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ABSTRACT

A general mathematical model for a robot, where each link is driven by electrohy-
draulic servo valve and actuator, is developed. Based on this model, several notions for
compliance of the end effector of the robot due to changes in the external load on the
end effector are defined. Both, global and local, dynamic and static compliance notions
are introduced. A formula for the closed loop local, static compliance of the end effector
is derived in terms of the robot stiffness, the hydraulic servo valve leakages, the
geometry of the robot, and the feedback gains. It is shown that effective feedback con-
trol design involves consideration of a tradeoff between good closed loop stability proper-

ties and reduction of the closed loop end effector compliance.
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1. INTRODUCTION

Most heavy duty industrial robots are driven by electrohydraulic servo actuators,
controlled by independent position feedback loops. It is well known that such robots
may have high compliance at the end effector (i.e. their stiffness or rigidity is low) with
respect to variations in the external load on the robot at the end effector {2]. Such a
poor compliance property arises from several sources, but the primary source for
hydraulically driven robots is the leakage of the fluid within each of the joint actuators.
This source of compliance can be only marginally influenced by the particular design of
the hydraulic servo valves and actuators. Moreover, the interaction between the
motion of the multiple robotic links plus the hydraulic compliances at each joint make
the characterization of the overall compliance of the robot at the end effector a difficult

problem.

One approach to reducing the robotic compliance at the end effector would be use
of a controller based on direct measurements of the load. Such load feedback control is
known to allow improvement of positioning accuracy in a variety of situations
[7,8,12,13,16,17]. A related approach, but one that is more suitable for electro-
hydraulically driven robots, is to use a controller based on feedback of the pressures in

the hydraulic cylinders.

Specifically, it is suggested that an effective controller for an electrohydraulic
driven articulated robot should depend on both link dispilacement feedbacks and
cylinder hydraulic pressure feedbacks from the joint actuators. Since the cylinder pres-
sures are directly related, through the geometry, to the joint torques and hence to the

load on the end effector it is expected that use of the pressure feedbacks should provide
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the opportunity for improved control. Although there is a substantial body of material
available on control of simple hydraulic servo systems [4,10,15] and on control of articu-
lated robots [5,8,11] there has been scant research on the control of articulated robots

using electrohydraulic joint actuators.

Mathematical models are developed for describing the motion of articulated robots
driven by electrohydraulic joint actuators. The models include the effects of the
hydraulic actuator dynamics, the link dynamics and the geometrical constraints
between the actuators and the links. Such models can serve as a basis for the design of
effective controllers, based on link displacement and actuator pressure feedbacks.
Further, the models can be used to evaluate the advantages of using pressure feedbacks
as a part of the controller in terms of improved compliance properties of the robot at
the end effector. A centralized controller for all actuators should take into account the
multivariable and nonlinear coupling between the links, the actuator compliance

characteristics, as well as the specific motion control objectives for the end effector.

2. CHARACTERIZATION OF END EFFECTOR COMPLIANCE

A general form for the equations of motion of a wide class of articulated robots

with n links and n joints are

M(©)® + H(0,8) = T
where ©cR" is the vector of link angles and TeR™ is the vector of external torques at
the joints, [3,11]. Here M(©) represents an inertia matrix function and H(B,é)

represents a vector function which defines the Coriolis and gravitational terms. In our

case the external joint torques are of the form

T=TG+TL
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where T, are the torques supplied by the hydraulic actuators
T, = G(8)f,

where f, is the vector of actuator forces (i.e. cylinder pressures multiplied by cylinder
areas) and G(©) depends on the geometry between the links and the actuators. Also

T, are the load torques experienced at the joints
TL = TL (FL ve)p

where F), represents the load force at the end effector. It is assumed that the load

torques at the joints vanish if the load force is zero, i.e. T, (0,8) = 0.

A general mathematical model for a wide class of electrohydraulic servos is given

by [9,10]
K™Y, + G, f, + GT(8)8 = u

Here u represents the normalized currents to the servo torque motors and, as before, f,
represents the vector of actuator forces. This model includes the effects of fluid
compressibility through the constant actuator stiffness matrix X, and the effects of
fluid leakage around the actuator pistons through the constant leakage sensitivity
matrix G,. The simplified model for the electrohydraulic actuators does not take into
account friction forces in the cylinders or nonlinear high frequency dynamics of the
servo valves and actuators; it is felt that such effects are not crucial to a careful study

of the compliance effects at the end effector and hence they are ignored.

Thus the open loop model of an articulated robot driven by multiple electrohy-

draulic joint actuators is given by the equations

M(8)8 + H(0,8) = G(8)f, + T, (F},0)
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Ky, + G, f, + GT(8)8 = u.

The inertial displacement of the end effector of the robot is denoted by the vector z

and depends on the geometry of the robot and the link positions through

z = 7(9).
These equations are representative of a large class of robots driven by electrohydraulic
actuators.

Assuming that F, eR® and zeR3, definitions of the robot compliance at the end
effector are now given. First the notion of open loop static compiiance at the end effec-
tor is introduced. Assume that the servo currents are constant and given by #. Sup-
pose that if there is no load force, F;, = 0, then the robot is in equilibrium with con-

stant joint angles © and constant actuator forces f, where

H(8,8) = G(8)/,

GJ. =T

Now assume that the load force F} %0 is constant; then the robot is in equilibrium with

constant joint angles © and constant actuator forces f, where

H(6,8) = G(8)f, + T, (F; .9)
G,f, =T

The implicit relation

a

F,—~2(8) - Z(8)

defines the open loop static compliance of the robot at the end effector. This compli-

ance is a 3X 3 nonlinear matrix function.
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Next, the notion of open loop dynamsc compliance at the end effector 1s intro-
duced. Assume that the servo currents are given by the specified time functions
7(t),t>0 , Suppose that if there is no load force, F;, = 0 , then the robot motion is

described by joint angle functions 6(t) and actuator forces f, (¢),t>0 , where

M(B)8 + H(B,8) = G(B],

K, + G,J. + GT@®)® ==
Now assume the load force F 50 is constant; then the robot motion is described by

joint angle functions G(t) and actuator forces f, (¢t),t>0 , where

M(8)6 + H(6,8) = G(8)f, + T(F,8)

KV, + G,f, + GT(0)® = &.
The implicit relation
FL—Z(8(t)) - Z(8(t))
defines the open loop dynamic compliance of the robot at the end effector. This compli-
ance is a 3X 3 nonlinear and time varying matrix function.

It is further possible to define local compliance of the robot at the end effector
through (Frechet) derivatives of the defined nonlinear compliance maps, evaluated at
F;, = 0.

The above definitions of open loop compliance at the end effector are easily modi-
fied in the case where the input servo currents are not a priori specified but rather are
determined according to a feedback relation. Thus the notions of closed loop static
compliance and closed loop dynamic compliance are obtained. Our interest is to con-

sider the closed loop compliance issues in the case that the controller is of the general
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feedback form
u= Gy(8) + G/ (f,)

depending on the joint displacements © and the actuator forces f, ( or equivalently the
cylinder pressures). Such a controller form is sufficiently general to include controllers
designed using recently developed techniques {1,5,14]. For consistency with the previ-

ous notation the feedback functions G,(8) and G,(/,) should satisfy

= G(8)+ G (f,)

Our choice of controller based on feedback of link displacements plus actuator
forces (or cylinder pressures) is motivated by the effectiveness of load feedback gen-
erally and by the theoretical results of our previous work in {9]. However, similar con-
trol approaches based on link acceleration feedbacks or on dynamic ‘‘high pass filtered’

actuator force (or cylinder pressure) feedbacks can also be examined.

Our objective is to develop a procedure for determining the robot compliance in
terms of the characteristics of the mechanical configuration of the links and actuators
and their dynamic characteristics. Our procedure is based on the development and use
of linearized equations suitable for an analytical characterization of local compliance
effects. A related objective is to use such a characterization as a basis for the design of
feedback controllers which, to some extent, are able to improve the compliance proper-
ties of the closed loop. As suggested earlier, the key to improved closed loop compli-
ance at the end effector is felt to be the intelligent use of cylinder pressure feedback

loops and joint position feedback loops as a basis for the control logic.
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3. CHARACTERIZATION OF LOCAL STATIC END EFFECTOR COM-

PLIANCE

Consider the problem of characterizing the ‘‘local” static compliance of an elec-
trohydraulic driven articulated robot. If the nonlinear link dynamic equations are
linearized about the equilibrium values for the joint angles © and actuator forces f, the

resulting linear equations are of the form
MA® + KA® = BAf, + CF,

where M,K,B,C are suitably defined Jacobian matrices, evaluated at the equilibrium
values. In general the matrices M and K are symmetric and positive definite. The

corresponding linearized equations for the actuator forces are
K Af, + G?Af, + BTA® = Au.
The change in the position of the end effector, based on a linearized approximation, is
Az = DAB

where D is a Jacobian matrix evaluated at the equilibrium. In the above equations

Az = Z(8) - Z(8).
Now suppose that the closed loop control is of the form
u=1u+ G;(8-8)+ G(f, - 1)

so that
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Au= - G,A8 - G, Af,

for constant diagonal feedback gain matrices G; and G, . Consequently, the closed

loop equations are

MA® + KA® = BAf, + CF,
K, 'Af, + (G, + G)Af, + G;06 + BT A8 =0

Az = DAO.
Thus, the conditions for equilibrium are that

KA® = BAf, + CF,

(G, + G/)Af, + G448 =0,

Hence the variation in the end effector position can be expressed in terms of the load

force F; as
Az = D[K + B(G, + G;)'G,|"'CF,
Thus the constant matrix
DK + B(G, + G;)'G,;]'C

defines the “‘local” closed loop static compliance of the end effector.

4. LIMITS ON THE LOCAL STATIC END EFFECTOR COMPLIANCE

It is clear that to reduce this robot compliance the feedback gain matrices should
be chosen so that (G, + G;)G; is as large as possible. But the feedback gain matrices
must also be chosen so that the closed loop is locally asymptotically stable, and this
stabilization constraint limits the possible reduction in the robot compliance. In [9] it is

shown that a sufficient condition for local asymptotic stability of such a closed loop

10 Compliance at the End Effector



RSD-TR-14-84
system is that the effective actuator transfer function matrix
Hy(s) = [Ki% + G/l + < Gy

be strictly positive real. Under the stated assumptions this requirement is that there is

5> o0 such that
3 |, Go - &) + B ju - 9)

is nonnegative definite for all real w .

One particularly simple form of feedback control is the case of decentralized con-
trol for which the gain matrices G; and G, are diagonal matrices. Since G, is diagonal

in this case the above stabilization constraint can be written as
Ki'>(G, + GG,
Hence the matrix
D[K + BK,'¢
defines a limit to the possible local static compliance of the closed loop.

It is clear that the selection of feedback gain matrices G; and G, involves con-
sideration of a trade-off between closed loop stability (or speed of response) and closed

loop compliance reduction.

5. CONCLUSIONS

A general mathematical formulation of the robot dynamics, including a simple
form for the hydraulic servo valve/actuator dynamics, has been given. Based on that
formulation several notions of compliance of the robot end effector, with respect to load

changes at the end effector, have been presented. A rather simple characterization of
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the local static end effector compliance has been derived; this compliance is shown to

depend on the link and actuator geometry, the local robot stiffness, the actuator leak-

ages, and the feedback gain matrices. By making use of a previous stabilization result,

the control design trade-off between closed loop stability and compliance reduction at

the end effector is clarified.
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