2007-09

M1 - Cardiovascular / Respiratory, Fall 2007

Abrams, G.; Sisson, T.; Jacobson, P.

Ventilation/Perfusion Matching

Thomas H. Sisson, M.D.
Objectives

• To recognize the importance of matching ventilation and perfusion
 – To explain the consequences of mismatched ventilation and perfusion
 – To define shunt and dead space physiology
 – To be able to determine the alveolar pO$_2$
 – To be able to determine the A-a O$_2$ gradient and understand the implications of an increased gradient
 – To explain and understand the consequences of regional differences in ventilation and perfusion due to effects of gravity
Ventilation and Perfusion at the Level of the Whole Lung

- **Tidal Volume**: 500 mL
- **Anatomic Dead Space**: 150 mL
- **Alveolar Gas Volume**: 3000 mL
- **Volume of Blood in Pulmonary Capillaries**: 70 mL
- **Respiratory Rate**: 15/min
- **Total Ventilation**: 7500 mL/min
- **Alveolar Ventilation**: 5250 mL/min
- **Pulmonary Blood Flow**: 5000 mL/min

\[
\frac{\text{Ventilation}}{\text{Perfusion}} = \frac{V}{Q} = 1
\]
Gas Composition in the Alveolar Space

Trachea: partial pressure of CO2 is approximately 0

\[\text{PiO}_2 = (\text{barometric pressure} - \text{H}_2\text{O vapor pressure}) \times \text{FiO}_2 \]
\[= (760 - 47) \times 0.21 = 150 \text{ mmHg} \]

In the alveolar space, oxygen diffuses into the blood and CO2 diffuses into the alveolus from the blood.

\[P_{\text{O}_2} = 40 \text{ mmHg} \]
\[P_{\text{CO}_2} = 45 \text{ mmHg} \]
\[P_{\text{O}_2} = 100 \text{ mmHg} \]
\[P_{\text{CO}_2} = 40 \text{ mmHg} \]
Alveolar Gas Equation

\[\text{PAO}_2 = (\text{PiO}_2) - (\text{PaCO}_2/R). \]

\(\text{PaCO}_2 \) approximates \(\text{PACO}_2 \) due to the rapid diffusion of \(\text{CO}_2 \)

\(R = \text{Respiratory Quotient (VCO2/V02)} = 0.8 \)

In a normal individual breathing room air:

\[\text{PAO}_2 = 150 - 40/0.8 = 100 \text{ mmHg} \]
Gas Composition in the Normal Alveolar Space

Trachea: partial pressure of CO2 is approximately 0

\[\text{PiO}_2 = (\text{barometric pressure} - \text{H}_2\text{O} \text{ vapor pressure}) \times \text{FiO}_2 \]
\[= (760 - 47) \times 0.21 = 150 \text{ mmHg} \]

In the alveolar space, oxygen diffuses into the blood and CO2 diffuses into the alveolus from the blood.
Consequences of Inadequate Ventilation

- **Apnea:**
 - PACO2 rises
 - PAO2 falls until there is no gradient for diffusion into the blood

- **Hypoventilation:**
 - Inadequate ventilation for perfusion
 - PACO2 rises
 - PAO2 falls, but diffusion continues
How Can We Tell if Alveolar Ventilation is Adequate?
PaCO2 and Alveolar Ventilation

• PaCO2 is:
 – directly related to CO2 production (tissue metabolism).
 – Inversely related to alveolar ventilation.

• Increased PaCO2 (hypercarbia) is always a reflection of inadequate alveolar ventilation (VA).

\[PaCO2 \approx \frac{VCO2}{VA} \]
Suppose a patient hypoventilates, so that the PCO2 rises to 80 mmHg. We can estimate the PAO2 based on the alveolar gas equation.

$$\text{PAO2} = 150 - \frac{80}{0.8} = 50 \text{ mmHg}$$

Thus even with perfectly efficient lungs, the PaO2 would be 50, and the patient would be severely hypoxemic. Therefore, hypoventilation results in hypoxemia.
V/Q Matching

• 300 million alveoli.

• Different alveoli may have widely differing amounts of ventilation and of perfusion.

• Key for normal gas exchange is to have matching of ventilation and perfusion for each alveolar unit
 – Alveoli with increased perfusion also have increased ventilation
 – Alveoli with decreased perfusion also have decreased ventilation
 – V/Q ratio = 1.0
Two Lungs, Not One

• Suppose the left lung is ventilated but not perfused (dead space).

• Suppose the right lung is perfused but not ventilated (shunt).

• Total V/Q = 1, but there is no gas exchange (V/Q must be matched at level of alveolar unit).
Low V/Q Effect on Oxygenation

One lung unit has normal ventilation and perfusion, while the other has inadequate ventilation.

- Normal ventilation and perfusion:
 - PO2 114

- Low V/Q:
 - PO2 50
 - ↑ PCO2
 - ↓ PO2
 - PO2 ?
Mixing Blood

- What is the PO2 of a mixture of two volumes of blood with different initial PO2?
- Determined by interaction of oxygen with hemoglobin.
 - the partition of oxygen between plasma (and thus the pO2) and bound to hemoglobin is determined by the oxyhemoglobin dissociation curve.
Oxyhemoglobin Dissociation Curve

\[CO_2 = (1.3 \times HGB \times Sat) + (0.003 \times PO_2) \]

- Oxygen Combined With Hemoglobin
- Dissolved Oxygen

% Hemoglobin Saturation

\(PO_2 \) mmHg

Oxygen Content (ml/100 ml)
One lung unit has normal ventilation and perfusion, while the other has inadequate ventilation.

PO2: 114

PO2: 50

PO2: ?

PCO2: ↑

PO2: ↓
Oxyhemoglobin Dissociation Curve and O2 Content

% Hemoglobin Saturation

PO2 mmHg

Total Oxygen

Oxygen Combined With Hemoglobin

Oxyhemoglobin

Dissociation Curve

O2 Content (ml/100 ml)
Low V/Q Effect on Oxygenation

One lung unit has normal ventilation and perfusion, while the other has inadequate ventilation.

- Normal: PO2 114 mmHg, O2sat 100%, O2 content 20 ml/dl
- Low V/Q: PO2 50 mmHg, O2sat 80%, O2 content 16 ml/dl
Oxyhemoglobin Dissociation Curve and O2 Content

- % Hemoglobin Saturation
- Oxygen Combined With Hemoglobin
- Total Oxygen
- Oxygen Content (ml/100 ml)

Graph showing the relationship between % Hemoglobin Saturation and Oxygen Content with respect to PO2 mmHg.
Low V/Q Effect on Oxygenation

One lung unit has normal ventilation and perfusion, while the has inadequate ventilation.

Normal

Low V/Q

PO2 114 mmHg
O2sat 100%
O2 content 20ml/dl

PO2 50 mmHg
O2sat 80%
O2 content 16ml/dl

PO2 50

PO2 60mmHg

PO2 114

PO2 114
PCO2 in V/Q Mismatch

- Increased ventilation can compensate for low V/Q units.
 - Shape of CO2 curve
- Total ventilation (VE) must increase for this compensation.

![Graph showing CO2 content vs. PCO2](image-url)
Extremes of V/Q Inequality

- **Shunt**
 - Perfusion of lung units without ventilation
 - Unoxygenated blood enters the systemic circulation
 - $V/Q = 0$

- **Dead space**
 - Ventilation of lung units without perfusion
 - Gas enters and leaves lung units without contacting blood
 - Wasted ventilation
 - V/Q is infinite
Effect of Changing V/Q Ratio on Alveolar PO2 and PCO2

Diagram:

- **Shunt:**
 - $P_{O_2} = 40\, \text{mmHg}$
 - $P_{CO_2} = 45\, \text{mmHg}$

- **Dead Space:**
 - $P_{O_2} = 150\, \text{mmHg}$
 - $P_{CO_2} = 0\, \text{mmHg}$

- **Gas Composition:**
 - Mixed Venous Blood
 - Normal
 - Inspired Air

- **V/Q:**
 - 0
 - 1
 - ∞
Effects of V/Q Relationships on Alveolar PO2 and PCO2
Shunt Physiology

One lung unit has normal ventilation and perfusion, while the has no ventilation.

- Normal: PO2 114 mmHg, O2sat 100%
- Shunt: PO2 40 mmHg, O2sat 50%

PO2 114

Shunt

PO2 40
PO2 40
PO2 49

O2sat 75%

O2sat 50%
Response to Breathing 100% Oxygen

- Alveolar hypoventilation or V/Q mismatch responds to 100% oxygen breathing.
- Nitrogen will be washed out of low ventilation lung units over time.
- PaO2 will rise to > 550 mmHg.
- Limited response to oxygen in shunt.
- Use this characteristic to diagnose shunt.
Shunt Calculation

• Qt \times \text{CaO2} = \text{total volume of oxygen per time entering systemic arteries}
 – Qt = \text{total perfusion}
 – Qs = \text{shunt perfusion}
 – CaO2, Cc’O2, CvO2 are oxygen contents of arterial, capillary and venous blood
• (Qt-Qs) \times \text{Cc’O2} = \text{oxygen coming from normally functioning lung units}
• Qs \times \text{CvO2} = \text{oxygen coming from shunt blood flow}
Shunt

\[\dot{Q}_t \quad C_{\bar{v}O_2} \quad \dot{Q}_s \quad C_{c'O_2} \quad \dot{Q}_t \quad C_{aO_2} \]

BY: University of Michigan Medical School
http://creativecommons.org/licenses/by/3.0/deed.en
Shunt Equation

\[Qt \times CaO2 = [(Qt - Qs) \times CcO2] + [Qs \times CvO2] \]

\[\frac{Qs}{Qt} = \frac{Cc'O2 - CaO2}{Cc'O2 - CvO2} \]
Causes of Shunt

• Physiologic shunts:
 – Bronchial veins, pleural veins

• Pathologic shunts:
 – Intracardiac
 – Intrapulmonary
 • Vascular malformations
 • Unventilated or collapsed alveoli
Detecting V/Q Mismatching and Shunt

- Radiotracer assessments of regional ventilation and perfusion.

- Multiple inert gas elimination.
 - Takes advantage of the fact that rate of elimination of a gas at any given V/Q ratio varies with its solubility.

- A-aO2 Gradient.
V/Q Relationships

Multiple Inert Gas Elimination

A-a O2 gradient

• In a totally efficient lung unit with matched V/Q, alveolar and capillary PO2 would be equal.

• Admixture of venous blood (or of blood from low V/Q lung units) will decrease the arterial PaO2, without effecting alveolar O2 (PAO2).

• Calculate the PAO2 using the alveolar gas equation, then subtract the arterial PaO2: \([\text{PiO}_2] – \frac{\text{PaCO}_2}{R} – \text{PaO2}\].

• The A-a O2 gradient (or difference) is < 10-15 mmHg in normal subjects
 – Why is it not 0?
Apical and Basilar Alveoli in the Upright Posture

- Elastic recoil of the individual alveoli is similar throughout the normal lung.

- At end expiration (FRC) apical alveoli see more negative pressure and are larger than basilar alveoli.

- During inspiration, basilar alveoli undergo larger volume increase than apical alveoli.

- Thus at rest there is more ventilation at the base than the apex.

- Also More Perfusion to Lung Bases Due to Gravity.
Effects of Gravity on Ventilation and Perfusion

Effects of Gravity on Ventilation and Perfusion Matching
Causes of Abnormal Oxygenation

- Hypoventilation
- V/Q mismatch
- Shunt
- Diffusion block
Key Concepts:

- Ventilation and Perfusion must be matched at the alveolar capillary level.
- V/Q ratios close to 1.0 result in alveolar PO2 close to 100 mmHg and PCO2 close to 40 mmHg.
- V/Q greater than 1.0 increase PO2 and Decrease PCO2. V/Q less than 1.0 decrease PO2 and Increase PCO2.
- Shunt and Dead Space are Extremes of V/Q mismatching.
- A-a Gradient of 10-15 Results from gravitational effects on V/Q and Physiologic Shunt.