quad \text{NH}_3
\end{align*}
\]

\[\alpha-KG\]

\[\text{Glu}\]

\[\text{NAD}^+\text{CoASH}\]

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH} & \quad \text{C} \quad \text{COO} \\
\text{CH}_3 & \quad \text{O}
\end{align*}
\]

Leucine

\[
\begin{align*}
\text{CH}_3\text{CHCH}_2 & \quad \text{CH} \quad \text{COO} \\
\text{CH}_3 & \quad \text{NH}_3
\end{align*}
\]

\[\alpha-KG\]

\[\text{Glu}\]

\[\text{NAD}^+\text{CoASH}\]

\[
\begin{align*}
\text{CH}_3\text{CHCH}_2 & \quad \text{C} \quad \text{COO} \\
\text{CH}_3 & \quad \text{O}
\end{align*}
\]

Valine

\[
\begin{align*}
\text{CH}_3\text{CH} & \quad \text{CH} \quad \text{COO} \\
\text{CH}_3 & \quad \text{NH}_3
\end{align*}
\]

\[\alpha-KG\]

\[\text{Glu}\]

\[\text{NAD}^+\text{CoASH}\]

\[
\begin{align*}
\text{CH}_3\text{CH} & \quad \text{C} \quad \text{COO} \\
\text{CH}_3 & \quad \text{O}
\end{align*}
\]

------------------ Transamination ---------------

--- Branched-chain \(\alpha\)-keto acid dehydrogenase ---

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH} & \quad \text{C} \quad \text{S-CoA} \\
\text{CH}_3 & \quad \text{O}
\end{align*}
\]

\[\text{NADH} + \text{CO}_2\]

\[
\begin{align*}
\text{CH}_3\text{CHCH}_2 & \quad \text{C} \quad \text{S-CoA} \\
\text{CH}_3 & \quad \text{O}
\end{align*}
\]

\[\text{NADH} + \text{CO}_2\]

\[
\begin{align*}
\text{CH}_3\text{CH} & \quad \text{C} \quad \text{S-CoA} \\
\text{CH}_3 & \quad \text{O}
\end{align*}
\]

\[\text{NADH} + \text{CO}_2\]

(continues on to degradation path similar to \(\beta\)-oxidation of fatty acids)
Synthesis of Bioactive Amines

Tyrosine

Tyrosine hydroxylase

Dihydroxyphenylalanine (L-DOPA)

Dopamine

Norepinephrine

Epinephrine
Synthesis of Bioactive Amines

Tryptophan + NAD+ → 5-hydroxytryptophan + CO₂

5-hydroxytryptophan → Serotonin

Tryptophan hydroxylase

PLP-dependent decarboxylation
Synthesis of Bioactive Amines

Glutamate decarboxylase (PLP-dependent)

γ-aminobutyric acid (GABA)

Histidine decarboxylase (PLP-dependent)

Histamine
NON-Essential Amino Acids:

Glutamate, aspartate, alanine, glutamine, asparagine, (proline), glycine, serine (cysteine, tyrosine)

Essential Amino Acids:

Arginine (!), phenylalanine, methionine, histidine, Isoleucine, leucine, valine, threonine, tryptophan, lysine