M1 - Renal, Fall 2007

Lyons, R.; Burney, R.

<http://hdl.handle.net/2027.42/64946>
http://hdl.handle.net/2027.42/64946
Nitrogen Metabolism (and Related Topics)

- Amino Acid Metabolism (Nitrogen metabolism)
- Folate Metabolism (“One-Carbon pathways”)
- Nucleotide Metabolism

Dr. Robert Lyons
Assistant Professor, Biological Chemistry
Director, DNA Sequencing Core
Supplementary study material on the Web:
http://seqcore.brcf.med.umich.edu/mcb500

There are also PDF’s of class handouts with supplemental information available in the table of contents for this course.
Protein Degradation:

- Endogenous proteins degrade continuously
 - Damaged
 - Mis-folded
 - Un-needed
- Dietary protein intake - mostly degraded

Nitrogen Balance - expresses the patient’s current status - are they gaining or losing net Nitrogen?
Transaminases Collect Amines

General reaction overview:

\[R_1-C-COO^(-) + R_2-C-COO^(-) \rightarrow \alpha\text{-keto acid (typically } \alpha\text{-ketoglutarate)} + \alpha\text{-keto acid (typically glutamate)} \]

Details of reaction mechanism:

[Diagram showing the reaction mechanism involving amino acids, pyridoxal phosphate, and pyridoxamine phosphate.]
Transfer the amine back to an acceptor α-keto acid
In peripheral tissues, transaminases *tend* to form Glutamate when they catabolize amino acids.

In other words, alpha-ketoglutarate is the preferred acceptor, and Glutamate is the resulting amino acid:

Some amino acid + α-ketoglutarate \rightarrow some alpha keto acid + Glutamate
Glutamate can donate its amines to form other amino acids as needed

A specific example - production of Aspartate in liver (described a few slides from now):

Glutamate + oxaloacetate $\rightarrow \alpha$-ketoglutarate + aspartate
Getting Amines Into the Liver

Glutamate Dehydrogenase:

\[
\text{glutamate} \xrightarrow{\text{NAD}(P)} \text{NAD}(P)H \xrightarrow{\text{mito}} \text{\text{\'\text{O}_2C\text{CH}_2\text{CH}_2\text{C}-\text{CO}_2(-)}} + \text{NH}_3
\]

\[
\text{\text{\'\text{O}_2C\text{CH}_2\text{CH}_2\text{C}-\text{CO}_2(-)}} + \text{NH}_3
\]

Glutamine Synthetase:

\[
\text{\text{\'\text{O}_2C\text{CH}_2\text{CH}_2\text{C}-\text{CO}_2(-)}} \xrightarrow{\text{ATP+NH}_3} \text{\text{\'\text{O}_2C\text{CH}_2\text{CH}_2\text{C}-\text{CO}_2(-)}} + \text{ADP} + \text{P}_i
\]

\[
\text{\text{\'\text{O}_2C\text{CH}_2\text{CH}_2\text{C}-\text{CO}_2(-)}} + \text{NH}_3
\]

\[
\text{\text{\'\text{O}_2C\text{CH}_2\text{CH}_2\text{C}-\text{CO}_2(-)}} + \text{NH}_3
\]

\[
\text{\text{\'\text{O}_2C\text{CH}_2\text{CH}_2\text{C}-\text{CO}_2(-)}} + \text{NH}_3
\]
In the Liver: Precursors for Urea Cycle

Glutamine is hydrolyzed to glutamate and ammonia:

\[
\text{Glutamine} \rightarrow \text{Glutamate} + \text{NH}_3
\]

Ammonia can also be formed by the glutamate dehydrogenase reaction and several other reactions as well.

Glutamate donates its amino group to form aspartate:

\[
\text{Glutamate-aspartate aminotransferase:} \quad \text{Glutamate} + \text{oxaloacetate} \rightarrow \text{aspartate} + \alpha\text{-keto glutarate}
\]
1. ATP + HCO₃⁻ + NH₃ → Carbamoyl phosphate

2. 2ADP + P₃ → Ornithine + Citrulline

3. Ornithine + α-Ketoglutarate + H₂O → Urea + NH₃

4. Arginine + ATP → Argininosuccinate + Aspartate

5. Argininosuccinate + AMP + P₃ → Fumarate + NH₃
Carbamoyl phosphate synthetase I

bicarbonate \rightarrow carbonyl phosphate \rightarrow carbamate \rightarrow carbamoyl phosphate
Ornithine Transcarbamoylase

Carbamoyl phosphate

Ornithine

Citrulline
Argininosuccinate synthetase

Citrulline

Aspartate

Argininosuccinate
Argininosuccinate lyase

Argininosuccinate \rightarrow Arginine + Fumarate
Urea Cycle Connects to TCA Cycle

- Ornithine
- Citrulline
- Arginine
- Argininosuccinate
- Aspartate
- Oxaloacetate
- Malate
- Fumarate
- Citrate
- α-Ketoglutarate
Getting Amines Into the Liver

Glutamate Dehydrogenase:

\[
\begin{align*}
\text{glutamate} & \quad \xrightarrow{\text{NAD}(P)H} \quad \text{α-ketoglutarate} + \text{ammonia} \\
\text{(mito)}
\end{align*}
\]

Glutamine Synthetase:

\[
\begin{align*}
\text{glutamate} & \quad \xrightarrow{\text{ATP} + \text{NH}_3} \quad \text{glutamine} \\
\text{ADP} + P_i
\end{align*}
\]
CPS I is Stimulated by NAG

-glutamate + acetyl CoA → N-acetyl glutamate (NAG)

(repeating the figure from page 3 of your handout)

bicarbonate → carbonyl phosphate → carbamate → carbamoyl phosphate
Complicating the picture: Other tissues may be involved
Why is Ammonia Toxic?
Why is Ammonia Toxic?

- Possible neurotoxic effects on glutamate levels (and also GABA)
 (due to shifting equilibria of reactions involving these compounds)
Why is Ammonia Toxic?

• Possible neurotoxic effects on glutamate levels (and also GABA)
 (due to shifting equilibria of reactions involving these compounds)

• Possible metabolic/energetics effects:
 - alpha-ketoglutarate levels
 - glutamate levels
 - glutamine
Inherited Defects of Urea Cycle Enzymes: Diagnosis

Defects are diagnosed based on the metabolites seen in the blood and/or urine.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPSD</td>
<td>No elevation except ammonia; diagnosed by elimination.</td>
</tr>
<tr>
<td>OTCD</td>
<td>Elevated CP causes synthesis of Orotate</td>
</tr>
<tr>
<td>ASD</td>
<td>Elevated citrulline</td>
</tr>
<tr>
<td>ALD</td>
<td>Elevated argininosuccinate</td>
</tr>
<tr>
<td>AD</td>
<td>Elevated arginine</td>
</tr>
</tbody>
</table>
CPS I is Stimulated by NAG

\[
\begin{align*}
\text{glutamate} & \quad \text{acetyl CoA} \\
\text{N-acetyl glutamate (NAG)} &
\end{align*}
\]

(repeating the figure from page 3 of your handout)

\[
\begin{align*}
\text{bicarbonate} & \quad \text{ATP} \quad \text{ADP} \\
\text{carbonyl phosphate} & \quad \text{NH}_3 \\
\text{carbamate} & \quad \text{ATP} \quad \text{ADP} \\
\text{carbamoyl phosphate} &
\end{align*}
\]
Clinical Management of Urea Cycle Defects

• Dialysis to remove ammonia
• Provide the patient with alternative ways to excrete nitrogenous compounds:
 * Intravenous sodium benzoate or phenylacetate
 * Supplemental arginine

• Levulose - acidifies the gut
• Low protein diet
Degrading the Amino Acid Carbon Backbone
Easily-degraded products after transamination:

We also already know how to degrade Glutamine:

\[
\text{Glutamine} \xrightarrow{\text{glutaminase}} \text{glutamate} + \text{ammonia}
\]

...and by analogy, how to degrade Asparagine:

\[
\text{Asparagine} \xrightarrow{\text{asparaginase}} \text{aspartate} + \text{ammonia}
\]
Amino Acids are categorized as ‘Glucogenic’ or ‘ketogenic’ or both.

Many amino acids are purely glucogenic: Glutamate, aspartate, alanine, glutamine, asparagine,…

Some amino acids are *both* gluco- and ketogenic: Threonine, isoleucine, phenylalanine, tyrosine, tryptophan

The only PURELY ketogenic Amino Acids: leucine, lysine
Amino acids with 5-carbon backbones tend to form α-ketoglutarate.
Degradation and Biosynthesis of Serine and Glycine

Glycine Synthase:

\[
\begin{array}{c}
\text{Glycine} \\
(-)\text{OOC} - \text{C} - \text{NH}_3^+ \\
\text{THF} \\
N^6 - N^0 - \text{methylene THF}
\end{array}
\]

\[
\begin{array}{c}
\text{CO}_2 + \text{NH}_4^+ \\
\text{NAD}^+ \\
\text{NADH}
\end{array}
\]

Serine Hydroxymethyltransferase:

\[
\begin{array}{c}
\text{Serine} \\
(-)\text{OOC} - \text{CH} - \text{NH}_3^+ \\
\text{CH}_2\text{OH} \\
\text{THF} \\
N^6 - N^0 - \text{methylene THF}
\end{array}
\]

Serine Dehydratase:

\[
\begin{array}{c}
\text{Serine} \\
(-)\text{OOC} - \text{CH} - \text{NH}_3^+ \\
\text{CH}_2\text{OH} \\
\text{H}_2\text{O}
\end{array}
\]

\[
\begin{array}{c}
\text{(-)OOC} - \text{C} - \text{NH}_3^+ \\
\text{CH}_2\text{OH}
\end{array}
\]

\[
\begin{array}{c}
\text{(-)OOC} - \text{C} - \text{NH}_2^+ \\
\text{CH}_3
\end{array}
\]

\[
\begin{array}{c}
\text{(-)OOC} - \text{C} - \text{O} \\
\text{CH}_3
\end{array}
\]

\[
\begin{array}{c}
\text{NH}_4^+ \\
\text{H}_2\text{O}
\end{array}
\]
Methionine Cycle
And Biological Methyl Groups
Phenylalanine and Tyrosine

(Normal path shown in black, pathological reaction shown in red)

Phenylalanine \rightarrow Tyrosine

Phenylalanine hydroxylase

Tetrahydrobiopterin + O_2 \rightarrow Dihydrobiopterin + H_2O

(+) NH$_3$

Phenylalanine \rightarrow Phenylpyruvate

Phenylketonuria (no phenylalanine hydroxylase)

Deficiency: Alkaptonuria "Ochronosis"

Enzyme: homogentisate dioxygenase

Homogentisate

(You don’t need to know the rest)
Branched Chain Amino Acids

Isoleucine Leucine Valine

\[
\begin{align*}
R^3
\text{CH}_3 \text{CH}_2 \text{CH} & \quad \text{CH} \quad \text{COO}^{(-)} \\
\text{CH}_3 & \quad \text{NH}_3^{(+)}
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 \text{CHCH}_2 & \quad \text{CH} \quad \text{COO}^{(-)} \\
\text{CH}_3 & \quad \text{NH}_3^{(+)}
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 \text{CH} & \quad \text{CH} \quad \text{COO}^{(-)} \\
\text{CH}_3 & \quad \text{NH}_3^{(+)}
\end{align*}
\]

\[\alpha\text{-}\text{KG}\]

\[\text{Glu}\]

\[\text{NAD}^+ \text{CoASH}\]

\[\text{NADH} + \text{CoASH}\]

\[\text{NADH} + \text{CO}_2\]

\[\text{NADH} + \text{CO}_2\]

\[\text{NADH} + \text{CO}_2\]

\[\text{NADH} + \text{CO}_2\]

--- Branched-chain \(\alpha\)-keto acid dehydrogenase ---

--- Transamination ---

(continues on to degradation path similar to \(\beta\)-oxidation of fatty acids)
Synthesis of Bioactive Amines

Tyrosine → Dihydroxyphenylalanine (L-DOPA)

Tyrosine hydroxylase

Dopamine → Norepinephrine → Epinephrine
Synthesis of Bioactive Amines

Tryptophan

\[\text{Tryptophan hydroxylase} \rightarrow 5\text{-hydroxytryptophan} \]

\[\text{PLP-dependent decarboxylation} \rightarrow \text{Serotonin} \]

\[\text{NAD}^+ \]
Synthesis of Bioactive Amines

Glutamate

\[\text{COO} \text{CH}_2 \text{CH}_2 \text{CH} \equiv \text{COO} \]

\[\text{NH}_3 \quad (+) \]

Glutamate decarboxylase (PLP-dependent)

\[\text{COO} \text{CH}_2 \text{CH}_2 \text{CH}_2 \equiv \text{NH}_3 \]

\[(-) \quad (+) \]

\[\gamma \text{-aminobutyric acid (GABA)} \]

Histidine

\[\text{CH}_2 \equiv \text{CH} \equiv \text{COO} \]

\[\text{NH}_3 \quad (+) \]

Histidine decarboxylase (PLP-dependent)

\[\text{CH}_2 \equiv \text{CH}_2 \equiv \text{NH}_3 \]

\[(-) \quad (+) \]

Histamine
NON-Essential Amino Acids:

Glutamate, aspartate, alanine, glutamine, asparagine, (proline), glycine, serine (cysteine, tyrosine)

Essential Amino Acids:

Arginine (!), phenylalanine, methionine, histidine, Isoleucine, leucine, valine, threonine, tryptophan, lysine