Folic Acid is Synthesized By Bacteria

Dietary folate: folic acid (meats, green veggies) *requires* the intestinal enzyme ‘Conjugase’ for absorption.
Inhibitors of DHFR are important therapeutics:
Methotrexate - chemotherapy
Trimethoprim - inhibits bacterial DHFR
Pyrimethamine - inhibits malarial DHFR
\[\text{Tetrahydrofolate} + \text{serine} \rightarrow \text{glycine} + \text{N}^4, \text{N}^{10} \text{methylene tetrahydrofolate} \]

\[\text{Tetrahydrofolate} + \text{glycine} \rightarrow \text{N}^4, \text{N}^{10} \text{methylene tetrahydrofolate} \]
N^\prime-methyl tetrahydrofolate \rightarrow Biosynthesis of methionine

Gly, Ser \rightarrow N^\prime, N° methylene tetrahydrofolate \rightarrow Biosynthesis of thymidylate

N^\prime, N° methenyl tetrahydrofolate \rightarrow H_2O \rightarrow $N^\prime\prime$ formyl tetrahydrofolate \rightarrow Biosyntheses of purines

N^\prime-methyl tetrahydrofolate

$N^\prime\prime$ formyl tetrahydrofolate
Methionine Cycle
And Biological Methyl Groups
Homocysteine is converted to methionine via the addition of a methyl group to form N6-methyl THF.
Carbon donor (e.g. serine or glycine)

Tetrahydrofolate

N°, N° methylene tetrahydrofolate

methionine

NADH + H⁺

homocysteine

NAD⁺

N° methyl tetrahydrofolate
Other methyl acceptors:
DNA ("CpG Islands")
RNA

Methionine

S-Adenosyl methionine

Norepinephrine

Epinephrine
Folate Deficiencies: Symptom: megaloblastic anemia

Dietary deficiency:
Common especially in developing countries, lower socioeconomic classes
Folate deficiency secondary to bowel irritation:

- Conjugase is essential for adequate absorption of dietary folates

- Conjugase production may be compromised by bowel irritation:

 ‘Tropical Sprue’ - bowel irritation probably arising from bacterial origin, causes intestinal inflammation and malabsorption.

 ‘Celiac Sprue’ - similar outcome, but the original irritation is due to an allergic response, for example to gliaden (a component in gluten)
Folate Deficiency Secondary to B12 deficiency: the ‘methyl trap’ hypothesis

B12 is also critical in other reactions, ones for which the deficiency has serious neurological consequences.