2007-09

M1 - Renal, Fall 2007

Lyons, R.; Burney, R.

<http://hdl.handle.net/2027.42/64946>
http://hdl.handle.net/2027.42/64946
Formation of PRPP: Phosphoribose pyrophosphate

PRPP Use in Purine Biosynthesis:
The First Purine: Inosine Monophosphate
(folates are involved in this synthesis)

Conversion to Adenosine:

Conversion to Guanosine:
Nucleoside Monophosphate Kinases

\[\text{AMP + ATP} \quad \leftrightarrow \quad 2\text{ADP} \quad \text{(adenylate kinase)} \]

\[\text{GMP + ATP} \quad \leftrightarrow \quad \text{GDP + ADP} \quad \text{(guanylate kinase)} \]

• similar enzymes specific for each nucleotide
• no specificity for ribonucleotide vs. deoxyribonucleotide
Ribonucleotide Reductase

Hydroxyurea inhibits this enzyme: chemotherapeutic use

\[\text{HONH}^+ \text{C} \text{NH}_2 \]
Regulation of Ribonucleotide Reductase
Nucleoside Diphosphate Kinase

\[N_1 \text{DP} + N_2 \text{TP} \rightleftharpoons N_1 \text{TP} + N_2 \text{DP} \]

\[\text{dN}_1 \text{DP} + N_2 \text{TP} \rightleftharpoons \text{dN}_1 \text{TP} + N_2 \text{DP} \]

- No specificity for base
- No specificity for ribo vs deoxy
Feed-forward regulation by PRPP

PRPP

↓

IMP

↓

GMP

ATP

↓

GTP

AMP

GTP

ATP
Feed-forward regulation by PRPP
Feed-forward regulation by PRPP

PRPP

IMP

GMP

GTP

ATP

+ +

AMP

GTP

ATP
Feed-forward regulation by PRPP

[Diagram showing the regulation of IMP, GMP, ATP, GTP, and AMP]
Degradation of the Purine Nucleosides:

- Adenosine to Inosine to Hypoxanthine
- Guanosine to Guanine to Xanthine to Uric acid

Chemical reactions:
- Adenosine deaminase (ADA)
- Purine nucleoside phosphorylase
- Guanine deaminase
- Xanthine oxidase
“Salvage” Pathways for Purine Nucleotides

APRT - Adenine phosphoribosyl transferase - performs a similar function with adenine.
Adenosine Deaminase Deficiency:

Deoxyadenosine → dAMP → dADP → dATP

Adenosine deaminase (ADA)

Deoxyinosine → 2-deoxyribose → Hypoxanthine

Guanine → Xanthine

Uric acid
Hyperuricemia can be caused by:

- Accelerated degradation of purines:
 - Accelerated synthesis of purines
 - Increased dietary intake of purines
- Impaired renal clearance of uric acid

Gout: deposition of urate crystals in joints, “tophi” in cooler periphery

Allopurinol inhibits xanthine oxidase and reduces blood uric acid levels:
The hands of a patient with a long history of gout, including high serum urate levels
Lesch-Nyhan Syndrome: Defective HGPRT

- hyperuricemia
- spasticity
- mental retardation
- self-mutilation behavior

A defect in APRT does NOT have similar consequences
Myoadenylate Deaminase ‘Fills’ the TCA Cycle in Muscle

[Diagram showing the metabolic pathway involving myoadenylate deaminase, Adenosine monophosphate, Inosine monophosphate, and Fumarate, indicating its role in the TCA cycle.]
Carbamoyl phosphate synthetase II - a cytoplasmic enzyme...

\[2\text{ATP} + \text{HCO}_3^- + \text{glutamine} + \text{H}_2\text{O} \rightarrow \text{NH}_2\text{C} - \text{O}\text{P}^{2-} + \text{glutamate} + 2\text{ADP} + \text{P}_i \]

...used for pyrimidine synthesis

\[\text{carbamoyl phosphate} + \text{aspartate} \rightarrow \text{orotate} \]
Orotate is linked to PRPP to form Uridine monophosphate:
Newly-synthesized uridine monophosphate will be phosphorylated to UDP and UTP, as described for the purine nucleotides.

UTP can be converted to CTP by CTP Synthetase:
Some UDP is converted to dUDP via ribonucleotide reductase.

The Thymidylate Synthase Reaction:
Methotrexate Inhibits Dihydrofolate Reductase:

Dihydrofolate builds up, levels of THF become limiting, thymidylate synthase is unable to proceed. Follow it with a dose of Leucovorin, a.k.a. formyl-THF.
FdUMP Inhibits The Thymidylate Synthase Reaction:

5-fluorodeoxyuridine monophosphate (FdUMP) inhibits the thymidylate synthase reaction. The reaction involves the conversion of deoxyuridine monophosphate to deoxythymidine monophosphate. FdUMP acts as a competitive inhibitor at the thymidylate synthase active site, preventing the formation of dihydrololate and ultimately deoxythymidine monophosphate.
Complicated Pathways for Pyrimididine Production:

This figure is primarily a study aid; you do not need to memorize it or reproduce it. The information here merely summarizes material from previous sections.
Pathologies of pyrimidine nucleotide biosynthesis:

Orotic acidurea due to OTC deficiency - please review your Urea Cycle notes.

Hereditary orotic acidurea - deficiency of the enzyme that convert orotate to OMP to UMP. Not common.
Pyrimidine degradation:

Cytidine deaminase converts cytidine to uridine

A phosphorylase removes the sugar

Degradation of the base proceeds (products are unimportant here)
Pyrimidines can be salvaged as well:

Enzyme: Pyrimidine nucleoside phosphorylases
Thymine + deoxyribose-1-phosphate \rightarrow thymidine
(NOT thymidine monophosphate!)

Enzyme: Thymidine kinase - adds the monophosphate back
Thymidine + ATP \rightarrow thymidine monophosphate

Herpes Simplex Virus carries its own tk gene
Certain drugs act via the pyrimidine salvage pathway:

\[
\begin{align*}
\text{Acyclovir} & \xrightarrow{\text{HSV thymidine kinase}} \text{AcycloGMP} \\
\text{5-fluorouracil} \quad & \xrightarrow{\text{pyrimidine phosphorylase}} \text{fluorodeoxyuridine} \quad & \xrightarrow{\text{uridine kinase}} \text{fluorodeoxyuridine monophosphate (FdUMP)}
\end{align*}
\]
5-FU efficacy depends on rate of degradation vs activation

Degradation (via dihydropyrimidine dehydrogenase, DPD)

DPD inhibitors can potentiate 5FU activity
Capecitabine mode of action:

Cytosine arabinoside (araC) activation and inactivation: