2007-09

M1 - Renal, Fall 2007

Lyons, R.; Burney, R.

Formation of PRPP: Phosphoribose pyrophosphate

PRPP Use in Purine Biosynthesis:
The First Purine: Inosine Monophosphate
(folates are involved in this synthesis)

Conversion to Adenosine:

Conversion to Guanosine:
Nucleoside Monophosphate Kinases

AMP + ATP \rightleftharpoons 2ADP \hspace{1cm} \text{(adenylate kinase)}

GMP + ATP \rightleftharpoons GDP + ADP \hspace{1cm} \text{(guanylate kinase)}

• similar enzymes specific for each nucleotide
• no specificity for ribonucleotide vs. deoxyribonucleotide
Ribonucleotide Reductase

Hydroxyurea inhibits this enzyme: chemotherapeutic use

\[
\text{HONH}^-\text{C}-\text{NH}_2
\]
Regulation of Ribonucleotide Reductase
Nucleoside Diphosphate Kinase

\[\text{N}_1\text{DP} + \text{N}_2\text{TP} \leftrightarrow \text{N}_1\text{TP} + \text{N}_2\text{DP} \]

\[\text{dN}_1\text{DP} + \text{N}_2\text{TP} \leftrightarrow \text{dN}_1\text{TP} + \text{N}_2\text{DP} \]

- No specificity for base
- No specificity for ribo vs deoxy
Feed-forward regulation by PRPP

PRPP
 ↓
 IMP
 ↓
GMP AMP
 ↓ ↓
GTP ATP
Feed-forward regulation by PRPP
Feed-forward regulation by PRPP
Feed-forward regulation by PRPP
Degradation of the Purine Nucleosides:

Adenosine $\xrightarrow{\text{H}_2\text{O}, \text{NH}_4^+} \text{Inosine} \xrightarrow{\text{purine nucleoside phosphorylase}} \quad \text{Hypoxanthine} \quad \xrightarrow{\text{xanthine oxidase}} \text{Uric acid}$
“Salvage” Pathways for Purine Nucleotides

Hypoxanthine + PRPP → Inosine monophosphate + PP_i

APRT - Adenine phosphoribosyl transferase - performs a similar function with adenine.
Adenosine Deaminase Deficiency:
Hyperuricemia can be caused by:

Accelerated degradation of purines:

• Accelerated synthesis of purines
• Increased dietary intake of purines

Impaired renal clearance of uric acid

Gout: deposition of urate crystals in joints, “tophi” in cooler periphery

Allopurinol inhibits xanthine oxidase and reduces blood uric acid levels:
The hands of a patient with a long history of gout, including high serum urate levels
Lesch-Nyhan Syndrome: Defective HGPRT

- hyperuricemia
- spasticity
- mental retardation
- self-mutilation behavior

A defect in APRT does NOT have similar consequences
Myoadenylate Deaminase ‘Fills’ the TCA Cycle in Muscle
Carbamoyl phosphate synthetase II - a *cytoplasmic* enzyme...

\[2\text{ATP} + \text{HCO}_3^- + \text{glutamine} + \text{H}_2\text{O} \rightarrow \text{NH}_2\text{C}\text{C}\text{O}\text{O}^2^- + \text{glutamate} + 2\text{ADP} + \text{P}_i \]

...carbamoyl phosphate

...used for pyrimidine synthesis

[Chemical reactions and structures for pyrimidine synthesis]
Orotate is linked to PRPP to form Uridine monophosphate:
Newly-synthesized uridine monophosphate will be phosphorylated to UDP and UTP, as described for the purine nucleotides.

UTP can be converted to CTP by CTP Synthetase:
Some UDP is converted to dUDP via ribonucleotide reductase.

The Thymidylate Synthase Reaction:
Methotrexate Inhibits Dihydrofolate Reductase:

Dihydrofolate builds up, levels of THF become limiting, thymidylate synthase is unable to proceed. Follow it with a dose of Leucovorin, a.k.a. formyl-THF.
FdUMP Inhibits The Thymidylate Synthase Reaction:

5-fluorodeoxyuridine monophosphate (FdUMP)

thymidylate synthase

N^5, N^10 methylene tetrahydrofolate

dihydrofolate

DHFR

NADH

NAD^+
Complicated Pathways for Pyrimidine Production:

This figure is primarily a study aid; you do not need to memorize it or reproduce it. The information here merely summarizes material from previous sections.
Pathologies of pyrimidine nucleotide biosynthesis:

Orotic acid urea due to OTC deficiency - please review your Urea Cycle notes.

Hereditary orotic acid urea - deficiency of the enzyme that converts orotate to OMP to UMP. Not common.
Pyrimidine degradation:

Cytidine deaminase converts cytidine to uridine

A phosphorylase removes the sugar

Degradation of the base proceeds (products are unimportant here)
Pyrimidines can be salvaged as well:

Enzyme: Pyrimidine nucleoside phosphorylases
Thymine + deoxyribose-1-phosphate \rightarrow thymidine
(NOT thymidine monophosphate!)

Enzyme: Thymidine kinase - adds the monophosphate back
Thymidine + ATP \rightarrow thymidine monophosphate

Herpes Simplex Virus carries its own tk gene
Certain drugs act via the pyrimidine salvage pathway:

\[
\text{Acyclovir} \xrightarrow{\text{HSV thymidine kinase}} \text{AcycloGMP}
\]

\[
\text{5-fluorouracil} + \text{deoxyribose-1-phosphate} \rightarrow \text{fluorodeoxyuridine} \xrightarrow{\text{uridine kinase}} \text{fluorodeoxyuridine monophosphate (FdUMP)}
\]
5-FU efficacy depends on rate of degradation vs activation

5-FU \rightarrow FdUMP
+ methylene-THF + Thymidylate Synthase
\rightarrow inactivation of TS

Degradation
(via dihydropyrimidine dehydrogenase, DPD)

DPD inhibitors can potentiate 5FU activity
Capecitabine mode of action:

Cytosine arabinoside (araC) activation and inactivation: