2007-09

PHYSICS 140 - General Physics 1, Fall 2007

Evrard, Gus

http://hdl.handle.net/2027.42/64964
Midterm exam #2 is this Thursday, 1 Nov, 6-7:30 pm

bring two 3x5 notecards, calculator, #2 pencils

Physics 140 – Fall 2007
30 October: lecture #16

Ch 9 + 10 topics:

• moment of inertia: parallel axis theorem
• torque
• Newton’s second law of rotation

Midterm exam #2 is this Thursday, 1 Nov, 6-7:30 pm
bring two 3x5 notecards, calculator, #2 pencils
Parallel axis theorem

Given two parallel axes (lines), one passing through an object’s center of mass and the other displaced by a distance h, the object’s moment of inertia about the displaced axis is given by

$$I = I_{\text{com}} + Mh^2$$

where M is the object’s mass and I_{com} is the moment of inertia measured about the axis that passes through the object’s center of mass.
The three spheres above have the same mass M and the same radius R. Sphere B is hollow, A and C are solid. Sphere C rotates about an axis adjacent to its edge while spheres A and B rotate about their centers. All rotate at the same angular velocity. Rank the spheres according to their rotational kinetic energy, largest to smallest.

1. A, B, C
2. B, A, C
3. A, C, B
4. C, B, A
Torque

A force acting on an extended object will generally tend to make the object spin. When a force F is applied at some point displaced by r from a rotation axis O, the applied torque is

$$\vec{\tau} = r \times \vec{F}$$

A convenient way to compute torque is in the form

$$\tau = F l = F (r \sin \theta)$$

where the distance l, known as the **lever arm** (or **moment arm**) is the **perpendicular distance** between the rotation axis and the **line of action**, the continuation of the direction of the applied force F.
Torque (cont’d)

- sign convention of applied torque (use RH rule)
 + for counterclockwise rotation
 – for clockwise rotation

- for a single force F, many different torques τ can result, depending on the location of the rotation axis O.

To calculate torque on a body of mass m due to near-Earth gravity, use the fact that the gravitational force acts downward at the body’s center of mass/gravity with magnitude mg.
torque wrench measurements
Which force below produces the largest positive torque about an axis passing through point O?

1. F_1
2. F_2
3. F_3
4. F_4
Newton’s Second Law for rotation

The net torque $\Sigma \tau$ exerted on an extended object that is able to rotate about an axis O causes angular acceleration α about that axis with magnitude given by

$$\Sigma \tau = I \alpha$$

where I is the moment of inertia about axis O.

Note the similarity to NSL for translation in one dimension,

$$\Sigma F = ma$$
Can torque due to gravity ever produce a downward linear acceleration with magnitude $>g$?

1. Yes
2. No
3. Maybe?
You are using a wrench to try to loosen a rusty nut. Shown below are possible arrangements for the wrench and your applied force F. List the arrangements in order of decreasing torque.

1. $2 > 1 > 3 > 4$
2. $2 > 1 = 4 > 3$
3. $4 > 2 > 1 > 3$
4. $2 > 1 = 3 = 4$