M2 - Endocrine, Winter 2008

Lash, R.; Hammer, G.; Menon, R.; Oral, E.

<http://hdl.handle.net/2027.42/64949>
http://hdl.handle.net/2027.42/64949
Abnormalities of Growth & Development

Ram K. Menon, M.D.
Division of Endocrinology
Department of Pediatrics
CS Mott Children’s Hospital
University of Michigan
OBJECTIVES

To understand the
- determinants of normal growth
- common variations in normal growth
- diagnostic approach to a child with abnormal growth
- principles of management of a child with abnormal growth
Topics NOT covered in today's discussion

- Sexual differentiation
- Ambiguous genitalia and disorders of sexual differentiation
- Pubertal development
- Disorders of pubertal development - delayed / precocious
- Physiology of hormone secretion / action
Determinants of Normal Growth

Normal growth is the aggregate of hormonal, environmental, nutritional, and genetic factors

Hormonal Factors

◊ Thyroid - essential for normal growth
 - hypothyroidism is a common cause of severe growth delay
◊ Sex steroids - bone maturation is dependent on estrogen
 - testosterone can enhance GH secretion
◊ Glucocorticoids - potent inhibitor of growth
Determinants of Normal Growth

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Growth Rate cms/yr</th>
<th>Adult Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex Steroids</td>
<td>Increase</td>
<td>Diminished</td>
</tr>
<tr>
<td>Sex Steroids</td>
<td>Normal</td>
<td>Increased</td>
</tr>
<tr>
<td>Thyroxine</td>
<td>Normal/\pm incr</td>
<td>Normal</td>
</tr>
<tr>
<td>Thyroxine</td>
<td>Decreased</td>
<td>Diminished</td>
</tr>
<tr>
<td>GH</td>
<td>Increase</td>
<td>Increased</td>
</tr>
<tr>
<td>GH</td>
<td>Decrease</td>
<td>Diminished</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Decrease</td>
<td>Diminished</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>
Normal Growth

Anthropometric parameters

- **Weight**

- **Measurement of height** - Stadiometer
 - less than 2 yrs of age - length (supine)
 - greater than 2 yrs of age - height (erect)

- **Head circumference**

- **Span**

- **Upper segment / lower segment ratio**
Upper / Lower Segment Ratio

Lower segment: symphysis pubis to floor
Upper segment: Ht (-) lower segment
Girls 2-18 yrs

Source: Undetermined
Normal Growth

Growth Velocity

- measured in cms/yr
- should be measured over at least a 6-12 month period
- more the # of height points used to calculate GV - more reliable is the interpretation
- assessment of pubertal status is critical for interpretation of GV
- Normal GV - is a strong argument AGAINST a significant hormonal abnormality
Girls 2-18 yrs

Source: JM Tanner, et al.
Boys 2-18 yrs

Source: JM Tanner, et al.
Normal Growth

- Chronological age
- Dental age
- Bone Age (skeletal maturation)

Beyond the neonatal age - X-ray of L wrist

Comparison with published standards (Greulich & Pyle)

Usefulness - prediction of final height

- age of onset of puberty closely linked to bone age
- corroborates diagnosis, but is never diagnostic

Caveats - imprecise / ethnic variability
Short Stature
height < 3rd percentile

Growth Retardation
growth velocity < 3rd percentile
Short Stature

- height < 3rd percentile
- Growth Retardation
growth velocity < 3rd percentile

Etiology

Normal Variant ↔ Pathological
SHORT STATURE

Normal Variant

Familial / Genetic
- Final height appropriate for parental height
- Normal size at birth
- GV may be ↓ in 0-3 yrs of age
- BA = CA

Constitutional Delay of Growth & Puberty
- "Late Bloomer"
- Family history
- Normal size at birth
- Normal GV
- Delayed puberty
- BA < CA

BA = bone age
CA = chronological age
14 yr old boy
h/o “shortest in his class”
h/o “always a small boy”
h/o father did not “grow” till he entered college

Prepubertal
GV = 5.0 cm/yr
Normal BUN / ESR
Normal Free T4 & TSH
Low-normal IGF-1
Normal IGFBP3 (for Tanner stage)
Bone age = 11.5 yrs

MRI
Normal

Testosterone 50 mg / q 4wks x 3 doses

Source: Undetermined
SHORT STATURE

Definitions

- Short Stature
 - height < 3rd percentile
- Growth Retardation
 - growth velocity < 3rd percentile

Etiology

- Normal Variant
- Pathological
 - Proportionate
 - Disproportionate
SHORT STATURE

Pathological Proportionate

Endocrinopathies
- Hypothyroidism
- GH deficiency
- Cushing’s syndrome

GI
- Malabsorption
- Inflammatory bowel disease
- Celiac disease

Renal
- Chronic renal failure
- Renal tubular acidosis

Chronic Systemic Illness
- Cardiac
- Pulmonary
- Liver
- Infection

IUGR
- Malnutrition

Psychosocial Dwarfism
- Emotional Deprivation Syndrome
4 yr old boy
Voracious appetite / drinks urine - toilet bowl
Withdrawn / flat affect
No dysmorphic features
Chaotic home situation - abusive father

Ht age = 1 yr old

Image of one year old boy removed

Image of one year old boy removed

All lab tests normal
Admitted to hospital for observation

4 yr old boy
No dysmorphic features
Chaotic home situation - abusive father

Emotional deprivation syndrome
Psychosocial dwarfism

Source: Undetermined
6 yr old girl
GV = 3.0 cm/yr
No dysmorphic features
Chaotic home situation - parent incarcerated - shuttled through couple of foster homes
Adopted by a family
Stable home environment

All lab tests normal

Emotional deprivation syndrome
Psychosocial dwarfism

Source: Undetermined
SHORT STATURE

Pathological Disproportionate

Skeletal Abnormalities
- Dysplasia
- Achondroplasia
- Rickets
- Vertebral anomalies

Dysmorphic Syndromes
- Turner
- Down
- Russell-Silver
- Prader-Willi
- Pseudo-hypoparathyroidism
SHORT STATURE

Evaluation
Clinical History

Prenatal: maternal infection, alcohol

Pattern of growth: birth wt and length

Family History: onset of puberty

Nutrition

Systemic Disease

Drugs: steroids

Neurological: headache, vision, enuresis

Psychosocial
SHORT STATURE Evaluation
Physical Exam

Anthropometric
ht, wt, head circ., arm span, U/L ratio

Nutritional state

Tanner Staging for Pubertal Development
First sign of puberty on PE:
♀ breast dev / ♂ incr in testicular volume

Dysmorphic Features

Neurological exam

Thyroid Gland
Target Height (in cms)

girl = \frac{[father's ht + mother's ht] - 13}{2}

boy = \frac{[father's ht + mother's ht] + 13}{2}

normal range is ± 8 cms
SHORT STATURE

Evaluation
Diagnostic Approach

Key Parameter - Growth Velocity

Normal GV

Familial
Constitutional

Impaired GV

Malnutrition
Chronic systemic illness
IUGR
Psychosocial
Chromosomal abnormalities
Endocrine
Malabsorption
Bone dysplasias
Screening Tests

- CBC, ESR, BUN
- FT₄, TSH
- IGF-1, IGFBP3
- Tissue Transglutaminase ab

KARYOTYPE
- in girls to exclude TURNER
- dysmorphic features

RADIOLOGICAL
- bone age
- skeletal survey
SHORT STATURE

Growth Hormone Deficiency (GHD)
♦ Neonatal - normal size / hypoglycemia / jaundice / micropenis / midline defect
♦ Decreased growth velocity
♦ Delayed dentition / mid-facial hypoplasia
♦ Increase in adiposity
SHORT STATURE

GH Deficiency (GHD) Causes

- Tumor - craniopharyngioma
- Trauma - surgery / irradiation
- Idiopathic
- Congenital Aplasia / Hypoplasia / Septic-optic dypslasia
- Genetic Defects -
 - Isolated Growth Hormone Deficiency (IGHD)
 - PROP1 / POU1F1 (Pit1)
Criteria for diagnosing GH deficiency

- Clinical (NOT laboratory) diagnosis
 - GV < 2 SD
 - Low IGF-1 & IGFBP-3
 - Provocative GH Level < 7-10 ng/ml

Corroborative evidence

- Delayed BA
- Related pathology
Spontaneous pulsatility of GH precludes random measurement
 Provocative test after overnight fast
 - Insulin induced hypoglycemia is the “Gold standard”

Measurement of GH

IGF-1 / IGFBP3

- Altered by nutritional status
- Normal range related to age & pubertal status
SHORT STATURE

Indications for GH Therapy

- Growth hormone deficiency
- Turner syndrome
- Renal disease, before transplant
- Small for gestational age
- Prader-Willi syndrome
- Idiopathic short stature
SHORT STATURE

Treatment
GH Replacement Therapy

s/c injection
7 days/wk

Side Effects
- Secondary/tertiary hypothyroidism
- Worsening of scoliosis
- Slipped capital femoral epiphysis
- Pseudotumor cerebri

Monitor
GV, Free T₄, IGF-1, IGFBP3
8½ yr old girl
h/o poor growth x 12-18 months
recent h/o vague headaches
school performance has recently deteriorated
recent episodes of enuresis

Prepubertal
GV = 1.5 cm/yr
Low Free T₄, Normal TSH
Low IGF-1 & IGFBP3
Karyotype = 46 XX
Bone age = 6 yrs

MRI craniopharyngioma

Source: Undetermined
8½ yr old girl
h/o poor growth x 12-18 months
h/o vague abdominal discomfort

Prepubertal
GV = 2.5 cm/yr
Normal Free T\textsubscript{4} & TSH
Low IGF-1
Normal IGFBP3
Karyotype = 46 XX
Bone age = 7.5 yrs

Decreased serum albumin, microcytic anemia
ESR - 30

Tissue transglutaminase antibodies +ve
Small Intestine Biopsy - CELIAC DISEASE
5 yr old girl
GV = 3.0 cm/yr
subtle dysmorphic features - clinodactyly, webbing of neck ±, t carrying angle

GV = 3.0 cm/yr
Normal Free T4 & TSH
Normal IGF-1
Normal IGFBP3
Bone age = 5.0 yrs

Karyotype = 45,X
TURNER SYNDROME

Source: Undetermined
Turner Syndrome

BY: Johannes Nielsen, et al.

CC BY 2.0
Described in 1938 by Dr. Henry Turner
Most common sex chromosomal abnormality in females -- X chromosome
Frequency 1:1500 to 1:2500 in live born infant girls
15% of spontaneous abortions = TS
Turner Syndrome

Karyotype 45, X

Image of Turner Syndrome
Karyotype removed
Turner Syndrome

Clinical Features - Postnatal

- Growth Failure: 80-100%
- Gonadal Dysgenesis: 80-100%
- Inverted/ widespaced nipples: 60%
- Nail dysplasia: 60-80%
- High narrow palate: 60-80%
- Cardiac malformation: 40-60%
- Renal dysplasia: 40-60%
- Low hairline/webbing: 30-40%
- Pigmented nevi: common
Turner Syndrome

CC BY 2.0
BY: Johannes Nielsen, et al.
Lymphedema

- Lymphedema at birth is highly correlated with 45,X karyotype and congenital heart abn
Growth velocity (and NOT height) is the key anthropometric parameter.

Normal growth velocity virtually excludes a pathological cause for short stature.

Always exclude Turner’s synd in a girl with short stature.

Diagnosis of a child with growth problems is made more on CLINICAL and less on laboratory criteria.