2007-09

M1 - Cardiovascular / Respiratory, Fall 2007

Abrams, G.; Sisson, T.; Jacobson, P.

Ventilation/Perfusion Matching

Thomas H. Sisson, M.D.
Objectives

• To recognize the importance of matching ventilation and perfusion
 – To explain the consequences of mismatched ventilation and perfusion
 – To define shunt and dead space physiology
 – To be able to determine the alveolar pO$_2$
 – To be able to determine the A-a O$_2$ gradient and understand the implications of an increased gradient
 – To explain and understand the consequences of regional differences in ventilation and perfusion due to effects of gravity
Ventilation and Perfusion at the Level of the Whole Lung

- Tidal Volume: 500 mL
- Anatomic Dead Space: 150 mL
- Alveolar Gas Volume: 3000 mL
- Volume of Blood in Pulmonary Capillaries: 70 mL
- Respiratory Rate: 15/min
- Total Ventilation: 7500 mL/min
- Alveolar Ventilation: 5250 mL/min
- Ventilation/Perfusion: $\frac{V}{Q} = 1$
- Pulmonary Blood Flow: 5000 mL/min

BY: University of Michigan Medical School
http://creativecommons.org/licenses/by/3.0/deed.en
Gas Composition in the Alveolar Space

Trachea: partial pressure of CO2 is approximately 0

\[
PiO_2 = (\text{barometric pressure} - \text{H2O vapor pressure}) \times FiO_2
= (760 - 47) \times 0.21 = 150 \text{ mmHg}
\]

In the alveolar space, oxygen diffuses into the blood and CO2 diffuses into the alveolus from the blood.
Alveolar Gas Equation

\[PAO_2 = (PiO_2) - (PaCO_2/R). \]

\(PaCO_2 \) approximates \(PACO_2 \) due to the rapid diffusion of \(CO_2 \)

\(R = \) Respiratory Quotient \((VCO2/V02) = 0.8 \)

In a normal individual breathing room air:

\[PAO_2 = 150 - 40/0.8 = 100 \text{ mmHg} \]
Gas Composition in the Normal Alveolar Space

Trachea: partial pressure of CO2 is approximately 0

\[
PiO2 = (\text{barometric pressure}-\text{H2O vapor pressure}) \times FiO2 \\
= (760 - 47) \times 0.21 = 150 \text{ mmHg}
\]

In the alveolar space, oxygen diffuses into the blood and CO2 diffuses into the alveolus from the blood.
Consequences of Inadequate Ventilation

- **Apnea:**
 - PACO2 rises
 - PAO2 falls until there is no gradient for diffusion into the blood

- **Hypoventilation:**
 - Inadequate ventilation for perfusion
 - PACO2 rises
 - PAO2 falls, but diffusion continues
How Can We Tell if Alveolar Ventilation is Adequate?
PaCO2 and Alveolar Ventilation

• PaCO2 is:
 – directly related to CO2 production (tissue metabolism).
 – Inversely related to alveolar ventilation.

• Increased PaCO2 (hypercarbia) is always a reflection of inadequate alveolar ventilation (VA).

\[\text{PaCO2} \approx \frac{VCO2}{VA} \]
Suppose a patient hypoventilates, so that the PCO2 rises to 80 mmHg. We can estimate the PAO2 based on the alveolar gas equation.

\[\text{PAO}_2 = 150 - \frac{80}{0.8} = 50 \text{ mmHg} \]

Thus even with perfectly efficient lungs, the PaO2 would be 50, and the patient would be severely hypoxemic. Therefore, hypoventilation results in hypoxemia.
V/Q Matching

- 300 million alveoli.

- Different alveoli may have widely differing amounts of ventilation and of perfusion.

- Key for normal gas exchange is to have matching of ventilation and perfusion for each alveolar unit
 - Alveoli with increased perfusion also have increased ventilation
 - Alveoli with decreased perfusion also have decreased ventilation
 - V/Q ratio = 1.0
Two Lungs, Not One

• Suppose the left lung is ventilated but not perfused (dead space).

• Suppose the right lung is perfused but not ventilated (shunt).

• Total V/Q = 1, but there is no gas exchange (V/Q must be matched at level of alveolar unit).
Low V/Q Effect on Oxygenation

One lung unit has normal ventilation and perfusion, while the other has inadequate ventilation.

- Normal: PO2 114, PCO2 ↑, PO2 ▼
- Low V/Q: PO2 50, PCO2 ↑, PO2 ▼

PO2 ?
Mixing Blood

• What is the PO2 of a mixture of two volumes of blood with different initial PO2?
• Determined by interaction of oxygen with hemoglobin.
 – the partition of oxygen between plasma (and thus the pO2) and bound to hemoglobin is determined by the oxyhemoglobin dissociation curve.
Oxyhemoglobin Dissociation Curve

\[CO_2 = (1.3 \times HGB \times Sat) + (0.003 \times PO_2) \]

- Oxygen Combined With Hemoglobin
- Dissolved Oxygen

% Hemoglobin Saturation

\(PO_2 \) mmHg

Oxygen Content (ml/100 ml)
Low V/Q Effect on Oxygenation

One lung unit has normal ventilation and perfusion, while the other has inadequate ventilation.

- Normal ventilation and perfusion: PO2 114
- Low V/Q: PO2 50 (PO2 ?)

PCO2 ↑, PO2 ↓
Oxyhemoglobin Dissociation Curve and O2 Content

% Hemoglobin Saturation vs. \(P_{O_2} \) mmHg

- Total Oxygen
- Oxygen Combined With Hemoglobin

Oxygen Content (ml/100 ml)
Low V/Q Effect on Oxygenation

One lung unit has normal ventilation and perfusion, while the other has inadequate ventilation.

- Normal: PO2 114 mmHg, O2sat 100%, O2 content 20 ml/dl
- Low V/Q: PO2 50 mmHg, O2sat 80%, O2 content 16 ml/dl
Oxyhemoglobin Dissociation Curve and O2 Content

- % Hemoglobin Saturation
- \(P_{O_2} \) mmHg
- Oxygen Content (ml/100 ml)
- Total Oxygen
- Oxygen Combined With Hemoglobin

Graph showing the relationship between \(P_{O_2} \) mmHg and % Hemoglobin Saturation, with Oxygen Content in ml/100 ml as a secondary axis.
Low V/Q Effect on Oxygenation

One lung unit has normal ventilation and perfusion, while the other has inadequate ventilation.

Normal

PO2 114 mmHg
O2sat 100%
O2 content 20ml/dl

Low V/Q

PO2 50 mmHg
O2sat 80%
O2 content 16ml/dl

PO2 50

PO2 60mmHg

PO2 114
PCO2 in V/Q Mismatch

- Increased ventilation can compensate for low V/Q units.
 - Shape of CO2 curve
- Total ventilation (VE) must increase for this compensation.
Extremes of V/Q Inequality

- **Shunt**
 - Perfusion of lung units without ventilation
 - Unoxygenated blood enters the systemic circulation
 - $V/Q = 0$

- **Dead space**
 - Ventilation of lung units without perfusion
 - Gas enters and leaves lung units without contacting blood
 - Wasted ventilation
 - V/Q is infinite
Effect of Changing V/Q Ratio on Alveolar PO2 and PCO2

Gas Composition

Mixed Venous Blood

Normal

Inspired Air

V/Q

0

1

∞

Shunt

Dead Space

$P_{O_2} = 150 \text{ mmHg}$

$P_{CO_2} = 0 \text{ mmHg}$

$P_{O_2} = 100 \text{ mmHg}$

$P_{CO_2} = 40 \text{ mmHg}$

$P_{O_2} = 40 \text{ mmHg}$

$P_{CO_2} = 45 \text{ mmHg}$
Effects of V/Q Relationships on Alveolar PO2 and PCO2
One lung unit has normal ventilation and perfusion, while the other has no ventilation.

- **Normal**
 - PO2 114 mmHg
 - O2sat 100%

- **Shunt**
 - PO2 114 mmHg
 - O2sat 100%
 - PO2 40 mmHg
 - O2sat 50%
 - PO2 49 mmHg
 - O2sat 75%
Response to Breathing 100% Oxygen

• Alveolar hypoventilation or V/Q mismatch responds to 100% oxygen breathing.

• Nitrogen will be washed out of low ventilation lung units over time.

• PaO2 will rise to > 550 mmHg.

• Limited response to oxygen in shunt.

• Use this characteristic to diagnose shunt.
Shunt Calculation

• $Qt \times CaO2 = \text{total volume of oxygen per time entering systemic arteries}$
 - $Qt = \text{total perfusion}$
 - $Qs = \text{shunt perfusion}$
 - $CaO2, Cc’O2, CvO2$ are oxygen contents of arterial, capillary and venous blood

• $(Qt-Qs) \times Cc’O2 = \text{oxygen coming from normally functioning lung units}$

• $Qs \times CvO2 = \text{oxygen coming from shunt blood flow}$
Shunt

\[\dot{Q}_t \quad C_{\bar{v}O_2} \quad \dot{Q}_s \quad C_{c'O_2} \quad C_{aO_2} \quad \dot{Q}_t \]
Shunt Equation

\[Qt \times CaO2 = [(Qt - Qs) \times CcO2] + [Qs \times CvO2] \]

\[\frac{Qs}{Qt} = \frac{Cc'O2 - CaO2}{Cc'O2 - CvO2} \]
Causes of Shunt

• Physiologic shunts:
 – Bronchial veins, pleural veins

• Pathologic shunts:
 – Intracardiac
 – Intrapulmonary
 • Vascular malformations
 • Unventilated or collapsed alveoli
Detecting V/Q Mismatching and Shunt

- Radiotracer assessments of regional ventilation and perfusion.

- Multiple inert gas elimination.
 - Takes advantage of the fact that rate of elimination of a gas at any given V/Q ratio varies with its solubility.

- A-aO2 Gradient.
V/Q Relationships

Multiple Inert Gas Elimination
In a totally efficient lung unit with matched V/Q, alveolar and capillary PO2 would be equal.

Admixture of venous blood (or of blood from low V/Q lung units) will decrease the arterial PaO2, without effecting alveolar O2 (PAO2).

Calculate the PAO2 using the alveolar gas equation, then subtract the arterial PaO2: \((PiO_2) - (PaCO_2/R)\) – PaO2.

The A-a O2 gradient (or difference) is < 10-15 mmHg in normal subjects
– Why is it not 0?
Apical and Basilar Alveoli in the Upright Posture

- Elastic recoil of the individual alveoli is similar throughout the normal lung.

- At end expiration (FRC) apical alveoli see more negative pressure and are larger than basilar alveoli.

- During inspiration, basilar alveoli undergo larger volume increase than apical alveoli.

- Thus at rest there is more ventilation at the base than the apex.

- Also More Perfusion to Lung Bases Due to Gravity.
Effects of Gravity on Ventilation and Perfusion

Effects of Gravity on Ventilation and Perfusion Matching
Causes of Abnormal Oxygenation

• Hypoventilation
• V/Q mismatch
• Shunt
• Diffusion block
Key Concepts:

• Ventilation and Perfusion must be matched at the alveolar capillary level.

• V/Q ratios close to 1.0 result in alveolar PO2 close to 100 mmHg and PCO2 close to 40 mmHg.

• V/Q greater than 1.0 increase PO2 and Decrease PCO2. V/Q less than 1.0 decrease PO2 and Increase PCO2.

• Shunt and Dead Space are Extremes of V/Q mismatching.

• A-a Gradient of 10-15 Results from gravitational effects on V/Q and Physiologic Shunt.