2007-09

M1 - Cardiovascular / Respiratory, Fall 2007

Abrams, G.; Sisson, T.; Jacobson, P.

Diffusion of Gases

Thomas Sisson, M.D.
Objectives

• To understand the diffusion of gases in the lung
 – Define diffusion and contrast with bulk flow
 – State Fick’s law for diffusion
 – Distinguish between diffusion limitation and perfusion limitation
 – Describe the diffusion of oxygen from the alveoli into the blood
 – Describe the diffusion of CO₂ from blood to alveoli
 – Define diffusing capacity and discuss its measurement
Airway Branching

<table>
<thead>
<tr>
<th>Branching</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trachea</td>
<td>0</td>
</tr>
<tr>
<td>Main Bronchi</td>
<td>1</td>
</tr>
<tr>
<td>Lobar Bronchus</td>
<td>2</td>
</tr>
<tr>
<td>Segmental Bronchus</td>
<td>3-4</td>
</tr>
<tr>
<td>Bronchioles</td>
<td>5-15</td>
</tr>
<tr>
<td>Terminal Bronchioles</td>
<td>16</td>
</tr>
<tr>
<td>Resp. Bronchioles</td>
<td>17-19</td>
</tr>
<tr>
<td>Alveolar Ducts</td>
<td>20-22</td>
</tr>
<tr>
<td>Alveolas Sacs</td>
<td>23</td>
</tr>
</tbody>
</table>

Source: SEER Training Website (training.seer.cancer.gov)
Bulk Flow vs. Diffusion

- The cross sectional area increases with airway generation.

- Large volume/time, with decreasing velocity at any point.
 - Imagine a fast flowing river reaching a delta.

- The velocity of gas during inspiration becomes tiny at the level of the respiratory bronchiole- at this level diffusion becomes the chief mode of gas movement.

Source: Undetermined
Gas Movement due to Diffusion

- Diffusion - movement of gas due to molecular motion, rather than flow.
 - Akin to the spread of a scent in a room, rather than wind.
 - Random motion leads to distribution of gas molecules in alveolus.
Gas Movement due to Diffusion

(1) Source: Jkrieger (wikimedia.org)
Diffusion

• Driven by concentration gradients:
 – differences in partial pressure of the individual gases.
• Movement of O_2 and CO_2 between the level of the respiratory bronchiole and that of the alveolar space depends only on diffusion.
• The distances are small, so diffusion here is fast.
Diffusion of Gas Through the Alveolar Wall

Alveolar airspace

Pathway of diffusion

Source: Undetermined
Diffusion of Oxygen Across the Alveolar Wall

- **Pulmonary Surfactant**
 - Diffuses/Dissolves

- **Alveolar Epithelium**
 - Diffuses/Dissolves

- **Alveolar Interstitium**
 - Diffuses/Dissolves

- **Capillary Endothelium**
 - Diffuses/Dissolves

- **Plasma**
 - Diffuses/Dissolves

- **Red Blood Cell**
 - Binds

- **Hemoglobin**
Fick’s Law for Diffusion

\[V_{\text{gas}} = \frac{A \times D \times (P_1 - P_2)}{T} \]

- \(V_{\text{gas}} \) = volume of gas diffusing through the tissue barrier per time, in ml/min
- \(A \) = surface area available for diffusion
- \(D \) = diffusion coefficient of the gas (diffusivity)
- \(T \) = thickness of the barrier
- \(P_1 - P_2 \) = partial pressure difference of the gas
Diffusivity

\[D \equiv \text{Solubility/} \sqrt{\text{MW}} \]

- \(\text{O}_2 \) has lower MW than \(\text{CO}_2 \)
- Solubility of \(\text{CO}_2 \) is 24x that of \(\text{O}_2 \)
- \(\text{CO}_2 \) diffuses 20x more rapidly through the alveolar capillary barrier than \(\text{O}_2 \)
Diffusion Across a Membrane

\[\dot{V}_{\text{gas}} = \frac{A \cdot D(P_1 - P_2)}{T} \]

\[D \propto \frac{\text{Solubility}}{\sqrt{\text{MW}}} \]

\(A = \text{Area} \)

\(P_1 \)

\(P_2 \)

\(\text{T} = \text{Thickness} \)
Limitations of Gas Transfer

• Diffusion Coefficient.
 – Different gases behave differently.

• Surface Area and Thickness of the alveolar wall.

• Partial Pressure Gradient across the alveolar wall for each individual gas.
 – Depends on both alveolar and mixed venous partial pressure (start of capillary).
Change in Blood Partial Pressure of Three Gases with Time in the Capillary

N$_2$O is **Perfusion Limited**

- N$_2$O is very soluble in biological tissues and diffuses rapidly.
- PcN$_2$O rises rapidly in the alveolar capillary
- Quickly have PcN$_2$O = P$_A$N$_2$O.
- Because there is no pressure gradient, no diffusion occurs after about 0.1 sec.
- Fresh blood entering the capillary has not yet equilibrated and can still take up N$_2$O.
- Increased blood flow will increase gas transfer
- Transfer of N$_2$O is **perfusion limited**.
Change in Blood Partial Pressure of Three Gases with Time in the Capillary

Carbon Monoxide is **Diffusion Limited**

- Blood PCO rises very slowly because CO is bound to Hgb, with very little dissolved.
- Capillary PcCO does not approach PaCO.
- Partial pressure gradient is maintained throughout the time the blood is in the capillary.
 - Diffusion continues throughout this time.
- Transfer of CO is limited by diffusivity, surface area, and thickness of the wall.
Transfer of Oxygen

Transfer of Oxygen

• Under normal conditions, \(\text{PcO}_2 \) reaches \(\text{PAO}_2 \) about 1/3 of the distance through the capillary.

• Therefore under normal conditions transfer is perfusion limited.

• With exercise, the time blood spends in the capillary is reduced- no longer perfusion but diffusion limitation.

• In the setting of thickened alveolar wall, transfer is reduced.
 – With severely disturbed diffusion, there is limitation even at rest.
Transfer of Oxygen is Limited at Low Alveolar O_2
Transfer of CO$_2$

- Is transfer of CO$_2$ diffusion or perfusion limited?

Alveolar \(P_{O_2} \) vs. partial pressure in blood (mm Hg)

- Normal
- \(\frac{1}{4} \) Normal
- \(\frac{1}{8} \) Normal

Carbon dioxide partial pressure in blood (mm Hg) vs. time in capillary (s)

- Normal
- \(\frac{1}{4} \) Normal

Transfer of CO$_2$

Why is the transfer of CO$_2$ so similar to that of O$_2$?

$$V_{\text{gas}} = \frac{A \times D \times (P_1 - P_2)}{T}$$

Diffusivity of CO$_2$ is 20x > than that of O$_2$
Partial pressure gradient of CO$_2$ is 45→40
Partial pressure gradient of O$_2$ is 100→40
Fick’s Law for Diffusion

\[V_{\text{gas}} = \frac{(AxD)}{T} \times (P_1 - P_2) \]

- \(V_{\text{gas}} \) = volume of gas diffusing through the tissue barrier per time, in ml/min
- \(A \) = surface area available for diffusion
- \(D \) = diffusion coefficient of the gas (diffusivity)
- \(T \) = thickness of the barrier
- \(P_1 - P_2 \) = partial pressure difference of the gas

\(\frac{(AxD)}{T} = \) diffusing capacity of the lung (DL)
Diffusing Capacity

\[
\frac{(AxD)}{T} = \frac{\dot{V}_{gas}}{(P_{1x} - P_{2x})} = D_{Lx}
\]

Source: Undetermined
Measuring Diffusing Capacity

• Inhale mixture containing known concentration of tracer gas.

• Allow diffusion from alveolus into blood.

• Measure concentration of tracer in exhaled gas.

• Calculate rate of removal of tracer gas by diffusion into blood and the partial pressure gradient from alveolus into blood.

• Choice of gas:
 – Readily available.
 – Easily measured.
 – Diffusion limited.
 – No arterial partial pressure.
We Could Use DLO$_2$

\[
\frac{AxD}{T} = D_L O_2
\]

\[
\dot{V}_{O_2} = D_L O_2 (P_A O_2 - P_C O_2) = \text{ml O}_2 / \text{min}
\]

\[
D_L O_2 = \frac{\dot{V}_{O_2}}{(P_A O_2 - P_C O_2)}
\]
Carbon Monoxide is an Ideal Gas for Measuring Diffusing Capacity

- CO binds avidly to hemoglobin.
- While CO content of the blood rises, the PCO in blood rises very slowly.
- The gradient of partial pressures from alveolus to blood remains almost constant during test

Carbon Monoxide Measurement of Diffusing Capacity

\[
DLCO = \frac{\dot{V}_{CO}}{P_{ACO} - P_{cCO}}
\]

\[P_{cCO} \approx 0\]

Normal DLCO = 20-30 ml/min/mmHg
DLCO Has Two Components

Diffusion across the alveolar membrane.

Reaction with hemoglobin.

\[
\frac{1}{DL} = \frac{1}{Dm} + \frac{1}{\theta x Vc}
\]
Conditions that Impact Diffusion Capacity for CO.

\[DLCO = \frac{AxD}{T} \]

- Decreased Surface Area.
 - Destruction of Alveolar Wall
- Increased Barrier Thickness.
- Anemia.

\[DLCO = \frac{AxD}{T} \]
How would the Following Change the Diffusion Capacity of the Lungs?

• Changing from supine to upright
• Exercise
• Anemia
• Valsalva maneuver
• Low cardiac output due to hemorrhage
• Emphysema
• Pulmonary fibrosis