M1 - Renal, Fall 2007

Lyons, R.; Burney, R.

<http://hdl.handle.net/2027.42/64946>
http://hdl.handle.net/2027.42/64946
Formation of PRPP: Phosphoribose pyrophosphate

PRPP Use in Purine Biosynthesis:
The First Purine: Inosine Monophosphate
(folates are involved in this synthesis)

Conversion to Adenosine:

Conversion to Guanosine:
Nucleoside Monophosphate Kinases

AMP + ATP \leftrightarrow 2ADP (adenylate kinase)

GMP + ATP \leftrightarrow GDP + ADP (guanylate kinase)

- similar enzymes specific for each nucleotide
- no specificity for ribonucleotide vs. deoxyribonucleotide
Ribonucleotide Reductase

Hydroxyurea inhibits this enzyme: chemotherapeutic use

\[\text{HONH}^- \text{C}^{-} \text{NH}_2 \]
Regulation of Ribonucleotide Reductase
Nucleoside Diphosphate Kinase

\[\text{N}_{1}\text{DP} + \text{N}_{2}\text{TP} \rightleftharpoons \text{N}_{1}\text{TP} + \text{N}_{2}\text{DP} \]

\[\text{dN}_{1}\text{DP} + \text{N}_{2}\text{TP} \rightleftharpoons \text{dN}_{1}\text{TP} + \text{N}_{2}\text{DP} \]

• No specificity for base
• No specificity for ribo vs deoxy
Feed-forward regulation by PRPP
Feed-forward regulation by PRPP
Feed-forward regulation by PRPP

PRPP

IMP

GMP → ATP +

GTP

AMP → GTP +

ATP
Feed-forward regulation by PRPP
Degradation of the Purine Nucleosides:

- Adenosine
 - Converted to Inosine by Adenosine deaminase (ADA)
 - Further converted to Hypoxanthine by purine nucleoside phosphorylase

- Guanosine
 - Converted to Guanine by purine nucleoside phosphorylase
 - Converted to Xanthine by Guanine deaminase
 - Converted to Uric acid by xanthine oxidase
“Salvage” Pathways for Purine Nucleotides

APRT - Adenine phosphoribosyl transferase - performs a similar function with adenine.
Adenosine Deaminase Deficiency:

Deoxyadenosine → dAMP → dADP → dATP → Adenosine deaminase (ADA) → Deoxyinosine → 2-deoxyribose → Hypoxanthine → Guanine → Xanthine → Uric acid
Hyperuricemia can be caused by:

- Accelerated degradation of purines:
 - Accelerated synthesis of purines
 - Increased dietary intake of purines
- Impaired renal clearance of uric acid

Allopurinol inhibits xanthine oxidase and reduces blood uric acid levels:

Gout: deposition of urate crystals in joints, “tophi” in cooler periphery
The hands of a patient with a long history of gout, including high serum urate levels
Lesch-Nyhan Syndrome: Defective HGPRT

- hyperuricemia
- spasticity
- mental retardation
- self-mutilation behavior

A defect in APRT does NOT have similar consequences
Myoadenylate Deaminase ‘Fills’ the TCA Cycle in Muscle
Carbamoyl phosphate synthetase II - a *cytoplasmic* enzyme...

\[2\text{ATP} + \text{HCO}_3^- + \text{glutamine} + \text{H}_2\text{O} \rightarrow \text{NH}_2\text{C} = \text{O}\text{O}^2- + \text{glutamate} + 2\text{ADP} + \text{P}_i\]

...used for pyrimidine synthesis

[Chemical reactions and structures shown]
Orotate is linked to PRPP to form Uridine monophosphate:
Newly-synthesized uridine monophosphate will be phosphorylated to UDP and UTP, as described for the purine nucleotides.

UTP can be converted to CTP by CTP Synthetase:
Some UDP is converted to dUDP via ribonucleotide reductase.

The Thymidylate Synthase Reaction:
Methotrexate Inhibits Dihydrofolate Reductase:

Dihydrofolate builds up, levels of THF become limiting, thymidylate synthase is unable to proceed. Follow it with a dose of Leucovorin, a.k.a. formyl-THF.
FdUMP Inhibits The Thymidylate Synthase Reaction:

5-fluorodeoxyuridine monophosphate (F-dUMP)

\[\text{F-dUMP} \rightarrow \text{FdUMP} \]

\[\text{FdUMP} \] inhibits the thymidylate synthase reaction.

\[\text{thymidylate synthase} \rightarrow \text{dihydrofolate} \]

\[\text{dihydrofolate} \rightarrow \text{NADH} \]

\[\text{NADH} \rightarrow \text{NAD}^+ \]

\[\text{NAD}^+ \rightarrow \text{THF} \]

\[\text{THF} \rightarrow \text{methylene donor} \]

\[\text{methylene donor} \rightarrow \text{FdUMP} \]
Complicated Pathways for Pyrimidine Production:

This figure is primarily a study aid; you do not need to memorize it or reproduce it.
The information here merely summarizes material from previous sections.
Pathologies of pyrimidine nucleotide biosynthesis:

Orotic acidurea due to OTC deficiency - please review your Urea Cycle notes.

Hereditary orotic acidurea - deficiency of the enzyme that convert orotate to OMP to UMP. Not common.
Pyrimidine degradation:

Cytidine deaminase converts cytidine to uridine

A phosphorylase removes the sugar

Degradation of the base proceeds (products are unimportant here)
Pyrimidines can be salvaged as well:

Enzyme: Pyrimidine nucleoside phosphorylases
Thymine + deoxyribose-1-phosphate --> thymidine
(NOT thymidine monophosphate!)

Enzyme: Thymidine kinase - adds the monophosphate back
Thymidine + ATP --> thymidine monophosphate

Herpes Simplex Virus carries its own tk gene
Certain drugs act via the pyrimidine salvage pathway:

\[
\text{Acyclovir} \xrightarrow{\text{HSV thymidine kinase}} \text{AcycloGMP}
\]

\[
\text{5-fluorouracil} + \text{deoxyribose-1-phosphate} \xrightarrow{\text{pyrimidine phosphorylase}} \text{fluorodeoxyuridine} \xrightarrow{\text{uridine kinase}} \text{fluorodeoxyuridine monophosphate (FdUMP)}
\]
5-FU efficacy depends on rate of degradation vs activation

\[
\begin{align*}
5\text{-FU} & \quad \rightarrow \quad \text{FdUMP} \\
& \quad + \text{methylene-THF} + \text{Thymidylate Synthase} \\
& \quad \rightarrow \text{inactivation of TS}
\end{align*}
\]

Degradation
(via dihydropyrimidine dehydrogenase, DPD)

DPD inhibitors can potentiate 5FU activity
Capecitabine mode of action:

Cytosine arabinoside (araC) activation and inactivation: