2007-09

M1 - Cardiovascular / Respiratory, Fall 2007

Abrams, G.; Sisson, T.; Jacobson, P.

Ventilation/Perfusion Matching

Thomas H. Sisson, M.D.
Objectives

• To recognize the importance of matching ventilation and perfusion
 – To explain the consequences of mismatched ventilation and perfusion
 – To define shunt and dead space physiology
 – To be able to determine the alveolar pO$_2$
 – To be able to determine the A-a O$_2$ gradient and understand the implications of an increased gradient
 – To explain and understand the consequences of regional differences in ventilation and perfusion due to effects of gravity
Ventilation and Perfusion at the Level of the Whole Lung

- Tidal Volume: 500 mL
- Anatomic Dead Space: 150 mL
- Alveolar Gas Volume: 3000 mL
- Volume of Blood in Pulmonary Capillaries: 70 mL
- Respiratory Rate: 15/min
- Total Ventilation: 7500 mL/min
- Alveolar Ventilation: 5250 mL/min
- Ventilation/Perfusion: $\frac{V}{Q} = 1$
- Pulmonary Blood Flow: 5000 mL/min

BY: University of Michigan Medical School
http://creativecommons.org/licenses/by/3.0/deed.en
Gas Composition in the Alveolar Space

Trachea: partial pressure of CO2 is approximately 0

\[P_{iO_2} = (\text{barometric pressure} - \text{H}_2\text{O} \text{ vapor pressure}) \times F_iO_2 \]
\[= (760 - 47) \times 0.21 = 150 \text{ mmHg} \]

In the alveolar space, oxygen diffuses into the blood and CO2 diffuses into the alveolus from the blood.
Alveolar Gas Equation

\[\text{PAO}_2 = (\text{PiO}_2) - (\text{PaCO}_2/R). \]

\(\text{PaCO}_2 \) approximates \(\text{PACO}_2 \) due to the rapid diffusion of \(\text{CO}_2 \)

\(R = \text{Respiratory Quotient (VCO2/V02)} = 0.8 \)

In a normal individual breathing room air:

\[\text{PAO}_2 = 150 - 40/0.8 = 100 \text{ mmHg} \]
Gas Composition in the Normal Alveolar Space

Trachea: partial pressure of CO2 is approximately 0

\[\text{PiO}_2 = (\text{barometric pressure} - \text{H}_2\text{O} \text{ vapor pressure}) \times \text{FiO}_2 \]
\[= (760 - 47) \times 0.21 = 150 \text{ mmHg} \]

In the alveolar space, oxygen diffuses into the blood and CO2 diffuses into the alveolus from the blood.
Consequences of Inadequate Ventilation

- **Apnea:**
 - PACO2 rises
 - PAO2 falls until there is no gradient for diffusion into the blood

- **Hypoventilation:**
 - Inadequate ventilation for perfusion
 - PACO2 rises
 - PAO2 falls, but diffusion continues
How Can We Tell if Alveolar Ventilation is Adequate?
PaCO2 and Alveolar Ventilation

• PaCO2 is:
 – directly related to CO2 production (tissue metabolism).
 – Inversely related to alveolar ventilation.

• Increased PaCO2 (hypercarbia) is always a reflection of inadequate alveolar ventilation (VA).

\[PaCO2 \approx \frac{VCO2}{VA} \]
Suppose a patient hypoventilates, so that the PCO2 rises to 80 mmHg. We can estimate the PAO2 based on the alveolar gas equation.

\[
\text{PAO2} = 150 - \frac{80}{0.8} = 50 \text{ mmHg}
\]

Thus even with perfectly efficient lungs, the PaO2 would be 50, and the patient would be severely hypoxemic. Therefore, hypoventilation results in hypoxemia.
V/Q Matching

- 300 million alveoli.

- Different alveoli may have widely differing amounts of ventilation and of perfusion.

- Key for normal gas exchange is to have matching of ventilation and perfusion for each alveolar unit
 - Alveoli with increased perfusion also have increased ventilation
 - Alveoli with decreased perfusion also have decreased ventilation
 - V/Q ratio = 1.0
Two Lungs, Not One

- Suppose the left lung is ventilated but not perfused (dead space).

- Suppose the right lung is perfused but not ventilated (shunt).

- Total V/Q = 1, but there is no gas exchange (V/Q must be matched at level of alveolar unit).
Low V/Q Effect on Oxygenation

One lung unit has normal ventilation and perfusion, while the other has inadequate ventilation.

- Normal unit:
 - PO2 114

- Low V/Q unit:
 - PO2 50
 - PCO2 ↑
 - PO2 ↓

PO2 ?
Mixing Blood

• What is the PO2 of a mixture of two volumes of blood with different initial PO2?

• Determined by interaction of oxygen with hemoglobin.
 – the partition of oxygen between plasma (and thus the pO2) and bound to hemoglobin is determined by the oxyhemoglobin dissociation curve.
Oxyhemoglobin Dissociation Curve

\[CO_2 = (1.3 \times HGB \times Sat) + (0.003 \times PO_2) \]

- Oxygen Combined With Hemoglobin
- Dissolved Oxygen

% Hemoglobin Saturation

\[PO_2 \text{ mmHg} \]

Oxygen Content (ml/100 ml)
Low V/Q Effect on Oxygenation

One lung unit has normal ventilation and perfusion, while the other has inadequate ventilation.

- Normal: PO2 114
- Low V/Q: PO2 50

PCO2 increases and PO2 decreases.
Oxyhemoglobin Dissociation Curve and O2 Content

% Hemoglobin Saturation vs. PO₂ (mmHg)

Oxygen Content (ml/100 ml)

Total Oxygen

Oxygen Combined With Hemoglobin
Low V/Q Effect on Oxygenation

One lung unit has normal ventilation and perfusion, while the other has inadequate ventilation.

Normal: PO2 114 mmHg, O2sat 100%, O2 content 20ml/dl

Low V/Q: PO2 50 mmHg, O2sat 80%, O2 content 16ml/dl
Oxyhemoglobin Dissociation Curve and O2 Content

- Total Oxygen
- Oxygen Combined With Hemoglobin

% Hemoglobin Saturation vs. P_{O_2} (mmHg)

- Oxygen Content (ml/100 ml)
Low V/Q Effect on Oxygenation

One lung unit has normal ventilation and perfusion, while the other has inadequate ventilation.

Normal:
- PO2 114 mmHg
- O2sat 100%
- O2 content 20ml/dl

Low V/Q:
- PO2 50 mmHg
- O2sat 80%
- O2 content 16ml/dl

PO2 60mmHg
PCO2 in V/Q Mismatch

• Increased ventilation can compensate for low V/Q units.
 – Shape of CO2 curve

• Total ventilation (VE) must increase for this compensation.
Extremes of V/Q Inequality

- **Shunt**
 - Perfusion of lung units without ventilation
 - Unoxygenated blood enters the systemic circulation
 - $V/Q = 0$

- **Dead space**
 - Ventilation of lung units without perfusion
 - Gas enters and leaves lung units without contacting blood
 - Wasted ventilation
 - V/Q is infinite
Effect of Changing V/Q Ratio on Alveolar PO2 and PCO2

Effect of Changing V/Q Ratio on Alveolar PO2 and PCO2

Shunt

Dead Space

Dead Space

Dead Space

BY: University of Michigan Medical School

http://creativecommons.org/licenses/by/3.0/deed.en
Effects of V/Q Relationships on Alveolar PO2 and PCO2

BY: University of Michigan Medical School
http://creativecommons.org/licenses/by/3.0/deed.en
Shunt Physiology

One lung unit has normal ventilation and perfusion, while the other has no ventilation.
Response to Breathing 100% Oxygen

• Alveolar hypoventilation or V/Q mismatch responds to 100% oxygen breathing.

• Nitrogen will be washed out of low ventilation lung units over time.

• PaO2 will rise to > 550 mmHg.

• Limited response to oxygen in shunt.

• Use this characteristic to diagnose shunt.
Shunt Calculation

- \(Q_t \times C_{aO2} = \text{total volume of oxygen per time entering systemic arteries} \)
 - \(Q_t = \text{total perfusion} \)
 - \(Q_s = \text{shunt perfusion} \)
 - \(C_{aO2}, C_c'O2, C_{vO2} \) are oxygen contents of arterial, capillary and venous blood

- \((Q_t-Q_s) \times C_c'O2 = \text{oxygen coming from normally functioning lung units} \)

- \(Q_s \times C_{vO2} = \text{oxygen coming from shunt blood flow} \)
Shunt

\[\dot{Q}_t, C_{vO_2}, \dot{Q}_s, C_{c'O_2}, \dot{Q}_t, C_{aO_2} \]
Shunt Equation

$\text{Qt} \times \text{CaO2} = [(\text{Qt} - \text{Qs}) \times \text{CcO2}] + [\text{Qs} \times \text{CvO2}]$

\[
\frac{\text{Qs}}{\text{Qt}} = \frac{\text{Cc'}O2 - \text{CaO2}}{\text{Cc'}O2 - \text{CvO2}}
\]
Causes of Shunt

• Physiologic shunts:
 – Bronchial veins, pleural veins

• Pathologic shunts:
 – Intracardiac
 – Intrapulmonary
 • Vascular malformations
 • Unventilated or collapsed alveoli
Detecting V/Q Mismatching and Shunt

- Radiotracer assessments of regional ventilation and perfusion.
- Multiple inert gas elimination.
 - Takes advantage of the fact that rate of elimination of a gas at any given V/Q ratio varies with its solubility.
- A-aO2 Gradient.
V/Q Relationships

Multiple Inert Gas Elimination

A-a O2 gradient

• In a totally efficient lung unit with matched V/Q, alveolar and capillary PO2 would be equal.

• Admixture of venous blood (or of blood from low V/Q lung units) will decrease the arterial PaO2, without effecting alveolar O2 (PAO2).

• Calculate the PAO2 using the alveolar gas equation, then subtract the arterial PaO2:
 \[(\Pi O_2) - (\text{PaCO}_2/R) \] – PaO2.

• The A-a O2 gradient (or difference) is < 10-15 mmHg in normal subjects
 – Why is it not 0?
Apical and Basilar Alveoli in the Upright Posture

- Elastic recoil of the individual alveoli is similar throughout the normal lung.

- At end expiration (FRC) apical alveoli see more negative pressure and are larger than basilar alveoli.

- During inspiration, basilar alveoli undergo larger volume increase than apical alveoli.

- Thus at rest there is more ventilation at the base than the apex.

- Also More Perfusion to Lung Bases Due to Gravity.
Effects of Gravity on Ventilation and Perfusion

Effects of Gravity on Ventilation and Perfusion Matching
Causes of Abnormal Oxygenation

- Hypoventilation
- V/Q mismatch
- Shunt
- Diffusion block
Key Concepts:

- Ventilation and Perfusion must be matched at the alveolar capillary level.

- V/Q ratios close to 1.0 result in alveolar PO2 close to 100 mmHg and PCO2 close to 40 mmHg.

- V/Q greater than 1.0 increase PO2 and Decrease PCO2. V/Q less than 1.0 decrease PO2 and Increase PCO2.

- Shunt and Dead Space are Extremes of V/Q mismatching.

- A-a Gradient of 10-15 Results from gravitational effects on V/Q and Physiologic Shunt.