2008-01

M2 - Endocrine, Winter 2008

Lash, R.; Hammer, G.; Menon, R.; Oral, E.


<http://hdl.handle.net/2027.42/64949>
http://hdl.handle.net/2027.42/64949
Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution - Non-Commercial - Share Alike 3.0 License.

Copyright 2007, Ram Menon.

The following information is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you have questions or concerns about this information or your medical condition. You assume all responsibility for use and potential liability associated with any use of the material.

Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content objects. Users of content are responsible for their compliance with applicable law.
Abnormalities of Growth & Development

Ram K. Menon, M.D.
Division of Endocrinology
Department of Pediatrics
CS Mott Children’s Hospital
University of Michigan
OBJECTIVES

To understand the
- determinants of normal growth
- common variations in normal growth
- diagnostic approach to a child with abnormal growth
- principles of management of a child with abnormal growth
Topics **NOT** covered in today’s discussion

- Sexual differentiation
- Ambiguous genitalia and disorders of sexual differentiation
- Pubertal development
- Disorders of pubertal development – delayed / precocious
- Physiology of hormone secretion / action
Determinants of Normal Growth

Normal growth is the aggregate of hormonal, environmental, nutritional, and genetic factors.

Hormonal Factors

- **Thyroid** - essential for normal growth
  - hypothyroidism is a common cause of severe growth delay
- **Sex steroids** - bone maturation is dependent on estrogen
  - testosterone can enhance GH secretion
- **Glucocorticoids** - potent inhibitor of growth
GH/IGF-1 Axis

Image of GH/IGF-1 Axis removed
### Determinants of Normal Growth

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Growth Rate (\text{cms/yr})</th>
<th>Adult Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex Steroids</td>
<td>Increase</td>
<td>Diminished</td>
</tr>
<tr>
<td>Sex Steroids</td>
<td>Normal</td>
<td>Increased</td>
</tr>
<tr>
<td>Thyroxine (\uparrow)</td>
<td>Normal/± incr</td>
<td>Normal</td>
</tr>
<tr>
<td>Thyroxine (\downarrow)</td>
<td>Decreased</td>
<td>Diminished</td>
</tr>
<tr>
<td>GH (\uparrow)</td>
<td>Increase</td>
<td>Increased</td>
</tr>
<tr>
<td>GH (\downarrow)</td>
<td>Decrease</td>
<td>Diminished</td>
</tr>
<tr>
<td>Cortisol (\uparrow)</td>
<td>Decrease</td>
<td>Diminished</td>
</tr>
<tr>
<td>Cortisol (\downarrow)</td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>
Normal Growth

Anthropometric parameters

- Weight
- **Measurement of height - Stadiometer**
  - less than 2 yrs of age - length (supine)
  - greater than 2 yrs of age - height (erect)
- Head circumference
- Span
- Upper segment / lower segment ratio
Normal Growth

Anthropometric parameters

Upper / Lower Segment Ratio

Lower segment: symphysis pubis to floor
Upper segment: Ht (-) lower segment

Image of fetal and post-natal growth chart removed
Girls 2-18 yrs

Source: Undetermined
Normal Growth

Growth Velocity

- measured in cms/yr
- should be measured over at least a 6-12 month period
- more the # of height points used to calculate GV - more reliable is the interpretation
- assessment of pubertal status is critical for interpretation of GV
- Normal GV - is a strong argument AGAINST a significant hormonal abnormality

Boys 2-18 yrs

Growth rate (cms/yr)

AGE YEARS

GROWTH RATE

GROWTH RATE

NAME
RECORD #
DATE OF BIRTH

Source: JM Tanner, et al.
Normal Growth

- **Chronological age**
- **Dental age**
- **Bone Age (skeletal maturation)**

  beyond the neonatal age - X-ray of L wrist

  comparison with published standards (Greulich & Pyle)

**Usefulness** - prediction of final height

  - age of onset of puberty closely linked to bone age
  - corroborates diagnosis, but is never diagnostic

**Caveats** - imprecise / ethnic variability
SHORT STATURE

- Definition
- Classification
- Etiology
- Evaluation / Diagnostic Approach
- Treatment
Short Stature
height < 3rd percentile

Growth Retardation
growth velocity < 3rd percentile
Short Stature
height < 3rd percentile
Growth Retardation
growth velocity < 3rd percentile

Etiology

Normal Variant ↔ Pathological
Short Stature

Familial / Genetic
- final ht appropriate for parental ht
- normal size at birth
- GV may be ↓ in 0-3 yrs of age
- BA = CA

Constitutional Delay of Growth & Puberty
- "Late Bloomer"
- family history
- normal size at birth
- normal GV
- delayed puberty
- BA < CA

BA = bone age
CA = chronological age
Prepubertal
  $GV = 5.0 \text{ cm/yr}$
  Normal BUN / ESR
  Normal Free T$_4$ & TSH
  Low-normal IGF-1
  Normal IGFBP3 (for Tanner stage)
  Bone age = 11.5 yrs

MRI
  Normal

14 yr old boy
h/o “shortest in his class”
h/o “always a small boy”
h/o father did not “grow” till he entered college

Testosterone 50 mg / q 4wks x 3 doses

Source: Undetermined
SHORT STATURE

Definitions

- Short Stature
  height < 3rd percentile
- Growth Retardation
  growth velocity < 3rd percentile

Etiology

Normal Variant

Pathological

Proportionate

Disproportionate
SHORT STATURE

Endocrinopathies
- Hypothyroidism
- GH deficiency
- Cushing's syndrome

GI
- Malabsorption
- Inflammatory bowel disease
- Celiac disease

Renal
- Chronic renal failure
- Renal tubular acidosis

Chronic Systemic Illness
- Cardiac
- Pulmonary
- Liver
- Infection

IUGR
- Malnutrition

Psychosocial Dwarfism
- Emotional Deprivation Syndrome
4 yr old boy
Voracious appetite / drinks urine - toilet bowl
Withdrawn / flat affect
No dysmorphic features
Chaotic home situation - abusive father

Ht age = 1 yr old

All lab tests normal
Admitted to hospital for observation

4 yr old boy
No dysmorphic features
Chaotic home situation - abusive father

Emotional deprivation syndrome
Psychosocial dwarfism

Source: Undetermined
6 yr old girl

$GV = 3.0 \text{ cm/yr}$

No dysmorphic features

Chaotic home situation - parent incarcerated - shuttled through couple of foster homes

Adopted by a family

Stable home environment

All lab tests normal

Emotional deprivation syndrome

Psychosocial dwarfism

Source: Undetermined
SHORT STATURE

Skeletal Abnormalities
- Dysplasia
- Achondroplasia
- Rickets
- Vertebral anomalies

Dysmorphic Syndromes
- Turner
- Down
- Russell-Silver
- Prader-Willi
- Pseudo-hypoparathyroidism

Pathological Disproportionate
SHORT STATURE

Evaluation Clinical History

Prenatal maternal infection, alcohol

Pattern of growth birth wt and length

Family onset of puberty

Nutrition

Systemic Disease

Drugs steroids

Neurological headache, vision, enuresis

Psychosocial
First sign of puberty on PE:
♀ breast dev / ♂ incr in testicular volume

Anthropometric: ht, wt, head circ., arm span, U/L ratio

Nutritional state

Tanner Staging for Pubertal Development

Dysmorphic Features

Neurological exam

Thyroid Gland
Target Height (in cms)

\[
girl = \frac{[father's \ ht + mother's \ ht] - 13}{2}
\]

\[
boy = \frac{[father's \ ht + mother's \ ht] + 13}{2}
\]

normal range is ± 8 cms
**SHORT STATURE**

**Evaluation**
**Diagnostic Approach**

**Key Parameter - Growth Velocity**

**Normal GV**
- Familial
- Constitutional

**Impaired GV**
- Malnutrition
- Chronic systemic illness
- IUGR
- Psychosocial
- Chromosomal abnormalities
- Endocrine
- Malabsorption
- Bone dysplasias
SHORT STATURE Evaluation Laboratory Tests

Screening Tests

- CBC, ESR, BUN
- FT4, TSH
- IGF-1, IGFBP3
- Tissue Transglutaminase ab

KARYOTYPE
- in girls to exclude TURNER
- dysmorphic features

RADIOLOGICAL
- bone age
- skeletal survey
SHORT STATURE

Growth Hormone Deficiency (GHD)
Neonatal - normal size / hypoglycemia / jaundice / micropenis / midline defect

Decreased growth velocity

Delayed dentition / mid-facial hypoplasia

Increase in adiposity
- Tumor - craniopharyngioma
- Trauma - surgery / irradiation
- Idiopathic
- Congenital Aplasia / Hypoplasia / Septic-optic dysplasia
- Genetic Defects -
  - Isolated Growth Hormone Deficiency (IGHD)
  - PROP1 / POU1F1 (Pit1)
Criteria for diagnosing GH deficiency

- Clinical (NOT laboratory) diagnosis
  - GV < 2 SD
  - Low IGF-1 & IGFBP-3
  - Provocative GH Level < 7-10 ng/ml

Corroborative evidence

- Delayed BA
- Related pathology
Spontaneous pulsatility of GH precludes random measurement.

Provocative test after overnight fast
- Insulin induced hypoglycemia is the “Gold standard”

IGF-1 / IGFBP3

- Altered by nutritional status
- Normal range related to age & pubertal status
Growth hormone deficiency
Turner syndrome
Renal disease, before transplant
Small for gestational age
Prader-Willi syndrome
Idiopathic short stature
SHORT STATURE

Treatment
GH Replacement Therapy

s/c injection
7 days/wk

Side Effects
- Secondary/tertiary hypothyroidism
- Worsening of scoliosis
- Slipped capital femoral epiphysis
- Pseudotumor cerebri

Monitor
GV, Free T4, IGF-1, IGFBP3
8\frac{1}{2} yr old girl
h/o poor growth x 12-18 months
recent h/o vague headaches
school performance has recently deteriorated
recent episodes of enuresis

Prepubertal
$GV = 1.5 \text{ cm/yr}$
Low Free $T_4$, Normal TSH
Low IGF-1 & IGFBP3
Karyotype = 46 XX
Bone age = 6 yrs

MRI
craniopharyngioma

Source: Undetermined
8½ yr old girl
h/o poor growth x 12-18 months
h/o vague abdominal discomfort

Prepubertal
GV = 2.5 cm/yr
Normal Free T₄ & TSH
Low IGF-1
Normal IGFBP3
Karyotype = 46 XX
Bone age = 7.5 yrs

Decreased serum albumin, microcytic anemia
ESR - 30

Tissue transglutaminase antibodies +ve
Small Intestine Biopsy - CELIAC DISEASE
5 yr old girl
GV = 3.0 cm/yr
subtle dysmorphic features - clinodactyly, webbing of neck ±,↑ carrying angle

GV = 3.0 cm/yr
Normal Free T4 & TSH
Normal IGF-1
Normal IGFBP3
Bone age = 5.0 yrs

Karyotype = 45,X
TURNER SYNDROME

Source: Undetermined
Turner Syndrome
Turner Syndrome

- Described in 1938 by Dr. Henry Turner
- Most common sex chromosomal abnormality in females -- X chromosome
- Frequency 1:1500 to 1:2500 in live born infant girls
- 15% of spontaneous abortions = TS
Karyotype 45, X

Image of Turner Syndrome
Karyotype removed
Turner Syndrome

Clinical Features - Postnatal

- Growth Failure: 80-100%
- Gonadal Dysgenesis: 80-100%
- Inverted/widely spaced nipples: 60%
- Nail dysplasia: 60-80%
- High narrow palate: 60-80%
- Cardiac malformation: 40-60%
- Renal dysplasia: 40-60%
- Low hairline/webbing: 30-40%
- Pigmented nevi: common
Turner Syndrome

CC BY 2.0
By: Johannes Nielsen, et al.
Lymphedema at birth is highly correlated with 45,X karyotype and congenital heart abn
Growth velocity (and NOT height) is the key anthropometric parameter.

Normal growth velocity virtually excludes a pathological cause for short stature.

Always exclude Turner’s synd in a girl with short stature.

Diagnosis of a child with growth problems is made more on CLINICAL and less on laboratory criteria.