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USING NEURAL NETWORKS TO IDENTIFY DRIVING STYLE 
AND HEADWAY CONTROL BEHAVIOR OF DRIVERS 

C. MacADAM, Z. BAREKET, P. FANCHER, and R. ERVIN I 

SUMMARY 

This paper illustrates the use of neural network techniques for analyzing headway data collected from a 
group of 36 driving subjects during normal on-highway driving. Pattern recognition methods are used 
to identify different types of headway-keeping behavior exhibited by these drivers and their relative 
distributions. Possibilities for using neural networks to represent longitudinal control behavior of 
drivers are also considered and discussed. 

1. INTRODUCTION 

Recent studies [ I ,  2, 3, 41 examining the possible introduction of headway control 
systems for selected highway vehicles have intensified interest in the longitudinal control 
behavior of actual drivers. Much of this interest is focused on better understanding the 
range of driving styles present in the highway traffic population so as to smoothly 
bridge and match the control characteristics of emerging headway control technologies 
to preferences exhibited by human drivers. Such preferences normally include items 
like: acceleration/deceleration comfort levels, headway gap sizes employed during 
following, and overall level of aggressiveness related to passing and overtaking behavior. 

This paper illustrates two uses of neural networks for: 1 )  identifying and classifying 
on-highway longitudinal control behavior of drivers based on different levels of 
displayed aggressiveness, and 2) representing or modelling instances of longitudinal 
control behavior for potential use in ITS headway control system algorithms. Recent 
measurements [2] of on-highway driving behavior for a group of 36 lay drivers (and 
their corresponding vehicle response measurements) are used to conduct the analyses. 

One motivation for using a neural network approach for behavior classification 
stems from the desire to conduct efficient searches of various types of driving behavior 
located within relatively large volumes of stored time history data. The pattern 
recognition ability of certain neural network architectures is well known and lends itself 
well to this type of task [6]. The resulting information can be used in a variety of 
applications ranging from human factors studies concerned with distributions of 
ordinary driver control behavior, to uses within headway control systems. In the latter 
application, headway control system parameters could be assigned different values based 
upon observed categories of driver behavior identified by an on-board neural net 
processor. 

A second application illustrates how neural networks can be used to also represent 
or model driver throttle control responses during close-following conditions. This type 
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144 C. MACADAM ET AL. 

of application is focused more on real time, on-line identification of driver longitudinal 
control behavior. Its use as an adaptive control modelling technique can have utility 
within the context of warninglcontrol packages that require a continuously updated 
characterization of driver behavior. It might also be used as an adaptive control 
algorithm within a headway control system, replacing the functionality of a traditional 
controller. 

The paper begins with the pattern recognition example - demonstrating the utility 
of neural nets in identifying and categorizing various types of observed longitudinal 
control behavior. The control modelling example follows. 

2. CATEGORIZING DRNING BEHAVIOR - METHODOLOGY 

The following analyses utilize a databank of measurements from an on-going study of 
forward crash avoidance systems [2] covering a group of 36 drivers. Each driver 
operated the same test vehicle under normal highway conditions in the U.S. The same 
itinerary was followed by each driver and consisted of four separate freeways connected 
by interchange loops. The general location was the western Detroit suburban area. Each 
trip lasted about one hour in duration. Driverlvehicle responses were recorded and 
stored on-board. Measurements included: range and range-rate provided by a Leica 
infrared forward-looking sensor; driver steering, braking, and throttle control activity; 
and other vehicle responses such as yaw rate and lateral acceleration. This paper 
addresses only the manual driving trips during which the headway throttle control 
system was inactivated, but range and range-rate were still recorded. 

The collected data were then processed by neural net methods designed to 
efficiently search for and categorize certain types of driving behavior. Classification of 
driving style grouped drivers according to their displayed level of aggressiveness as 
defined here by a willingness to pass, follow, or be passed by other vehicles. Five 
categories of driving behavior, based upon relative rates of longitudinal closure, were 
defined to represent differing levels of aggressivity. A neural network was then 
developed and trained to automatically identify and classify these observed patterns into 
the appropriately defined driving style categories. The inputs to the neural network were 
range and range rate (for vehicle speeds above 40 mph). The network output is the 
classification of driving style based upon observed input patterns occurring in the data 
stream. A I0:second moving window was used for each evaluation. See Figure 1. 

Each of the five output categories represents the degree to which the host vehicle 
either closed-in on or fell behind adjacent vehicles during ordinary driving. The middle 
category, entitled "following." is reflective of constant speed / constant headway driving 
behavior that most drivers utilize most of the time. 

The neural network architecture used for this pattern recognition problem is seen in 
Figure 2. It contains 40 input nodes (corresponding to 20 samples each of range and 
range-rate measurements), 9 first-layer neurons, and 6 output-layer neurons (each 
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NEURAL NETWORKS 145 

associated with o n e  o f  the 5 categories o f  driving behavior, plus a "no target" 
category). 

Time History 
Input Patterns Categories of Behavior 

closing-in rapidly 
range 

Neural closing-in 

Classifier following 

Driving falling-behind 
Behavior 

I falling-behind rapidly 
Fig. I .  Neural net pattern recognition for classifying driving behavior. 

Time 
History 

First Layer Output 
Neurons Neurons 

On/Off 
(1 or 0) 

ldentifica tion 

closing-in 
rapidly 

closing-in 

following 

falling behind 

falling behind 
rapidly 

no target 

w and v are network weights calculated during 
j k 1 network training 

i = 4 0  m = 9  n = 6  

Fig. 2. Neural net architecture used for classifying driving behavior. 
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146 C. MACADAM ET AL. 

A nonlinear sigmoid, defined in Figure 3, defines each neuron's activation function 
in the first layer. The output layer neurons are linear. At the output layer. a neuron 
value of 1, coupled with all other output neurons at zero, is defined as a recognition 
condition for that neuron containing the value of 1 .  For example, if the first output 
neuron is associated with the "closing-in rapidly" behavior category, then its activation 
at 1 ,  and all others at 0, indicate the presence of a "closing-in rapidly" event for the 
current input pattern. 

nonlinear 
\ activation - output 

summation function 

neuron N 

. Sigmoid 

net = C . s i w i + c  
I 

y = F (net) 

z - 

F= Sigmoid ( net ) = - ( net) 

net 

Fig. 3. Neuron element definition. 

F 
s3 C (bias) 

Training of the network involves an iterative process (back-propagation [6]) by 
which pairs of input patterns and corresponding output training patterns are 
simultaneously presented to the network. For each input pattern presented to the 
network, a corresponding training pattern (comprised of 0's and a single I located at the 
neuron intended to be associated with that input pattern) is also required at the output 
layer. Network weight values are then iteratively adjusted until output errors (differences 
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NEURAL NETWORKS 147 

between what the network calculates at its output layer and the corresponding value of its 
output training pattern) are minimized. The process of network training produces a set 
of weight values that then defines, in conjunction with the network architecture, the 
pattern recognition algorithm. This can then be used to process other input patterns. 
heretofore unseen, that are similar in nature to those input patterns used during the 
network training. 

Figure 4 contains five sets (a-e) of training inputs used in this application obtained 
from 4 of the 36 driving subjects. Each input pattern consists of two contiguous sets of 
range and range-rate time history measurements. Each time history is 20 samples long 
with a sampling rate of 2 Hz (or 10 seconds duration). Approximately 12-15 example 
training patterns were manually selected and used to define each of the five categories 
(appearing below as figures 4a - 4e). The range and range-rate data appearing in Figure 
4 are normalized in units of feet and feet per second. Range is defined as the distance 
from the lead (target) vehicle to the host (trailing) vehicle. 

Range (ft) / 200 Range-Rate (ftls) / 25 
b 

-1 
Fig. 4a. Input patterns used to train the neural net - Closing In Rapidly. 

Range (ft) / 200 Range-Rate (Ws) 125 
rn 

-1 
Fig. 4b. Input patterns used to train the neural net - Closing In. 
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2't 1 Range (11) / 200 Range-Rate (Ws) / 25 

Fig. 4c. Input patterns used to train the neural net - Following. 

Range (ft) / 200 Range-Rate (Ws) / 25 
b 

Fig. 4d. Input patterns used to train the neural net - Falling Behind. 

-1  l Range (ft) 1200 Range-Rate (Ws) 125 
4 C 

Fig. 4e. Input patterns used to train the neural net - Falling Behind Rapidly. 

Following the network training using the data of Figure 4, the resulting algorithm 
(network weights and architecture of Figure 2) was then applied to the entire database of 
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NEURAL NETWORKS 149 

all 36 drivers. For each driver, a tabulation was made of (a) input patterns recognized by 
the neural net processor as recognizable, (b) non-recognizable data, and (c) cases where 
no sensor target was present. This information was then summarized in histograms and 
is described further in the next section. 

3. RESULTS FOR ALL 36 DRIVERS 

By applying the above analysis to each of the 36 drivers, individual as well as cumulative 
distributions of the five driving behavior categories were obtained. An example result 
for a fairly "average" driver is seen in Figure 5. The data for this driver (subject #7) 
indicate a relatively normal distribution of elected passing behavior. The willingness to 
pass other vehicles is more or less balanced by a willingness to be passed or to follow. 
Passing engagements constituted 38% of the encounters; following occurred 33% of the 
time; and for the remaining 29% of the encounter time, this subject was passed by other 
vehicles. 

falling behind rapidly closing in rapidly 

closing in rapidly following falling behind rapidly 
closing in falling behind 

Fig. 5. Distribution of driving behavior identified for an "average" driver over a I -hour period 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
i
c
h
i
g
a
n
]
 
A
t
:
 
2
1
:
3
6
 
2
2
 
F
e
b
r
u
a
r
y
 
2
0
1
0



150 C. MACADAM ET AL. 

Also for this driver, for the total time spent on the I-hour trip, 46% of  the data 
constituted recognizable driving scenarios (as defined by one o f  the five categories), 
18% of  the time no valid range sensor target was present (i.e., no target vehicle was in the 
detection range of  the sensor), and the remaining 36% of  data were non-recognizable 
scenarios (e.g., vehicles cutting in and out o f  lanes for short periods o f  time, or 
intermittent sensor signals having no particular recognizable quality). 

By way of  contrast, the data for subject # I  seen in Figure 6, indicate a much greater 
tendency to pass other vehicles than to be passed. During encounters with other vehicles. 
this subject engaged in overtaking maneuvers more than 50% of  the time, but was passed 
by other vehicles less than 10% of the time. The remaining 40% of  encounter time was 
spent following another vehicle. 

Similar to the previous "average" driver, of  the total time spent on the I-hour trip. 
46% of  the data constituted recognizable driving scenarios, 15% o f  the time no valid 
range sensor target was present, and the remaining 39% o f  data were non-recognizable 
scenarios. 

falling behind rapidly 
falling b e v d  / 

Count Percent 
closing in rapidly 
closing in 
following 
falling behind 
falling behind rapidly .847 
Total 118 100.000 

closing in 

closing in rapidly following falling behind rapidly 
closing in falling behind 

Fig. 6. Distribution of  driving behavior iden~ified for a more aggrcssive driver. 
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NEURAL NETWORKS 151 

At the other end of the scale, the data for subject #13 in Figure 7 show a much 
reduced willingness to pass other vehicles (10% of the encounter time). Another 10% of 
the encounter time was spent following other vehicles. The remaining 80% of the 
encounter time was spent being passed by other vehicles. 

Of the total trip time, 39% constituted recognizable driving scenarios (versus 46% 
and 46% respectively for the previous two drivers); 19% of the time no valid target was 
present (versus 18% and 15%); and the remaining 42% was deemed non-recognizable 
data (versus 36% and 39%). 

closing in rapidly 

falling behind rapidly / c10:ing in 

closing in rapidly 
closing in 
following 
falling behind 
falling behind rapidly 
Total 

Count Percent \/ 

I I 

fall~ng behind 

closing in rapidly f0ll0~ing falling behind rapidly 
Closing in falling behind 

Fig. 7. Distribution of driving behavior identified for a more passive driver. 

Table 1 summarizes similar results for all 36 driving subjects. The first column 
contains the identification number of the driver. The next 5 columns contain the 
percentage of time each of the five driving behavior categories/scenarios was recognized 
as valid data by the neural net processor. Columns 7-9 pertain to the total trip time - 
with column 7 showing what percentage of the total time was deemed recognizable by 
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152 C. MACADAM ET AL. 

Table 1. Summary of driving behavior results for all 36 drivers. 
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NEURAL NETWORKS 153 

the neural net as valid data (i.e., containing one of the five driving scenarios). Column 8 
shows the percentage of time no valid target was detected by the range sensor. Column 
9 contains the percentage of time that rangelrange-rate data was either intermittent or not 
recognizable as any of the five .driving scenario patterns. The average value for each 
column (across all 36 drivers) appears as the last row of Table I .  Interestingly, none of 
the individual drivers comes particularly close to matching the profile computed by this 
average. 

The real value provided by the neural net processing in all these examples is the 
efficiency, accuracy, and automation achieved for an otherwise tedious manual task of 
searching for and counting thousands of occurrences of specific driving behavior 
patterns contained within large volumes of recorded data. The performance of the 
neural net was checked in this application by manually verifying results on a subset of 
unseen data for ten drivers. False predictions and misses were encountered at a rate of 
about 2-3%. That is, for 120 actual encounters occurring during an hour of driving, I 
or 2 were missed, and 1 or 2 were incorrectly classified. Training time for the network 
was on the order of a. minute or two using a conventional desktop PC. Processing time 
for an hour of driving data was similarly brisk The most time (perhaps two days or so) 
was spent manually reviewing and selecting a broad variety of representative cases 
collected from several different drivers for use in performing the initial network training. 

4. COMPARISON OF RESULTS USING A DRIVING AGGRESSIVITY INDEX 

One way of comparing the above results in terms of differences between drivers, is to 
formulate an "aggressivity index" that reflects the willingness (or frequency of 
occurrence) of a particular driver to overtake and pass other vehicles. A simple example 
would be the following equation ( I ) ,  

A1 = (CIR + CI) + F I 2  ( 1 )  

where. 

A1 is the computed driver aggressivity index value 

CIR is the "Closing-in rapidly" percentage (column 2 of Table 1) 

Cf is the "Closing-in" percentage (column 3 of Table I), and 

F is the "Following" percentage (column 4 of Table I). 

This equation is simply the sum of percentages 2 spent "closing-in" or overtaking 
other vehicles (regardless of the degree) plus half of the "following" percentage. All 
computed values then lie in the range from 0 to I .  A driver who spends equal 
percentages of time (33.3%) passing, following, and being passed by other vehicles 

2 normalized by 100 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
i
c
h
i
g
a
n
]
 
A
t
:
 
2
1
:
3
6
 
2
2
 
F
e
b
r
u
a
r
y
 
2
0
1
0



154 C. MACADAM ET AL, 

would have a value of 0.5 by this formula. Similarly, a driver who passes all vehicles and 
never follows or is passed by another vehicle has a value of 1.0; a driver who is passed 
by everyone has a value of 0. 

If this simple formulation is applied to the data appearing in Table I, the plot in 
Figure 8 shows the result of A1 versus subject. As seen, index values range from 0.15 to 
0.78. 

12 2 4 
Subject # 

Fig. 8. Aggressivity index vs. subject as computed from equation (1). 

The numbering system selected for the driving subjects happens to group them 
according to age. The youngest drivers (ages 20-30) have Subject numbers 1-12; 
middle-aged drivers (ages 40-50) have numbers 13-24; and older drivers (ages 60-70) 
have numbers 25-36. If these subjects are now grouped by age and plotted, the results 
are seen in Figure 9. 

As indicated in Figure 9, the group of younger drivers has a clearly higher average 
value and larger minimum and maximum A1 values than either of the older groups. 
Very little differences are noted between the middle-aged and older driver groups. 

A frequency distribution of the aggressivity index calculated by equation ( 1 )  for all 
drivers is seen in Figure 10 showing a mean value of 0.47 and standard deviation of 
0.147. An overlay line of the corresponding normal distribution curve is also included 
for comparison. The only drivers appearing in the three highest bins of Figure 10 
(Index values above 0.6) correspond to drivers from the younger group (6 drivers). 
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younger midlle-aged 
age group 

older 

Fig. 9. Aggressivity index vs. age group. 

lndex 
Mean 

I Std. Dev. 1 . I  47 1 I 

1 .2 . 3  .4  .5 .6 .7 .8 
lndex 

Fig. 10. Frequency distribution of the aggressivity index. 

The results show a relatively normal distribution of aggressivity index values, 
further evidenced by the S-curve shape of the percentile plot in Figure 1 1 .  Both tails of 
this curve show two clusters of six drivers each at the low and high end of the Index 
range. The remaining 24 drivers distribute their values more or less uniformly across 
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the Index range of 0.4 to 0.6. The horizontal lines represent the loth, 25th, 50th, 75th, 
and 90th percentile values. Four drivers lie in the upper loth percentile; another four lie 
in the lower 10th percentile. 

0 2 0 4 0 6 0 8 0 100 
Percentile 

Fig. 1 I .  Percentile plot of aggressivity index. 

Results like these can then be used to help provide a profile of driver behavior or to 
describe expected distributions of driving behavior for various types of driving tasks. 
For headway control system applications, system parameters may be adjusted based 
upon the results of specific driver analyses. 

5. LONGITUDINAL CONTROL APPLICATIONS 

The prior sections of the paper have described a pattern recognition application of 
neural networks for identifying various categories of driving behavior based upon 
streams of input data containing range and range-rate information. This last section 
addresses the application area of control, and how neural nets may be used to represent 
driver manual control of throttle position during headway keeping tasks. Similar use of 
neural nets to represent steering control behavior of drivers has proven useful in prior 
applications and other control topics [5, 71. An example of using a neural net to 
represent the longitudinal control behavior associated with the closing-in and subsequent 
tracking of a preceding vehicle by one of the 36 drivers in this study is seen in Figures 
12 - 14. Here, the accelerator pedal position is being represented as a function of range 
and range-rate (and their time-delayed counterparts) by a two-layer network architecture 
seen in Figure 12. The time delay parameter, T, is used to help the network calculate 
derivative-related information or transport delays through differencing operations. 
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Values of z used here were'in the range of 1 - 2 seconds. The calculated output is the 
accelerator pedal position seen in Figure 13. The corresponding range vs. range-rate 
diagram is seen in Figure 14. 

Time First Layer 
History Neurons 

Range Rate (t)- 

Range Rate (t<)--L 

Range Rate (t-2.r) 

Range Rate (t-32) 

( 8 inputs ) 

w and v are network weights calculated during network training 
Fig. 12. Network architecture used in the longitudinal control example. 

In this example, the driver is initially coasting in on a preceding target vehicle 
(accelerator off) and then begins to follow at a fairly constant headway. During the 
following portion, the driver is engaged in an on-off throttle modulation activity that is 
frequently observed of drivers during manual headway control operation. The bang- 
bang nature of the control modulation suggests the likely presence of certain 
nonlinearities such as thresholding of sensed signals, lags in power train dynamics, and 
transport delays within the driver. 

As indicated in Figure 13, the neural net representation produces a good replication 
of the measured driver accelerator control response during this longitudinal tracking 
maneuver. Similar results have also been obtained for comparable operating scenarios. 
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Time (sec) 

Fig. 13. An example result of  representing driver longitudinal control behavior with a neural net. 

Fig. 14. Corresponding range vs. range-rate plot. 
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However, use of any one identified neural net model (i.e., weights and architecture 
of Figure 12) corresponding to some specific data sample (such as that seen in Figures 
13 - 14), does not necessarily produce comparable levels of agreement for new data 
samples collected under similar operating conditions a short time later with the same 
driver.  hat is, a neural net representation derived from prior training data does not 
necessarily predict future driver control behavior under similar operating conditions with 
the same degree of accuracy as reflected in Figure 13. Part of the explanation may be 
that the longitudinal control task as examined here is: I) frequently affected by the 
driving environment such as road grade, nearby vehicles, visual distractions, and other 
influences that are not reflected directly within the limited sensor information provided 
by just range and range-rate measurements, and 2) a relatively casual control activity for 
most drivers not demanding perhaps the same level and continuity of attention that 
might be required for a task such as path-following. Consequently, drivers are likely 
affected by other influences beyond just range and range-rate - as assumed by the 
simple longitudinal control formulation offered here. Road grade, for example, has a 
significant influence on the dc-component of the accelerator position required to 
accomplish the same tracking task. A more robust control formulation would therefore 
include this type of influence (through longitudinal accelerometer measurements) and 
thereby extend the likely range of application of any such control model. 

At present, UMTRI is examining these types of issues to help understand and 
further the potential use of neural networks in the area of adaptive headway control 
applications. A subsequent paper will report on those findings. 

6. CONCLUSIONS 

A neural network application for pattern recognition has proven useful for streamlining 
data analyses associated with the categorization of driving behaviors exhibited by a 
group of 36 test subjects. An "aggressivity index" that reflects a driver's observed 
willingness to pass other vehicles was formulated using the results from the neural net 
analyses. The aggressivity index helped to describe distributions of passing behavior 
exhibited by the group of 36 drivers as well as differences between individual drivers. 

In a second application, a neural network was used to model longitudinal control 
behavior associated with closing-in and subsequent tracking of a preceding vehicle. 
Initial results demonstrate the ability to model specific instances of driver control 
behavior. However, further research is being pursued to help extend the predictive 
capabilities (and accompanying utility) of such models beyond the specific operating 
conditions for which they are identified. 

Example applications of these basic technologies could potentially include: I )  on- 
board real time processing systems for obtaining adaptive and updated characterizations 
of driver control behavior (for tuning headway control system properties or monitoring 
driver control performance), and 2) development of headway control algorithms that are 
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more closely aligned with driver expectations of how such systems should operate or 
feel. 
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