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ABSTRACT
OPTIMAL DESIGN OF CENTRAL PROCESSOR DATA PATHS
by
George A. McClain
Chairman: Keki B, Irani

The research described in this paper deals with the design auto-
mation of the central processor of a digital computing system. The
principal aim has been to lay the groundwork for a new and unexplored
area in the field of computer design. While conventional design auto-
mation systems provide the user with a convenient method of describing
his design, we explore the possibility of giving the user the ability of
describing the desired computer architecture along with the available
building blocks with which it is to be implemented.

This leads to an investigation of the relationships between the
architecture of a computing system and various hardware designs which
implement that architecture. By developing a model of a central pro-
cessor and a language for describing the architecture, we can study the
manner in which the architecture influences the data path design and
develop algorithms that will yield an optimal data path for a specified
performance or cost,

The three inputs of this model are:

1) the architecture which describes the computer as the pro-

grammer sees it,

Xvi



2) the algorithm library which gives a set of possible translations

of the operators used in the architecture description language,

3) the hardware library which gives a set of hardware units to

be used as the building blocks in constructing a data path,
These two libraries allow a large number of data paths to be constructed
which implement the given architecture. The problem is to select the
one data path that gives the lowest weighted average instruction exe-
cution time but which does not exceed a specified cost limit,

In order to evaluate a particular data path and architecture imple-
mentation, we need to know: the cost of the data path, the number of
cycles required for each instruction, and the duration of a data path
cycle.

The cost of the data path is taken to be the total cost of the in-
dividual units. The computation of the minimum number of cycles per
instruction and the duration of each cycle are rather complex compu-
tations, but the techniques to compute these values have been developed
and are presented in this dissertation.

Obviously a problem of this scope implies serious computational
difficulties if a working implementation is to be developed. In con-
structing a system of computer programs to illustrate the potential
of this research, we have chosen to assume independence among a
few key parameters in order to compute estimates of the performance

and cost of various sub-portions of data paths. With these assumptions

Xvii



we can no lbnger guarantee an absolute optimal solution, but we find
instead an optimal in a reduced solution space. The assumptions
enable us to use our programs to find solutions for some substantial
architecture descriptions in reasonable execution times. A number
of examples are presented which illustrate both the model of a

computer and the programming implementation we have developed.

xviii






CHAPTER 1

INTRODUCTION

1.1 AN INTRODUCTION TO DESIGN AUTOMATION

There are a large number of separate activities in the design of
a digital computer system. Over the last decade efforts have been
made to apply design automation techniques to most of these areas.
Breuer [ 3,4] and Breuer, et al, [ 5] describe the entire spectrum of
design automation of computers. The various areas are outlined
with a discussion of the goals, direction of research, and inherent
problems in each of these, as well as summing up the state of the
art. Other authors, Gerace [16 | and Metze and Seshu [ 22] in
particular have good introductory material in their papers about
automating the logical design phase of computer design.

For some problems of design automation, a great deal of pro-
gress has been made to date. Areas where design automation aids
are taken for granted now are overall system simulation, small card
layout, circuit design, back panel wire routing, placement and parti-
tioning of logic, logic simulation, and documentation of the design.
The engineer has been relieved of a considerable amount of tedious
design work by these programs, and facilities for checking and cross-

referencing of the design have reduced significantly the number of



errors reaching the hardware stage of development. The ability of
design automation programs to drastically reduce the number of errors
in a designer's final specifications for hardware has been, in fact, a
crucial step in the successful development of systems using large scale
integrated circuits. The difficulty, cost, and delay of making engi-
neering changes in a design using a large scale integrated circuit
technology would surely discourage manufacturers from developing

this technology if the engineers would have to work without the benefit
of current design automation tools.

Detailed knowledge of the work in these areas is not relevant to
this research and no specific references are included in the biblio-
graphy to these very successful areas in design automation research.
One rarely encounters a new paper in these areas today. The majority
of papers being published in recent years are concerned with the
problem of unifying the present system of design automation procedures
and further easing the task of the designer by providing him with a
standardized, man-oriented language in which he can express his
design.

AThe standard practice today is to have the engineer, who is doing
the logical design of the computer, express his design by drawing
symbolic blocks on his work sheet which represent various gates,

flip-flops, etc., and then draw lines between them to represent the



connections. These work sheets often contain such an enormous
amount of detail that the overall structure is quite obscured. What
is conceptually a simple register appears in these documents as
perhaps twenty pages of AND's, OR's, and NOT's, and no one but
the designer himself is likely to understand (or for that matter care)
about the fine, detailed structure. Authors such as Gerace [ 16},
Gorman[17], Schlaeppi [24 |, and Shorr [25 ] point out that the
detailed design of the hardware is specified implicitly but precisely
by a definition of the facilities a processor has (registers, memories,
and I/0 busses) and exactly what operations and transformations occur
on each cycle. A statement of the form A + B - C where A,B, and C
are registers and + is understood as 2's complement addition can
precisely define the hardware and interconnections as well as the
sequencing and gating controls.

These authors are attempting to define languages which will
allow the design to be done by specifying the flow chart or micro-
program for the processor. Then there should be no need to draw
out a register as a group of logic elements when it is defined in a
complete and more easily understood manner by listing the transfers
which involve the register. This not only simplifies the design process
and improves communication between designers but promises great im-

provements in logical simulation and provides good, standardized



documentation of the system earlier than is presently possible. (The
designers can eventually generate good documentation but this, being
separate documentation, tends to be done later after the design tasks
are over,)

These languages differ widely in their form. Some authors have
based their work on ALGOL [6, 7, 8,17 ], FORTRAN [ 22], Iverson
Language [ 13, 19] | or a register transfer type language [ 1, 2, 11, 25]
but the requirements for the languages are invariably the same., The
language must be flexible enough to allow wide variation in the amount
of detail presented. Intricate timing relationships in certain facets
of the hardware and parallel operations in the data path require a
precise, detailed language, but often the specific implementation is
either obvious or else is not critical and the language should allow
the designer to express himself in broad terms with the translator
automatically filling in the details.

A representative example of this approach is the work reported
by J. A. Darringer [ 7, 8] . He describes a language derived from
ALGOL-60 by the addition of a few specialized statements and con-
structions. In the resulting language the designer can declare the
computer facilities for his design and describe the instruction set
as operations on these facilities, The language provides the user

with two standard sets of operators for defining instructions: register



operations, such as AND and OR; and arithmetic operators, such as
ADD and MULTIPLY. The language is sufficiently compact that a
small computer can be completely described on a single page.

This description can then be used to simulate the desired com-
puter for the designer. The designer can also evolve his design by
replacing arithmetic operators with algorithms using register opera-
tors and eventually reach a description which is entirely in terms of
the register operators. Darringer's language processor has the
capability to extract and tabulate the details of the design from this
description and this in turn can be implemented directly into hard-
ware.

In general, it is assumed by these authors that the designer will
understand quite clearly what the data path of the processor will be,
what algorithms will be used, what branch and decision points occur
in the sequencing of instructions, and what the execution time of
each instruction will be. The languages only provide an efficient
and convenient means of expressing this information,

Some important insight into the aims of these various efforts is
gained by noticing the total lack of discussion of the optimizing
strategies used in the various proposed translators. This results
from the simple fact that no true optimization is required in these

hardware compilers. Various logic implementations of adders or



registers may be examined to find the cheapest. Also standard
logic simplification techniques are employed, but parameters such
as the width, delay, and interconnection of each data path unit, as
well as the specific control sequencing are rigidly defined in the in-
put specification either explicitly or implicitly. The designer has
specified the design in such detail that there is no variable in the
system organization which can be used for optimizing. Also there
is no need to include cost or performance objectives for the design.
The designer knows quite accurately what the resulting cost and
performance will be.

At present, none of the systems described in the current litera-
ture has reached the level of development where it can be regarded as
a production system. Various degrees of success have been reported
and the progress seems encouraging, but these systems still being
used for research rather than design.

Metze and Seshu [ 22 ] discuss the possibility of a language that
expresses the processor architecture (the computer as it appears to
the programmer) without implying detailed algorithms to implement
it. This language would then be translated or compiled into a design
with the aid of catalogues of algorithms and hardware. Their paper
treats some of the general problem areas but offers little more than

a definition of the objectives. The paper indicates that their work is



still in the most oreliminary stages, and Gorman [17] expresses
doubt that this approach can be successful now,

More recently Bell and Newell [ 1,2] have defined the Instruction
Set Processor language (ISP) which can be used to express the arch-
itecture of a central processor in a convenient and compact notation,
In this language the amount of detail required is quite flexible and
the user is able to express detail where it is desired, but omit it
when it is not needed for an understanding of the design. An ISP
description of a computer is intended to be a condensed, machine-
readable description of the programming manual for the computer
although it was developed primarily for use in describing computer
systems in a text.

The approach that we take in this research is an attempt to
attack the problem from a different point of view. We describe a
generalized language with which the designer specifies the system
architecture which the computer is to implement. It is intended
that the designer has not yet developed a definite view of how the
data path should best be organized. This language input is applied to
a model of a central processor and analyzed to determine the
optimal processor data path for that architecture., In this approach
we have left essentially all the parameters of the design open for

optimization. The form of the final data path design is not directly



constrained by the input from the designer. We do not actually
attempt to define a language for this process but only specify the
characteristics that are required of the language. For the examples
presented later in this report, a primitive language is informally
defined and is made adequate only for the examples being considered.
For a full implementation of this research, the work of Bell and
Newell or Metze and Seshu would probably be quite useful in developing

the needed language.

1.2 ASTATEMENT OF THE RESEARCH PROBLEM

The basic problem is that of formalizing the design of a digital
computer and developing algorithms and procedures which can be used
in optimizing the design of the central processing unit, Specifically,
we plan to develop techniques for creating the most suitable central
processor data path for the system architecture which has been defined.

T'he term data path is used here to refer to a set of hardware logic
units such as registers, adders, and counters and the interconnections
between them for data transfers. System architecture means a
description of the computing system as it appears to the progfammer
and is composed of definitions of such items as data and instruction
word formats, addressing and indexing structure, and the operation
of each instruction. Optimization requires determining that data path

whose cost is less than the specified maximum cost and which yields



the highest performance as measured by a weighted average instruction
execution time,

As mentioned previously, the major success i1 design automation
has been confined to the area of translating a detailed hardware design
into a specification of the physical location of circuits and wires. The
development of a data path is always done by engineers ina slow and
tedious procedure.

This procedure is basically an iterative technique of making more
or less intuitive changes in a data path and then determining the best
implementation for each instruction on the new data path in order to
evaluate the overall effect of the change on performance. Another
change is mace and the cycle is repeated . The engineers produce
an implementation for each instruction which is usually optimal, but
the time required to do this severely limits the number of different
data paths which can be examined. As a result the initial data path
design is most often done by a few very experienced and creative
engineers and the success of the resulting computer rests heavily
on their skills in making a good intuitive first pass design. The
development of algorithms to perform this portion of the design would
provide a powerful tool in the design process allowing faster and more

thorough evaluation of alternative data path designs.
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1.2.1 Basic Assumptions

On the broadest scale the number of variables relevant to the
design of a computer is enormous and many of these presently are
poorly defined and not well understood. In order to concentrate on
the relationship between the instruction set and the data path, a
number of these variables will be controlled through some basic
assumptions.

The first assumption is that the architecture of the system has
been established, perhaps due to some fundamental requirement for
program compatibility with existing computers and hardware com-
patibility with existing I/O equipment. This means it is known pre-
cisely how the machine will appear to the programmer. The com-
promises involved in various word lengths, instruction formats,
indexing and addressing schemes, etc., all of which do effect the
final cost and performance of a computer system,have already been
resolved.

The second assumption is that the information needed to evaluate
the computing power is available. Since a weighted average instruction
time is used for this calculation, the required input information will
be the relative frequency of occurrence of each instruction. It will be
assumed, then, that the percentage usage of each instruction is accu-

rately known although we are aware that in practice this information
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may be very hard to obtain.

In addition to the performance evaluation infor mation, a maximum
allowable system cost must be supplied. The optimizing algorithms
will theﬁ limit their search to data paths below this cost. This facility
is provided because it is invariably the case that a processor is in-
tended to reach a certain segment of the computer market. An abso-
lute optimal design is rarely of interest but rather the local optimum
which can be implemented at less than some fixed total cost.

Although these assumptions arise primarily because of the desire
to examine the relation between the instruction set and the data path,
it should be seen that they are essentially the same as those appli-
cable to design by current techniques. In cases where these assump-
tions are not met because of some uncertainties in the system speci-
fications, the optimizing algorithms developed in this study can be
used to compare the various alternatives under consideration, for
instance, by evaluating the cost and performance corresponding to

different instruction sets or different word lengths.

1.3 OUTLINE OF THE RESEARCH

The remainder of this report is organized so that in Chapter II
the model as well as the objectives of the research are presented
verbally to prime the reader with the terminology and basic point of

view used in the later chapters. It is frustrating and ineffective to
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try to define precisely all the various terms and the jargon of a com-
puting system as they are used in this report. These terms will all
be quite familiar in a general way but the exact connotation of each
can best be refined by their occurrence in the context of Chapter II.
It may be disconcerting to the reader at first to be unsure of what
exactly is implied by "data path' or ""bus" but by the end of this
chapter the reader should feel confident that he understands our
usage of these terms in this study.

In Chapter III the mathematical model which has been developed
will be presented in its entirety. This model views the central pro-
cessor as a set of transformational units with interconnections be-
tween the ports of the units. This model incorporates a number of
unique features. One of these is the definition of a generalized hard-
ware unit which performs data transformations as defined by sets of
statements from the same language used to describe the architecture.
A unit can be quite complex and may contain internal registers or
storage units. In general any data path which can be represented as
a set of units can itself be defined as a single unit.

Another unique feature of this model is the use of a partial
ordering of the statements in the language rather than the normal
full ordering implied by the list structure of most languages. This

allows flexibility in implementing functions on a data path since the
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time relationship between various language statements is not defined
in more detail than necessary to accomplish the intended operation.
In Chapter IV, we can use the model to state a number of useful
problems. First, the most general question of optimal data path
design can be formulated and a solution to this expressed. Because
of the complexity of this solution, any computer implementation faces
some serious limitations. So it is desirable in Chapter IV to define
a set of more restricted versions of this general problem and look
at the related solutions. One of the more interesting of these was
selected for implementation by a system of computer programs.
These programs are also described in Chapter IV.
Finally in Chapter V we look at some examples that illustrate
this research and the particular system of computer programs that

was developed.



CHAPTER II

OVERVIEW OF THE RESEARCH

2.1 GENERALITIES OF DATA PATH DESIGN

The overall objective of this research is to investigate the rela-
tionships between the architecture of a computing system and various
hardware designs which implement that architecture. Many different
hardware designs will appear identical to the programmer if they
execute the identical architecture. These designs, however, may
differ in their performance and cost. By developing a model of a
central processor and a language for describing the architecture we
can study the manner in which the architecture influences the data
path design and then develop algorithms that will yield the most
appropriate data path for a specified performance or cost. Currently
this process is solvable only with thoroughly heuristic techniques.

We will state the design automation problem with which this
research is concerned in its simplest form and then elaborate on
each of the elements of the problem statement.

Given:

(1) A system architecture.
(2) Performance requirements and maximum cost.

(3) An algorithm library.

14
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(4) A hardware library.

Utilize:

(1) Algorithms from the algorithm library to compile
the architecture definition.
(2) Hardware units taken from the hardware library to
impiement the compiled architecture,
Determine:
(1) A unique, detailed data path.

(2) The microprogram to control the data path for the

instruction set.

2.1.1 System Architecture

The system architecture specifies precisely how the computer
is to appear to the programmer. It is composed of a definition of
facilities and the list of instructions the computer is to perform.
The facilities consist of input and output busses, with which the
computer interacts with its environment, and a set of registers.
The architecture specifies a width in bits for each of these.

The most important part of the architecture is the instruction set
which is a set of language statement groups that define the data trans-
formations accomplished by each instruction. There is one group for

each instruction. These definitions refer to the facilities possessed by
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the computer and specify the desired contents of each register and
output port after execution of the instruction as a function of the in-
put ports and the initial contents of the registers. It is important
that the set of statements that define an instruction be complete
and unambiguous but it should not specify a particular algorithm,
This can be accomplished by using a rich set of operators for defining
architecture instructions and by providing a means to distinguish
those portions of an instruction definition which must have a parti-
cular execution sequence from those which can be more freely re-
ordered. That is, we recognize that the user will want to specify
a particular ordering for some statements in the instructian defini-
tions, but we want to be sure we do not require him to order state-
ments which he knows need not have a particular ordering.

Examples of this would be the use of one symbol to designate
multiply rather than defining the operation as a sequence of adds,
shifts, and subtracts since the latter definition would greatly limit
the choice of algorithms and data path configurations. Similarly,
for the loading of two registers, the user should have freedom to say

that it is immaterial which of these is done first.
2.1.2 Performance Requirements and Maximum Cost

There are two parts to the specification of performance
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requirements:

(1) A list of weighting factors for the instructions in the
architecture,

(2) A maximum permitted execution time for each in-
struction.

The fundamental means of evaluating the performance of a data
path will be tc compute a weighted average instruction execution time
for the instruction set. A single value of performance will be found
by:

(1) Multiplying the minimum number of cycles for each
instruction (on the particular data path) by the
weighting factor for that instruction;

(2) Summing these values over the instruction set.

(3) Multiplying this sum by the cycle time of the data path.

The weighting factors used in this calculation are approximations
to the frequency of occurrence of the instructions in the expected pro-
gram environment of the computer. However, an instruction mix is
only an estimate of processor usage and is generally derived from a
statistical analysis of representative programs. For instructions
of very low usage these figures are of questionable validity due to the
limited data available and uncertainty over the representative nature

of the programs chosen for analysis. Rather than take a theoretical
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tack and ignore this difficulty, it was decided to include a limit on the
execution time of the instructions, as part of the performance require-
ments, which can be used to insure that a reasonable implementation
is chosen for instructions of low usage.

The maximum system cost is simply a limit to the cost of the
total data path as obtained by summing the costs of the individual

data path units.
2.1.3 Algorithm Library

A unique feature of the approach to design automation taken in
this study is the incorporation of an algorithm library and a ""compi-
lation" or "translation' phase of the solution. The language used to
define the architecture instructions uses one set of operators while
the definition of the hardware functions uses a different set of oper-
ators. The architecture is then compiled by selecting entries from
the algorithm library which allow the architecture instructions to be
expanded in terms of hardware operations.

The principal advantage of this approach is that by including
many algorithms in the library to interpret each architecture operator,
a wide range of specific implementations can be investigated, Thus,
an architecture operation such as multiply can be implemented in
hardware by a number of specific adding, subtracting, and shifting

algorithms. But in addition we find there is no requirement to
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associate some understandable meaning with each operator in order to
accomplish the optimization. The meaning is thoroughly and completely
defined by the algorithm entries for the operators. Thus, to say some

architecture operator o, is implemented by doing an 0] or two

1 1

hardware operations is to define completely the o

t

2 1

architecture operator. There is no need for the optimization strategy

sequential o

to be concerned with what the 0y architecture operator actually does
to data. The development of the optimizing strategies can therefore
be carried out in a very general manner and kept independent of any
fixed set of operators.

Now the algorithm library itself is treated as being open-ended
in two senses. First, new operators may be added to the set of
architecture operators simply by adding new entries to the library
to translate them. Second, some particular architecture operator
can have a new algorithm added by making a simple addition of the
algorithm in the appropriate location of the library. Furthermore,
the addition of a new hardware operator implies only the modification
or addition of algorithms to take advantage of the new hardware oper-
ator. In all of these instances the optimization strategy is not effected
by these changes to the library. The effect is only to allow more
flexibility in the definition of new architectures or the discovery of

better data pachs by exploring the new algorithms.
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2.1.4 Hardware Library

As the algorithm library is a catalogue of different translations
of the operators of architecture definitions, so the hardware library
is a catalogue of different hardware units which implement the various
operators of the translated or compiled architecture. In principle
then, when we have a translated architecture, we can go to the hard-
ware library and select a set of units which covers the set of operators
required by the instruction set of the compiled architecture.

The hardware library is defined as a set of unit specifications
where the entry for each unit includes:

(1) A description of the unit facilities.
(2) The unit cost.
(3) The function set of the unit,

The facilities of the unit can be input ports, output ports, and
internal registers and each of these has a specified width measured
in bits.

The cost simply is the total cost for the unit.

The most important part of a unit entry in the library is the set
of language statement groups, called functions, which specify pre-
cisely the data transformation that can be performed by the unit,

Each of these functions gives a definition of the contents of the

output ports and internal registers as a function of the initial
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register contents and input ports using only operators from the
set of hardware definition operators. Since we place no limit on the
size of the function set or the complexity of a function, a unit may
perform many different and intricate transformations using any of
the hardware description operators., There is virtually no limit to
the complexity of a unit described in the hardware library. Each
function also has time delay information associated with it which
gives the total time for that function to be performed.

Again, as in the algorithm library, the hardware library is
doubly open-ended. First, a new unit can be added to the library
which has some functions to implement operators not previously
covered by library entries.  Second, a new unit may be added
which performs operators already covered by existing units but
perhaps has different cost and delay figures. These changes to the
library will perhaps lead to an improved solution to some particular
architecture by expanding the set of possible solutions. However,
they cause no change in the optimizing strategies and would require

no change in a computer implementation of this model.
2.1.5 Data Paths and Microprograms

The result of the design and optimizing routines consists of a
description of a data path and a set of sequencing charts or micro-

programs which specify the manner of implementing each architecture
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instruction on the data path.

The description of the data path is given as:

(1) A list of the hardware units selected from the hard-
ware library.

(2) A description of the connections between the input and
output ports of the hardware units.

The implementation of the instruction set is a cycle by cycle
description of the operations of the data path for each instruction.
This is essentially a microprogram for the architecture on the data
path.

For each cycle this specifies:

(1) The connecting busses between unit ports which are
being used and the bits of these busses which are being
gated.

(2) The function that each unit is performing.

(3) The names of operands present in the data path at the
end of each cycle and the registers in which they are
stored.

In order to evaluate a particular data path and architecture im-
plementation, we need to know:

(1) The cost of the data path.

(2) The number of cycles required for each instruction.
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(3) The duration of a data path cycle.

The cost of the data path is taken to be the total cost of the
individual units. Each unit cost is part of the hardware library entry
for the unit. This computation is straightforward and the requirement
for a valid data path is that this figure be less than the value inciuded
in the input data as the maximum permitted cost. We should observe,
however, that in this model no allowance is made for the cost of the
interconnecting busses nor for the cost of whatever hardware is re-
quired to control the data path. This latter cost would normally
cover status and sequencing triggers, gate control triggers, clocking
circuitry, and a control ‘memory if the data path employed micropro-
gram control. Generally speaking then, we see from this definition of
cost that our attention is directed primarily at obtaining an optimal hard-
ware unit set for an architecture. However, we will see that the set of
busses does undergo a minimization process as part of the optimization

algorithms.

9.1.6 Variables in the Problem Solution

Now that we have looked at the form of the initial inputs to the
optimizing programs and the form that the solution will take, we must
discuss the parameters that can be varied to explore the solution space
of an architecture. We have chosen a very difficult problem that has
a large number of independent parameters, and we should be prepared

for difficulty in implementing a computer solution. The parameters
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considered in deriving a data path are:
(1) Selection of algorithms.
(2) Selection of hardware units,
(8) Selection of a data path bus configuration.
(4) Determination of the data path cycle time.
(5) Determination of the microprogram.

The selection of algorithms is basically a simple covering pro-
blem. We want to explore all the different possible covers but the
number of these for a reasonable architecture and algorithm library
tends to be very large and it is difficult to establish any convenient
objective function which can be used to choose among them or search
through them.

The selection of the hardware unit is also a simple covering
problem. Here, however, it is complicated by a lack of strueture
among the various library entries. For instance, we have chosen
not to require any monotonic relationships between the costs or delays
of units which execute the same operator., Hence, we have little basis
for predicting the characteristics of different covering sets based on
an analysis of the operators or the evaluation of some similar covering
sets. Each set requires an involved evaluation, Another complicating
factor is the ability for each unit to perform many functions in serial

or parallel order. We would nevertheless like to examine all sets of
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units with particular attention to the comparison between simple but
quick units requiring a number of passes to achieve the desired trans-
formation and complex but slow units capable of performing involved
functions in a single pass.

For a given set of data path units an enormous number of different
interconnecting bus patterns is usually possible. We will see that the
search for an optimal busing configuration to maximize the perfor-
mance of a unit set can be organized for an efficient search of the
possibilities, but unfortunately we are generally handicapped by the
exceptional number to be examined. As with the unit set selection,
an important characteristic of different busing configurations that
we want to explore is a comparison of short, simple data path cycles
to long, complex cycles.

The evaluation of the data path cycle time from the individual
unit delays can be formulated as a 'longest path' problem, and a
great deal is known about the solution of these problems. But what
we see is that a reasonable model for a computer does not lead to a
longest path problem having an efficient solution,

Finally the computation of a microprogram to implement the
compiled architecture is itself a major undertaking. In the current
world of computer design this task is usually divided among a group
of engineers who work for weeks to find an optimal solution. For

this model we do have a good and efficient solution to this problem.
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The two most important facets of this are the assignment of operands
to registers and the sequential ordering of the statements in each in-
struction. It will be recalled that the ordering of these statements
was deliberately left vague to provide flexibility and it is in the com-
putation of the microprogram that use is made of this freedom.

We must look at many different assignments or groupings of state-
ments into instruction cycles to find the one which yields the smallest

number of cycles.
2.2 ASIMPLE EXAMPLE

For a simple example of the processes just described, consider
an architecture with one instruction which is defined by the single

architecture operator, 0y- We might write this instruction as:
R2 - 04 (R1)

where R1 and R2 are the two architecture registers. Figure 2.1

is a graphic representation of this instruction. Let us assume the
algorithm library has an entry that defines 04 in terms of hardware
operators 0:2 and oé as shown in Figure 2, 2. Then we compile
the instruction by applying this algorithm to obtain the result depicted
in Figure 2.3.

Going to the hardware library we find a unit, u; shown in

Figure 2.4 which has functions for both o'2 and oé. That is,
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Figure 2.1, The Instruction Graph.

Figure 2,2. An Algorithm for 04+

1
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R2

Figure 2.3. The Compiled Instruction.
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. 1 4
fl. o)
4

for 03

Figure 2.4. A Hardware Unit, uy.

R1 R2

Figure 2,5. The Data Path.

cycle 1 R1 -y - R2 uy does fl

cycle 2 R2 ~uy -R2 uy does f2

Figure 2.6. The Microprogram.
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1 1]
9 and the other 03.

In Figure 2.5 we have a possible data path constructed with two reg-

uy performs two functions one of which is o

ister units and u. An optimal microprogramming of the instruction

is quite obvious. There are two possibilities but both require two

data path cycles. We have arbitrarily chosen one of these and listed
the data path cycles in Figure 2.6. This represents an implementation
of the instruction on the data path.

This example illustrates the basics of compilation and micropro-
gramming. With just one algorithm and one hardware unit we do not
see the process of algorithm and hardware unit selection, and more
importantly we have not mentioned the techniques that enable the various
units to be assembled and connected into a data path. But these are
complex problems and are the principal topics of Chapter IV and

Chapter V.



CHAPTER III

MATHEMATICAL MODEL

In this chapter we present the model used to express and mani-
pulate the problems posed in this research. The model provides the
ability to express a desired computer architecture in terms of a set
of architecture operators. Then the architecture is ""compiled' by
selecting algorithms from an algorithm library which translates the
architecture operators into hardware operators. Hardware units,
whose functions are expressed in terms of the hardware operators
may then be chosen to match the operators required by the architecture.
These units are formed into a data path by specifying the inter-unit
connections. For the data path we get a cycle time dependent on the
time delays in the units. Each instruction is then analyzed to deter-
mine the number of these cycles required to perform it, and this then
allows an evaluation of the architecture performance on the data path.

The methods of performing this design and evaluation are the
subject of Chapter IV. In this chapter individual components of the
model are discussed in the following order: a common language,
architecture, algorithms and the library, hardware units and the
library, the data path, data path cycles, and hardware instructions

and evaluation. Throughout this chapter a simple example will be

30
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developed to illustrate the model. This same example will also be
carried into the next chapter where the solution techniques are pre-

sented.

3.1 A COMMON LANGUAGE

In this section we will define a language which is used throughout
the model to describe operations on data. This language is used for
defining:

(1) architecture instruction transformations
(2) algorithms

(3) hardware unit functions

(4) data path cycle transformations

(5) data path instruction transformations,

Actually we will be describing not a particular, specific language
but rather the characteristics required of whatever language is de-
fined for a particular implementation of this system. A concrete
language definition would need far more attention to the details of
legal variable names, statement formats, etc., than we present here,
but this would only obscure the important points we are trying to
present. For the examples contained in this chapter, a specific,
simple language is used, but it is not the intention here to define

that language in any greater detail than is necessary to allow the
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example to be understood.
The most important characteristics of this language are that:
(1) a transformation is defined by a set of statements
(2) the set of statements is given a partial ordering rather
than a complete ordering in order to avoid any unneces-
sary specification of the execution sequence of statements.
(3) the language rules are the same for all uses of the lan-
guage in the model although operands and operators may
be restricted to certain subsets for use in various sec-
tions of the model.
This language is general and quite simple. The largest unit in
the language is a statement group. A statement group is a set of
statements with a partial ordering. Each statement contains one
operator, one output variable name, and a set of input variable names,
The partial ordering for the statement allows an explicit definition of
the execution sequence of all the statements in a group and constitutes
one of the unique features of the language. The ordering of the state-
ments need not reflect structure that arises from the list format in

which the statements are most conveniently written.
3.1.1 Definition of Terms in the Language

An operand is a binary data item. It has associated with it an

attribute of width, w, which is the number of binary bits in the data
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item. For purpose of identification, the bits of an operand are
labeled 1 through w with bit 1 being the most significant bit.

A variable name is used to identify or refer to an operand.

Variable names may be:
(1) the name of an architecture or hardware register
(2) the name of an input or output port
(3) aliteral value
(4) data label, i.e., an operand not necessarily associated
with a register or port.

Bit modifiers, which denote a subset of contiguous bits of the

operand, may be appended to a variable name. We will denote this
by a starting bit and a bit count enclosed in brackets after the vari-
able name.

example: the variable name

REGI [a,b]

refers to b bits starting with bit a of the operand named REGI.

An operator is a function which maps from a set of input operands
to an output operand. These operands are called the parameters of
the operator. Each operator has a fixed number of input parameters
and not more than one output parameter., Note, however, that an

operator may have no inputs or no output.
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We will consider the set of operators in the language to be divided
into twodisjoint sets. These are the set of operators used to describe
architecture transformations, denoted by the symbol O, and the set
of operators used to describe hardware transformations, denoted by
the symbol O'. Individual operators are 0; € O and o{ e O'. Thus
data path units never perform an 0, operation and architecture instrue-
tions are never described by an oi' operator. The translation between
these will be accomplished by the algorithm library and constitutes
another of the unique features of this model. Both sets of operators
are treated throughout this study without reference to any particular
conventional transformations. That is, we do not assume that the
characteristics of the operators are known or base the optimization
procedure on a recognition of operator properties other than those
properties presented in a particular algorithm library.

The single exception to this policy is the definition of two unique

!

0

of "transfer without alteratim,' These operators will have a single

operators, % € O and o'e O', which we use to designate the operation
input and a single output parameter. The definition of these two,

unique operators is a concession to problems which arise in a practical
implementation of this model rather than being necessary to the model
itself. It proves to be extremely helpful if the analysis procedure for

determining a microprogram be capable of recognizing and manipulating
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these % and ob operators without the need to interact with the

algorithm library.

An expression is an operator with an ordered set of variable
names denoting the operator input parameters. An expression pro-
duces one new operand which is the result of the operator operating
on these parameters. We denote an expression with the generalized

notation of

e[X,y]

where y is the operator and X = (Xl’ ‘o ,.xn) are the variable names.
An expression can have bit modifiers appended to signify a subset of
contiguous bits of the operand produced by the expression.

As a convenience we broaden this notation so that we can write
e[ X,Y]
to denote any single expression e [ X',y] such that:

X' c X, a set of variable names

y € Y, a setof operator names,

A statement is a pairing of an expression with a variable name
and means that the operand produced by the expression becomes the
new operand associated with that variable name, We denote a
statement, s, as:

s=z-¢[X,y]
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where z is some variable name. As with the broadened notation

used for expressions, we write
s=Z-e[X,Y]
to mean any statement s =z -e [ X', y] where
ze Z, X'CX and ye Y.

As an example of this notation, let R1, R2, and R3 be names of
architecture registers; ADD be the operator of binary addition; and

OR be the logical OR operator. Then the statement
R1 —¢[ {R2,R3}, ADD]

means the contents of register R1 is replaced by the sum of the con-

tents of registers R2 and R3. Similarly the statement
{R1,R2} ~¢[ {R1,R2},{ADD,OR}|
means any one of the following statements:

R1 -¢[ {R1,R2}, ADD)]
Rl —¢[ {R1,R2}, OR]
R2 -¢[ {R1,R2}, ADD]

R2 -¢[ {R1,R2}, OR].

In many areas of this study it is necessary to refer to operands
which are not associated with registers or ports. We will reserve

the symbol Z or Z,, Z,, etc., to denote a set {zi} of data labels used

1’72
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to refer to operands which can not be labeled with register or port

variable names.
3.1.2 Statement Groups

The transformations performed in a hardware function, archi-
tecture instruction, etc. will be described by an entity called a
statement group. This is composed of a set of language statements

and a partial ordering over that set., We define a statement group as

a two-tuple
S = <{Sj_}; p >
(subject to certain restrictions given below) where {s,} is used to
denote the set of statements
{s;ls; =2 -e[X,Y]}

in accordance with the definition of a statement given in Section 3.1.1.
By the partial ordering, p, we mean the relationship "a precedes

b.' Throughout this report we will write
apb

to indicate a is ordered before b by p, and
apghb

to indicate a is not ordered before b by p. We will occasionally
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apply a subscript to p to designate a particular ordering when more

than one is applicable to a set. This partial ordering has the char-

acteristics that
Vsj,sk,sle {Si}
1) s, S.
1) s § 5,
(2) S; P sk=.->sk ’5 s].
(3) S; P 8y and skp51:> S; P 8-

For convenience in referring to the two components of S we

will write
{sj}g and pq

to mean the statement group and partial ordering of the statement

group respectively of

5= <{s}, p>.

Then we say S = <{Si}’ p > is a statement group if and only if

Vs]., 8 € {Si}S

where
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z.e¢ X' then s, S
j© i P %k

or if

X then s S..
g € k P j

Finally we want to define the terms predecessor and descendant

with respect to statements in a statement group, S. For s]., S) € {si} g

sj is a predecessor of Sy if sj P Sy

and similarly.

sj is a descendant of Sjc if Sy P s]. .

3.1.3 An Example of a Language

Now let us present one particular language which exhibits the
characteristics we have been discussing. It will be useful throughout
this report to have this available for use in various examples. The
language has been kept very simple in order to avoid the need for a
lengthy description. Also it is not the intention here to describe the
language in sufficient detail to let the reader himself write in the
language, but only to provide enough additional commentary so that

the examples can be understood,
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For variable names we have

rl,r2,... architecture registers
rl', r2',... hardware registers
pl,p2,...,q1,q2,... architecture ports
pl',p2',...,ql',q2',... hardware ports
A,B,C,... data labels

We will indicate the bit modifiers, when needed, by a starting

bit and a width enclosed in brackets. So
Al4,3]
means bits 4,5,6, of operand A where bit 4 is the most significant

bit.

For the sets of operators O and O' we have

o
MOVE transfer without alteration (oo)
SL1 shift left 1 bit position
SL2 shift left 2 bit positions
ADD binary addition

SUB binary subtraction
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o'
move transfer without alteration (00)
sll shift left 1 bit position
comp 2's complement
add binary addition
sub binary subtraction

Input operands for the operators are written in parenthesis following
the operator. For ADD, add, SUB, sub which require two operands,
these are separated by a comma and the second operand is taken as

the minuend for the two subtraction operators. The operand name of
the result in a statement is placed to the left of a left pointing arrow
before the expression, In this language then we can have statements

of the form:
rl - ADD (rl,r2)

The precedence relation between statements in a statement
group is defined by associating a binary vector with each statement.
The number of elements in the vector is the same as the number
of statements in the statement group, and the ith element of each
vector is to be associated with the ith statement in the statement

group. The value of each element is interpreted as follows:
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If the ith element of the vector associated with
statement j is a one, then statement i must pre-
cede statement j. I it is a zero, then state-
ment i is not required to precede statement j.

Now if we use the same register name to indicate the original
contents of a register as well as the new contents, we could have the

following ambiguous pair of statements:

Binary Precedence

Statement Number Statement Vector
1 r2 — move (rl) 00
2 rl — move (r2) 00

Here the ordering vector declares that neither statement is required
to be executed first. But then the transformation will depend on the
specific ordering selected for the two statements. In addition, these
two statements violate the definition for a statement group given in
Section 3.1. 2. which says that statement 1 must precede statement 2
if the output variable name of statement 1 (r2) occurs as an input
parameter in statement 2 ( and similarly statement 2 should precede
statement 1),

The cause of this difficulty lies in the dual use of a name to
designate both the register and the contents of the register. There
is convenience in allowing this multiple use and in general it appears

to be a natural and intuitive notational system. However, we need to
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resolve the confusion which arises between the new and old contents
of a register when we refer to them both by simply the name of reg-
ister,

The solution of this problem which was chosen for this language
is to modify the register names with a bar when referring to the new

contents. These two statements would then be written as:

r2 - move (rl) 00

rl -~ move (r2) 00

and the transformation is understood to be an exchange of the contents
of the two registers. A correct implementation of this statement
group must, of course, take care to avoid destroying one of the ori-
ginal operands in the process of moving the other operand.

As an example of a statement group we can have the following:

Binary Precedence

Statement Number Statement Vector
1 A - ADD (r1,r2) 0000
2 r3 - SL1 (rl) 0000
3 rl ~ SL2 (A) 1000
4 T2 - SL1 (r2) 0100

which says that the only required time relationships are that state-
ment 1 must precede 3 and statement 2 must precede statement 4.

The first of these relationships is derived from the use of an
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intermediate result in a later operation. The second relationship
is a thoroughly arbitrary timing restriction imposed on the statement

group.

3.2 ARCHITECTURE

There are essentially three components of the architecture: the
registers and ports provide the data and receive the results; the in-
structions define the data transformations; and the cost specifies the
maximum system cost.

We describe the architecture of the computer, 63, formally as a

five-tuple:
d = <R,P, Q, ¥, C>

where R = {rl, Toyees ,rn} is a set of registers
P ={p;,Pg;- .- ,pm} is a set of input ports which bring data
into the computer
Q= {ql’qz’ e ,qf} is a set of output ports which transmit

data from the computer to its environment

- {11,12, e ,Ik} is the set of instructions which the computer
executes

C = the maximum permitted system cost

Each of the registers and ports has an attribute of width, w,

which is the number of binary bits in the register or port.
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We describe each instruction in the architecture as a three-tuple

as follows:
1=<8§, ¢, 1 > forIed
where S is a statement group in the language such that
Vsj € {si}s,sj =RUQUZ ~e [RUPUZ, 0]
with Z being a set of data labels and O being the set of architecture
definition operators.

g is the weighting factor for the instruction
(frequency of occurrence in an instruction mix)

7  is the maximum permitted instruction execution time

As an example architecture, employing the language described

in the previous section, let

(i = <R,P,Q,\/,C>
R = {rl,rz}
P = empty
Q = empty
w = 16 bits (for all registers)
4 = {11,12,13} where I = <S,§, >
For I1
Sy =12 -~ MOVE (rl) ¢1 =0.30 T, =20
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For 12
S2 =A ~SL2(r2) 00 ¢2 = 0. 40 Ty =30
Tl — ADD(r1,A) 10
For I3
83 = B - SL1(rl) 00 g=0.30 Tg = 40
Ti- SUB (B,r2) 10
C =100

3.3 ALGORITHMS AND THE ALGORITHM LIBRARY

The language employs two disjoint sets of operators, O and O'.
The algorithm library provides a translation or mapping from the
set O of architecture operators into the set Q' of hardware operators.
This is accomplished by letting each algorithm be a two-tuple con-
sisting of a single statement using a particular 0, € O and a state-
ment group where the statement gr‘oup is a transformational equiva-
lent of the first statement. It is not necessary, in general, for the
statement group to use only operators from O'. In cases where
particular statements in this group use Q operators, then the appli-
cation of the algorithm does not yield a completed translation of the
initial statement. In this event we would require the application of
other algorithms, applied to the new O operators, in order to com-

plete the translation.
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We define an algorithm, gij’ as

8j = <s,S8>

8 = <z, -e [ Zy,0;],8>=

<z, ~e[ Zy,0], <{Sl}Sg , pSg >>
ij ij
where, for
5, € {Sl}s
Sq = Z,-e [23,0UO']
(Zo, 7., sets of data labels)

2’ 73

We leave the definition of an algorithm broad at this time and require

only that

zle 22 and Zlc Z3

although other restrictions may be imposed on gi]. later.

A particular algorithm is similar in spirit to a programming
macro. The single statement serves as a model for the use of the
operator, and the statement group gives a functionally equivalent set
of transformations.

Now let Gi = { g.lj } be the set of all algorithms for 0, € O and

define the algorithm library, G, as the union of all algorithm sets,

G=G,Ug, U...UaG
1 2 n
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where n = |O|, and ; is the jth algorithm for the operator o, in G.
In all our later dealings with the algorithm library, we will
assume the ability to select entries independently and mix them to-
gether in a single statement group. For this reason we must make

the restriction that all entries in a particular library, G, use the
same encoding system for operands. For instance, we can not per-
mit algorithms of 2's complement notation to occur simultaneously
with algorithms assuming a signed integer encoding since we do not
have the facility to recognize the incompatability of these two en-
coding systems.

We have assumed the existence of two distinguished operators,

o, ¢ O and ol ¢ O', which are known to be the "transfer without

0 0

alteration' of the operand. In manipulating statement groups we
will make use of these known properties to replace, insert, or
delete statements which use these operators. The form of these
three manipulations is:

(1) replacement

z, —¢ [X,0

a '
1 becomes z, —e [X,oo']

o)
(2) insertion

z, - ¢ [X,9,;] becomes z, ~e[X,0,] 00
10

z) € [2y,0,]
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or
z, — € [X,0{] becomes z, -€ [X, 0] 00

]
z1 e[zz, 00] 10

(3) deletion
Zy - e |X,0,] 00 becomes z -e [X 0]

z, ~e [24,04] 10

or

zzo—'e—[X,o{] 00 becomes z; ~e X, o]

z; —-e [ZZ’Ob] 10
In the example language introduced in Section 3.1.3, lo| = 5.

Let us define a small set of algorithms for these as follows (with

variable names A, B,C,D):

b
€, 4 B-SL2&) : C-SLL(A) 00
b
B-SLI1(C) 10
g3 1 C ~ ADD(A,B): C - add(A,B)
5
g3 9 C - ADD(A,B):  C - add(B, A)
)

C -~ SUB(A,B): D-comp(B) 00

C - ADD(A,D) 10
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3.4 HARDWARE UNITS AND THE LIBRARY

A data path used in this model is composed of a set of units
with interconnecting busses. A unit description has three principal
components: the register and ports which are the sources and sinks
of data, a set of functions which describe the capability of the unit

for transforming the data, and a cost figure. So hardware unit, s,

is defined as
—_ 4 4 t ]
u, = < Ri’ Pi’ i’Fi’Ci >
where

' _ ' ' ' . :
R = {rj, SPYRR r; I is a set of registers

2
[

! = {p{l,piz, e ,pi'm} is a set of output ports

Q) = {q{l,qi'z, . ,q{l} is a set of input ports
F, = {fil’fiz’ e ’fik} is a set of functions
C! = the unit cost,

We define a function , fij € Fi’ of the unit, u;, as:

B = <sij,{ ak}i]. >
where Sij is a statement group and { 5k}ij is the time delay values

for the function.

The statement group Sij has the property that

Vs, € {sk}sij,s1 =R{ UPi'UZ-e[R{ uQ;uz, 0]



where Z is a set of variable names used to refer to operands which
are intermediate results in the unit for this function. = These may
not necessarily be associated with a unit port or register.

The set of delays, { Gk}ij’ has the property that
v o e {81y,

51 is the time required to execute statement
s) € {splg
1]
and, of course,

oy = Haydg 1.
1)

The data path, which we will later construct, will consist of
hardware units chosen from a hardware library. This library is an
open ended set of hardware units and should include a representation
of any kind of hardware unit which might be useful in a data path.

Define this hardware unit library, H, as

H={u,...,u}

For our example we will have a hardware library containing four

units: a register, and adder/shifter, a complement/shifter, and a

subtraction unit. We can write this as follows:

H = {ul,u 2,u3,u4},
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For unit u

1
Ry = {r1'}
P} = {pl'}
Q] = {a1'}

w =16 (for r1', p1', q1")

1,1: pl'«~ move (rl’)
fl, 9! rl" — move (ql")
f : pl' -~ move (r1l") 00
T1" ~ move (q1") 00
all delays, 6, for unit uy, 6 =0

C1=10

For unit u2

R'2 = empty

Pz = {pl }
, ={al",q2'}
w=16 (for pl', q1', q2")

f2 L pl' ~add (q1',q2)

b4

. "__ ] ?
f2,2 : pl add (q2',q1")

f : pl' - sl1(q2")

2,3

f2,4 : A+~ sl1 (q2") 00

pl' —add (A,ql") 10
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f A

2, 5 00

- 81 (q2")
pl'~ add (q1',A) 10

5 ={6.}. . =15 -
{031y1 =101}y =184}, 5= {10}

{01)05k5,4=101,85}y 5= 15,51

C2=

For unit u3
R'
Pl

%

C'

For unit u 4
1
R,

1
Py
Q

w

f41

3,1 °
3,2 °

{013,

40

empty
{p1'}
{a1'}

16 (for p1', ql1")

pl' ~ comp (ql')
: pl' - sll (q1")

1 =104}3 5= 15}

25

empty
{pl'}
{a1', @21}

16 (for pl', q1',q2")

: pl' - sub (ql',q2"



{51} 4,1 = {10}

C'

4=35

3.5 THE DATA PATH

We define a data path, D, to be a four-tuple
D= <Pb, Qb, U, M>
where
! — \J 1 \ 3
P, = {p 0,1 Po, 27 ,po’n} a set of input ports
! — ! 1 1
Q = {qo,l,qo, NERRYL iy 1} a set of output ports

U = {ul,uz,...,um} a set of units

=
i

a static connection matrix

As with ports in the architecture and hardware unit definitions,
we associate an attribute of width, w, with each of the ports in Pb
and Qb.

The units of D must be indexed since it is frequently necessary
to identify particular units of the data path, but we must be careful
to avoid confusion between the index of the unit in H, which is essen-
tially a unit type number and the index of the unit in D, which is the
individual identity of the unit in the data path. Through the remainder

of this report we will use a superscript, when necessary, to indicate

the unit index in H and a subscript to indicate the unit index in D.
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.

Hence ui refers to a unit having the index j in H and i in D.

Most often, however, the H index is unimportant and will not be

shown.
3.5.1 Data Path Registers and Port Sets

For data path D, let m = |U| and define the set of registers,

input ports, and output ports.

R'= R! URLU.,.. UR!'
1 2 m
| 1 \ t
P' = POUPIU"' UPm
| ¥ 1 t
Q' = QOUQIU"'UQm
where
Ri': the register set of uy for i=1,...,m
P! = the output port set of u for i=1,...,m

Q] = the input port set of w for i=1,...,m
The individual ports are then indexed as follows:

p{j ¢ P'is the jth output port of u, for i >1

or the jth port of Pb for i =0.

Similarly
qi]. € Q' is the jth input port of u, for i>1

or the jth port of Qb for i=0.
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It is helpful here to point out that the input port set, P', and the
output port set, Q', receive their names from the fact that they are
the source and sink of data respectively for the busses which inter-
connect the units. So P' consists of the input ports to the data path
and the output ports of the units, while Q' consists of the output
ports of the data path and the input ports of the units. We must keep
in mind that the unit input ports, which take data into a unit, are
sinks or output ports for the set of interconnecting busses. Like-
wise the unit output ports take data from a unit but are then sources

or input ports for the interconnecting busses.
3.5.2 Data Path Connections

In describing the connections of a data path, we want first to
identify the paths on which data can flow between units and then to be
able to specify a particular subset of these paths in order to define
the dynamic operation of the data path.

First, we define a gate as a three-tuple which designates a set

of contiguous bits connecting two ports. Let a gate
Mn (i;j:k’ 1) = <X,y,W>

denote the connection of w bits from p{j e P'to ql'{1 e Q' as follows:
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bit x to bit y

X+1 to y +1

X+ WwWto y+ W

We collect all the gates for a particular source-sink port pair

into a bus. So a bus
M(i, ]) k’ 1) = {Mn(i; j’ k, 1)}

is the set of all gates from p{j to ql'{1 for a data path D. If there are

no bits connected between some pi']. and quﬂ, then
M(i’ j,k,1) = empty.

To describe the complete collection of interconnections for a

data path, we define the static connection matrix

M= UM(i; j’kyl)
K

for K = {(i,j,kﬂ)lp'ije P' and qp) ¢ Q'}

which is the set of all gates for a data path.

To specify the dynamic operation of the data path, we want to
designate some gate for each bus where a transfer is desired, and
no gate on the busses on which no data is to flow. At most one gate

may be designated for each bus. A particular selection of gates is
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specified in the dynamic connection matrix, M , Which is defined as

1\7[ = U M (i;j’k’l)
K
for K = {(i,j,k,l) , p'ij e P' and q'kl € Q'}

where
M(,j,k,1) c M(i,j,Kk,1)
and

M, 5,k < 1,
3.5.3 Data Path Function Sets
Recall that a unit
u = <Ri" P{, Qi" Fi,Ci' >
where
Fi=ﬁnﬁm“.”gmy
Now for a data path D having

U= {u]_’uz: XX ’un}

we can define the static function set

F =F1UF2 U... UFn.

This is the set of all functions of the units of the data path.

As with the data path connections, we wish to specify a single
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function for each unit in order to define the dynamic operation of the

units of the data path. This is done with the dynamic function set, F

which is defined as

—

F = FIUFZ U... UF,

where

—

F,CF, and |F,|<1.

We indicate that some unit j is not performing any function by
setting

Ej = empty.

3.5.4 Data Path Example

To continue our example we have constructed one possible data
path using units selected from the hardware library, H, defined in
Section 3.4. This contains three registers, an adder/shifter, and
1> one of U, and

one of ug from H. Figure 3.1 is a diagram of these units with the

a complement/shifter. That is, three copies of u

directed lines indicating the busses between the units., We will see
that this data path is adequate for implementing the architecture de-
scribed in Section 3. 2, but it is not intended to be an optimal data
path for that architecture in any way.

We can describe this data path as
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ql!

1 2 )
l 1 1 [] 1
uorh uy i, vy Tl
Pl pl, pl3
I a1y 612)1L _ q15
V shift comp/shift
2 u5
Oy 5
add
L) pl5
Summary of unit specifications
Unit Unit Type Cost Delay
1 1 10 0
2 1 10 0
3 1 10 0
4 2 40 10
5 3 25 5
Figure 3.1 Example data path
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D= <Py, Q) U, M>

| -
PO- empty

Qb= empty

1 1 1 2 3
U = {uy, U, Ug, Uy, Ug }

Now we form the set of registers and ports

= {rl!, rly, rlé}
P' = {pl], pl},ply, ply, pl;}
= {al}, al}, alj,al},q2), a1} .
All registers and ports in this data path have width 16, and we
will have only one gate per bus which will be the entire 16 bits flowing

between port pairs. So for all i,j,k, and 1 for which a bus exists we

can say simply that the gates are
Ml(i,j,k,l) =<1,1,16>.
Then each bus contains only one gate
M(,j,k,l) = {Ml(i,j,k,l)} ={<1,1,16>}.

We can list the busses as follows:
M(1,1,2,1) = {<1,1,16>}

M(1,1,4,1) = {<1,1,16>}
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but a more understandable format is to present the information as a

matrix as in Figure 3. 2.

Output
Ports
Input
? | \i ] ?
Ports pl 1 pl 5 p13 pl 4 pl 5
qli 0 0 0 X 0
ql '2 X 0 0 0 0
ql :'3 0 0 0 0 X
q1"1 X 0 0 0 X
q2:1 0 0 X 0 0
ql % X X 0 0 0
where

x ={<1,1,16 >}

Figure 3.2 Example Static Connection Matrix

The static function set is the collection of all functions which

the units can perform. For this data path we have

F=F UF2 UF3 UF4UF5



where

| '
1,1 ¢ Pl
oS
1,2
1 '
f1,3 : pl
i’
same as F1
samea.sF1
2 .
f4,1 : pl
2 . g
f4,2 : pl
2 . (]
f4’3 : pl
2
f4’4 : A
pl’
2
f4,5 A
pl’
3 . '
f5,1 : pl
3 . 1
f5’2 : pl
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-—

L

-

move (rl')
move (ql")
move (rl')

move (ql')

add (q1',q2")

add (q2',q1")

si1 (q2")
sl1 (q2")
add (A, q1")
sl1 (q2")

add (ql1', A)
comp (ql")

sl (q1")

00

00

00

10

00

10



3.6 DATA PATH CYCLES

For a data path, D = < P}, ('), U, M>, we have seen how the
interconnection of the units is described by the static connection
matrix, M, and the set of all functions for the units is described
by the static function set, F. We have also defined the dynamic
connection matrix, 1\_/1, and the dynamic function set, f, which are
subsets of M and F. We intend to use 1\71 and f now to describe
the dynamic operation of the data path as it performs some trans-
formation on data. We will think of the dynamic operation as the
flow of data out of registers, through transformational units, and
back into registers. This register to register flow will constitute

one cycle of the data path.

For a data path, D, we define a cycle, Y, to be a two-tuple

Y=<F, M>

where _1*: is a dynamic function set of D
M is a dynamic connection matrix of D

This definition of ¥ is very general and includes many combi-
nations of E and 1\—/} which may have no meaningful interpretation
in terms of data transformations.

For a simple example using the data path defined in Section 3. 5. 4,

we will add the contents of registers rli and r13' and return the sum
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to rli . With

we would have

F={f) 503044}

or
F = plj - move (rl}) 00 for unit 1
—r——i ~ move (qli) 00
0 unit 2
pl:'3 —~ move (r1:‘3) unit 3
ply - add (ql},q2y unit 4
0 unit 5

M = {M1(1’1,4’1), M1(3,1’4; 2), M1(4;1’1,1)}
3.6.1 Cycle Statement Group

We need to be able to form a statement group which expresses
the transformation defined by a particular cycle of the data path. We
develop the cycle statement group in this section with a two -step
approach: first, a constructional step to form a set of statements and
a partial ordering; and second, a step to determine whether these
statements and the ordering can be combined to form a valid state-

ment group. The statement group is obtained by collecting the
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statement groups defined by the unit functions and adding a set of

statements to express the gating between units.

For ¥ = <F, M>

we have

)

H
(:c:
=y

1]

it}

1 1 ij

M=UM (i,j)k,]-) {Mn(i,jykal)}
K

for K = {(i,j,k,l)lp'ije P'and '}, € Q'}.
Recall that
iy = <si]., {Gk}i].>

where Sij is the statement group defining the transformations of fij’
and where Mn(i, i,k,1) = <x,y,w> defines the contiguous bits of the
gate.

So we form the set of statements which correspond to the gates

in use for this cycle as:
{Sb}m = {Sb le = ql'd[y,W] -—_é-[pij[x,w] ’ 06]
— Mn(i,j,k,l) = <x,y,w> and

M, (i, 5,k,) e M}.
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Then we combine these statements with those from the unit functions

to get the set of statements {s, } , for the cycle

}1P
{s, }11/ {Sb} U ( U{Sk}s )
where we define

K = {sij lsi]. is the first element of the two-tuple

e F}.

fij =< Sis { 6k}ij > and f;,

Now, for this set of statements we define a partial ordering, p v
as follows:
8.5 S € 18;
Vs, sce sl
where

S]. = {ZJ} - ef 1’0']

3 ] ]
if zj € R UQO, then Sj[f 81
if 24 ¢ R'UQ(}, then JUEN S S

either z]. € Z, or

3

there exists s, =2, ~ e[Z;,0" ] such that

zjeZ and s, p s

o 1 k’
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We recognize that not all cycles, y= <F, M>, represent
meaningful operations. Although we treat any cycle, y, as valid on
the data path, we wish to limit the use of the cycle statement group
Sll/ to cycles which can be meaningful in terms of data transformations.
It is clear that for some combinations of functions and gates, it will
not be possible to define a partial ordering on the resulting statements
that is consistent with the definition of the ordering of statements in
a statement group given in Section 3.1.2.. Even if the statements
can be ordered satisfactorily, we wish to exclude cycles where some

operand does not have a legitimate origin or destination. We make

these concepts precise by saying:

S, = <{s; > 1is a cycle statement grou
p= < 1}Wp¢ y group

D ey S

1) p " exists

and
(2) Vs, € {si}wwhere ;= {zj} -e [2,,0']
either
Zj e R UQO
or

zjf R'UQ) and
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there exists s,_e {s;} v where s, = {z]..} ~ e[Z,, 0'] such that
Z; € Z2 and s].psk

and (3) Vs, € {s;} ll/where 5; = {zj} - e[ 7,,0']

Vo e 2y
: "oy
either Z € RUP0
1 ]
or zk¢RUP0 and

there exists s, € {Si} v where s, = {zk} ~ef ZZ,O'] such that

Now recall the example of a cycle given in Section 3. 6 which put

the sum of registers r1'1 and rll'3 into r1'1. We had
Y= <F, M>
with -
F={f) 35 1Ty ¢
or
I—«" = pli — move (rl'l) 00
?_; ~ move (q1}) 00

1 ?
p13 ~ move (r13)

pla -~ add (q1}, qza)
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M= {M,(1,1,4,1), M; 3,1,4,2), M;(4,1,1,1) }
The set of statements which correspond to the selected gating is,

= v '
{s}, = al} - move (pl})
q24 - move (plé)

qli —~ move (plll)

Forming the statement set {si} lI/and computing the precedence
relationship p . we have the cycle statement group S v for this cycle.
Table 3.1 represents this resulting statement group. Note that the
bit modifiers have been omitted since in all statements we are re-

ferring to the entire sixteen bit operands.

Statement Number Statement Binary Precedence Vector
1 pli -~ move (rl'l) 000 0000
2 qlzl ~ move (pl'l) 100 0000
3 pl:'3 -~ move (rlé) 000 0000
4 q2:1 -~ move (pl:'s) 001 0000
5 plz1 -~ add (q1',q2;1) 111 1000
6 ql; — move (1)) 111 1100
7 Ti' ~ move (ql’l) 111 1110

Table 3.1 The Cycle Statement Group for y.
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3.6.2 Data Path Cycle Time

Recall that each function j of unit i is a statement group with

a set of delay values. We have

fj;= < si]., {ak} i = <<{sk}i].,pi].>, {ck}ij>

where 6k is the time required to execute Sy in fij' In Section 3.6.1
we defined a statement group for y = <F,M>. Now we would like
to calculate the time required to execute this statement group using

the delay values for the functions.

For cycle = <F, M> we have
(o= (o VY85 )

where we define

K = {Sij ,Sij is the first element of the two-tuple

5 = <8y {zsk}ij > and f;; € F1.

The statements {sb}m correspond to the selected gating, M, for the
cycle. In this model we do not attempt to represent the delays asso-
ciated with these busses and do not provide for a description of the

physical separation of units, Therefore we will define the delays

associated with the statements {sb}m to be zero, i.e.,

Vs, € {%}m,akzo,
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Now to find the execution tinme of cycle Y we define the accumu-

lated execution time, &, , of each statement, Sy € {si}s as follows:

¥

Vs, € {Si}sap, B =0, + max | 6].]

with J = {j |j an integer and 5P sk}.

Then we let the execution time of cycle ¢ be t, where

v
td/:m;x [ 0]

with K = {k |k an integer and 5, € {Si}sxp}.

Then the data path cycle time, T, is defined for a data path, D,

as the longest cycle, y, that can be executed on D:

T=max [t

\Ir“’]

with ¥ = {y|yis a cycle of D and p 1‘Uexists}.

Since '5k requires the existence of pw and t, is derived from

'

31(, it follows that '51( and t,, are defined only for a cycle Y which

’J/ ’
ossesses an S, .
P v
This definition of cycle time is for a synchronous computer having
a fixed cycle length based on the longest possible path through the
data path. To model a synchronous computer having a variable length

cycle we can simply redefine T to be a variable



73

th‘l/

having a different value for each cycle . We might consider the
modeling of an asynchronous computer, but then the definition of
cycle time is not meaningful. Rather the evaluation of execution time
would be derived from an analysis of delay values assigned in some
manner to the statements of instructions.

For an example of cycle execution time, refer to the cycle state-
ment group in the example at the end of Section 3.6.1. This cycle is
quite simple and by referring to the specifications for the unit functions
in H we see that only one statement has a non-zero delay. That is the

actual addition and has a delay of 10,

t =10
v .

It is possible to have a cycle in this data path which requires the
serial connection of units 4 and 5 and by observation we can see that

for this cycle we have t, =15, This happens to be the longest possible

0y

cycle and hence becomes the data path cycle time, T = 15.

3.7 HARDWARE INSTRUCTIONS AND EVALUATION

3.7.1 Instruction Statement Group

Define a hardware instruction, I', as a sequence of cycles

I'=(’J/1,¢§,u-~,ll/ ).

m
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If there is a S, for each ye I', then we can easily construct a statement

W
to express the transformations of I'. Let
|
S.. =U s,
(ol = U fihy

group, SI"

Here we retain a double index on the statements in this new set so
that we can use the first subscript to indicate the cycle from which

the statement came. Then

Spy = <{si >

o ]-}SI', Pq

Il
where we define pg » @S follows:
I'
Vs, and s € {Sij}SI,
(1) if k <m, then Si1 psI' S

(2) if k > m, then S pSI' Syl

(3) ifk:m,thensklp <—-‘———:>slp

S[, Smn

4
and 8 n pSI' S <> 5

n ptlksl'

We call SI' the instruction statement group of I' and note that it

will always exist if S, existsfor i=1,..., [I'].

1[/i

As an example of a hardware instruction, take the following two
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cycles on our example data path:

\l/l : pl'2 - move (r1'2) 00000
q1'5 «~ move (pl'z) 10000
pl'5 -~ sll (ql%) 11000
qlé - move (pl,'j) 11100
T]; ~ move (ql3) 11110

t,bz: pli -~ move (rl’l) 0000 0000
qll; ~ move (pl'l) 1000 0000
pl:'3 ~ move (r3") 0000 0000
q2£'1 ~ move (plé) 0010 0000
A -~ sl (qza) 0011 0000
pll1 ~ add (A,qlzl) 1111 1000
ql; - move (plzl) 1111 1100
_r_q ~ move (q1}) 1111 1110

We are showing here only the statement groups for these cycles
but the reader could easily construct the corresponding F and M for

each if he so desired. For an instruction

I' = (%, %)
the statement group would be formed from the union of the two sets

with all statements from "L{l being predecessors of all statements in

gLQ.
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The complete statement group for I' has thirteen statements and
ten of these are simple "move'" statements which tend to obscure
the basic transformation. We will rewrite this and delete these

""move'' statements with the proper adjustment of variable names

and orderings:

rIs' - sll(r1'2) 000
A - sll(rlé) 100
rl'1 -~ add (A, rl}) 110

1

3.7.2 Performance Evaluation

For a given data path, I), and a given set of hardware instructions
for that data path, we wish to compute a performance figure. This is
done simply by computing a weighted average of the execution time

for each instruction over the hardware instruction set. Let
A= {1',1:2,.“,1;1} with n = V' |

be the hardware instruction set with each instruction being a sequence

of cycles,

r _ 3 — !
I = (‘1‘11"”12"'°"‘imi) with m, = I} |

The weighting factors for the instruction set are given by the set

{qbl; d)z’ s :¢n}
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where s is the weighting factor for I{. Now if the data path cycle

time is T, we have the weighted average instruction execution time,

WAIET, as
n
WAIET = T- ), m, - ¢,
i=1
This is simply the execution time for each instruction averaged over
the instruction set using the specified weighting factors for each

instruction. We can also define performance, &, as the reciprocal

of the execution *ime,

1

® = WAET

Thus, a computer with increasing computing power is represented by
increasing performance, ®, or decreasing execution time, WAIET.
Further, if each instruction I{ has a maximum permitted execution

time, 7;, We can say:

J' is a valid hardware instruction set on D if

and only if fori=1,..., \/'|

For the example data path we have found

T =15,
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Let us contine that example by assuming we had hardware instructions

having: Maximum
Executim Weighting
Instruction Number of Cycles Time Factor
11’ 1 20 0.30
12’ 2 30 0. 40
13' 2 40 0.30

This obviously relates to the architecture example in Section 3. 2.
Also we can see the particular hardware instruction example of the
previous section represents I2 as we will see later in this chapter,

Of course, in evaluating a data path you need not have any parti-
cular architecture in mind but in practice the hardware instructions
will be derived from some architecture, and so the evaluation of the
data path is effectively an evaluation of some architecture imple-

mented on the data path.

In any event we now compute WAIET for these values as

WAIET = 15[ (1)(0.30) + (2)(0.40) + (2)(0.30)]

WAIET = 25.50
1
® = WAIET - 0. 0392

As shown below the individual instruction execution times are

less than the specific maximum execution times, making this a valid
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hardware instruction set.

Il'= (15)(1) = 15 < 20
I2' = (15)(2) =30 <30

I3' = (15)(2) = 30 < 40

3.8 TRANSFORMATIONAL EQUIVALENTS AND REALIZATIONS

We conclude the treatment of the mathematical model by defining
the desired relationship between an architecture and a data path. The
basis of these relationships lies in the compilation of a statement
group for an architecture instruction, using entries from the algorithm
library, into a statement group using hardware operators. Statements
from the latter group are then partitioned into sets of statements which
can be executed serially in data path cycles in a manner consistent with
the original partial ordering of statements in the architecture instruc-
tion.

Of course for any architecture there will be a great number of
data paths which satisfy the relationships specified in this model and it
will be the object of the next chapter to discuss criteria for finding
and evaluating some 'best' data path from the set of satisfactory

data paths.

3.8.1 Transformational Equivalents

The process of "compiling an architecture involves taking each
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instruction in the architecture and replacing the architectural opera-
tors with hardware operators according to entries in the algorithm
library. To understand this process we look first at the replace-

ment of a single statement in a statement group.

Let 8§ =< {sﬂ}, p> be a statement group and some s, E{SQ}S

. 1
be a particular statement where

S, =zg—€ [ Z,0.].

If for some j > 1 there is an algorithm, gij’ in the algorithm
library, then we can compile statement Sy - Algorithm library

entries are of the form

where gi]. is the jth library entry for operator 0. Rewriting, we

have

g;j = <z, —e[ Zy,0;] ’<{SQ'}S y Py >
8ij 8y
Now we form a new statement group, SZ’ by replacing Sie by {Sp'}s
gij
in the following manner:.

Form the set of statements

{SQH }S = {SF}S U{Sﬂv}s - Sk'
2 1 gij
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Define a partial ordering Pg for the new statement set as follows:
2

Vs, s € {sﬂ,, }Sz

(1) ifs e {SQ}S1 and s e {SQ}SI

then S4 pSz Sy, R SapSI Sy,

or
(2) if s e {SQ'}S and s, {sz'}s
&ij 84
then s, Pg Sy < 5,Pg 8

2 gij

b

or

(3) ifs e {SQ}S1 and s, ¢ {ng} g
g. .
1)
then saps2 Sy < S, ps1 8y -

We are not ready to define a new statement group using {SQ,, }S

and Pg since the variable names in {sﬁ, }S may not be consistent

2 glj
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with those in {SQ}SI. We must first construct {s,, }s,z from {s,., }g

by performing the following substitutions on the variable names:

We had:

5, =7 —¢€[ Z,0] for s e {SQ}SI

and

gl] = <Zl ‘—-é_[ Zlioi] !<{SQ' }s ’ pS >>
where

Vs e {splg 8, =%,-¢[Z,,0U 0.

2 3
glj
Let the ordered sets
Z, = (zk zk)
k 1’°°°?"n
and
1 1
Zy=(2 e, z)
We know
n= ,Zk[ = ,Z]. l

because Z1 and Zk are the set of input parameters to the operator 0

and the cardinality of such sets is always fixed for a particular
operator,

Also we know that

Zle ZZ and Z1C Z3.

2
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Now we can define the set of names,

4 4
Zy=A2y,..,2 }

AN
Zy =22} =237y,
This is the set of variable names which occur only locally in the

algorithm and do not correspond to names in Sp* Now construct a

. x4 o
set of unique names, 7 °, (names not occurring in {SQ,,}) :

x4 *4 *4
...,zm).

We are now ready to form the new set of statements {s Q,,} gt from
2

{s Q,,} 3 by making the following substitution of names in {sﬂ,,} SZ:
2

Vs, € {sﬂ,, }Sz such that s_ e {S!Z'}S substitute:

Zk for z1
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With this new set of statements, called {sﬂ,,} gr» We can de-

2
fine

S=<‘{Sn}vp >,
2 { Sz’ S2

We say 82 is the transformational equivalent of Sy under gi]. and

write it

S2 = S1 * gij

when Sz is formed from S1 in accordance with the above procedure.
Intuitively, S2 performs the same processing of data as S1 inasmuch
as the algorithm gij specifies a statement group, Sij’ which performs
the same processing of data as 0;. Since we have not specified which
statement in Sl-is replaced, S2 is not unique if S1 contains more than
one statement using 0;-

The substitution of an algorithm into a statement group is really
quite simple in spite of the apparent complexity of the formal descrip-
tion. The problem of generating names is exactly the same as that
of calling macros in a computer program. First the parameters of
the calling statement are directly substituted for the dummy variable
names in the macro definition. Second, if the macro definition uses
internal symbolic names, these must be modified whenever the macro
is inserted into the program so that multiple calls of the macro will

not produce multiple copies of the same symbolic name in the program.
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Let us extend this notation as follows:

For a sequence of algorithms,

and a statement group, Sl’ define
S1 * g

to be the successive substitution of algorithms:

Sog=8,*%x¢g. .
2 1 1§q
Sqg =55 *g. .
3 2 ilg
Sn+1=Sn*gij
n’n

We again call Sn+1 the transformational equivalent of S1 under
g and write it

Spe1 =51 % 8.

Since each individual transformation is not unique, it is clear

that S, * g is not unique.

1

To see this applied to our example, consider I2 of the architecture

of Section 3.2. This had the following statement group:
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A —~SL2 (r2) 00

Ti- ADD (r1,A) 10
The algorithm library in this example has an entry we would like to

substitute which is:

g5, B -SL2(A): C~SLL(4) 00
b

B~ SL1(C) 10

We form the set of statements called {sﬂ,, }S and get

2
{syn} p
C - SL1(A) 000
B - SL1(C) 100

T1-ADD(r1,A) 110

After making the proper substitution of names we get

{spm ten p
C- SL1(r2) 000
A-SL1 (C) 100

TI-ADD(rl,A) 110
Finally we have S, = <{s o }Sz' , psz>.

Returning to the algorithm library we find

g B-SL1 (A) : B - sll (A)
2,1



87

Substituting this twice in the same manner as the previous algorithm
we have the statement group
C - sll (r2) 000

A - sll (C) 100
rl- ADD(rl, A) 110

Finally we go to the algorithm library for

g, 5 C—ADD(A,B): C -add (B,A)

H

and substituting this into our statement group, we have

C - sll (r2) 000
A ~sll () 100
T1- add (r1, A) 110

Now we could use the implicit algorithm described in Section 3.3
for ir_lserting "move' operations into this statement group in
order to arrive at a statement group similar in form to the one for the
hardware instruction in Section 3.7.1 (before the ""move' operations
were deleted from that statement group). However, we will omit

this step since it does not add any insight to the translation process.
3.8.2 Realizations
We now define
& = <R,P,QJ°,C>

to be the compilation of architecture
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({ = <R,P,Q,-4,C >

where

&
(e}
H

C . C
{Ii} with I, = < Sc,d)Ic,Tc >

i 17

& = {4} withL, =< Sli’ ¢Ii, 'TIi >

if there exists a set {gk} of algorithm sequences with

k k k
g =(gij ’ "gi j )
1°1 m, m,
and
n= e = 14l = 0]
such that
a
Se =SI *g fora=1,...,n
I a
a
and also that fora=1,...,n

Vs, € {SQ}S i 8, = RUQUEZ~e[ RUPUZ,0'].

I
a

The compiled architecture differs,then, from the initial archi-
tecture by having the architecture operators replaced by hardware
operators. In this process the number of statements in the statement

groups may increase, and there may be some additional data labels
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added to the set of variable names. Now we will treat the problem
of relating the architecture to hardware instructions and a data path,
This basically involves mapping the various variable names and parti-

tioning the statement groups into data path cycles.

Given
an architecture Q= <R,P,Q, ¥,C>
a data path D= <P6,Qb, U, M>
and a set of hardware instructions J' = {I; }

t
where}Ii = <SI{’¢I{’ 'rIi >

We say

R = <D™

is a realization of (¢, for some compilation of (7,

@ = <R,P,QNC >

if the following three conditions are met:
(1) there exists the following maps

h, : R -R' (not onto)

1
h2 P~ Pb
hy i Q- Q)
hy S =
h,:Z -R'U (P—PO)U (Q—QO)U Z  (not onto)
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where 7 and 7' are a set of data labels in the statement groups

that are part of Jc and /' respectively. That is, Z is defined
for a=1,..., 4]

Vs, € {Si}SIc where s _=A-e[A,0']

a
Z=A-RUPURQ

and 7' is defined

for a=1,..., [\{']

— "__ \J ?
Vs, € {Si}SI, where s_= A'-e[A',0]
a

7' = A'-R'UP'UQ.

In addition we require the set of maps

{h16, h26’ e hn6} for n= ||

where

a
hG:{Sf}SC-. {St}s' a=1,-++,n
I, L

and (2) that these maps satisfy the following conditions:

fora=1,...,|\ﬂc|

and Vs, ¢ {Sp}s
I3
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that

where

and

with

for i=1,...,m

and (3) that these maps also satisfy the conditions that
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sk=x-e[Y,oi], Y=(y1,
a — ]
hg(sy) = sy
s! e {s }
k 2’s. e
h4(Ia)
sk,=x'<-e[Y',oi'], Y'=

if x ¢ R, then hl(x) =x' andx'e R'

if x ¢ Q, then h3(x) =X' and x'e¢ Q(')

Y )

if x e Z, then h5(x) =x' andx'e R'U Z'

ifyi ¢ R, then hl(yi) = yi' and yi' e R'

3 — ] !
if y; € P, then h2(yi) =Y; and y; € P

3 - ] t t ]
if y; € Z, then h5(yi) =Y; and y; € R'U Z

fora:l,...,lJcl

Vsi,sj € {Sﬂ}slc
a
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a a
he (s;) Pg hG(Sj) < s;p, J

and
ha(s)p ha(s)stp S
6'55) Pg M6'S; j P Si

cy.

c
where o = Ia and 8 = h4(Ia

We should observe that the partial ordering for a hardware in-
struction, Ii" may be more complete than the ordering of the corre-
sponding compiled instruction, I(;, since the statements in Ii' have
been partitioned into sets which are in serially ordered cycles of
the data path. In the ordering Py all statements in cycle t//] precede
statements in x,&k for j <k. So tvxlzo statements in I(; which are un-
ordered by pI(i may be ordered by pI{ , if they are partitioned into
different cycles. This is an important feature of the model in that
it allows portions of an instruction to be defined in the architecture
without a temporal relationship although in any specific implemen-
tation some further structure may be imposed. This structure may
then be adjusted in accordance with some optimizing criteria,

If we repeat here the statement group for the hardware instruc-
tion of Section 3.7.1, called I2', and the translated architecture in-
struction developed in Section 3.8.1, which we will call IZC, we can

see the obvious similarity
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12':
1t '
r13 - sll (r12) 000
A -sl1 (rlé) 100
1] - add (A, r1}) 110
125
C - sll (r2) 000
A - sll (C) 100
rl- add (A, rl) 110

A realization of 62 on D would require translations of I1 and I3
which we will not bother to develop. But for this one instruction

we can see the mappings involved in a realization will include:

hl(rl) = jrll
—_ ?
hl(rZ) = r12
h2
P and Q empty for d.
h

c ,
h,(12%) = 12
ho(A) = A

C) = r1'3

We can interpret the second h5 map as indicating that the operand

referred to by the data label C in the compiled architecture is put
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into register r1'3 during the executiam of I2'. In other instances the
h5 map could relate data labels from a compiled architecture to
ports of hardware units or to data labels for operands not associated
with ports.

The correspondence between statements for the two instructions

(the h6 map for IZC) is obvious:

hg(sq) =8
hg(sy) = 8y
hg(Sg) = S3

A final check on the realization is to compute the cost of the
data path, C', as the sum of the five unit costs,
v T ' ' t
C -C1 +C2+C3+C4+C5
C'=10+10+10 + 40 + 25 =95

and observe that this is less than the specified architecture cost, C,

C' <C =100.



CHAPTER IV
PROBLEMS AND SOLUTIONS

4,1 THE GENERAL PROBLEM

With the mathematical model of a central processor and a computer
architecture that we have developed, it is simple to state the general
problem to be considered here. We wish to be able to specify a desired
computer architecture and then have a set of optimization algorithms
programmed on a computer that will compute the most suitable set of
hardware units and interconnecting busses for that architecture, This
will be done by making reference to a library of algorithms for com-
piling the architecture and a library of hardware units for implementing
the compiled architecture. The criteria for optimization will be to
maximize performance while keeping the total data path cost under some
predefined limit.

In terms of the model, for some given:

I

< R’ P? Q’J b C>
}

hardware library ~ H = {u}

architecture L

algorithm library G = {gi].

we want to find:

realization L <D, "™

95
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where D is a data path and\J ' is a hardware instruction set, such that

(1) @ is a realization of d
(2) Costof D< C

(3) (I?Gl —>—(D’R' for any realization ®' of &

which utilizes G and H. (%2, is the performance of X'.)

The statement of the problem in this form would have value in
many situations. Principally, the problem as it is formulated would
be applicable to actual data path design for a defined architecture. But
additionally a system of programs to solve this general problem would
allow evaluation of the implications of various modifications to a given
architecture. Alternatively, evaluation of new hardware unit specifi-
cations or alternative algorithms could be accomplished by repeatedly
applying these programs to a fixed architecture while substituting new

entries in G and H.

4,2 A GENERAL SOLUTION

A present there does not seem to be a feasible approach to solving
the general problem. In this section we will outline the direction in
which a general solution must proceed and try to demonstrate the diffi-
culties that are encountered. A later section will explore the results
that can be attained for a subset of the general problem.

Four principal steps must be performed in order to arrive at one

realization for an architecture:
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(1) A sequence of algorithms must be selected from G for each

architecture instruction statement group.

(2) A set of units must be chosen to cover the operators occurring

in the compiled architecture.

(3) A set of busses must be selected to connect the units.

(4) The performance must be measured in order to evaluate this

particular realization by computing the cycle time for the
data path and the number of required cycles for each instruc-
tion,

Figure 4.1 is a flow chart illustrating how these four steps can be
combined to produce a solution to the general problem. There are
three sequential decision steps in this process which permit all possible
solutions to be evaluated. Sections 4. 2. 1 through 4. 2. 4 will discuss

the specific problems that occur in each of these.

4,2.1 Selecting Algorithms

For an architecture instruction, I = <8, #, 7>, we have a set of
statements, {si}SI, which specify the data manipulations required for I.
Each statement employs one operator, 0,5 from the set of architecture
operators. For o, there is the set {Gy} of algorithms in G where 8 € G,
is the jth algorithm for 0. The choice Qf some gij to translate 0; im-
plies the substitution of the statement group S - from gi]. into the

1)
statement group, SI’ of I at some statement 5, a8 defined in Section 3. 8.
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\
"'Best solution" = empty

l |

no untried

Select an untried compilation of @

ok

no untried

R

Select an untried set of units to cover

unit sets

™ yes

the operators of this compilation

ok

<Cost of this unit set > cost Iimit?>

no

no untried

Y

Select an untried bus configuration

bus sets

for this unit set

ok

compilations

Compute cycle time, number of cycles per
instruction, and performance (&)

PP et )
es

yes

Dpost < P

save this solution in
""Best solution'

Figure 4.1 Flow chart of the general solution
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Now the substituted S may or may not contain statements using O
ij

operators. If not, then the compilation of statement s, is completed.

b
However, if S contains a statement using o,_, then the translation
must proceed vgth a g€ Gk for the Oy statement., This process
must continue until all statements from I have been replaced by
statements using only O' operators.

For some recursive structures in G it is possible that there are

an infinite number of translations for a statement. As an example,

for the statement 81 and the algorithm gij where
5, = zlo—e[ Zl’oi]

gij=z2~e[zz,oi] :z3—e[ZZ,o'i] 00

zz-—e[ Z3’Oi] 10
we see that gij can be repeatedly applied without yielding a statement
group containing only O' operators. This problem must be recognized
and some provision made in any computer implementation to insure
that the program will not remain in an infinite loop. An acceptable
solution to this problem in practice might be to arbitrarily limit the
number of times a given algorithm can be applied to a statement
group. In any case, compilations employing unlimited, recursive
application of an algorithm are of questionable value in any practical

situation, So with careful programming the complete tree of algorithmic
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expansions of a statement group can be systematically ennumerated
(with endless branches arbitrarily terminated).
To see how many possible expansions there might be for an

architecture, let us assume
Gl

n=>l > lGil = average number of algorithms per
IGI i=1 architecture operator

j = average number of sequential substitutions of
algorithms needed to compile an algorithm into
O' operators.

M|
m= 3 I{Sk}s | = number of statements or

i=1 L operators in an architecture

Then there are

expansions of a single statement. And
@)™ = o™

translations or compilations of the architecture assuming each state-
ment is compiled independently. Note that this estimate takes into
consideration the fact that different occurrences of an operator might
best be compiled by different algorithms rather than assuming an

operator should always be translated the same way in an architecture.
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However, G does not contain information which would allow a
direct evaluation of these compilations without implementing some
hardware data path. All optimization criteria are in terms of cost
and execution times which are properties of the hardware units
rather than the algorithms. There is no way at this point to avoid
a thorough search of the complete set of compilations. No evalua-
ting function can be derived from the given constraints which would
be useful in choosing a translation. We will see that it is precisely
this problem which becomes the central issue in the practical solu-
tion taken up in later in this chapter. There we make the assump-
tions necessary to allow an evaluating function to be developed for
algorithm selection.

We can realize from this estimate the advantage of restricting
G so that each algorithm gives a translation entirely in terms of O'
operators. In that case j = 1 and the total number of possible com-
pilations for an architecture becomes

m
n

4. 2.2 Selecting Data Path Units
After a compilation has been selected for all instructions, we

have a compiled architecture,

/%= <R,P,Q, 4% C>
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where each instruction statement group has operators of O' only and
operand names are from the set of architecture registers and ports or
data labels RUPU QU Z. We can collect the set of operators
{oi'} which occur in this architecture so that units can be selected from
the library, H, to implement these operators. Referring to Figure 4.1,
we see this process is the second of three sequential decisions in the
general solution,

In general there may be more than one unit in H for a given operator.
We will iteratively select and evaluate one set of units to cover the re-
quired operators at a time and choose for our final set the one producing
the highest performance. In order to consider the tradeoffs between
cost and performance, we must include sets of units which contain
varying numbers of units for each operator if there are multiple occur-
rences of the operator in an instruction., That is, if an operator o{
occurs at most n times in a single instruction, then we should consider
data paths with 1, 2,...,n units which execute o{ . And, just as dif-
ferent algorithms may be best for compiling different occurrences of
the same operator in an architecture, so different units may prove
best in implementing different occurrences of the same operator in
a compiled architecture when multiple units are included for an
operator,

To compute the total number of covering sets of units for a
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compiled architecture, let

[
]

number of different operators in a compiled architecture
b = average number of times each operator occurs in the

compiled architecture

o
1

average number of units in H which execute each O'

operation

Then there are ¢ ways to cover each occurrence of an operator. We

have

ways to cover b occurrences of an operator using b units, But we may
choose to provide less than b units. Any number, 1,...,b, must

be considered. We should then write the number of possible covers

as
c if one unit provided
c2 if two units provided
cP if b units provided
This gives

i
¢ = number of ways to cover all occurrences of one
1 operator

I Mo

i
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From this we have

sets of units with which a data path can be designed for the compiled
architecture.

It is not necessary to enumerate and evaluate this set completely.
We can find criteria for eliminating some sets of units from consider-
ation without a detailed performance evaluation. For instance, we
need never consider data paths where some particular unit is dupli-
cated more times than the corresponding operator occurs in any one
instruction. That is, if operator o'i occurs once in each of two instruc-
tions, we can consider using one copy of two different units (assuming
H has two units for o'i), but we should not consider using two copies
of either unit. This puts an upper bound on the multiple occurrence of
units. We have an upper limit on the total cost. By carefully ordering
the enumeration of unit sets we can use this upper cost bound to skip
groups of unit sets which we know would exceed this bound., Another
observation is that additional copies of a unit can never cause a loss
in performance. So we need not evaluate a data path unit set if it is
contained in another unit set which is cost feasible and will itself be

evaluated.
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4, 2.3 Selecting Interconnecting Busses
Given a set of units, U, and a compiled architecture,

€. <R, P,Q,JC,C>, there are many possible interconnections of

d
busses between the unit ports which will allow the architecture to be
realized. The selection of a configuration of busses is the third se-

quential decision in the general solution of Figure 4. 1. If there is an

average of e inputs and f output ports per unit, then

(lule+ 1Qh - (lul £+ [Pl

is the total number of possible busses between ports and

lUle+1QN - (lulf+ [pl)

is the total number of data paths which can be constructed from the
set of units U and the port sets P and Q.

Since we assume a zero cost for busses, our selection process
will not be economically motivated to remove extra busses. The basis
for deleting busses from a data path which might contain all possible
busses will be the improvement in performance that may be obtainable.
The principal consideration, which arises when the bus configuration
for a set of units is varied, is the tradeoff between a longer data path
cycle having considerable serial computational power and a shorter
cycle time requiring multiple cycles to accomplish a series of

operations.
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An example will illustrate the éomplexity of this phenomenon,
Given the statement group shown in Figure 4, 2, consider the two
data paths shown in Figure 4.3 and 4. 4. which can implement it. Both
DP1 and DP2 have the same set of units and differ only in the bussing
configuration . But we see in Figure 4.3 that DP1 requires three
cycles to implement the statement group while in Figure 4.4 DP2
requires four cycles.

The performance, ®, for the two paths can be written

1
B =
DP1~ 3T,
1
B o=
DP2~ IT o,

from which we conclude that

®pp1 S Sppy —4Tpy <3Tppy

3
o <& <::bmax[t1,t2,t3] <z max([t

pr1<®pp2 ty+t

1’ 3] :
E ven in this simple example we see the relationship between the
bussing and performance is not simple. The data path yielding minimum

execution time depends on the relationship between the individual time

delays of all three units.
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Figure 4.2 An instruction graph to illustrate
the variation of performance with
variations in the bussing configuration
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Data Path:

A4

Register R1' l unit operator delay

\ 1 0!y 3
l_“l %2
N L 3 o ty
‘3
|

instruction implementation:

Y Z1 - o} [R1] 00

RT - o [ Z1] 10

data path cycle time

DP1 - max| tl’ (1:2 + t3)]

Figure 4.3 Data path DP1 and the corresponding
instruction implementation
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Data Path:
Register R1' unit operator delay
1
/ l \ 1 0y t1
2 o' t
U,l | U2 l Ug l 2 2
\ ) 1
l / 3 Og t3

instruction implementation:

[R'1]

<
o
=
t
o‘

I,UZ: R1' - 0'1 [R1']
1,[/3: R1' - 0'2 [ R1']

Yg RI' - o) [RI']

data path cycle time:

T\ po = Max] t,,to,t,]

DP2 1’°2°73

Figure 4.4 Data path DP2 and the corresponding
instruction implmentation
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It does not seem possible to develop any well behaved optimi-
zation function for the selection of the set of busses. Removal of any
particular bus may either lower performance, if the chief result is
an increase in the number of required cycles, or it may raise per-
formance if the chief effect is to shorten the cycle time.

A few observations can be used however to significantly reduce
the search required tofind the optimum configuration. For instance,
the removal of any bus not in the longest or critical path can not
decrease WAIET. Since no decrease in cycle time can occur, the
execution time will be either the same, if no additional cycles must
be added, or it will increase if the deletion of the bus implies addi-
tional cycles to implement the instruction. Another observation is
that busses should not be considered which do not correspond to some
transfer in the translated architecture. That is, if there is no trans-
fer of operands in an instruction graph from operator o{ to o]!, then
in the data path we need not examine configurations which have a

bus from the unit performing o{ to the unit performing oJ!.

4, 2.4 Evaluating the Data Path

The calculation of the performance of an architecture requires
the knowledge of the data path cycle time, T, and the number of cycles,
II{ |, needed to implement each architecture instruction. With these

two values and the weighting factor for each instruction, }Di, the
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weighted average instruction execution time, WAIET, can be easily

computed. As we saw in Section 3.7. 2, this is simply

M|
WAIET = T ), [ - &
i=1

We will now treat the problems of determining the two quantities
T and [I'| needed for this computation. At this point our discussion
will deal with the overall aspects of these problems. Later we will

return to them again to present details of the algorithms actually used

in the computer implementation.

4,2.4.1 Cycle Time Calculation

We being a discussion of the computation of the data path cycle
time by noting that T is defined as the longest path in the data path
and not the longest path actually used by the architecture. These two
need not be the same. Presumably no busses would be left in a data
path which are not used in some data transfer, but it does not follow
that the longest path is necessarily used as such. The example shown
in Figure 4.5 illustrates this distinction. This definition of cycle
time was chosen rather than one based on the longest path actually
used because it was felt that the cycle time should be solely a property
of the data path and not a function of the use made of the data path.
This allows changes or additions in the microprogramming of a com-

puter to be made without the cycle time and performance of unchanged
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Data Path:
\i
Reg R1'
'b unit operator delay
2 u 1 ! t
1 °1 1
. .
'c 2 02 tZ
|
u, 3 03 t3
d
v\___/le
43
J
f
Instruction implementation:
1;/1: Zl-—o'l[ R1'] 00
R1'- of[ Z1] 10
1//2: 72~ o:z[ R1'] 00
RT-o0} [ Z2] 10
Data path cycle time:
T = t1 +t 9+ t3

Longest path used:

max[t, +t,, ty+ t3]

Figure 4.5 A simple data path showing the distinction
between the longest path and the longest

path actually used.
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portions being affected. However, it also has the advantage of

greatly simplifying the computational problem by allowing the instruc-
tion sequencing computation to be carried out independent of the cycle
time computation,

To compute the data path cycle time we can represent the data
path as a directed graph where the nodes correspond to units and the
edges correspond to busses. We wish to compute the cycle time as
the longest path starting and ending in a register and having no inter-
vening registers or loops where the path length is the sum of the unit
delays along the path. Since it is possible to have loops in the data
path, the longest path can be infinite if these loops are included.
Therefore we prohibit paths with repeated nodes from consideration
in the cycle time calculation. This gives us a well defined problem
which always has a finite solution and is consistent with the physical
problem being modeled. That is, on one cycle of the data path we do
not want more than one operand flowing through the same path.

As an example of a data path with a loop, consider Figure 4. 6.
There are busses a and b which form a loop or closed path from u1

to u, and back to ul. This would be useful if there were two instruc-

2

tions to be implemented such as:
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(A and B are data labels)

In"
A-o; [R1'] 00
RI- 0} [ A] 10
I2':
B o, [ R1'] 00
RI™- o4 [ B] 10

We see that all busses in the data path are used but the loop consisting
of a and b is not used.

Now if no loops occurred in the graph, we could find the longest
path of an n node graph with computation of the order of nz. This
is a well known result [ 9, 21]. However, for the longest path
problem which we have here, where loops can occur in the graph,
we must be prepared for n factorial computations. This comp-
utation is straightforward and can be performed easily enough, but it
is also a well known result that no reduction in computational com-

plexity can be expected.

4, 2.4.2 Instruction Sequencing Computation
After a data path is completely fixed by specifying all units and

defining all busses, the set of compiled instructions must be implemented
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Data path:

v

Register R1'

unit operation delay

1 o1 t1

]
2 02 t2

data path cycle time:

T = max| (t1 + t2),(t2+ tl)] =t + tz

Figure 4.6 A data path with a loop.
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on it, This problem is essentially the problem of "microprogramming"
the instructions for the data path. This is indeed a formidable problem.
The principal result we expect from this computation, when performed
on a set of compiled instructions, Jc, is a set of integers, {ni}, such
that n, is the minimum number of data path cycles required to imple-
ment I(; E»Ac. There are many ways this computation can be made.
One specific method will be outlined later in discussing a particular
computer implementation of this research. Now we will just list the
variables involved in this computation. These can be grouped into

three categories:

(1) Maps hl’hZ’ and h3, where
h1 :R-R' (not onto)
. — 1]
h2 : P P0
. - ]
h3 A) Qo

must be defined. Generally this should not be a difficult process.
(2) For each instruction, I(; € \JC, the set of statements in

the instruction statement group, { Sj}S , must be partitioned into
c
I
i

indexed sets {sk}d, d=1,...,m;. The partitions, of course, will

correspond to data path cycles. These partitions must satisfy the

conditions:



117

m,
i
@) é‘zjl {Sk}d = {Sj}s
C
and I
(i) Vs, s € {s].}s
:

if s, € {sk}d and s, e {Sk'}d' and d £d'

!
then SapSC Sy = d <d
Ij

pPg 8, == d>d
IC
i

and s

(3) Each of the partitions from (2), i.e., subsets of statements
from the compiled instructions, must be implemented as a cycle of

the data path. This requires:

(i) assigning operands to registers
(ii) assigning unit functions to perform each statement
in the partition
(iii) selecting gating to route the operands through the
various units.

In category (2) there are many partitions that will satisfy the re-
quirements. Similarly, in category (3) there may be many possible
implementations for a partition or there may be none at all. The
objective of this computation is to find the smallest number of

partitions in category (2) such that each partition has at least one
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implementation in category (3).

The number of possible implementations for a given instruction
is difficult to compute., However, when we realize that for b state-
ments, there may be zb possible subsets for the first cycle, and in
’fact, zb possible subsets for each cycle since statements may be re-
peated, it is obvious the number of possible partitionings of statements
grows rapidly with the cardinality of the instruction statement group.
Also, if there are c registers in the data path, then there may be
as many as ¢! possible assignments of operands to registers at the
end of each cycle. From these two observations we suspect the solu-

tion space will be very large.

4,3 POSSIBLE SPECIAL CASE SOLUTIONS

In constructing and discussing the general solution, flow charted
in Figure 4.1, we realized that an iterative structure with three
sequential decision points resulted from the inability to formulate
valid objective functions which are both independent of some problem
variables and easily computed. For instance, in selecting a particular
algorithm translation of an architecture, the only "evaluating function"
we could find to compute a performance for this compilation is to
examine all the possible data paths which can implement it. So it is
necessary to iteratively enumerate the set of all possible solutions in

order to be sure of discovering the optimal one. Basically, the
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performance is a sensitive and badly behaved function of the solution
variables. A small permutation of one variable about its value in some
known solution can result generally in a large and unpredictable change
in performance for the new data path.

At this point many different tacks can be taken in attempting to
achieve a workable computer solution to this problem:

First, a program to implement the general solution could be
written. But the estimates of the size of the solution space we saw in
the previous sections indicate that program execution time would be
unreasonable for all but extremely simple problems with small values
of |G|, |H], and M.

A number of ways can be found to significantly reduce the magni-
tude of the problem by making certain assumptions about the problem

specifications. For instance, we could have one of three cases:

(1) require [H| = |0'| andforj= 1,..., lfi !, where fij € fi
for unit u, € H, that the statement group of fij be simply
S = Py ~ef Q, 0]
or

(2) require |G| = |0] and for all j, lGjl =1, and

g1 = <zz<-€[ ZZ’Oj] , <{Z3 ~ef Z,,0',p>>
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or

(3) require |J|=1andI=<S,d, >

where

I{Si}sl is small ,

Each of these restrictions allows a reduction in the computations
required to find the optimal solution. Case (1) essentially eliminates
the need to search the hardware library. There is only one operator
associated with each unit, so the selection process is trivial. Similarly
case (2) eliminates the need to search the algorithm library since one
and only one algorithm is applicable for each operator, and no sequential
expansion of algorithms is needed to produce a compiled architecture.
Finally, in case (3) where only one instruction occurs, it is possible to
develop analysis procedures which greatly simplify the construction of
the data path. These possibilities, although interesting and offering the
possibility of allowing a workable computer implementation, will not
be pursued in this study.

Another possibility for treating the general problem would be to
compute an optimal solution subject to restrictions on the solution
space such as:

(1) considering only data paths that do not duplicate units
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or

(2) considering only data paths with nonserial or nonparallel
interconnections of units.

Still another approach would be to compute a solution to the general

problem using heuristic algorithms for the three decision points.

These, however, would not necessarily produce an optimal solution,

Considerable effort was expended in exploring this last possibility,

but finally it was abandoned due to doubt in the ability of this approach

to lead to any sort of consistently good solution.

4.4 ONE PARTICULAR IMPLEMENTATION

As part of this investigation it was decided to develop a prototype
programming system to implement the ideas of this research and
demonstrate the feasibility and usefulness of this model. Many
possible subsets of the general problem were considered such as
those discussed in Section 4.3 It was finally decided that the most
successful approach would be to develop a programming system
based on defining a limited solution space for a given problem. That
is, we restrict the search for a solution by making certain assumptions
about the nature of the problem.

Fundamentally the assumption which is made is that the cost and
performance for each algorithm can be computed without consideration

of a particular architecture. By manipulating the algorithm and
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hardware libraries we can construct a table which associates a large
set of compilations and hardware realizations with each algorithm
and, for each of these, we can compute a delay value. For a speci-
fied G and H, the table, called a GH Table, is constructed which
gives the complete set of algorithms and possible data path unit sets
for implementing each architecture operator and the execution time
of the operator on that unit set. For a particular operator the table
can have entries for every expansionof the algorithms and every
possible hardware implementation of the expanded algorithm.

When we are given a particular architecture we can use the
delay values for each operator in this table to select both a set of
algorithms to compile the architecture and a set of hardware library
units for the data path. That is, for each required architecture opera-
tor we pick one entry from among the set of entries for that operator
based on the frequency of usage of the operators in the particular
architecture. We then need only maximize the performance for this
compilation and unit set without iteratively changing either of these.

There are two basic assumptions implied in this approach which
limit the solution space that the program will explore. First, it
assumes that *he algorithms can be evaluated independently. During
the selection process for a particular architecture we do not take into
account the possibility of parallel execution of various operators in an

instruction. In a truly optimal data path the implementation of each
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operator will be dependent on the other operators required by the
instruction and ihe execution sequence imposed by the partial ordering
of the statements in the instruction statement group. But we do.not
consider this at the time we make a selection fromthe GH Table. The
second assumption on which this method is based is that we need
choose only one entry for each architecture operator. We will com-
pile every occurrence of an operator in an architecture in the same
manner. We make a selection based on the overall importance of
each operator (a weighted average computation is used) in the archi-
tecture as a whole and hence arrive at a single choice for compiling
each operator,.

A third limitation of the GH Table method, which is purely a

practical programming limitation, arises because of the need to limit

the size of the GH Table. If we use arbitrary bounds to terminate this
process, there will be some realizations of an architecture that we
will no longer be able to consider. For instance, if we limit the
number of sequentially applied algorithms ton, then we will never
explore a compilation of the architecture requiring n + 1 successive
algorithm substitutions to translate one operator.

Now at first glance it might seem that the generation of the GH
Table has all the difficulties we described for the general problem.

In fact the flow chart of the GH Table generation, which will be
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discussed in the next section, is similar to Figure 4.1. However,
the computational complexity is considerably reduced. The significant
advantages that arise from this method are that: the computation of
each algorithm expansion need be carried out only once for a given
G and H; each algorithm can be expanded independently; and the per-
formance evaluation of each one is enormously simiplified. We will
see more about this when we discuss the individual components of
the GH Table generation program.

The programming system required to implement the model in this
manner consis*s of one set of programs used once for a given G and
H to generate tne GH Table, and another set used to compute a data
path solution for each architecture. The remaining sections of this

chapter provide a discussion of these programs.

4.4.1 GH Table Generation

Figure 4.7 is a flow chartof the program which takes descriptions
of G and H and forms the GH Table. It has two sequential decisions for
each algorithm library entry: expanding or compiling the algorithm,
and assigning units to the compiled algorithm. For each architecture
operator there is a group of GH Table entries. Each entry consists of:

(1) a delay value

(2) a sequence of algorithms

(3) a set of units from the hardware library
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<

Pick an untried algor ithm from G

no more

ok

No more

l |

remaining

untried

Pick an untried compilation of the algorithm

into O' operators

ok

no more

\

untried

Pick an untried assignment of units from H
to the operators of the expanded algorithm

ok

Compute the longest path delay for this

unit assignment

Put this entry into
the GH table

\

Eliminate redundant GH Table entries

Figure 4.7 Preparation of the GH Table
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The delay values and the unit set are used to select entries from the
GH Table for a particular architecture. The algorithm sequence
describes the compilation process used in generating the GH Table
entry from the initial architecture operator, After entries have been
selected for a particular architecture, the algorithm sequences for
each selected entry allow the architecture instructions to be compiled
in a manner compatible with the unit set that has been selected.

The GH Table must be essentially a complete enumeration of the
possibilities for each operator because it is not possible to choose
here between two different implementations of an operator on the basis
of their individual cost and performance. This can be done only by
considering the whole set of operators required by some architecture.
(The single exception to this statement is considered in Section 4.4.1.4.)
To illustrate this point consider an architecture operator that can be
implemented by both units b and ¢, where c is the more costly. Now,
if they have identical execution times, we might be tempted to omit
the unit ¢ implementation from the GH Table. But some specific
architecture may require both this operator and a second operator
which can only be performed by unit ¢c. Had we omitted the entry for
unit ¢ for the first operator, we would now be forced to add unit b to
the data path to implement the first operator rather than take advantage

of unit ¢ which must be included to cover the second operator.
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Now, in Section 4.4.1.1 through 4.4.1.4, we will examine the
four basic components of the GH Table generation program and then

present an example of the process in Section 4.4.1.5.

4,4,1.1 Compilation of an Algorithm
This portion of the program generates the set of all possible
compilations or expansions of a single algorithm into a statement group

having only O' operators. If we have

n = average number of algorithms per architecture operator
j = average number of sequential substitutions of algorithms
needed to compile an algorithm into O' operators
then there are
nd
expansions for each architecture operator. This is, of course, the

same as we computed in Section 4. 2,1. Now if

b = |O| = number of architecture operators

we have

b- nj
algorithm expansions to consider for the GH Table. Comparing this
to the quantity derived in Section 4. 2.1, where we had

nmj
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with m being the number of operators in an architecture, we see a
substantial reduction in the number of possibilities that have to be
treated., The principal difference in the form of these two expressions
is due to the ability to treat each expansionindependently here rather
than having to consider the expansion of groups of operators simul-

taneously. We must also note the difference between b and m:

b= [O]
|
m = Z l {Sk}S l .
. I.
i=1 i
4,4,1.2 Assignment of Units
This portion of the program generates all the possible unique
covering sets of units from the hardware library for a particular
compiled algorithm. Every unit that can perform a particular hard-
ware operator will be tried in turn for each occurrence of the opera-
tor in the compiled algorithm. So if there are multiple occurrences
of some operator, these will be covered not only by multiple copies
of the same urnit but also by assigning different unit types for each
occurrence. However, in one unit set covering we do not consider
assigning the came unit to two nodes; each node will have a distinct

unit assigned to it.
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To compute the number of unit set assignments for each algorithm,
let:
a = number of different operators in a compiled algorithm
b = average number of times each operator occurs in an
algorithm
¢ = average number of units in H which execute each O'
operator

Then there are

operators in the algorithm and

(@ b)

possible assignments of units to each algorithm. The number of units
for each operator, ¢, will vary with the completeness of H, but we
can expect (a - b) to be small.

The expression derived in Section 4. 2. 2 was

for the number of covering sets for an architecture, but it is not very
meaningful to compare these two expressions. In Section 4. 2, 2, the
values a and b are defined for a compiled architecture whereas here

they are defined for a compiled algorithm. If we assume the compiled
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architecture has only one instruction, then the two expressions can
have a similar interpretation: the number of unit covering sets for a
single statement group. In that case the difference in the two expres-
sions reflects the fact that in Section 4. 2. 2 we could use a unit to
cover more than one statement, while in this section there are always
as many units as statements. The expression

o2 b _ (cb)a
is then seen to be simply the last term of the expression from Section

4, 2. 2.

4.4.1.3 Compute Longest Path Delay

The resull of the compilation of an algorithm is a statement group
having only O' operators. This can be represented as a noncyclic,
directed graph Each node corresponds to a statement with one oper-
ator and the edges correspond to operands. When the delays to perform
each operation are associated with each node according to the covering
of the operations by the selected unit set, then the computation of exe-
cution time is simply the problem of finding the longest path through
the graph. This is a much simpler computation than that required for
a general data path where the corresponding graph may have cycles
or closed loops. The computation required here has only n2 steps for

a graph having n nodes. (That is, n2 steps for an algorithm compiled
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into a statement group having n statements.)

The measure of performance associated with a GH Table entry
is precisely this longest path delay. The set of units used to estimate
performance has no registers. Therefore, there is no need to examine
alternative assignments of operands to registers, no need to modify the
bus configuration to seek performance improvements, and no micro-

program to compute,

4,4,1.4 Eliminate Redundant Entries
There is one criteria which should be used to eliminate some
entries from the GH Table. We can state the following rule:
For every pair entries for an operator, if the unit
set of the first is contained in the unit set of the
second and the delay value of the second is not

smaller, then the second entry should be omitted
from the table.

That is, we expect an improvement in performance if the number of
copies of any unit type is increased. This rule should be compared
to the statement and example given in Section 4.4.1. The distinction
between these two is that we can not make a value judgment between
two entries when their unit sets contain different unit types. But
when both entries have all the same unit types then we do not reduce
the solution space by applying the above rule. Any solution that could
use the entry with the larger unit set will be explored using the entry

with the smaller unit set.
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In this particular program implementation we apply this rule

immediately following the calculation for a new entry to the GH Table.

4,4.1.5 An Example of GH Table Generation

To clarify the concept of the GH Table, we will compute the table
for the example algorithm and hardware libraries presented previously
in Section 3.3 and 3.4, respectively. These are the libraries used
for the example carried throughout Chapter III. Five of the seven
algorithms are already in terms of hardware operators and hence need
no compilation, The appropriate algorithm sequence for these will
contain simply their individual algorithm number. The algorithm g 2,1
and g 4,2 however, have architecture operators in their statement

group and therefore must be translated.
For gz’1 we have

€91 B - SL2(A) : C - SL1(A) 00
B - SL1(C) 10

we apply
gl, 1’ yielding
B - SL2(A) : C - sll(A) 00
B -SL1(C) 10
and apply gl, 1 again, yielding
B - SL2(A) : C -sll(A) 00

B - sl1(C) 10
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which has only hardware operators in the statement group. The correct

algorithm sequence is:

(gz’l,g1’17g1’1)o

This is the only possible compilation of g 2.1°
)
We can translate g 4.9 similarly, but since there are two possible
)

translations, we have two separate algorithm sequences,

(g4, 99 g3,1)
and
(g4, 9 g3,2).

To construct the GH Table, now that we have every possible
algorithmic compilation from G, we enumerate every possible assign-
ment of hardware units to a compiled algorithm,

Table 4.1 gives a summary of the relevant data from the description
of the hardware library since it is perhaps obscured there by other
data. We see two units, u, and ug, perform sll. So, for the state-
ment group we derived above for gz, 1’ which requires two sl1 opera-
tions, we will have four possible unit assignments: u gs Ugp Ugy Ugs Ug, U,y
and u gr Uz The ordering of these two statements requires statement 2
to follow statement 1, thus making the delay equal to the sum of the

delays for each step.

The complete GH Table for this algorithm and hardware library
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Unit Operations
Number Performed Delay
u, add, sll 10
u comp, sll 5
u, sub 10

Table 4.1 Summary of example hardware unit
specifications.
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pair is given in Table 4. 2. We see there the specific entries resulting
for gz, 1 (Blanks in any column indicate the entry has not changed
from the previous line.)

The Table of Figure 4.2 still contains the redundant entries
(marked with an asterisk) which should be deleted according to the
procedure of Section 4.4.1.4. They have been left in simply to

clarify the process of GH Table generation.

4.4.2 Data Path Generation

In Section 4.4.1 we discussed how the algorithm library, G, and
hardware library, H, can be manipulated to construct the GH Table.
Now we will consider how the GH Table can be applied to the problem
of computing an optimal data path when a specific architecture is de-
fined. Figure 4.8 gives a flow chart of the program which performs
this computation.

There are three principal steps in this process. First, the GH
Table is used to select entries for the architecture operators used in
the given architecture. This process yields both a unit set for the
data path and an algorithm sequence for compiling each architecture
operator. Next, the architecture is compiled using these algorithm
sequences. Finally the compiled architecture is implemented and
evaluated on the unit set. These three components are discussed

separately in Section 4.4. 2.1, 4.4. 2. 2, and 4.4. 2.3, respectively.
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Figure 4.8 Flow chart for data path generation
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We will no longer attempt to carry through the example of Chapter III
because the complexity of a hand calculation now becomes overwhelming
and these sections are not sufficiently detailed to make a particular ex-
ample understandable anyway.

The process just described can be considered one complete pass
through the data path generation program. However, there is a compli-
cating factor. We have not discovered any procedure to predict the opti-
mal number of registers a data path should have. No registers were
considered in the generation of GH Table entries, and the unit sets
associated with the entries in the Table do not include registers. How
do we determine the number of registers to be included in a data path?

We obviously need at least one hardware register for each archi-
tecture register, but there will usually be an advantage to including some
temporary storage registers for intermediate results during an instruc-
tion execution. Without a cost limit we would simply put in a very large
number of registers. Additional registers can not cause a loss in per-
formance because our model does not consider fan-in and fan-out
limitations, the cost of busses, or increased bus delays that would,
in reality, result from increasing the number of registers. But since
there is a total system cost limit, unnecessary registers may reduce
the number of transformational units the data path can contain and

lead to a sub-optimal data path. Starting from the other extreme and
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including too few registers, in order to be able to afford more trans-
formational units within the cost limit, may result in some units being
unusable because there isnoavailable temporary storage for their
results. This again leads to a sub-optimal data path. The proper
number will usually represent a balancing of these two opposing
phenomenon,

Our research has not produced a solution to this problem. So
in the data path generation program, we will try different numbers
of registers and compare the data paths and performance for each.
The process described in the beginning of this section becomes one
independent computation for a fixed number of registers, and referring
to Figure 4.8, we see that the entire process is simply repeated with an
increasing number of registers, We start with the number of registers
in the architecture and add one for each iteration until either we find
that an additional register has not improved the performance or we
have reached some arbitrary upper bound.

As a final point we should note that the data path generation
portion of this programming system includes a number of steps which
are described here as the enumeration of the values of some variable.
In general these are implemented using various branch and bound
techniques so as to be partially implicit rather than totally explicit

enumerations. This is quite significant in reducing the execution
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time of the computer program but does not effect the solutions that
the program finds. We feel that a complete description of any of
these particular procedures would require the inclusion of an
inappropriate amount of detail concerning the manner in which the
program is coded, and therefore we will refer to all of these simply
as enumerative searches without elaborating on their specific imple-

mentation.

4.4.2.1 Select the GH Table Entries

This component of the data path generation program selects a
set of GH Table entries to translate the architecture operators
required by a given architecture. The result of this selection process
will be a definition of the unit set for the data path and the information
required to translate the architecture.

The flow chart in Figure 4.9, with the key in Table 4. 3, out-
lines the basic steps of this computation and we will consider this
to be the primary documentation of the exact criteria used in making
the GH Table eantry selections. We will only summarize the overall
objectives of this component of the programming system and draw
attention to the most important facets of the program operation.

The goal of this program is to perform the following analysis:
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OPSOCC(a, b)

OPSNED(b)
UNITSET

PUNITS(d)

BUNITS(d)
N(b)

GHUNITS(b, c, d)

GHX(b, c)

PSE L(b)

BSEL(b)

141

weighting factor of instruction a

number of occurrences of operator b in

instruction a
max[OPSOCC(a,b) ], a=1,..., | Y|
present selection of units from H

number of copies of unit d in present unit

set
number of copies of unit d in best unit set
number of GH Table entries for operator b

number of copies of unit d in the cth entry

for operator b in the GH Table

delay value for the cth entry for operator
b of the GH Table

the entry number of the GH Table entry

presently selected for operator b

the entry number of the GH Table entry

of the best selection for operator b.

Table 4.3 Key to terms in Figure 4.9
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Figure 4.9 Selecting a set of GH Table entries
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Figure 4.9 Selecting a set of GH Table entries (Continued)
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Given:

(1) the system cost limit for the architecture

(2) the number of registers in the data path

(3) the frequency of occurrence of the architecture operators
in each instruction

(4) the weighting factor of each instruction

Find:

(1) the number of copies of each unit that the data path should
have

(2) an entry in the GH Table for each operator that occurs in

the architecture

Subject to the constraints that:

(1) the cost of the selected unit set, including registers, does
not exceed the systems cost limit,

(2) the estimated delay (from a weighted average computation)
for the selected unit set and GH Table entries is minimized

over all possible unit sets and Table entry selections.
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The program proceeds by first noting the architecture opera-
tors unused by the given architecture and thereafter ignoring all
portions of the GH Table associated with these operators. Next
the program enumerates one of the possible data path unit sets
(UNITSET) that does not exceed the system cost bound. A particu-
lar UNITSET partitions the entries of the GH Table into two groups:
those whose associated unit set is contained in UNITSET and those
whose unit set is not. For this UNITSET all those in the latter
classification are ignored. Now for each operator, b, the GH Table
entry (PSEL(b) ) is selected which has the smallest delay value.
These become the entries associated with the present UNITSET.

Then an estimated architecture delay time is computed,

| 0|
ESTDELAY = ) f# - ) GHX(PSEL(b)) - OPSOCC(a,b)

a=1 a b=1
The program repeats this entire process with a different UNITSET.
The desired result, after all UNITSET's have been tested, is the

UNITSET and associated GH Table entries (the PSEL's) for which

ESTDELAY was the smallest.
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4.4.2.2 Compile the Architecture

This portion of the program uses the algorithms associated with
the entries selected from the GH Table to compile the architecture.
Recall that there is an algorithm sequence associated with each GH
Table entry that describes how that operator had been compiled for
that specific entry. Now this algorithm sequence is used to compile
every occurrence of that operator in the architecture in exactly that
same manner. This is an important step in the programming system;
no other compilation procedure can be used. If the architecture were
compiled by algorithm sequences other than those used in forming
the selected entries, then the compiled architecture could require
operators not coverable by the selected unit set.

The comgilation phase of this programming system is very
straight-forward. Each operator (that is, each statement) in the
architecture is treated independently, and the program simply proceeds
by compiling the first statement of the first instruction, then the se-
cond statement of the first statement, and soforth until the last state-
ment of the last instruction has been done.

A point concerning compilation, which might be disconcerting,
relates to the uniqueness of the compilation process. In Section 3.8.1,
where the process was defined, we had

Sl*g



147

as the compilation of statement group S1 using algorithm sequence g,
and noted that this will not be unique if there are multiple occurrences
of an architecture operator. When we compile a single operator,

we start with a statement group of one statement, but during com-
pilation more statements may be added and an architecture operator
may be duplicated. As we apply the algorithm sequences here to
compile an architecture operator, however, we can insure the
correct compilation by using a procedure which mimics the procedure
used when the algorithm sequence was defined for the GH Table entry.
That is, although there is insufficient information in g to allow S1 x g
to be unique, knowing specifically how g was formulated during the
GH Table generation we are able to apply the individual algorithms

of g to the proper statements in 51-

4.4.2.3 Compute the Data Path Performance

At this point in the generation of a data path we have deter-
mined both the compilation of the architecture and the unit set for
the data path. We now need to determine the optimal interconnection
of the units, the cycle time, and the number of cycles per instruction.
Because we chose to make rather an accurate measure of performance,
this component of the programming system is rather complex. An

outline of it is given in the flow chart of Figure 4. 10 with a key to

the symbols in Table 4. 4.
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Solution = The microprogram, cycle time, longest
path, the set of busses used by the

microprogram, and the performance

® = TNT:‘ITT = performance of a solution
B =  Best solution

P = Present solution

PB = Present Best solution

L.P. = Longest Path

M =  Connection Matrix

Table 4.4 Key to terms and symbols of Figure 4. 10
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Figure 4.10 Flow chart to compute performance
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It is important to realize that the program implementation that
we have developed differs from the general solution only in the method
of choosing a compilation and a unit set. The many problems of eval-
uation after this selection is completed are the same for both the
general solution and this particular implementation. This section
should therefore be treated as an extension or continuation of Section
4. 2.4 rather than as a description of an alternative solution to the
evaluation problem.

We have mentioned'previously that since we have no cost associated
with the busses, the only detrimental effect of having an extra bus
is that it may contribute to an unnecessarily long cycle time. So the
basic approach in optimizing the bus configuration is to start with
essentially all possible busses and compute a performance; then see
if an improvement can be obtained by deleting any bus that is part of
the longest path. (Busses unused by the microprogram are not in-
cluded.) If that is possible, we make the deletion of that bus perma-
nent. For the new data path we can again compute a performance and
a longest path and repeat the above procedure. In this program we
choose to assume we have an optimal bus configuration when no im-
provement results from deleting any bus in the longest path. We
recognize that will be only an approximation to the optimal data path

since it is possible that in some cases deleting two or more busses



151

will yield improved performance even though deleting any one bus will
not, °

Once again, as in the description of the GH Table selection process,
we will assume the reader, who is concerned with specific details of
this part of the programming system, will find Figure 4.10 sufficient
for his needs. The flow chart is considerably more accurate and
complete than any reasonable verbal description could hope to be.
Two steps in Figure 4.10, however, are unclear and worthy of some
further elaboration. These are the formulation of the initial connection
matrix and the step called "'evaluating a solution.' The "solution"
in this context consists of: the data path cycle time, the micropro-
gram, a list of the busses used by the microprogram, the number of
cycles required by each instruction, and the performance. We end
this chapter with a few notes on the functioning of these two com-

ponents of the programming system.

Construct the Connection Matrix:

At this point in the programming system we have established the
unit set that willbe used to form the data path and compiled the archi-
tecture so that it is expressed in terms of operators that the selected
unit set can perform. We need now to compute the static connection

matrix for the data path so that we can perform the evaluation step
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of the program.
We will define the initial data path bus configuration to consist of:
(1) busses from all registers to all units.
(2) busses from all units to all registers.
(3) busses from all registers to all registers.
(4) busses which can correspond to an operand transfer in
some compiled architecture instruction.

(5) but not including busses from a unit or register to itself .

This set of busses will contain any bus which could be useful in the
data path.

The construction of the connection matrix can be programmmed
easily from the above definition of the desired bus configuration. How-
ever, item (4) requires amplificé.tion. The busses defined by item (4)
are derived by determining the set of units that can perform each
statement of an instruction. Then, if the output of statement i is an
input to statement j, we add a bus to the connection matrix from each

unit in the covering set of i to each unit in the covering set of j.

Evaluating a Solution:

Finally there are no more variables left to adjust. We now have
a compiled architecture and a well defined data path consisting of a

unit set and a connection matrix. We must now compute the following:
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(1) The microprogram of the compiled architecture having the
minimum number of cycles on the data path.

(2) The set of busses used by the microprogram.

(3) The data path cycle time.

(4) The performance,

The microprogramming problem requires the the specification of
the maps h,;,...,h; and {hg} defined in Section 3.8. 2, and the defini-
tion of the instruction cycles, ¥ = <¥F,M >, defined in Section 3. 6.
Since we have constructed the initial connection matrix with each
register having identical connections to the remaining units, the
mapping of architecture registers to hardware registers (hl) is trivial.
(That is, all possible mappings will give the same performance).
Maps h2 and h3 for the input and output ports are similarly trivial.
This allows each instruction to be microprogrammed independently.

Grossly oversimplifying, we compute the microprogram with the
minimal number of cycles by constructing a list for each instruction
of all possible data path states that can be reached in one cycle. We
define a cycle here, just as in Chapter III, as a dynamic function set
and a dynamic connection matrix, and define a state by the set of
instruction statements remaining to be done and the particular assign-
ment of operands to registers. Then we compute the set of states

that can be reached after one additional cycle, and so forth, unti] we
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enumerate the final state. This is the state of no statements remaining
to be done and the required operands in the appropriate registers. From
this list of states we can construct the sequence of cycles from the
initial state to the final state and having the fewest cycles. This gives

us the desired
m. = minimum number of cycles for instruction Ii'

and

I'

(Y Vs -+ )

i
Since we use a constructional approach for finding Ié for Ica , the
map h 4 is trivial. The computation for the sequence of cycles de-
scribed above is essentially a determination of the remaining maps

a
h5 and h 6

All of the busses in the connection matrix are available to the

. . c
for instruction Ia'

microprogramming computation, but a record is made of those that
are actually used in some instruction. After all of the microprograms
are calculated, we determine the cycle time of the data path, As
explained in Section 4. 2. 4.1 this is a simple '"longest path' compu-
tation utilizing the delay values in the units and the set of busses used
by the microprogram (not the connection matrix). We must allow for
possible loops in the data path and thus avoid counting any unit more

than once in computing path delays. At the same time the cycle time
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is computed, a list of the busses that form the longest path through
the data path is generated. (Or one of the longest paths if there are
more than one with equal lengt.h.)

The final step is to verify that each instruction has been imple-
mented within the specified maximum time limit and then compute the
performance. Both of these steps are first mentioned in Section 3. 7. 2.
For

T.
1

J

maximum permitted execution time for instruction i.

weighting factor for instruction i.

we first determine that

’TiZ m, © T for i=1,...,[d" |

where we have just computed

m.

i number of cycles for instruction i.

H

T

data path cycle time,.

If all instructions have been implemented within the allowable time,

then we compute performance

® = WAET

with

WAIET = T- ) m, - §.
i=1



CHAPTER V

EXAMPLE PROBLEMS

In this chapter we present five examples which will serve to
emphasize the major points we have covered in the previous chapters.
We hope to clarify concepts that may have been cloudy or obscure when
discussed previously in abstract terms. Also we want to emphasize
the principal steps in the design process and illustrate the various
optimization decisions that this procedure considers. Finally these
examples allow insight into the nature of the programming system
that has been developed since all the results in this chapter are based
on the computer solution,

The first four examples each treat the issue of making a choice
for a particular problem variable, We demonstrate this process by
presenting two or three parts in each example which differ only in the
particular variable of interest so that we can easily identify the effect
of this change on the solution. In order to hold extraneous information
at a minimum, these examples are kept as simple as possible. Vari-
ables which are not of interest in a particular example are usually
constrained to a single value.

In the first example we examine the process of selecting units from

the hardware library. The second example demonstrates the algorithm

156
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selection and compilation phase of the solution. The third example
shows how the search for maximum performance will result in differ-
ent data paths as the instructibn weighting factors are varied. Finally
in the fourth example we see how the performance can vary as the
system cost limit is changed.

The fifth example relates this research to the real world by demon-
strating how portions of a real computer might be described in this
model. The first four examples use abstract operators and instructions
that may not have direct counterparts in existing computer systems. Here
we describe and then design a processor having more easily recognizable
operations and instructions.

The programming system developed during this research is written
in FORTRAN and the S/360 Assembler Language for execution on an
IBM Model 67, and all the examples in this chapter were run on this
program. The descriptions of these examples follow the formats used
throughout the earlier chapters. The actual listings for the input and
output for each example are reproduced in an appendix. These are
included primarily for completeness and to illustrate the magnitude and
form of the data required to completely describe the particular examples.
The computer listings will probably appear quite cryptic when compared
to the discussion of the examples in this chapter.

In Table 5.1 we list the execution time (CPU time) required to
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Example Required CPU Time (secs)
1, Case 1 0.967
1, Case 2 0.922
2, Case 1 0.7417
2, Case 2 0.764
2, Case 3 1.468
3, Case 1 0.770
3, Case 2 0.857
4, Case 1 0.459
4, Case 2 0.744
4, Case 3 1.027
5 4,151

Table 5.1 Execution times of the five examples
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perform the data path design in each of the cases of the five examples

in this chapter. The first four examples are quite simple and require
very little time. The last exainple, which is the most elaborate run by
the program, still requires less than five seconds. This is very
reassuring since it indicates that much larger problems can be attempted
and refinements added to the program. The times listed in Table 5.1

do not include the time required to generate the GH Table, but this is
insignificant compared to the Data Path Generation,

We will use the same names for the architecture and hardware
operators throughout the first four examples and therefore will declare
these once rather than in each of the individual examples. They are
listed in Table 5. 2 with the number of input parameters for each oper-
ator. There is no interpretation to associate with these operators
yet.. This will be done later by supplying an algorithm library in each

example.
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Architecture Operators

Name Number of input parameters
AOPO (00) 1
AOP1 1
AOP2 1
AOP3 1
AOP4 1
AOP5 2

Hardware Operators

Name Number of input parameters
HOPO (o'o) 1
HOP1 1
HOP2 1
HOP3 1
HOP4 1
HOP5 2

Table 5.2 Operators for the examples of
Section 5.1 through 5.4
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5.1 AN EXAMPLE OF UNIT SELECTION

This example has (wo parts: Case 1 and Case 2. In both cases
the algorithm library and architecture remain unchanged. The only
difference in the hardware library is that the delay value for one unit
is reduced in Case 2.

This example requires only the single architecture operator AOP1
and we have just one algorithm which relates it directly to HOP1 and

HOP2. So we have,

G =1{ey 1}
with

g 1 A~ AOPI(B) : C-HOPI(B) 00

)

A-HOP2(C) 10

For the hardware library there is one unit which is a register
(it performs the move operator, HOPQ), one unit which does the two
hardware operators HOP1 and HOP2, and a third unit capable only of
HOP3. Table 5.3 gives the specifications for the hardware library,
We have indicated the delay value for unit ug as 6u and for the two

3
cases in this example we will let

Case 1 o) 12
u

]
o

Case 2 o)
u
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The GH Tables for this algorithm and hardware library will have

two entries for AOP1 and will differ only in the delay associated with
the second entry. The GH Tables are given in Table 5.4 and Table 5.5
for Case 1 and Case 2, respectively.

The architecture, which is specified in Table 5.6, has one in-
struction and this instruction has one statement. We can quickly see
the only possible compilation will yield a statement group having an
HOP1 operator followed by an HOP2 operator.

It is interesting to compare the performance of three possible
data paths which can implement this architecture using the given hard-
ware library. We should point out however that the choice of an opti-
mal data path has not been simply a one out of three choice, Even in
this simple case it is nearly impossible to estimate the solution space
from which these three solutions have been selected. To begin with,
there are 132 cost feasible unit sets, many of which could yield per-
formance as good as the selected solutions, but none which can have
better performance. The three selected for discussion are in a sense
minimal "best" solutions in that all other data paths of equal perfor-
mance contain unused units or busses.

The solutions that the program finds are given in Figure 5.1 and
Table 5.7 for Case 1 and Figure 5. 2 and Table 5.8 for Case 2. We

present there the data path, cycle time computation, instruction
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implementation, and the computation of WAIET.
In Figure 5.1 where the cycle time computation is given, we see
that one times the register delay has been included in the cycle time.

In all of the previous examples the delay for registers has been zero

but in this example (and throughout the remainder of Chapter V) we
will follow the convention of assigning a non-zero delay to the register
unit and adding this into the cycle time. Part of this delay perhaps is
associated with register out-gating and part with in-gating. Since all
paths through the data path must start with register out-gating and
end with register in-gating, it is correct to include the whole register
delay once in the computation.

The third solution we consider would use only a single copy of
unit U, and require two cycles for the instruction. This, though, has
a larger WAIET than the two solutions found by the program and would
be selected only if the system cost limit were lowered.

We can see from Figure 5.2 that the selected data path does in-
corporate unit ug after its delay was reduced. We can quickly verify
that in both Cases 1 and 2 the selected solution is in fact optimal and
that the other two data paths that were rejected by the program have

greater WAIET. We summarize these results in Table 5. 9.
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H = {u,, Uy, u3}

For unit ul:

Cost = 2 Delay = 2 Number of Functions= 2

f, y Tl - HOPO()

fy 5 Pl - HOPO(rl)

For unit u2:

Cost=10 Delay =10 Number of Functions = 2

5,1 Pl - HOPL(@l)

f2,2 pl -~ HOP2(ql)

For unit u3:

Cost =15 Delay = bu Number of Functions =1
3

f pl — HOP2(ql)

3,1

Table 5.3 Hardware library for Example 5.1, Case 1



165

I ose) ‘1°g ordwexd J1o0J oTqel HD oUL ¥ °G OI0BL

NN mz aNﬁ

¢
0Z (TN T'ig

INAETe 198 JtuN] 9ouanbag WYITI03TY

1dOV

IdOV

J1038I9dQ

Anyuyg



166

81

0¢

Leroa

g 9seD ‘1°g ordwexq JoJ o[qeL HOD UYL G°G SIqBL

R 11g
4
(TN T'1g
198 U aouanbag WYTI03TVY

1dOV

1dOV

I03e39dO

Anyud



167

Number of Registers = 1
Number of Instructions = 1
System Cost Limit = 50

Instruction 1;

max execution time 90

|

t
p—t

weighting factor

statement group:

RI - AOPI1(R1)

Table 5.6 Architecture for Example 5.1
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wW N

Data Path:
Unit
Number Unit Type
1 1
2 2
3 2

Data path cycle time:

Operator

HOPO
HOP1,HOP2
HOP1,HOP2

T=2+10+10 =22

Data path cost:

C'=2+10+10 = 22

Figure 5.1 Data path for Example 5.1, Case 1

Cost Delay
2 2
10 10
10 10
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Instruction: I' = (zpl)

1,1/1: pl2 - HOP1(R1) 000
q13 - HOPO(plz) 100
RI - HOP2(q13) 110

WAIET= T [I'| = 22:1 = 22

Table 5.7 Instruction implementation for
Example 5.1, Case 1
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Data Path: \L
1
u 1 R1
u?
2
\
ud
3
Unit
Number Unit Type Operator Cost Delay
1 1 HOPO 2 2
2 2 HOP1,HOP2 10 10
3 3 HOP2 15 8

Data path cycle time:

T=2+10+8= 20

Data path cost:

C'=2+10+15= 27

Figure 5.2 Data path for Example 5.1, Case 2
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Instruction; I' = (q/l)
a,lxl : p12 - HOP1(R1) 000
ql3 - HOPO(plZ) 100
RI - HOP2(q13) 110

WAIET = T [I'| = 20.1 =20

Table 5.8 Instruction implementation for
Example 5.1, Case 2
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5.2 AN EXAMPLE OF COMPILATION

In this example we illustrate the selection of algorithms and the
compilation of an architecture. We see how increases in the available
architecture operators can permit more convenient expression of the
desired instruction and how enlargement of the algorithm library may
lead to an improved data path solution. The hardware library is the
same for all three cases of this example, but the architecture and
algorithm library are changed.

We first define an algorithm library which has one entry for each of the
three operators AOP1, AOP2, and AOP3. This is shown in Table 5,10,
For a hardware library there are just four units with each unit
executing a single hardware operator. This is specified in Table 5, 11.
Table 5.12 is the GH Table which results from this algorithm,
hardware library pair. It is predictably short and simple with a single

entry for each operator.

Now we define an architecture which has one instruction. We will
let this instruction be described as the serial execution of the three
architecture operators AOP1, AOP2, and AOP3, We present this in
Table 5.13.

The solution found for this combination of algorithm, hardware
library and architecture is illustrated in Figure 5.3 and Table 5.14.

This is a rather obvious solution having the three transformational
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units in a serial connection so that only one cycle is required. There are
four reasonable solutions for this problem. The other three, although
using the same units, delete busses between the transformational units
and inset busses to and from the register. This allows a shorter cycle
time but requires additional cycles. We will return to this question

in Section 5.3, but it is probably obvious in this example that these

three other solutions all have reduced performance.

Now suppose we choose to introduce a new architecture operator,
AOP4, arnd define it in the algorithm library as being the serial exe-
cution of the three architecture operators we used to describe the
instruction of Case 1. We can do this by adding one algorithm to the
library. The new algorithm library is given in Table 5.15 and the
new corresponding GH Table is given in Table 5.16. The entry in
the GH Table for AOP4 indicates by its algorithm sequence that three
translations are required to compile AOP4 into a statement group using
only hardware operators,

With the new architecture operator it is possible to express pre-
cisely the same architecture that we had in Case 1 in a more condensed
form by recognizing that AOP4 does everything that we want the in-
struction to do. So we change the architecture of Case 1 by altering
the instruction definition, The new architecture is given in Table 5.17.

When we re-run this problem, the program uses the new entry
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in the GH Table to compile the instruction. This produces a compiled
architecture identical to that of Case 1 so that after compilation the
processing is identical to Case 1. The solution is therefore identical
to that of Case 1 which was given in Figure 5.3 and Table 5.14. The
new operator introduced an alternative means of describing the desired
architecture but the selected data path and instruction implementation
is, as we would expect, unchanged.

Now building on Case 2, when a new method of implementing AOP4
is discovered, this will be reflected in this model by adding the appro-
priate new algorithm to the library. Suppose we now feel that AOP4
can be performed by two sequential AOP1's followed by an AOP2., We
will make this algorithm the second entry for AOP4 and have the al-
gorithm library displayed in Table 5.18.

The GH Table for this new library is given in Table 5.19,

As we would expect there are now two entries for AOP4.

Now for Case 3 we can ask the program to find an optimal data
path for the architecture of Case 2 using the new algorithm library
and GH Table. The program still has access to the previous solution
but now recognizes the advantage of using the newest GH Table entry.
The delay estimate for the first entry is greater than that of the newer
entry for AOP4 and therefore the latter entry is selected. The data

path resulting from this selection is given in Figure 5. 4 and Table 5. 20.
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Comparing this to the previous solution for Case 1 and 2 (Figure 5.3
and Table 5.14), we see there has been a performance improvement
due to the decrease in cycle time which the new unit set permits. The

data path for Case 3 still has the same serial organization as in Cases

1 and 2.
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G = {gl,l’gz,l’g3,l}

g 1 A-AOP1(B) : A-HOPI(B)
b

€9 1 A-AOP2(B) : A -HOP2(B)
'y

8 1 A~ AOP3(B) : A-HOP3(B)

Table 5.10 Algorithm library for
Example 5.2, Case 1
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H = ‘{ lll,llz, U3,u4}

for unit u;:
Cost = 2 Delay = 2 Number of Functions = 2
f1,1 rl - HOPO(ql)
f1,2 pl -~ HOPO(rl)
for unit Uy:
Cost = 10 Delay =10 Number of Functions =1
fz’1 pl - HOP1(ql)
for unit Ug :
Cost =15 Delay = 15 Number of Functions =1
f3‘1 pl — HOP2(ql)
for unit U,:
Cost = 20 Delay = 20 Number of Functions = 1
f4’1 pl - HOP3(ql)

Table 5.11 Hardware library for Example 5. 2
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Number of Registers = 1
Number of Instructions = 1
System Cost Limit = 50

Instruction 1:

max execution time = 90
weighting factor = 1

statement group:
A -~ AOP1(R1) 000

B - AOP2(A) 100

RI- AOP3(B) 110

Table 5.13 Architecture for Example 5. 2, Case 1
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Data Path: ,
1
uy R1
2
Yo ‘
1]
y
u
4
|
Unit
Number Unit Type Operator Cost Delay
1 1 HOPO 2 2
2 2 HOP1 10 10
3 3 HOP2 15 15
4 4 HOP3 20 20

Data path cycle time:

T=2+10+15+ 20 = 47

Data path cost:

C'=2+10+15+ 20= 47

Figure 5.3 Data path for Example 5.2, Cases 1 and 2
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Instruction I': I' = (t[/l)
t,l/lz p12 - HOP1(R1) 00000
q13 - HOPO(plz) 10000
p13 - HOPZ(q13) 11000
q14 - HOPO(p13) 11100
R1 «HOPB(q14) 11110

WAIET = T [I'| = 47 - 1 = 47

Table 5.14 Instruction implementation for
Example 5.2, Cases 1 and 2
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G = {g1,19g2’13g3,1yg4,1}

g1 1 A - AOP1(B) : A - HOPI(B)
A - AOP2(B) : A - HOP2(B)
A - AOP3(B) : A - HOP3(B)
A —- AOP4B) : C - AOPI(B) 000

D -~ AOP2(C) 100

A - AOP3(D) 110

Table 5.15 Algorithm library for Example 5. 2, Case 2
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Number of Registers = 1
Number of Instructions = 1
System Cost Limit = 50

Instruction 1:

max execution time 90

i
[y

weighting factor

statement group:

RI - AOP4(R1)

Table 5.17 Architecture for Example 5.2, Case 2
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G= {8),1:85 183 1,84 184 5}

g 1 A — AOPI(B) : A -~ HOPL(B)

gy 1 A —~ AOP2(B) : A - HOP2(B)

g3 1 A — AOP3(B) : A - HOP3(B)
b

g4 1 A -~ AOP4(B) : C - AOPI(B) 000
)
D - AOP2(C) 100

A ~ AOP3(D) 110

24 A - AOP4(B) : C - AOPL(B) 000
D -~ AOPI(C) 100

A — AOP2(D) 110

Table 5.18 Algorithm library for Example 5. 2, Case 3
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Data Path:
1
u1 R1
~Y
[ u2
L 2
u?l
3
ud
4
!
Unit
Number Unit Type Operator Cost Delay
1 1 HOPO 2 2
2 2 HOP1 10 10
3 2 HOP1 10 10
4 3 HOP2 15 15

Data path cycle time:

T=2+10+10+15 = 37

Data path cost:

C'=2+10+10+15 = 37

Figure 5.4 Data path for Example 5.2, Case 3
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Instruction I': I' = ('Jfl)

W pl, — HOP1(R1) 00000
ql, - HOPO(p1,) 10000
pl, ~ HOP1(ql,) 11000
ql, - HOPO(p1,) 11100
R1 —HOP2(al ) 11110

WAIET = T |I'| = 37.1 = 37

Table 5.20 Instruction implementation for
Example 5.2, Case 3
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5.3 AN EXAMPLE WITH WEIGHTING FACTOR VARIATION

We come now to an example that is probably more interesting
then those covered so far. In this example we see how the program
will alter the selected solution so that performance is optimized
around the particular architecture parameters. Specifically we will
have our usual, simple algorithm and hardware libraries, but this
time we have an architecture with two instructions and observe the
effect on the solution as the weighting factors are varied. This ex-
ample is an illustration of the procedure described in section 4. 2. 3.

The algorithm library is presented in Table 5. 21 and gives trans-
lations for AOP1, AOP2, and AOP3. The hardware library appears
in Table 5. 22 and has four units to perform the four hardware oper-
ators HOP0, HOP1 , HOP2, and HOP3. The two libraries are the
same for both cases of this example and the corresponding GH Table
is given in Tabie 5. 23.

We specify the architecture in Table 5.24. This is almost the
same for Case 1 and Case 2. We define it only once using the symbols
x and y to designate the instruction weighting factors which are the
only items that change in this example. We have included two registers
in this example to introduce a bit of variety from the previous two

examples. This change has no special significance.
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For the first case, let

to indicate that instruction I1 is four times as important as instruction
I2. The program solution for these weighting factors is illustrated in

Figure 5.5 and Table 5.25. The data path cycle time is determined by

the delay through the serial connection of units u, and ug since this is
greater than the delay of unit Ug. Both instructions can be performed

in one cycle and we see that

WAIET = 270 for Casel.

At first glance it is surprising to note that no bus exists to take
data out of register R2, but this is a natural outcome of the fact that
there is no instruction in the architecture which requires the data of
R2. Therefore the program did not include an output bus for this
unit,

Now, for Case 2, we shift the emphasis to instruction I2 by re-

versing the weighting factors so that

The new solution appears in Figure 5. 6 and Table 5. 26. The unit set
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is the same as in Case 1. For this given architecture and pair of
libraries, no other unit set could reasonably be considered. But
the program has responded to the new weighting factors by altering
the bus configuration . Units ug and u 4 are no longer connected so
that instruction I1 must now be done in two cycles. However, the
more important instruction, I2, still requires just one cycle, and the

cycle time is now shorter. We have

WAIET = 264 for Case 2.

As an interesting comparison we can compute by hand the WAIET
for some solutions which the program has rejected for these two cases.
For this unit set there are more possible bus configurations than the
two found for Case 1 and Case 2. Example 5. 2 demonstrated another
possibility. However, all configurations besides the two already eval-
uated above include busses that do not correspond to data transfers for
this particular architecture. For instance, the data path which was
the optimal solution for Example 5. 2 would contain a bus from unit
U, tou 5 but there is never an occasion in this architecture to use
that bus. Therefore we know that all bus configurations besides the

two described above can not offer an improvement in performance.

We evaluate each of the two architectures on the data path that was
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rejected for that particular architecture as follows:

For Case 1:
X=28
y =2
T =22 (for the Case 2 data path)
11']=2
[12']=1
WAIET = (8- 2+2- 1) 22 = 396
For Case 2:
X = 2
y=28

T =25 (for the Case 1 data path)
11" f=1

l12'|=1

WAIET = (2:1+8-1)- 27 = 270

These results are summarized in Table 5. 27 where we can see that

for both architectures the selected solution is optimal.
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G = {gl,l’gz,l’g3,1}
A -~ AOP1(B) : A- HOPI(B)
A -~ AOP2(B) : A~ HOP2(B)

A - AOP3(B) : A~ HOP3(B)

Table 5.21 Algorithm library for
Example 5.3
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H = {ul
for unit ulz
Cost = 2 Delay = 2
1 - H
f1,1 rl 0OP0(ql)
f1,2 pl -~ HOPO(rl)
for unit Uy:
Cost =10 Delay =10
f2,1 pl -~ HOPI1(ql)
for unit Ug:
Cost =15 Delay =15
f3,1 pl -~ HOP2(ql)
for unit Uy
Cost = 20 Delay = 20
f4,1 pl -~ HOP3(ql)

’ u2’u3’ u4}

Number of Functions = 1

Number of Functions =1

Number of Functions =1

Number of Functions =1

Table 5.22 Hardware library for Example 5.3
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Number of Registers = 2
Number of Instructions = 2
System Cost Limit = 50

Instruction Il:

max execution time 90

weighting factor

i
»

statement group:

A - AOP1(R1) 00
R1- AOP2(A) 10

Instruction 12:

max execution time 90

weighting factor =y

statement group:

R2 ~ AOP3(R1)

Table 5.24 Architecture for Example 5.3
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Date Path: -
1 1
u 1 R1 u 9 R2
ul
31
ul
| [
: 3
4
Unit
Number Unit Type Operator Cost Delay
1 1 HOPO 2
2 1 HOPO 2
3 2 HOP1 10 10
4 3 HOP3 15 15
5 4 HOP4 20 20

Data path cycle time:

T=max[(6_ +06_+6 )8 +06 )]
4y Yy U3 N U

=max [ 27, 22] = 217

Data path cost:

C'=2+2+10+15+ 20 = 49

Figure 5.5 Data path for Example 5.3, Case 1
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Number of Registers = 2
Number of Instructions = 2
System Cost Limit = 50

Instruction I1:

max execution time 90

weighting factor

1
o

statement group:

A~ AOP1(R1) 00
RI- AOP2(A) 10

Instruction 12;

max execution time 90

weighting factor

i
<

statement group:

R2 -~ AOP3(R1)

Table 5.24 Architecture for Example 5.3
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Date Path: -
1 1
u 1 R1 u 9 R2
s
— N
u
| [
w
4
|
Unit
Number Unit Type Operator Cost Delay
1 1 HOPO 2
2 1 HOPO 2
3 2 HOP1 10 10
4 3 HOP3 15 15
5 4 HOP4 20 20

Data path cycle time:

T=max[(6_+6_ +6 ),(6 +06 )]
U Uy U U Cug

=max [ 27, 22] = 217

Data path cost:

C'=2+2+10+15+ 20 = 49

Figure 5.5 Data path for Example 5.3, Case 1
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Instruction I1": I1' = (11/11)

wl;: pl,~HOPL(R1) 000

ql 3= HOPO(pl 100

o)
R1 — HOP2(ql,) 110

Instruction I12": I2' = (tl/21)

Y2, R2 - HOP3(R1)

WAIET

(|11'l-¢1+ l12'| - ¢p) * T

1-8+1.2) - 27

270

Table 5. 25 Instruction implementation for
Example 5.3, Casel
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Data Path:
‘T’L"" 14‘
ul R1 Uy R2
y
4
%5
Unit
Number Unit Type Operator Cost Delay
1 1 HOPO 2
2 1 HOPO 2 2
3 2 HOP1 10 10
4 3 HOP2 15 15
5 4 HOP3 20 20

Data path cycle time:

™= max [+ 0y, (0 0y )0y + 0, )]

= max [ 12, 17, 22] = 22
Data path cost:

C' = 2+2+10+15 +20 = 49

Table 5.6 Data path for Example 5.3, Case 2
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Instruction I1': I1' = (1#11, zplz)

2% R1 - HOP1(R1)

11/12: R1 - HOP2(R1)

Instruction I2' : I2' = (Y 21)

Y2, R1 -~ HOP3(RI1)

WAIET = ([11'] - ¢, + l12'[ - ¢,) - T
=(2°2+1-8) - 22

= 264

Table 5,26 Instruction implementation for
Example 5.3, Case 2



202

Architecture Data Path Solution WAIET
Case 1 Case 1 270
Case 1 Case 2 396
Case 2 Case 1 270
Case 2 Case 2 264

* - The solution selected by the program.

Table 5.27 Comparison of some solutions to
Example 5.3, Cases 1 and 2
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5.4 AN EXAMPLE WITH SYSTEM COST LIMIT VARIATION

In this example we consider three cases where the algorithm
library and the hardware library are kept fixed and the architecture is
changed only by increasing the system cost limit. This will cause the
program to modify the solution from case to case to achieve perfor-
mance gains as the cost limit rises. This example involves a problem
somewhat less trivial than the preceding three examples and perhaps
the reader will find the optimal solution less obvious.

For this example we make use of two operators AOP5 and HOP5
which have not been used before. These both have two input para-
meters rather than one. This is not really a significant change and
has not occurred before this simply because one input parameter has
been sufficient. In general, we might expect to encounter operators
with two input parameters more often than those having one in a real
problem environment and for this example we feel two input parameter
operators are more appropriate,

We describe the algorithm library in Table 5, 28 and provide one
algorithm for each operator. The hardware library is defined in
Table 5. 29 where we see that unit u2 has two input ports. Finally
the corresponding GH Table is given in Table 5.30. There is only
one entry again for each of the two operators. These libraries do not

change in this example so we will use these tables for all three cases.
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The architecture for this example changes only in that the system
cost limit is increased from Case 1 through Case 3 so we will specify
the architecture in Table 5.31 and indicate the system cost limit as x,

In Case 1 we set
x = 30,

The program responds to this input with the statement that there is

no possible realization of this architecture. Examining the GH Table
we see that any data path for this architecture must have a copy of
both unit u 9 and u3 to implement AOP1 and AOP5. Also it must have

at least two copies of unit uy since there are two architecture registers.

So for a unit set of

1 1 2 .3
u = {ul, uy, ug, u4}
the cost is
C'= 2+2+10+15 = 29,
This is cost feasible since
C' = 29<x =30

but there is insufficient surplus for any additional units. We can exam-
ine the possible bus configuration for these units but eventually realize

that there is none which will allow the architecture to be realized.
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For Case 2 we change the cost limit to

X = 35

and now there is a solution which is presented in Figure 5.7 and

Table 5.32. We immediately see what change has been made. With
the increased cost limit the unit set can be augmented by an additional
register unit, It is possible now to construct a realization of the arch-

itecture in which the instruction is implemented in two cycles yielding

WAIET = 34.

In Figure 5.7 we notice that the two input ports of unit u, are

4
not clearly differentiated. Rather we indicate only that there are three
busses going into the unit without specifying the particular port to which
they are connected. This follows from the fact that there is no cost
associated with busses. Therefore we may assume all three busses

go to both input ports and the program does not bother to keep track

of which ports need not receive a particular bus. This is the first

time we have encountered this particular phenomenon since this is the
first occurrence of a multiple input port unit in a problem solved by

the program.

Now to continue with Case 3, we raise the cost limit to

X = 40
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and display the new solution in Figure 5.8 and Table 5.33. In this case,
with the increase in possible data paths provided by the new cost limit,
one having improved performance is now available. The additional
register of the previous solution has been discarded. The implemen-
tation of the two consecutive HOPI1 operators can be achieved directly

by the use of two sequential copies of unit u The third register of the

9°
previous solution was required only to allow a temporary result to be
saved so that one copy of unit u, could be used to perform the two
required HOP1 operations. We also realize that further increases in
the system cost limit will not change the solution. There can be no

higher performance for this architecture with the given algorithm

and hardware libraries. The instruction is executed in one cycle and

WAIET = 22,
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G = {g; 48 4}
A~ AOP1(B) : A - HOP1(B)

81,1

2 1 A~ AOP5(B,C) : A~ HOP5(B,C)

H

Table 5.28 Algorithm library for Example 5.4
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H = {ul,uz, u3}

for unit uy
Cost = 2 Delay = 2 Number of Functions = 2
f1,1 rl — HOPO(ql)
f1,2 pl - HOPO(rl)
for unit Ug:
Cost =10 Delay =10 Number of Functions =1
f pl - HOPH(ql,q2)
2,1
for unit u3:
Cost = 15 Delay =15 Number of Functions =1
f3, 1 pl - HOP1(ql)

Table 5.29 Hardware library for Example 5. 4
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Number of Registers = 2
Number of Instructions = 1
System Cost Limit = X

Instruction I1:

max execution time 90

1]
[a—y

weighting factor

statement group:

A - AOP5(RL,R2) 000
RI - AOP5(R1,A) 100

R2 - AOP1(R2) 000

Table 5.31 Architecture for Example 5. 4
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Unit

Number Unit Type

1
1
1
2
3

G W W N

Data path cycle time :

T =

Data path cost:

C'= 2+2+2+10+15

HOPO
HOPO
HOPO
HOPS
HOP1

max [ (6u + 6u4)’(6u

1

Operator

Cost

N DN N

10
15

5
; u5)]

max [ (2 +10),(2 + 15)] = 17

= 31

Delay

DN NN

10
15

Figure 5.7 Data path for Example 5.4, Case 2
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Instruction I': I' = (dfl, ’#2)

W R3 - HOP5(R1,R2) 00

R2 -~ HOP1(R2) 00

% Rl -~ HOP5(R1,R3)

WAIET

1] - o0 T

Table 5.32 Instruction implementation for
Example 5.4, Case 2
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Data Path: P T
,
1 1
ul R1 u2 R2

u 2

3 | 3

— 5
2
Yy

Ngr;ltoer Unit Type Operator Cost Delay
1 1 HOPO 2 2
2 1 HOPO 2 2
3 2 HOP5 10 10
4 2 HOP5 10 10
5 3 HOP1 15 15

Data path cycle time:

T =max|[(6_+06_ +6 )6 +3d_ )]
W Uz ugu, g

= max [ (2+10+10),(2 +15)] = 22

Data path cost:

C' 2+2+10+10+15 = 39

]

Figure 5.8 Data path for Example 5.4, Case 3



214

Instruction I1': I1' = (zpl)
¢i: p13 — HOP5(R1,R2) 0000
ql, -~ HOPO(pl,) 1000
R1 - HOP5(R1,ql p 1100
R2 -~ HOP1(R2) 0000

WAIET

- ¢, T

=1-1-22 = 22

Table 5.33 Instruction implementation for
Example 5.4, Case 3
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5.5 A REPRESENTATIVE COMPUTER

Now we try to present some insight into how an actual computer
might be described in this model. The previous examples were all
attempts to illustrate certain facets of the programming system, but
now we demonstrate the manner in which this program might be applied
in a real design environment. This is not intended to be a complete
computer description but rather fragments of an architecture which
illustrate some of the common features of current production computers.

There are ten operators in the architecture operator set and
seven in the hardware operator set. These are listed and defined in
Table 5. 34 and 5.35, respectively. These operators should have an
air of familiarity about them which was not present in the previous
examples when we dealt in more abstract terms with computer trans-
formations, We will present the algorithm and hardware libraries

first and then discuss the architecture.

Algorithm Library

The algorithm library is kept simple for this example with only
one operator having more than one library entry. But we see that four
of the ten operators are described purely in terms of other archi-
tecture operators. The algorithm library is shown in Table 5. 36.

Notice that in this example we have used bit modifiers in the statements
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since we want to be able to refer to subsections of operands.

Hardware Library

The hardware library contains four unit types. These are: a
register unit, an adder, a memory unit, and an operation decoder. The
detailed specifications for the library are given in Table 5.37. Since
there is freedom to define both sets of operators as well as the algo-
rithms and hardware units, it is possible to express various desired
characteristics in many different ways. This representation of a
memory, for instance, is only one of a number of different schemes

that could be used.

The GH Table

The GH Table for the algorithm and hardware library is given
in Table 5.38. There is one entry for each operator but we see that
for the last three operators, which are expressed in térms of archi-
tecture operators in the algorithm library, a sequence of algorithms is

needed for compilation,

Architecture

The architecture will use a sixteen bit word width and a twelve

bit address width. We assume an instruction format of four bits for
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the operation code and twelve bits for an absolute memory address.

We can diagram this:

opr .
CODE ADDRESS Instruction Format
1 4 5 16

We will include six registers in the architecture and these are
defined in Table 5. 39. The computer listings reproduced in the
appendix do not use the mnuemonic names employed throughout this
discussion. Instead the registers are simply called R1 through R6.
To aid the reader in relating this discussion with the data in the appen-
dix, we include in Table 5.39 a translation between the two sets of names.
The architecture defines a processor having seven instructions,
but one of these is a definition of the Instruction Fetching procedure
that we assume is common to the other six. We will elaborate on
this later. Then there are typical LOAD, ADD, and STORE instructions

with the first two being indexed. We also have included two rather

unusual instructions that assume a linked-list data structure in memory,
Figure 5.9 is a diagram illustrating the particular structure that has
been assumed. There is a forward pointer, a backward pointer, and
one data item associated with each list element.

It perhaps should be pointed out that the structure for this list

is specifically defined in the algorithm library. In the event that the
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list format were changed, the algorithms for ADNX, ADPR, and VAL
would have to be changed. As we saw in Example 5. 2, the architecture
could have been written without the use of these particular operators
by letting the designer describe the list manipulation instructions directly
in terms of memory reading and address incrementing. However,

since the operators have been defined, it is convenient to use them and
at the same time make the architecture description independent of the
particular list structure.

The last instruction of the architecture is a WRITE I/O instruction.
We define an output bus in the architecture and this instruction transfers
the right half of a memory word to the bus. This is the most natural
way to represent an I/O instruction here since the model allows the
user to specify the execution sequence of instruction statements but
not specific timing relationships. This is satisfactory for describing
I/O instructions on the IBM System 360 , for instance, but is less
realistic for the DEC PDP-8 where specific time delays are given in
the programming manual.

In this example we have chosen to express the Instruction Fetch
procedure as a separate instruction in order to illustrate one possible
way of expressing conditional control branches. By conditional control
branching we mean the altering of the sequence of execution of a single

instruction based on some data dependent conditions. This is not to be
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confused with conditional program branches which alter the sequence of
execution of a program by changing the instruction counter. In a
microprogrammed computer a control branch would typically imply

a hardware provision for changing the next control memory address

as a function of specific data conditions,

Since the model does not provide for conditional statement exe-
cution in a statement group, one way of representing this is, as we
have done in this example, to define the statements which are intended
to precede the control branch as a separate instruction. The various
statement groups which represent the different execution paths following
the control branch are then also defined as separate instructions.

In using this representation we need to be able to define the
interface between the end of Instruction Fetch and the beginning of the
other six instructions. This interface does not really exist for the
programmer because for him each instruction includes the instruction
fetching statement group followed by the particular instruction
statements. In this example the IR register exists in order to define
data between Instruction Fetch and each of the other instructions. It
does not correspond to a register the user should actually be able to
modify.

Another point to be made about this example is the use of a

Status Register, ST, to receive the output of the operation decode
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operator. We think of the ST register as one boundary between data
and control in this example. In this study we do not model the control
functions of a computer but do acknowledge the fact that somehow the
output of the ST register is affecting the conditional branch discussed
above that stands between the Instruction Fetch statement group and
each of the other instructions.

The architecture is defined in Table 5. 40.

The data path which the program generates as a solution is
shown in Figure 5.10 and we can see a few interesting features. First,
the registers XR and ST have no input and no output bus, respectively.
This is exactly the same as the situation in Example 5.3 where a bus
is not included because it is not requirea by the architecture. No in-
struction changes that value of XR so there is no input bus, and ST is
never an input operand in a statement so it has no output bus. Another
interesting point is that there are busses connecting the adder to the
memory and memory to the adder which constitutes what we have called
a loop in the data path. One or the other of these can be used in cal-
culating the cycle time since the answer is the same in either case,
but measuring the delay over a path using both busses simultaneously
implies including the delay of one unit twice and must be avoided.

Table 5, 41 summarizes the number of cycles required for each
instruction and the calculation of WAIET. The actually implemen-

tation of the instruction is listed in Table 5. 42.



Operator

Number

Operator

MOVE (A)
OPDC (A)
ADD(A, B)
INC1(A)
INC 2(A)
MRD(A)

MWRT(A, B)

ADNX(A)

ADPR(A)

VAL(A)
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Definition

Transfer without alteration (oo)
Operation decoding of A
Addition of Ato B

Increment A by 1

Increment A by 2

Memory read per address A

Write B into memory per
address A

Find address of next list element
where A is address of present

list element

Find address of previous list
element where A is address of

present list element

Find the data item of list element

whose address is A

Table 5.34 Architecture operators for Example 5.5
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Operator
Number Operator Definition
0 move(A) Transfer without alteration (od)
1 opdc(A) Operation decoding of A
2 add(A, B) Addition of A to B
3 incl(A) Increment A by 1
4 mad(A) Memory address decode of A
5 wrt(A) Write A into memory
6 rd Read memory

Table 5.35 Hardware operators for Example 5.5
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G = (gl,l’gz,l’gz, 2)g3’1;g4’17g5’1,g6,1:g7,1’g8’1’g9’ 1)

81 1 B(1,6) — OPDC(A(1, 4)) : B(1,6) - opdc(A(1,4))
g9 1 B(1,16) — ADD(A(1,16),C({1,16)): B(1, 16)-add(A(1, 16),C(1, 16))
89 9 B(1,16)-ADD(A(1,16),C(1,16)) : B(1,16)-add(C(1,16), A(1,186))
g3 1 B(1,12)-INC2(A(1,12)) : B(1,12)~inc1(A(1,12))
Sy 1 B(1,12)-INC2{A(1,12)) : Z(1,12)- INCLA(1,12)) 00
B(1,12)~ INC1(Z(1,12)) 10
8 1 B(1,16)~-MRD(A(1,12)) : 0-mad(A(1,12)) 00
B(1,16)~ rd(1,16) 10
g6 1 0- MWRT(A(1,12),B(1,16)) : 0 — mad(A(1,12)) 00
0 - wrt(B(1,16)) 10
87 1 B(1,12) — ADNX(A(1,12)) : B(1,12) - MRD (A(1,12))
g3 1 B(1,12) - ADPR(A(1,12)) : Z(1,12)-INC1(A(1,12)) 00
B(1,12) -MRD(Z(1,12)) 10
g9 1 B(1,16) — VAL(A(1,12)) : Z(1,12)-INC2(A(1,12)) 00
B(1,16) -MRD(Z(1,12)) 10

Table 5.36  Algorithm library for Example 5.5
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H = (ul,uz,u3,u4)
For unit uy:
Cost =2 Delay =1 Number of Functions = 2
fl, 1 rl — move (q1)
fl, 9 pl - move (rl)
For unit uy:
Cost =15 Delay =5 Number of Functions = 3
fz,1 pl —- add (q1,q2)
fz, 9 pl - add (q2,q1)
f2, 3 pl —incl (ql)
For unit Ug!
Cost = 20 Delay = 4 Number of Functions = 3
f3’1 0 - mad (ql)
f3’ 9 0 - wrt (q2)
f3, 3 pl -~ rd
For unit uy
Cost =5 Delay =5 Number of Functions =1
f 0 - opdc (q1)

4.1

)

Table 5.37 Hardware library for Example 5.5
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«——} s ——te — <«
data item data item data item

Figure 5.9 The Linked-list structure for Example 5.5
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Number of Registers = 6 (see Table 5.38)
Number of Instructions =1
Max System Cost =54

Number of Output Busses =1

Width of Output Bus =8

Instruction 1
Instruction Fetch. This is a description of the common instrction
fetch procedure which is assumed to precede each of the other six in-

structions.

Maximum Execution Time = 90

Weighting Factor =10
7(1,16) — MRD(IC(1,12)) 0000
TC(1,12) — INC1(IC(1,12)) 1000

“ST(1,6) -~ OPDC(Z(1,4)) 1000
TR(1,16) - MOVE(Z(1,16)) 1000

Table 5.40 Architecture for Example 5.5
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Instruction 2
Load the AC per the instruction address - Indexed

Maximum Execution Time = 90

Weighting Factor = 5

7(1,12) — ADD(IR(5,12),XR(1,12)) 00

AC(1,16) ~ MRD(Z(1,12)) 10

Instruction 3
Add memory per instruction address to AC - Indexed

Maximum Execution Time = 90

Weighting Factor = 5
21(1,12) - ADD(IR(5,12(,XR(1,12)) 000
Z2(1,16) - MRD(Z1(1,12)) 100

'AC(1,16)~ ADD(AC(1,16),72(1,16)) 110

Instruction 4

Store AC per the instruction address
Maximum Execution Time = 90
Weighting Factor = 4

0 ~ MWRT(IR(5,12), AC(1, 16))

Table 5.40 Architecture for Example 5.5 (Continued)
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Instruction 5
Load DA with address of next list element and load AC with data
item of the next list element.

Maximum Execution Time = 90

Weighting Factor = 3
Z(1,12) - ADNX(DA(1,12)) 000
KC’(I,IG) -~ VAL(Z(1,12)) 100
I_)—A(1,12) -~ MOVE(Z(1,12)) 100

Instruction 6
Load DA with address of previous list element and load AC with

data item of the previous list element.

Maximum Execution Time = 90

Weighting Factor = 2
Z(1,12) - ADPR(DA(1,12) 000
AC(1,16) - VAL(Z(1,12)) 100
DA(1,12) - MOVE(Z(1,12)) 100

Table 5.40 Architecture for Example 5.5
(Continued)
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Instruction 7

Maximum Execution Time = 90

Weighting Factor =1

Write I/0. Transfer the right half of a memory word to the output

bus, QlI.

Q1(1, 8) ~ MRD(IR(5,12))(8, 8)

Table 5.40 Architecture for Example 5.5
(Continued)
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Unit Number Unit Type Operator Cost Delay

1 1 move 2 1
2 1 move 2 1
3 1 move 2 1
4 1 move 2 1
5 1 move 2 1
6 1 move 2 1
7 2 add, incl 15 5
8 3 mad, wrt,rd 20 4
9 4 odpc 5 5
Data path cycle time:
T = +06_  +6

-
i
[y
+
(S}
+
N
1]
P
o

Data path cost:

C'=€.2+15+20+5 = 52

Figure 5.10 Data path for Example 5.5 (Continued)
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Instruction
Number Function
1 Instruction Fetch
2 Indexed Load
3 Indexed Add
4 Store
5 Get Next Element
6 Get Previous Element
{ Write 1/O
7
WAIET = T '1;1 Ll ¢

= 800

Weighting Number of

Factor Cycles
10 3
5 2
5 2
4 2
3 4
2 4
1 2

103-10+2*5+2:5+2-4+4-3+4-2+2.1)

Table 5.41 Number of cycles and WAIET calculation

for Example 5.5
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Instruction Implementation

Instruction 1: Instruction Fetch

n'-= (4"11’ "»U]'Z, "I/13)

Yl : 0 —mad(iC)

xplz . TR - mrd 00
IC - inc1(IC) 00

Ylg: ST~ opdc(IR(1, 4))

Instruction 2 : Indexed Load

12 = (Y2, ¥2,)

17 21 : p17 - add(IR(5,12),XR) 000
q18 - move (pl 7) 100
0 - mad (q18) 110

Y2y AC - mrd

Table 5,42 Instruction implementation for
Example 5.5
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Instruction 3 : Indexed Add

13" = (¥3;,¥3,)

zp31: p1,7 - add (IR(5,12),XR) 000
q18 «~ move (pl 7) 100
0 < mad (q18) 110
4/32: pl8 -« mrd 000
ql,7 -« move (p18) 100
AC ~add(ql,, AC) 110
Instruction 4 : Store
14' = (Y4, ¥4,)
1[/41 : 0 < mad (IR) 00
\[/42 : 0 - mwrt (AC) 10

Table 5.42 Instruction implementation for
Example 5.5 (Continued)



a,l/51:

1,1/52:

11J53 :

zp54:

tl/61 :

1,(/62:
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Instruction 5 : Get Next Element

I5' = (W51, ‘P52, w53: ’s(/54)

0 - mad (DA)

p18 -~ mrd 0000
DA - move(pl g 1000
q17 - move (pl 8) 1000
AC -incl (al,) 1100
p1,7 - incl1(AC) 000
q18 -~ move(pl 7) 100

0 - mad (q18) 110
AC+ mrd

Instruction 6 : Get Previous Element

16': (4/61, ’,U62, 4/63, "I/64)

p1,7 -~ incl(DA) 000
ql8 - move(p17) 100
0 - mad(ql 8) 110
pl8 -~ mrd 0000
DA - move(pl 8) 1000
q17 -~ move(pl 8) 1000
AC -incl(ql 7) 1100

Table 6.42 Instruction implementation for
Example 5.5 (Continued)



4/63:

z[/64:

11/71:

1[/72:

Table 5, 42
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p1,7 - inc1(AC) 000
ql8 -~ move(pl 7) 100
0 « mad(ql 8) 110
AC — mrd

Instruction 7 : Write I/0

7' (W, ¥1,)
0 - mad(IR)

Ql -« mrd

Example 5.5 (Continued)

Instruction implementation for



CHAPTER VI

CONCLUDING REMARKS

In reviewing the value and accomplishments of this research we
must consider both the mathematical model which is developed and the
computer implementation of the model. Each has its own merits and
weaknesses.,

We believe the mathematical model is a successful attempt to
formalize the central processor of a digital computer system. It
allows a precise definition of the components of a data path and the
transformations that can be accomplished by the data path during a
cycle or an instruction. A particular strong point is the definition
used for units, We have made this quite general and powerful so
that complex units can be included which can themselves be inde-
pendent digital systems. In addition, the definition of the intercon-
necting busses is adequate to describe very sophisticated gating
schemes between units. Another feature of this model is that we
have retained independence from any fixed set of operators for either
hardware or architecture definitions. We use instead an algorithm
library which allows great latitude in the modeling of particular

applications,

239
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Certainly many extensions of the model could be considered.
One instance would be the addition of a cost function for the gating
and bussing. To some extent these can be covered by making allow-
ances for the gating in the unit cost functions. But an explicit de-
finition of this cost would be more accurate and might be considered.
One might also choose to expand the definition of units to include
limits for fan-in and fan-out on the busses,

Another extension of the model could be the provision for more
sophisticated definition of timing relationships. This would allow
better modeling of memory and I/O units. Another reasonable addi-
tion would be the definition of a cost function which would model the
cost of the data path controls. This could be simply a 'cost per CPU
cycle" or perhaps a more elaborate function representing the decoding
and sequencing of a microprogram control memory.

We feel the model as presented here, however, is sufficiently
complete and sophisticated without these extensions for the problems
we are treating and the addition of these functions could only obscure
the use of the model in a practical application. That is to say, al-
though the model will easily accomodate further extensions, at this
time the implications of these on any computer realization of the
model could be quite severe.

Turning to the computer implementation of this research,

we have a system of programs that we believe does demonstrate
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the potential in this area of automated design. In deciding which
portions of the model should be included in the implementation and
which, because of practical constraints on the execution time,

would have to be omitted, we have attempted to find a middle ground
between fidelity to the model and the ability to guarantee true optimal
results. We saw in Chapter IV that both of these goals should not

be simultaneously pursued at this time. It is hoped that a middle
ground approach would best illuminate the entire spectrum of possible
implementations.

Now that the program is complete, it is natural to consider
possible modifications. Generally speaking, the development of the
computer program has slanted toward achieving an accurate meas-
ure of the performance of a data path at the sacrifice of relying on
estimates or approximations for the compilation and selection of
a unit set. The experience gained by using the program will un-
doubtedly indicate areas where the intuitive decisions made in the
development of the system can be improved. Certain facets of the
model may now appear more critical than was initially assumed.
Similarly, the estimates of program execution may prove to be
overly conservative, and thus, increased sophistication of various
algorithms of the program could be possible. Probably use of this

program will lead to a desire to include more features of the model.
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These are conclusions one expects to reach after the development
of a prototype system, but they should not interfere with an appreciation
of the success of a first implementation of this model. The program-
ming system can in fact compute reasonable data path designs for non-
trivial architectures. Realistically it is not expected that these sol-
utions can lead directly to hardware design. The level of optimization
would be considered unsatisfactory to people involved in manufacturing
a real computer. However, we do feel this work does have immediate
application as a tool for the investigation of various architecture
definitions, hardware units, and algorithms and can be used to pro-

vide a starting point from which a final, detailed design can evolve.



APPENDIX

COMPUTER LISTINGS FOR THE EXAMPLES OF CHAPTER V

This appendix is a record of all the input and output data from the
computer solutions of the examples in Chapter V. Each of the eleven
cases that constitute the five examples has four associated listings:

1. The algorithm and hardware library

2. The GH Table

3. The architecture

4, The results
For the GH Table generation program, item 1 is the input and item 2
is the output. For the data path generation 'program items 1,2, and
3 are input and item 4 is the output. Some translation and interpretation
have been made in preparing this data for presentation in Chapter V.
The most significant steps in this translation involve the result listings
and are as follows:

1. The procedure for selecting the data path unit set inserts
many extra registers if the cost limit is relatively high. Where any
of these have gone unused in the solution, they have been manually
omitted from the tabulation in Chapter V and the system cost appro-
priately adjusted. The fact that a register is not being used is indi-

cated by the register always being empty and the data path connection
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matrix having no input or output busses to it.

2. For two cases (Example 2, Case 3 and Example 4, Case 3),
the program computed more than one data path solution. Each of
these solutions is a complete and independent realization of the arch-
tecture differing in the number of registers contained in the data
path. In these cases the solution iteration having the minimum WAIET
was manually selected as the result described in Chapter V.

3. The microprogram portion of the result is printed as a

sequence of cycles
Y= <F, M>

for each instruction. From this information the cycle statement
groups are constructed for tabulation in Chapter V.
4. The matrices that define the busses use a "T" or "F" to

indicate the presence or absence of a bus respectively.
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Algorithm and Hardware Libraries for Example 5.1, Case 1

02 NO OF ARCH OPERATORS
AOPO 1 AOP1 1
03 NO OF HARD OPERATORS
HOPO 1 HOP1 1 HOP2 1
02 NO OF ALGORITHMS
A(1,8):A0P0(B(1,8))(1,8) 1 IST ALGORITHM
A:HOPO(B)(1,8)
A(1,8):A0P1(B(1,8))(1,8) 2 2ND ALG
c(1,8):HOP1(B)(1,8) 00
A:HOP2(C)(1,8) 10
03 NO OF HARDWARE UNITS
Pl NO OF P PORTS

8 WIDTH
Ql NO OF Q PORTS

8 WIDTH
COST= 2 DELAY= 2 FUNCS= 2
:HOPO(Q1)(1,8) FUNCTIONS
P1:HOPO(1,8)
P1 SAME FOR UNIT 2

8
ql

8

COST= 10 DELAY= 10 FUNCS= 2

P1:HOP1(Ql)(1,8)

P1:HOP2(Q1)(1,8)

P1 SAME FOR UNIT 3
8

Ql
3

COST= 15 DELAY= 12 FUNCS= 1

P1:HOP2(Ql1)(1,8)
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GH Table for Example 5.1, Case 1

1 ENTRIES FOR OPERATOR 1
2 1 0 0 0 0 0 0 O 1 0 0
2 ENTRIES FOR OPERATOR 2
20 2 0 0 0 0 0 0 O 0 2 0
22 2 0 0 0 0 0 0 O 0 1 1

Architecture for Example 5.1, Case 1

01 NO OF REGISTERS
08 WIDTH
0 NO OF P PORTS
0 NO OF Q PORTS
50 COST LIMIT OF SYSTEM
01 NO OF INSTRUCTIONS
01 01 90 STMNTS,WTFCT ,MAXTM

R1:AO0P1(R1)(1,8) *
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Results for Example 5.1, Case 1
**x* RESULTS OF THE DESIGN PROCESS ON THIS ITERATION #*#x%x*

FOR ARCHITECTURE OPERATORS: 1 2
THE GH TABLE SELECTION IS: 0 2

THE MICROCODE FOR INSTRUCTION 1

CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010108 00000000 00000000 00000000 00000000
00000000 00000000 00000000 o0O0OOOOOO o0O0O0OOOOO

FOR UNITS: 11 12
THE FUNCTIONS ARE: 1 2

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFFFFFT
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
TFFFFFFFFFFF
FFFFFFFFFFTF

FINAL REGISTER CONTENTS:

01080108 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
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THE HARDWARE DATA PATH IS COMPOSED OF:

NO OF UNITS= 12 TOTAL REGISTERS= 10 SYSTEM COST= 40
WT AVE EXEC TIME= 22 CYCLE TIME= 22

DATA PATH UNIT NUMBER: 1 2 3 4 5
UNIT TYPE NUMBERS ARE: 1 1 1 1 1

8§ 910 11 12
1 2 2

o,
-~
o
fo

THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

M—TT T TITIM TN
TT T T T T T T T
T T M T T T T T M
TTTTMTm T T T T M
TTTTm T T T T MM
T T T T T T T
T T T T T M
T T T T T
T T T T MM T T
TmMTTTmTTTmTMT M T M
T TmmmT T T
TTTTmTTTmTTm T T T —
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Algorithm and Hardware Libraries for Example 5.1, Case 2

02 NO OF ARCH OPERATORS
AOPO 1 AOP1 1

03 NO OF HARD OPERATORS
HOPO 1 HOP1 1 HOP2 1

02 NO OF ALGORITHMS
A(1,8):A0P0(B(1,8))(1,8) 1 IST ALGORITHM
A:HOPO(B)(1,8)

A(1,8):A0P1(B(1,8))(1,8) 2 2ND ALG

c(1,8):HOP1(B)(1,8) 00
A:HOP2(C)(1,8) 10

03 NO OF HARDWARE UNITS
Pl NO OF P PORTS
8 WIDTH
Ql NO OF Q PORTS
8 WIDTH
COST= 2 DELAY= 2 FUNCS= 2
HOPO(Ql1l)(1,8) FUNCTIONS
P1:HOPO(1,8)
P1 SAME FOR UNIT 2
8
Ql
8
COST= 10 DELAY= 10 FUNCS= 2
P1:HOP1(Q1)(1,8)
P1:HOP2(Ql)(1,8)
Pl SAME FOR UNIT 3
8
Ql
8

COST= 15 DELAY= 8 FUNCS= 1
P1:HOP2(Q1)(1,8)
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GH Table for Example 5.1, Case 2

1 ENTRIES FOR OPERATOR 1
2 1 0 0 0 0 0 0 O 1 0 0
2 ENTRIES FOR OPERATOR 2
20 2 0 0 0 0 O 0 O 0 2 0
18 2 0 0 0 0 0 0 O 0 1 1

Architecture for Example 5.1, Case 2

01 NO OF REGISTERS
08 WIDTH
0 NO OF P PORTS
0 NO OF Q PORTS
50 COST LIMIT OF SYSTEM
01 NO OF INSTRUCTIONS
01 01 90 STMNTS ,WTFCT ,MAXTM
R1:AOP1(R1)(1,8) *
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Results for Example 5.1, Case 2

**x%* RESULTS OF THE DESIGN PROCESS ON THIS ITERATION *%*x

FOR ARCHITECTURE OPERATORS: 1 2
THE GH TABLE SELECTION IS: 0 3

THE MICROCODE FOR INSTRUCTION 1
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010108 00000000 00000000 0OOOOOOO 0OOOOOOO
00000000 00000000 00000000 0O0OOCOO0O0 00000000

FOR UNITS: 11 12
THE FUNCTIONS ARE: 1 1

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

T TITTITITTMTITM ™M
mTMmTITTm T T T T T M
TTmmTT T T T T ™M
mTm T T T M
M T T T T T T M
T M T T T M
T T T T T T T M
mTMm T T
T T T T M
T T T T M
—‘l"l'l'ﬂ'ﬂ'ﬂ‘l"l'ﬂ'ﬂ'ﬂﬂ"li'ﬂ'n
M M TITITM T M T

FINAL REGISTER CONTENTS:

01080108 00000000 00000000 00000000 (00000000
00000000 00000000 00000000 0OOOOOOO0 00000000
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THE HARDWARE DATA PATH IS COMPOSED OF:

NO OF UNITS= 12 TOTAL REGISTERS= 10 SYSTEM COST= 45
WT AVE EXEC TIME= 20 CYCLE TIME= 20

DATA PATH UNIT NUMBER: 1 2 3 &4 5 6 7 8 910 11 12
UNIT TYPE NUMBERS ARE: 1 1 1 1 1 1 1 1 1 1 2 3

THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFFFFFT
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
FFFFFFFFFFFF
TFFFFFFFFFFF
FFFFFFFFFFTF
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Algorithm and Hardware Libraries for Example 5. 2, Case 1

Ok

AOP0O 1 AOP1 1 AOP2 1 AOP3 1

Ok

HOPO 1 HOP1 1 HOP2 1 HOP3 1

oL
A(1,8):A0P0(B(1,8))(1,8) 1
A:HOPO(B)(1,8)
A(1,8):A0P1(B(1,8))(1,8) 1
A:HOP1(B)(1,8)
A(1,8):A0P2(B(1,8))(1,8) 1
A:HOP2(B)(1,8)
A(1,8):A0P3(B(1,8))(1,8) 1
A:HOP3(B)(1,8)
ol
Pl

8

Ql
8

COST= 2 DELAY= 2 FUNCS= 2

:HOPO(Q1)(1,8)
P1:HOPO(1,8)
Pl
8
Ql
8
COST= 10 DELAY= 10 FUNCS=
P1:HOP1(Ql)(1,8)
Pl
8
Ql
8
COST= 15 DELAY= 15 FUNCS=
P1:HOP2(Ql)(1,8)
P1
8
Ql
8
COST= 20 DELAY= 20 FUNCS=
P1:HOP3(Q1)(1,8)

NO OF ALGORITHMS
IST ALGORITHM

2ND ALG

3RD ALG

LTH ALG

NO OF HARDWARE UNITS
NO OF P PORTS

WIDTH

NO OF Q PORTS

WIDTH

FUNCT1ONS

SAME FOR UNIT 2

SAME FOR UNIT 3

SAME FOR UNIT &
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GH Table for Example 5. 2, Case 1

1 ENTRIES FOR OPERATOR 1
2 1 0 0 0 0 0 0 O 1 0 0 O
1 ENTRIES FOR OPERATOR 2

10 2 0 0 0 0 0 0 O 0 1 0 O
1 ENTRIES FOR OPERATOR 3

15 3 0 0 0 0 0 O O 0 0 1 O
1 ENTRIES FOR OPERATOR 4

20 4 0 0 0O 0 O 0 O 0 0 0 1

Architecture for Example 5.2, Case 1

01 NO OF REGISTERS
08 WIDTH
0 NO OF P PORTS
0 NO OF Q PORTS
50 COST LIMIT OF SYSTEM
01 NO OF INSTRUCTIONS
03 01 90 STMNTS ,WTFCT,MAXTM

A(1,8):A0P1(R1)(1,8) 000
B(1,8):A0P2(A)(1,8) 100
R1:A0P3(B)(1,8) 110
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Results for Example 5. 2, Case 1

#*x%+ RESULTS OF THE DESIGN PROCESS ON THIS ITERATION #*%xx*

FOR ARCHITECTURE OPERATORS: 1 2 3
3

L
THE GH TABLE SELECTION [S: 0 2 b

THE MICROCODE FOR INSTRUCTION 1

CYCLE NUMBER 1

REGISTER CONTENTS:

INITIAL
01010108 00000000

FOR UNITS: 3 L 5
THE FUNCTIONS ARE: 1 1 1

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

T~ nThm
mm T M
mM—{ T M
T T T
mTm T -

FINAL REGISTER CONTENTS:
01080108 00000000
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THE HARDWARE DATA PATH IS COMPOSED OF:

NO OF UNITS= 5 TOTAL REGISTERS= 2 SYSTEM COST= 49
WT AVE EXEC TIME= L7 CYCLE TIME= 47

DATA PATH UNIT NUMBER: 1 2 3 4 5
UNIT TYPE NUMBERS ARE: 1 1 2 3 &4

THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFT
FFFFF
TFFFF
FFTFF
FFFTF
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Algorithm and Hardware Libraries for Example 5.2, Case 2

05

AOPO 1 AOP1 1 AOP2 1 AOP3 1 AOP4 1

Ok

HOPO 1 'HOP1 1 HOP2 1 HOP3 1

05 NO OF ALGORITHMS

A(1,8):A0P0(B(1,8))(1,8) 1
A:HOPO(B)(1,8)
A(1,8):A0P1(B(1,8))(1,8) 1
A:HOP1(B)(1,8)
A(1,8):A0P2(B(1,8))(1,8) 1
A:HOP2(B)(1,8)
A(1,8):A0P3(B(1,8))(1,8) 1
A:HOP3(B)(1,8)
A(1,8):A0P4(B(1,8))(1,8) 3
€c(1,8):A0P1(B)(1,8) 000
D(1,8):A0P2(C)(1,8) 100
A:AOP3(D)(1,8) 110
04
P1

8
Ql

8
COST= 2 DELAY=
:HOPO(Q1)(1,8)
P1:HOPO(1,8)
P1

8
Ql

8
COST= 10 DELAY= 10 FUNCS=
P1:HOP1(Ql)(1,8)
P1

8
Ql

8
COST= 15 DELAY= 15 FUNCS=
P1:HOP2(Ql1)(1,8)
Pl

8
Ql

8
COST= 20 DELAY= 20 FUNCS=
P1:HOP3(Ql1)(1,8)

2 FUNCS=

2

1

IST ALGOR!THM
2ND ALG
3RD ALG
4LTH ALG
5TH ALG

NO OF
NO OF
WIDTH
NO OF
WIDTH

HARDWARE UNITS
P PORTS
Q PORTS

FUNCTIONS
SAME FOR UNIT 2

SAME FOR UNIT 3

SAME FOR UNIT &4
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GH Table for Example 5.2, Case 2

1 ENTRIES FOR OPERATOR 1
2 1 0 0 0 0 0 0 O 1 0 0 0
1 ENTRIES FOR OPERATOR 2

10 2 0 0 0 0 0 O0 O 0 1 0 O
1 ENTRIES FOR OPERATOR 3

15 30 0 0 0 0 0 O 0 0 1 O
1 ENTRIES FOR OPERATOR 4

20 4 0 0 0 0 O 0 O 0 0 0 1
1 ENTRIES FOR OPERATOR 5

u5 5 2 3 4 0 0 0 O 0 1 1 1

Architecture for Example 5. 2, Case 2

01 NO OF REGISTERS
8 WIDTH

0 NO OF P PORTS

0

50 COST LIMIT

01 NO OF INSTRUCTIONS
01 01 90 STMNTS,WTFCT,MAXTM

R1:AOP4(R1)(1,8)
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Results for Example 5. 2, Case 2

***x RESULTS OF THE DESIGN PROCESS ON THIS ITERATION #*%#x

FOR ARCHITECTURE OPERATORS: 1 2 3 4 5
THE GH TABLE SELECTION IS: 0 0 0 0 5

THE MICROCODE FOR INSTRUCTION 1
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010108 00000000

FOR UNITS: 3 L 5
THE FUNCTIONS ARE: 1 1 1

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFT
FFFFF
TFFFF
FFTFF
FFFTEF
FINAL REGISTER CONTENTS:
010B0108 00000000
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THE HARDWARE DATA PATH IS COMPOSED OF:

NO OF UNITS= 5 TOTAL REGISTERS= 2 SYSTEM COST= 49
WT AVE EXEC TIME= 47 CYCLE TIME= 47

DATA PATH UNIT NUMBER: 1 2 3 4 5
UNIT TYPE NUMBERS ARE: 1 1 2 3 &

THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

M T~ m
T T TTm T
MM —-Tmm
—ATmTmm
MM~
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Algorithm and Hardware Libraries for Example 5. 2, Case 3

05
AOPO 1 AOP1 1 AQOP2 1 AOP3 1
oL
HOPO 1 HOP1 1 HOP2 1 HOP3 1
06
A(1,8):A0P0(B(1,8))(1,8) 1
A:HOPO(B)(1,8)
A(1,8):A0P1(B(1,8))(1,8) 1
A:HOP1(B)(1,8)
A(1,8):A0P2(B(1,8))(1,8) 1
A:HOP2(B)(1,8)
A(1,8):A0P3(B(1,8))(1,8) 1
A:HOP3(B)(1,8)
A(1,8):A0P4(B(1,8))(1,8) 3
C(1,8):A0P1(B)(1,8) 000
D(1,8):A0P2(C)(1,8) 100
A:AOP3(D)(1,8) 110
A(1,8):A0P4(B(1,8))(1,8) 3
C(1,8):A0P1(B)(1,8) 000
D(1,8):A0P1(C)(1,8) 100
A:A0P2(D)(1,8) 110
oL
P1

8
Ql

8
COST= 2 DELAY= 2 FUNCS= 2
:HOPO(Q1)(1,8)
P1:HOPO(1,8)
P1

8
Ql

8

COST= 10 DELAY= 10 FUNCS= 1

P1:HOP1(N1)(1,8)
Pl

8
Ql

8

COST= 15 DELAY= 15 FUNCS= 1

P1:HOP2(Q1)(1,8)
Pl

8
Ql

8

COST= 20 DELAY= 20 FUNCS= 1

P1:HOP3(01)(1,8)

AOPL 1

IST ALGORITHM
2ND ALG
3RD ALG
LTH ALG
5TH ALG

6TH ALG

NO OF
NO OF
WIDTH
NO OF
WIDTH

HARDWARE UNITS
P PORTS
Q PORTS

FUNCTIONS
SAME FOR UNIT 2

SAME FOR UNIT 3

SAME FOR UNIT &4
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GH Table for Example 5. 2, Case 3

1 ENTRIES FOR OPERATOR 1
2 1 0 0 0 0 0 0 O 1 0 0 O
1 ENTRIES FOR OPERATOR 2

10 2 0 0 0 0 0 0 O 0 1 0 O
1 ENTRIES FOR OPERATOR 3

15 3 0 0 0 0 0 0 O 0 0 1 0
1 ENTRIES FOR OPERATOR &4

20 4 0 0 0 0 0 0 O 0 0 0 1
2 ENTRIES FOR OPERATOR 5

45 5 2 3 4 0 0 0 0 0 1 1 1

35 6 2 2 3 0 0 0 O 0 2 1 0

Architecture for Example 5.2, Case 3

01 NO OF REGISTERS
8 WIDTH

0 NO OF P PORTS

0

50 COST LIMIT

01 NO OF INSTRUCTIONS
01 01 90 STMNTS ,WTFCT ,MAXTM

R1:AOPL(R1)(1,8)
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Results for Example 5.2, Case 3

(first iteration)

**x%* RESULTS OF THE DESIGN PROCESS ON THIS ITERATION ##wx

FOR ARCHITECTURE OPERATORS: 1 2 3 4 5
THE GH TABLE SELECTION IS: 0 0 O 0 6

THE MICROCODE FOR INSTRUCTION 1
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:

01010108 00000000 00000000 00000000 00000000
00000000 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 1 1 1

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

MTO4TNTmmmmm
T TITT T TOTMm T
TTTTTMTTM T TN
T Tm T T
T T T T
et B B B o e 2 B 2 B W s B 3 B |
TTTTTTTm T T
MmM4TTTmTImMT M
S TTmmmmTmm M
T TTm M T M —

FINAL REGISTER CONTENTS:
01080108 00000000 00000000 00000000 00000000
00000000 00000000
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THE HARDWARE DATA PATH 1S COMPOSED OF:

NO OF UNITS= 10 TOTAL REGISTERS= 7 SYSTEM COST= 49
WT AVE EXEC TIME= 37 CYCLE TIME= 37

DATA PATH UNIT NUMBER: 1 2 3 4 5 6 7 8 910
UNIT TYPE NUMBERS ARE: 1 1 1 1 1 1 1 2 2 3

THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

T m T M m
TTTmTTTTTT T T T M
MmTTmTT T M T M
T T T T M
MmMTTTm T T T M
TTTT T T T T
M-I TITTITITT
T T T M
a B s B w B M M B B g B |
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Results for Example 5.2, Case 3

(second iteration)

***% RESULTS OF THE DESIGN PROCESS ON THIS ITERATION #*xxx

FOR ARCHITECTURE OPERATORS: 1 2 3 4 5
THE GH TABLE SELECTION IS: 0 0 0 0 6

THE MICROCODE FOR INSTRUCTION 1
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:

01010108 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000
FOR UNITS: 11 12

THE FUNCTIONS ARE: 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

R R R B B B B B T B
i B B B B B B e B B B
i B B B R B R B I B
il B B s T e B B e B B
e B e B R B R e B
mal B e B e B R B
il R B Bt s B B B B B B
e R T B B B B B
R B R B R B B B B B
MM MMM T
Rl B T B B T T i B B
R R R B B B B B B R B B
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CYCLE NUMBER 2

INITIAL REGISTER CONTENTS:

02660108 00000000 00000000 00000000 00000000
00000000 00000000 00000000 0O0OOOOOO o0OOOOOOO

FOR UNITS: 11 12
THE FUNCTIONS ARE: 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

TMT—-TTT 7T mmm
TMTT T T MM
T T T T T T M MM
MMM T T M
MmMTTTTTT T T T M M M ™m
MmMTT T T T ™
TmTmmTmTTmT T T T T ™M
TTTT T T T T T
TTTTM T T T T T MM
MmMTmTT T TMTI MM T T
TTTmTTmTITT M T~
MMM T T
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CYCLE NUMBER 3

INITIAL REGISTER CONTENTS:

02670108 00000000 00000000 00000000
00000000 00000000 00000000 00000000

FOR UNITS: 11 12
THE FUNCTIONS ARE: 0 1

THE GATING MATRIX: (SOURCE=COLUMN; SINK

—TmTT T TTIm T ™M
MTMTTm T T T T T T T T
T T T MM T T
mTTTTMT T T T T T
MMM T T T T T T
T T T T T T T T M
MM T T T T T T T
mMTmTm T T T T T MM
TMTTTTT T T T T T T T M
TTTTTTT M T T T T T T
MmMTTTMTTT T T T MM TN

FINAL REGISTER CONTENTS:
01080108 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000

00000000

=ROW)

T T M T M T T T |

00000000
00000000
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THE HARDWARE DATA PATH IS COMPOSED OF:

NO OF UNITS= 12 TOTAL REGISTERS= 10 SYSTEM COST= 45
WT AVE EXEC TIME= 51 CYCLE TIME= 17

DATA PATH UNIT NUMBER: 1 2

3 4 5 6 9 10 11 12
UNIT TYPE NUMBERS ARE: 1 1 1 1

7 8
1 1.1 1 1 1 2 3
THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

o B B W s M M B e M M M M 9
T T T T T T M
T T T T T T T M M
T T T T T T T m
T TTTm T T T T T M
T T T T T T m
TTTMTmTTTTTm M T T m
mMmMTmTTITmTT T T m
T T T
TTTTTTTM T T T T M T m
TmTTmTTTmTTmTm T T T T -4
TTTT T MM T T
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Algorithmand Hardware Libraries

for Example 5.3, Cases 1 and 2

Ok

AOPO 1 AOP1 1 AOP2 1 AOP3 1

04

HOPO 1 HOP1 1 HOP2 1 HOP3 1

04

A(1,8):A0P0(B(1,8))(1,8) 1
A:HOPO(B)(1,8)

A(1,8):A0P1(B(1,8))(1,8) 1
A:HOP1(B)(1,8)
A(1,8):A0P2(B(1,8))(1,8) 1
A:HOP2(B)(1,8)

A(1,8):A0P3(B(1,8))(1,8) 1
A:HOP3(B)(1,8)
04
P1
8
Ql
8
COST= 2 DELAY= 2 FUNCS=
:HOP0(Q1)(1,8)
P1:HOPO(1,8)
P1
8
Q1
8

COST= 10 DELAY= 10 FUNCS=
P%:HOPl(Ql)(l,S)
P

8
Ql
8
COST= 15 DELAY= 15 FUNCS=
P1:HOP2(Ql1)(1,8)
P1
8

Ql
8

2

1

COST= 20 DELAY= 20 FUNCS= 1

P1:HOP3(Q1)(1,8)

NO OF ALGORITHMS
IST ALGORITHM

2ND ALG
3RD ALG

LTH ALG
NO OF HARDWARE UNITS

NO OF P PORTS
WIDTH

NO OF Q PORTS
WIDTH

FUNCTIONS

SAME FOR UNIT 2

SAME FOR UNIT 3

SAME FOR UNIT 4
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GH Table for Example 5.3, Cases 1 and 2

1 ENTRIES FOR OPERATOR 1

2 1 0 0 0 0 0 0 O 1 0
1 ENTRIES FOR OPERATOR 2

10 2 0 0 0 0 0 0 O 0 1
1 ENTRIES FOR OPERATOR 3

15 3 0 0 0 0 0 0 O 0 0
1 ENTRIES FOR OPERATOR 4

20 4 0 0 0 0 O 0 O 0 0
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Architecture for Example 5.3, Case 1

02 NO OF REGISTERS
8§ 8 WIDTHS

0 NO OF P PORTS

0 NO OF Q PORTS

50 COST LIMIT

02 NO OF INSTRUCTIONS
02 08 90 STMNTS ,WTFCT,MAXTM

A(1,8):A0P1(R1)(1,8) 00
R1:AQ0P2(A)(1,8) 10
01 02 90

R2:A0P3(R1)(1,8)

STMNTS ,WTFCT,MAXTM

Architecture for Example 5.3, Case 2

02 NO OF REGISTERS
8 8 WIDTHS
0 NO OF P PORTS
0 NO OF Q PORTS
50 COST LIMIT
02 NO OF INSTRUCTIONS
02 02 90 STMNTS,WTFCT,MAXTM

A(1,8):A0P1(R1)(1,8) 00
R1:A0P2(A)(1,8) 10

01 08 90 STMNTS,WTFCT,MAXTM
R2:A0P3(R1)(1,8)
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Results for Example 5.3, Case 1

***x* RESULTS OF THE DESIGN PROCESS ON THIS ITERATION #%#x

FOR ARCHITECTURE OPERATORS: 1 2 3 4
THE GH TABLE SELECTION I1S: 0 2 3 4

THE MICROCODE FOR INSTRUCTION 1
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010108 01020108

FOR UNITS: 3 L 5
THE FUNCTIONS ARE: 1 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

T 4T
T T T M
M7
T T~
T T M

FINAL REGISTER CONTENTS:
01080108 01020108
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THE MICROCODE FOR INSTRUCTION 2 :
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010108 01020108

FOR UNITS: 3 4 5
THE FUNCTIONS ARE: 0 0 1

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

S TTmTTm
M T
T T ™M
MM T T
M7 —T

FINAL REGISTER CONTENTS:
01010108 010C0108

THE HARDWARE DATA PATH IS COMPOSED OF:

NO OF UNITS= 5 TOTAL REGISTERS= 2 SYSTEM COST= 49
WT AVE EXEC TIME= 270 CYCLE TIME= 27

DATA PATH UNIT NUMBER: 1 2 3 4 5
UNIT TYPE NUMBERS ARE: 1 1 2 3 4

THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

T -—-47TTm
T T T
T—4TmTmm
MM T T~
TTT M-
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Results for Example 5.3, Case 2

**%%* RESULTS OF THE DESIGN PROCESS ON THIS ITERATION **#x

FOR ARCHITECTURE OPERATORS: 1 2 3 4
THE GH TABLE SELECTION IS: 0 2 3 &4

THE MICROCODE FOR INSTRUCTION 1
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010108 01020108

FOR UNITS: 3 L 5
THE FUNCTIONS ARE: 1 0 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

Mm-S
mMmMT T
T -
T
T T
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CYCLE NUMBER 2

INITIAL REGISTER CONTENTS:
02290108 01020108

FOR UNITS: 3 L 5
THE FUNCTIONS ARE: 0 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

M-—T TN
M T
MM T
M T M -~
T T M

FINAL REGISTER CONTENTS:
01080108 01020108
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THE MICROCODE FOR INSTRUCTION 2 :

CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010108 01020108

FOR UNITS: 3 b 5
THE FUNCTIONS ARE: 0 0 1

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFF
FFFET
FFFFF
FFFFF
TFFFF

FINAL REGISTER CONTENTS:
01010108 010C0108

THE HARDWARE DATA PATH IS COMPOSED OF:

NO OF UNITS= 5 TOTAL REGISTERS= 2 SYSTEM COST= 49
WT AVE EXEC TIME= 264 CYCLE TIME= 22

DATA PATH UNIT NUMBER: 1 2 3 4 5
UNIT TYPE NUMBERS ARE: 1 1 2 3 &4

THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

- =T
M T M T
M 7T T —
T T T —
T T —-{mn
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Algorithm and Hardware Libraries
for Example 5.3, Cases 1, 2, and 3

03 NO OF ARCH OPS
AOPO 1 AOP1 1 AOP5 2
03 NO OF HARD OPS
HOPO 1 HOP1 1 HOP5 2
03 NO OF ALGORITHMS
A(1,8):A0P0(B(1,8))(1,8) 1 ALG 1
A:HOPO(B)(1,8)
A(1,8):A0P1(B(1,8))(1,8) 1 ALG 2
A:HOP1(B)(1,8)
A(1,8):AOP5(B(1,8),C(1,8))(1,8) 1 ALG 3
A:HOP5(B,C)(1,8)
03 NO OF UNITS
P1 UNIT 1, NO OF PORTS
8 WIDTH
Ql NO OF Q PORTS
8 WIDTH
COST= 2 DELAY= 2 FUNCS= 2
:HOPO(Q1)(1,8)
P1:HOPO(1,8)
P1 SAME FOR UNIT 2
8
Q2
8 8

COST= 10 DELAY= 10 FUNCS= 1
P1:HOP5(Q1,Q2)(1,8)
Pl SAME FOR UNIT 3

Ql

8
COST= 15 DELAY= 15 FUNCS= 1
P1:HOP1(Q1)(1,8)
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GH Table for Example 5.4, Cases 1,2, and 3

1 ENTRIES FOR OPERATOR 1
2 1 0 o 0 0 0O O O 1 0 0
1 ENTRIES FOR OPERATOR 2

15 2 0 0 0 0 0 0 O 0 0 1
1 ENTRIES FOR OPERATOR 3

10 3 0 0 0 0 0 0 O 0 1 0

Architécture for Example 5.4, Case 1

028 NO OF REGISTERS
8
0 NO OF P PORTS
0 NO OF Q PORTS
30 COST LIMIT
01 NO OF INSTRUCTIONS

03 01 90 STMNTS,WTFCT ,MAXTM
A(1,8):A0P5(R1,R2)(1,8) 000
R1:AOP5(R1,A)(1,8) 100
R2:A0P1(R2)(1,8) 000
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Architecture for Example 5.4, Case 2

02 NO OF REGISTERS
8§ 8
0 NO OF P PORTS
0 NO OF Q PORTS
35 COST LIMIT
01 NO OF INSTRUCTIONS

03 01 90 STMNTS ,WTFCT,MAXTM
A(1,8):A0P5(R1,R2)(1,8) 000

R1:AOP5(R1,A)(1,8) 100
R2:A0P1(R2)(1,8) 000

Architecture for Example 5.4, Case 3

02 NO OF REGISTERS
8 8

0 NO OF P PORTS

0 NO OF Q PORTS

40 COST LIMIT

01 NO OF INSTRUCTIONS
03 01 90 STMNTS,WTFCT,MAXTM

A(1,8):A0P5(R1,R2)(1,8) 000
R1:AO0P5(R1,A)(1,8) 100
R2:A0P1(R2)(1,8) 000
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Results for Example 5.4, Case 1

*xx** RESULTS OF THE DESIGN PROCESS ON THIS ITERATION ***x

NO SATISFACTORY IMPLEMENTATION
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Results for Example 5.4, Case 2

**** RESULTS OF THE DESIGN PROCESS ON THIS ITERATION *#xx*

FOR ARCHITECTURE OPERATORS: 1 2 3
THE GH TABLE SELECTION IS: 0 2 3

THE MICROCODE FOR INSTRUCTION 1 :
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010108 01020108 00000000 00000000 0000000CO

FOR UNITS: 6 7
THE FUNCTIONS ARE: 1 1

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFF
FFFFFFT
FFFFFTF
FFFFFFF
FFFFFFF
TTFFFEFF
FTFFFFF
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CYCLE NUMBER 2

INITIAL REGISTER CONTENTS:
01010108 010C0108 02290108 00000000 0O0OOOOOO

FOR UNITS: 6 7
THE FUNCTIONS ARE: 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFTF
FFEFFFF
FFFFFFF
FFFFFFF
FFEFFFF
TFTFFFF
FFFFFFF

FINAL REGISTER CONTENTS:
01080108 010C0108 00000000 00000000 00OOOOQOO

THE HARDWARE DATA PATH IS COMPOSED OF:

NO OF UNITS= 7 TOTAL REGISTERS= 5 SYSTEM COST= 35
WT AVE EXEC TIME= 34 CYCLE TIME= 17

DATA PATH UNIT NUMBER: 1 2 3 &4 5 6 7
UNIT TYPE NUMBERS ARE: 1 1 1 1 1 2 3

THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFTF
FFFFFFT
FFFEFFTF
FFFFFFF
FFFFFFF
TTTFFEF
FTFFFFF
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Results of Example 5.4, Case 3
(first iteration)

**%% RESULTS OF THE DESIGN PROCESS ON THIS [TERATION #xw«

FOR ARCHITECTURE OPERATORS: 1 2 3
THE GH TABLE SELECTION IS: 0 2 3

THE MICROCODE FOR INSTRUCTION 1 :
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010108 01020108

FOR UNITS: 3 L 5
THE FUNCTIONS ARE: 1 1 1

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

—A— T
M~
-1 7T
mTTmTm—-T

T
F
F
F

FTFF

FINAL REGISTER CONTENTS:
010B0108 010C0108



284

THE HARDWARE DATA PATH IS COMPOSED OF:

NO OF UNITS= 5 TOTAL REGISTERS= 2 SYSTEM COST= 39
WT AVE EXEC TIME= 22 CYCLE TIME= 22

DATA PATH UNIT NUMBER: 1 2 3 &4
2 2

5
UNIT TYPE NUMBERS ARE: 1 1 3

THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

mH4—ATm
—m 4T
M4 TNnm
mTmmmA
Rl e
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Results for Example 5. 4, Case 3

(second iteration)

**x% RESULTS OF THE DESIGN PROCESS ON THIS ITERATION #***x

FOR ARCHITECTURE OPERATORS: 1 2 3
THE GH TABLE SELECTION IS: 0 2 3

THE MICROCODE FOR INSTRUCTION 1
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:

01010108 01020108 00000000 00000000 00000000
00000000 00000000

FOR UNITS: 8 9
THE FUNCTIONS ARE: 1 1

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFFF
FFFFTFFFT
FFFFFFFTF
FFFFFFFFF
FFFFFFFFF
FFFFFFFFF
FFFFFFFFF
TTFFFFFFF
FTFFFFFFF
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CYCLE NUMBER 2

INITIAL REGISTER CONTENTS:
01010108 010C0108 02290108 00000000 00000000

00000000 00000000

FOR UNITS: 8 9
THE FUNCTIONS ARE: 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFTF
FFFFFFFFF
FFFFFFFFF
FFFFFFFFF
FFFFFFFFF
FFFFFFFFF
FFFFFFFFF
TFTFFFFFF
FFFFFFFFF

FINAL REGISTER CONTENTS:
010B0108 010C0108 00000000 00000000 00000000
00000000 00000000
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THE HARDWARE DATA PATH IS COMPOSED OF:

NO OF UNITS= 9 TOTAL REGISTERS= 7 SYSTEM COST= 39
WT AVE EXEC TIME= 34 CYCLE TIME= 17

DATA PATH UNIT NUMBER: 1 2 3 &4 5
UNIT TYPE NUMBERS ARE: 1 1 1 1 1 1 1 2 3

THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFEEFTEF
FFFFTFFFT
FFFFFFFTEF
FFFFFEFFEF
FFFFFFFFF
FFFFFFFFF
FFFEFFFFFF
TTTFFFFFF
FTFFFFFFF



288

Algorithm and Hardware Libraries for Example 5.5

10 NUMBER OF ARCH OPS
MOVE 1 OPDC 1 ADD 2 INC1 1 INC2 1 MRD 1 MWRT 2
ADNX 1 ADPR 1 VAL 1

07 NUMBER OF HARD OPS
ZOVE 1 ZPDC 1 ZADD 2 ZNC1 1 ZMAD 1 ZWRT 1 ZRD 1
11 NO OF ALGORITHMS
B(1,16):MOVE(A(1,16))(1,16) 1 1ST ALG
B:ZOVE(A)(1,16)

B(1,6):0PDC(A(1,4))(1,6) 1 2ND ALG

B:ZPDC(A)(1,6)
B(1,16):ADD(A(1,16),C(1,16))(1,16) 1 3RD ALG
B:ZADD(A,C)(1,16)
B(1,16):ADD(A(1,16),C(1,16))(1,16) 1 LTH ALG
B:ZADD(C,A)(1,16)

B(1,12):INC1(A(1,12))(1,12) 1 5TH ALG
B:ZNC1(A)(1,12)
B(1,12):1INC2(A(1,12))(1,12) 2 6TH ALG

Z(1,12):1INC1(A(1,12))(1,12) 00
B:INC1(Z)(1,12) 10
B(1,16):MRD(A(1,12))(1,16) 2 7TH ALG
:ZMAD(A) (1,12) 00

B:ZRD(1,16) 10

:MWRT(A(1,12),B(1,16)) 2 8TH ALG
:ZMAD(A(1,12)) 00

:ZWRT(B(1,12)) 10

B(1,12):ADNX(A(1,12)) 1 9TH ALG
B:MRD(A)(1,12)
B(1,12):ADPR(A(1,12)) 2 10TH ALG

Z(1,12):INC1(A)(1,12) 00

B:MRD(Z)(1,16) 10
B(1,16):VAL(A(1,12))(1,16) 2 11TH ALG
Z(1,12):1NC2(A)(1,12) 00

B:MRD(Z)(1,16) 10

0L NO OF UNITS
P1 NO OF P PORTS
16 WIDTH

Ql NO OF Q PORTS
16 WIDTH

COST= 2 DELAY= 1 FUNCS= 2

:ZOVE(Q1)(1,16) FUNCTIONS

P1:ZOVE(1,16)
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Pl SAME FOR UNIT 2
16

Q2
16 16

COST= 15 DELAY= 5 FUNCS= 3

P1:ZADD(Q1,Q2)(1,16)

P1:ZADD(Q2,Q1)(1,16)

P1:ZNC1(Q1)(1,12)

P1 SAME FOR UNIT 3
16
Q2
12 16
COST= 20 DELAY= U4 FUNCS= 3
: ZMAD(Q2)(1,12)
: ZWRT(Q1)(1,16)
P1:ZRD(1,16%
P1 SAME FOR UNIT &
6
Q1
4
COST= DELAY= 5 FUNCS= 1

P1: ZPDC(Ql)(l 6)
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GH Table for Example 5.5

1 ENTRIES FOR OPERATOR 1

1 1 0 0 0 0 O O O 1 0
1 ENTRIES FOR OPERATOR 2

5 2 0 0 0 0 0 O O 0 0
1 ENTRIES FOR OPERATOR 3

5 3 0 0 0 0 0 0 O 0 1
1 ENTRIES FOR OPERATOR 4

5 5 0 0 0 0 0 O O 0 1
1 ENTRIES FOR OPERATOR 5

10 6 5 5 0 0 0 0 0 0 2
1 ENTRIES FOR OPERATOR 6

8 7 0 0 0 O O O O 0 0
1 ENTRIES FOR OPERATOR 7

8 8§ 0 0 0O O O O O 0 0
1 ENTRIES FOR OPERATOR 8

8 9 7 0 0 0 0 0 O 0 0
1 ENTRIES FOR OPERATOR 9

13 10 5 7 0 0 0 0 O 0 1
1 ENTRIES FOR OPERATOR10

18 11 6 5 5 7 0 0 0 0 2



291

Architecture for Example 5.5

06 AC=R1,DA=R2,1C=R3, IR=RL4, XR=R5,STATUS=R6
16 12 12 16 12 06

0 NO OF P PORTS

01 NO OF Q PORTS
8 WIDTH OF Q1

S5k COST LIMIT

7 NO OF INSTS

o4t 10 90 INST 1, INST FETCH

Z(1,16):MRD(R3)(1,16) 0000

R3:INC1(R3)(1,12) 1000
R6:0PDC(Z(1,49)(1,6) 1000

R4:MOVE(Z)(1,16) 1000 ,

02 05 90 INST 2, INDEXED LOAD
Z(1,12):ADD(RL4(5,12),R5)(1,12) 00
R1:MRD(Z)(1,16) 10

03 05 90 INST 3, INDEXED ADD
Z1(1,12):ADD(RL4(5,12),R5)(1,12) 000
22(1,16):MRD(Z1)(1,16) 100

R1:ADD(R1,Z2)(1,16) 110 -

01 & 90 INST 4, STORE

:MWRT(R4(5,12),R1)(1,16) *
03 3 90 INST 5, GET NEXT ELEM

Z(1,12):ADNX(R2)(1,12) 000
R1:VAL(Z)(1,16) 100
R2:MOVE(Z)(1,12) 100

03 2 90 INST 6,GET PREV ELEM
Z(1,12):ADPR(R2)(1,12) 000

R1:VAL(Z)(1,16) 100
R2:MOVE(Z)(1,12) 100

01 1 90 INST 7, WRITE 1/0
Q1:MRD(R4(5,12))(8,8) *
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Results for Example 5.5
xx%x%* RESULTS OF THE DESIGN PROCESS ON THIS ITERATION #*%x*%

FOR ARCHITECTURE OPERATORS: 1 2 3 4 5 6 7 8 910
THE GH TABLE SELECTION I1S: 1 2 3 4 0 6 7 8 910

THE MICROCODE FOR INSTRUCTION 1 :
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010110 0102010C 0103010C 01040110 0105010C
01060106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 0 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFFFF
FFFFFFFFFF
FFFFFFEFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFTFFFEFFF
FFFFFFFFFF
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CYCLE NUMBER 2

INITIAL REGISTER CONTENTS:
01010110 0102010C 0103010C 00000000 0105010C
00000000 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 3 3 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFFFF
FFFFFFFFEFF
FFFFFFFTFF
FFFFFFFFTF
FFFFFEFFFF
FFFFFFFFFF
FFFFFFFFFF
FFTFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
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CYCLE NUMBER 3

INITIAL REGISTER CONTENTS:
01010110 0102010C 0Ol1l0DO10OC 02290110 O0105010C
00000000 0O0O0OO0OOO

FOR UNITS: 8 g 10
THE FUNCTIONS ARE: 0 0 1

(SOURCE=COLUMN; SINK=ROW)

FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFT
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFTFFFFFF

FINAL REGISTER CONTENTS:
01010110 0102010C 010D0O10C 02290110 0105010C
01100106 00000000
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THE MICROCODE FOR INSTRUCTION 2 :

CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010110 0102010C 0103010C 01040110 0105010C
0106

0106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 1 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

T T T T T m
T TTTTTTTMm T T M
TThMm T T T M
TMMm—-{TmTTmTmmn
e B B B e B B 2 M g i i g M g |
T T T T
TTT T T T T
MMM
T TTTT T T T M
TT T T T
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CYCLE NUMBER 2

INITIAL REGISTER CONTENTS:
00000000 0102010C 0103010C 01040110 0l105010C

01060106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 0 3 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFFTF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF

FINAL REGISTER CONTENTS:
01080110 0102010C 0103010C 01040110 0105010C
01060106 00000000
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THE MICROCODE FOR INSTRUCTION 3 :

CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010110 0102010C 0103010C 01040110 0105010C

01060106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 1 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFTTFFFFF
FFFFFFFTFF
FFFFFFFFFF
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CYCLE NUMBER 2

INITIAL REGISTER CONTENTS:
01010110 0102010C 01030l10C 01040110 o0105010C
01060106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 1 3 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFTFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFEF
FFFFFFFFFF
TFFFFFFFTF
FFFFFFFFFF
FFFFFFFFFF

FINAL REGISTER CONTENTS:
01080110 0102010C 0103010C 01040110 0105010C

01060106 00000000
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THE MICROCODE FOR INSTRUCTION 4 :

CYCLE NUMBER

AL REGISTER CONTENTS:
0103010C

0102010C

INIT
01010110
0106 00000000

0106

FOR UNITS:
THE FUNCTIONS ARE:

THE GATING MATRIX:

M T T T T T T m

3
0

(SOURCE=COLUMN;

mMmT MMM T M

MMM T T T T M

9
1

M-I mTm

T M T T M

10
0

T TITTm T M T M

01040110

TmMTm T T T ™M

TmTT T T

T T T M

0105010C

SINK=ROW)

T T T T T M
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CYCLE NUMBER 2

INITIAL REGISTER CONTENTS:
01010110 0102010C 0103010C 01040110 01l05010C

01060106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 0 2 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

M— TN TTT T M
TTTm T Tm T T T
T T MM T TTIMm T m
T M T T T T M
MM T T T M M
T T T T T T M
TT T T T T T M
TMT T T T T M
MM TTTTM T T M M
TT T T T M M

FINAL REGISTER CONTENTS:
01010110 0102010C 0103010C 01040110 0105010C

01060106 00000000
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THE MICROCODE FOR INSTRUCTION 5
CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010110 0102010C 0103010C 01040110 0105010C
01060106 00000000

FOR UNITS: 8 g 10
THE FUNCTIONS ARE: 0 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

TmTTmTTTm T T T M
MMM
TT T T M
TTTmTmTm T T T
TTTm T T T T M
T T T T M
mTTmTTTTTTTTT T T M
MM T T T T
T TTTm T T T M
T T M



CYCLE NUMBER 2

INITIAL REGISTER CONTENTS:
00000000 00000000 0103010C 01040110 0105010C
0106

0106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 3 3 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

MM M T T T T m
M T T T T T M
T M T T T T M
TT M T M T
T T M T T T M
T M TTm T T T
T T T T T
T T TTm T T T -
T 47T Tmhmhn -~
T T TTm T T T



CYCLE NUMBER

IAL REGISTER CONTENTS:
0103010C

02290110

INIT
0267010C
0106 00000000

0106

FOR UNITS:
THE FUNCTIONS ARE:

THE GATING MATRIX:

MTA-{Tm T TN

8
3

9
1

303

10
0

01040110

0105010C

(SOURCE=COLUMN; SINK=ROW)

mTmTm T T T T T M

T T T T T

T M T T M T

TTTITTT T T ™M

TTTmTTT T

mTmTMm T T T T T M

MM

mTmTTT T T T T T

T TmTITm T T



304

CYCLE NUMBER &4

INITIAL REGISTER CONTENTS:
00000000 02290110 0103010C 01040110 0105010C
01060106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 0 3 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

TmTTTm T T T T T M
TTITTMm T T T T M
T T T T T ™M
TTTm T T T T M T
MMM T T T T M
T T T T T T m
TTTTMm T T T T T M
MTMTTTmT T T T T
MM T T T T —
MM T T T

FINAL REGISTER CONTENTS:

01080110 02290110 0103010C 01040110 0105010C
01060106 00000000
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THE MICROCODE FOR INSTRUCTION 6 :

CYCLE NUMBER 1

INITIAL REGISTER CONTENTS:
01010110 0102010C 0103010C 01040110 0105010C

01060106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 3 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FTFFFFFFFF
FFFFFFFTFF
FFFFFFFFFF
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CYCLE NUMBER 2

INITIAL REGISTER CONTENTS:
00000000 0OOOOOOO 0103010C 01040110 O105010C
01060106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 3 3 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFTFF
FFFFFFFFTF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFTF
FFFFFFFFFF
FFFFFFFFFF
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CYCLE NUMBER 3

INITIAL REGISTER CONTENTS:
026A010C 02290110 0103010C 01040110 0105010C
01060106 00000000

FOR UNITS: 8 g 10
THE FUNCTIONS ARE: 3 1 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFEFF
FFFFFFFFFF
FFFFFFFFFF
TFFFFFFFFF
FFFFFFFTFF
FFFFFFFFFF
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CYCLE NUMBER &4

INITIAL REGISTER CONTENTS:
00000000 02290110 0103010C 01040110 o01l05010C
0106

0106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 0 3 0

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFFTF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF

FINAL REGISTER CONTENTS:
01080110 02290110 0103010C 01040110 0105010C

01060106 00000000
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THE MICROCODE FOR INSTRUCTION 7 :

CYCLE NUMBER

INITIAL REGISTER CONTENTS:

01010110
01060106

0102010C
00000000

FOR UNITS:
THE FUNCTIONS ARE:

THE GATING MATRIX:

T T T T m

0103010C
8 9
0 1

(SOURCE=COLUMN;

MmMTTmTTTT T T T T M

M T T M

MMM

T T

T M T T M

oio0u40110

T T m

T T M T M

TmTmTTTTTnTTm T T M

0105010C

SINK=ROW)

mTTmTTTTThm T T T m
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CYCLE NUMBER 2

INITIAL REGISTER CONTENTS:
01010110 0102010C 0103010C 01040110
01060106 00000000

FOR UNITS: 8 9 10
THE FUNCTIONS ARE: 0 3 0

0105010C

THE GATING MATRIX: (SOURCE=COLUMN; SINK=ROW)

FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFEFFEFFFFF
FFFEFFFFFFF

FINAL REGISTER CONTENTS:
01010110 0102010C 0103010C 01040110

01060106 00000000

0105010C
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THE HARDWARE DATA PATH IS COMPOSED OF:

NO OF UNITS= 10 TOTAL REGISTERS= 7 SYSTEM COST= 54
WT AVE EXEC TIME= 800 CYCLE TIME= 10

DATA PATH UNIT NUMBER: 1 2 3 &4 5 6 7 8 910
UNIT TYPE NUMBERS ARE: 1 1 1 1 1 1 1 2 3 &4

THE DATA PATH CONNECTION MATRIX: (SOURCE=COLUMN; SINK=ROW)

e I I R s B s e B s B s B g s |
M7
Mg 4TI
4T TTmTITmM
By B T B a T s T a Bt 2 B 2 B 2 B 3
MMM T M
MMM TN
M7 T TTM AT -
B R R B B, R P
e B e e I B B s B s s s |
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