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ABSTRACT

It is shown that the theory of Hamiltonian control systems can be extended
in a very nafural manner to a theory of Hamiltonian control systems with con-
straints. In particular, these problems may be formulated either in terms of the
original (symplectic) manifold or in terms of the constraint manifold. The
analysis of such problems is shown to be essentially equivalent to the analysis of
systems of controlled singular (differential-algebraic) equations. Certain robotic
control problems, defined by task constraints, are shown to fall within the

defined theoretical framework
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1. Introducticon

In recent years there has been great interest in Hamiltonian control systems
[6,9,20], control systems which preserve the natural Hamiltonian sfructure. A
‘great number of important mechanical systems are of this type. There has also
been much interest recently in the theory of constrained Hamiltonian systems.
Such systems have turned out to be of importance in the theory of integrable
Hamiltonian systems; for example see [10]. In addition, there has been a recent
realization that such problems provide a suitable framework for a number of

interesting engineering applications.

In this paper, we develop a framework so that the theories of Hamiltonian
control systems and constrained Hamiltonian systems can be combined .in a very
natural way to produce a theory for constrained Hamiltonian control systems.
We show how constrained Hamiltonian control systems may be formulated either
on the original symplectic manifold or on the constraint manifold. Control
theoretic problems may be formulated in either context, but an explicit formula-
tion in terms of the constraint manifold may be most suitable for purposes of
analysis and control design. Decomposition methods for obtaining such a formu-
lation are presented. We briefly mention results on feedback stabilization and
optimal control for constrained Hamiltonian control systems which have been
developed elsewhere. A controllability result is stated, the proof following from

previous controllability results and from the framework established for con-
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strained Hamiltonian systems.

Constrained Hamiltonian control systems can also be viewed as singular sets
of differential equations; in this case they are sets of coupled differential and
algebraic equations in control theoretic form. The connection of constrained
Hamiltonian control systems with a special class of controlled singular systems is

thereby established.

Finally, the importance of such theoretical problems in applications is
shown. The emphasis is on the critical role of constraints in properly defining an
important class of robotic control problems associated with the application of

robots to advanced tasks involving interaction with their environment.

2. Controlled Hamiltonian Systems With Constraints

Hamiltonian control systems were first introduced in [6] and developed in
[4],[9] and [20], for example. We consider here the case of affine Hamiltonian

control systems with constraints.

Let M be a differentiable manifold with local coordinates (¢!, - - -, ¢*) on

M and let T+M denote the cotangent bundle of M with local coordinates

1 1

(¢, -, q",pL,---,p") on T*M. T+M is a symplectic manifold and its

symplectic form is given locally by
w=Ydp' Ndg’. (1)
3 -

We suppose that we have a Hamiltonian function H: T#M — R given by

H(q,p) = T(q,p) + V(q) where T(q,p) is a kinetic energy function on T*M that

2 Hamiltonian Systems
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is a positive definite quadratic form in p!,---, p™ and V{q) is a potential

energy function on M. We denote by X the Hamiltonian vector field associated
‘with H(q,p).

We also assume that there are functions G7: T+M — R that define control
vector fields X; on T#M,j=1, -+ - ,r, and functions ¢’ : T+M — R that define
constraint vector fields Y; on T+#M,j=1,---,2m. Thus the equations for a

constrained Hamiltonian control system are given by

2 = Xg(2) + T Xi(z) + T i 2), ®

or in local form

o =24l | v,

aps 7 J aps 7 J ap:

; 0H(q, 8G (g, 3¢’ (¢,0)
pi = 9H(g,p) ‘Z“i“gﬁ_ﬂ _Z.)\J.Mg_pl,z=1,...,n, (5)
J

3(]'. ] dq
¢'(¢,p) =0, i=1,- - 2m. (6)
The (uy, - - -, u,) are the control inputs and the (A, - - -, Xy, ) are the multi-

pliers corresponding to the constraints. Note that the control inputs and the con-
straint multipliers enter tﬁe equations in precisely the same manner, although
their meanings are quite different; the control inputs are viewed as arbitrarily
specified external inputs whereas the multipliers are viewed as implicitly specified

by the requirement that the constraints be satisfied.

Hamiltonian Systems 3
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Notice that this formulation is very much in the spirit of Dirac’s theory of
constrained Hamiltonian systems. In [11] the system is driven by a total Hamil-

‘tonian
Hr(g,p.\) = H(g,p) + YN 6 (9,9). (7)
In our more general context the system is driven by a total Hamiltonian
Hr(g.p. M) = Ho(g,0,8) + £ ¢ (0,9) | (8)
where

Hp(g,p,v) = H(g,p) + Y4 G (g.0) (9)

is the drift Hamiltonian together with the control Hamiltonians.

We now distinguish between holonomic and nonholonomic constraints as fol-

lows:
Definition 1. A set of constraints ¥/, j=1, - - -, m on T+*M is holonomic if the
forms dy?, j=1, - - - ,m define an integrable distribution on T+#M. Otherwise,

the constraints are called nocnholonomic.

Note that the definition is a slight generalization of the classical definition of
holonomic constraints: where the 7 are functions of the variables
g',i=1,---,n, only. In this case I =, j=1,---,m and

$7 =47, j=m+l, -, 2m.

4 Hamiltonian Systems



RSD-TR-22-88

3. Decomposition Of Controlled Hamiltonian Systems With

Constraints

In this section we show how the control of a Hamiltonian system with con-
straints may be viewed as the control of a Hamiltonian system on the constraint
manifold.

Suppose that the zero set of the constraints defines a submanifold N of

T+M. We assume that the matrix [{¢', ¢/ }] is nondegenerate, where {F,G} is

the Poisson bracket on T+#M. Thus N is symplectic.

Now we can generalize the arguments in [14] to the control situation as fol-
lows. Let Z denote the Hamiltonian vector field corresponding to
Ho(q,p,u) = H(q,p) + $u; G*(q,p). Since N i3 symplectic submanifold of
T+M at every point n of N, the tangent space of T*M at n can be decomposed

as

T T+M, = T N, ® TN,? (10)

where | denotes orthogonal complement. Then the vector field Z has the decom-
position
zZ=2Z"Ne®zZ"NLl. (11)
If v is any tangent vector to N then
AZN ) = w(Z,v) = <dHg,v> = <dHg |y, v>. (12)
Hence ZV is the Hamiltonian vector field on N corresponding to Hg |y, the res-

triction of Hy to N, relative to the restricted symplectic form WiN-

Hamiltonian Systems 5
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Now let Y; denote the Hamiltonian vector field corresponding to
¢, j=1,--- 2m. Since the ¢/ = 0 on N, the restricted control vector fields
YJ-N satisfy YJ-N= 0, and the Y;, j=1, -, 2m, thus form a basis of TN™.
Hence 2V | =Y )\;, for some scalars \,..., Ao ,andZN::Z' where ZT is the
Hamiltonian vector field corresponding to HT[q,p,)\,u). Now along
N, 2T ¢¥X ={Hy ,¢* }=0. Hence

{Ho, 67} = TNi¢', 87}, j=1,- -, 2m. (13)
Since the matrix of Poisson brackets [{¢', #7 }] is nonsingular at each point of N,

there is a unique solution for A;, - * * Xy, . Thus we have the following.

Theorem 1. The full Hamiltonian Hp constraints the Hamiltonian control sys-
tem to the constraint manifold N, and if the matrix [{¢', ¢7}] is nonsingular on

N we can solve uniquely for the multipliers A;, - = -, Ay, .

We see from the above development that the constraint multipliers
AL, " *y Ao, depend on the drift vector field, the control vector fields and the
constraint vector fields. It is this intrinsic coupling that significantly complicates
the analysis of control problems. Nevertheless, the Hamiltonian structure is

preserved on the constraint manifold, as has been shown.

Now if T+M = R2" we can follow the arguments in [10] to show that the
Poisson bracket on the constraint manifold NV, {F3&}y is related to the Poisson

bracket on R2*, {F,G}, by

6 Hamiltonian Systems
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{F,G}y = {F,G} - Z{F@i Yeii ' {e',G) (14)
857

‘where c,-JTl is the i7** entry of the inverse of C = [{q&" 3l }]- We thus have

Theorem 2. The equations of motion of the Hamiltonian control system con-

strained to N are

¢' ={¢',Hr}, i=1,-"",n (15)
;.)"={p’.,HT}, =1, ,n. (18)
or, equivalently, -
¢' =", Holy, i=L- . (17)
P =" Hely, =L, (18)

Thus we can regard the system as evolving on R?* under the full Hamil-
tonian Hy with respect to the original bracket_structure or as evolving on the
constraint manifold N C R2"* under the control Hamiltonian H, with the con-

straint manifold bracket structure.

We also have the following theorem which follows from [21].

Theorem 8. Suppose 1/, j=1, - -+, m are a set of independent holonomic con-
straints on T#M with m < n. Then there is a local canonical transformation
g: T+M O U — T+M such that the transformed constraint functions J ] =
W °0g = Qf, j=1, - - -, m, if and only if wf, J=1, - - -, m are in involution,

i.e.

Hamiltonian Systems 7
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{¢‘? ')bj} = 0’ i’ j=17 e ] m. (lg)
Here Q7, j=1, -+ -, n are the transformed configuration coordinates.

Thus, after a canonical transformation, locally the constraints can be written

Ql=Q*= -+ =Q" =0 (20)

Note that for constraints in the classical formv the involution condition is
automatically satisfied, and only the linear independence condition is required to
satisfy the assumptions of Theorem 3.

For a system on T+#M =R, with holonomic constraints
¥i(q) =0, j=1, -, m, we can write this transformation quite explicitly as

follows. We partition the n-vectors ¢, p and transformed n-vectors @), P as:

Q@
Q.

91
92

P

45 (21)

qg= p= Q=

where ¢, is an m-vector and ¢, is an n-m vector, etc. Then it is possible to find
a function & gq,) such that ¥(&q,), ¢5) = 0 is satisfied locally. Now consider the

canonical transformation given by the generating function
F(q, P) = (q,-&(q2))Ps + q,P. (22)
Then, the transformation is given by [13]

Q1='11‘5(‘12) p,=P,
L) 23
Qo= 4, pp=PFPy-—P, (23)

8 Hamiltonian Systems
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and the transformed equations are

Q ={(Q Hr}i=1--n, (24)
Pi={P Hyp)i=1 --n, (25)
Qi =0i=1"-""m, (26)

where the transformed Hamiltonian is

H(Q P, u,N)=Ho(Q P, eF Y\ QF (27)

i=1
and H (@, P, v) = Hy(q,p,u).

Since Q'=0, i=1,...,m the first m of equations (24) can be used to
express P, in terms of (Py @, u); the first m of equations (25) can be used to
express X in terms of (P, @, u). Thus the last n-m of equations (24) and of equa-

tions (25) can be written as ordinary differential equations in (P,,Q,) and u,

which characterize the dynamics on the constraint manifold.

4. Constrained Hamiltonian Systems As Singular Systems

It is clear from the above development that analysis of control problems con-
strained to a given manifold invoives both differential equations and algebraic
equations. In fact, these coupled differential and algebraic equations can be

represented as a singular set of differential equations.

This can be seen explicitly by writing our constrained Hamiitonian control

equations, using vector notation, in local form as

Hamiltonian Systems 9
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0H(q,p) 8G 7 (q,p) 847 (q,p)
—_—1 3 °. + I\, 2D
? J ap ? J ap

1 0 of- dp
q
- ] / 28
0 1 0|lp|= _9H(g,p) _2,,1.22_1&31 - TN 9¢7 (g,p) | (28)
a g 7 dq 7 dq
A
0 00 é(q,p)

or equivalently

GHT(q,p,)\,u)
1 0 0] dp
q
aHT(q>p7)‘7u)
— | 29
0 1 0 P 37 (29)
' A
0 0 o 6HT(q7p1k7u)
oA

In this form, we have 2n + 2m coupled equations: 2n differential equations and
2m algebraic equations, in the 2n + 2m variables (¢,p,\). These equations are
inherently coupled through the constraint multipliers that appear in the differen-
tial equations. Note that the constraint multipliers do not appear in the alge-
braic equations, so the algebraic equations cannot be explicitly used to solve for
the multipliers. Thus the differential and algebraic structure of the equations is

of an especially complex form.

Such singular systems have been studied in recent years [7,8] but there are
few theoretical results that can be applied to the class of systems of interest here.
However, it should be mentioned that there have been a number of results
obtained for the numerical solution of initial value problems {2,12,18] for singular

systems of the class considered here.

10 Hamiltonian Systems
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From the theoretical analysis of Section 3 and the previous work in [15,17],
it becomes clear that there are two distinct approaches to the analysis of control
‘theoretic problems for constrained Hamiltonian control systems expressed in

singular form.

One method is to solve, in algebraic form, for the multiplier vector A from
equation (13), and to substitute into equations (15) and (16) to obtain a differen-

tial equation on R 2" .

The alternate approach is to decompose the system to obtain nonsingular
differential equations which give a representation of the motion on the constraint
manifold. Theorem 3 is the key for carrying out this procedure. One makes a
canonical transformation so that the constraints are in the simple form given by
equation (20). We can thus obtain a set of 2n — 2m differential equations on the

constraint manifold.

Note that the basic approaches suggested here each depend on the use of the
Hamiltonian structure. Our view is that consideration of general nonlinear singu-
lar systems is not a tractable approach, but that progress can be made for the

class of systems of interest here by exploiting the Hamiltonian relationships.

5. Control Problems For Constrained Hamiltonian Systems

The two approaches to control of constrained Hamiltonian control systems

discussed in Section 4 have been shown to be useful in different ways.

The first approach, that of solving for the multipliers, has, for example,

proved useful in optimal planning problems for constrained robot manipulators

Hamiltonian Systems 11
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[15]. There that approach was used to develop a numerical procedure to solve a
time optimal control problem for a control system constrained to follow a given

“path and with a given contact force (multiplier) vector.

On the other hand, the second approach Based on canonical transformations
to simplify the constraints has been used in the analysis of stability of closed loop
constrained robot manipulators [17]. Closed loop stability on the constraint man-
ifold (such that the motion and multipliers satisfy a regulation or tracking pro-
perty) is guaranteed in terms of conditions on the feedback controller; both glo-
bal and local modifications of the computed torque controller used in robotics are
included. Although the development in these papers was carried out in a Lagran-
gian formulation, these results can be restated in the Hamiltonian form con-

sidered here. Detailed statements of these results can be found in the indicated

references.

We state here a controllability result which follows from our previous
development. We say that the system (2) and (3) is controllable if for all z and y
in T*M there exists an admissible control and a time T > 0 such that there is a

solution of equations (2) and (3) satisfying z(0) = z, z{T) = y.

Theorem 4. Suppose we are given the constrained Hamiltonian control system

defined by equations (2) and (3). Suppose that the control constraints

iuj(t)l <li=1,--,r | (30)

12 Hamiltonian Systems
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are imposed, and the constraint manifold N is compact. Then the system is con-
trollable on the constraint manifold N if and only if the vector fields
(XN, Y{V Y,.N} satisfy the accessibility rank condition, where XV is the

drift Hamiltonian vector field restricted to the manifold N and Y]-N are the con-

trol vector fields restricted to the manifold N, j=1, - - -, r.
Proof: Recall that the accessibility rank condition for {XV, YV, - - ¥V} is
that the Lie aigebra generated by {XV, Yf’ ,+*+, Y2} spans the tangent space

of N at each point in N. Necessity then follows from the results of Sussman and
Jurdjevich in [19] and sufficiency from the results of Bonnard in [5], since, by our
earlier analysis, X" is Hamiltonian on N which is compact and hence the set of
points which are Poisson stable with respect to X% is dense in N. (Poisson sta-

bility is discussed in [5].)

6. Control Of Robot Tasks Defined By Holonomic Constraints

Finally we describe several robot tasks which give rise to the imposition of
holonomic constraints of the above form. Additional details, including the
specific form of the equations in Lagrangian form, are given in [16]. Such holo-
nomic constraints naturally arise in cases where the end effector of the robot
interacts with its environment in a way that should be reflected in the dynamics
of the robot. We mention three cases here. I the end effector of the robot is to
pick up an object (where the dynamics of the object are not neglibible), then the
system dynamics are defined by the dynamics of the robot and the dynamics of

the object constrained so that the end effector of the robot grasps the object. If

Hamiltonian Systems 13
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the end effector of the robot is to move along a specified (rigid and noncompli-
ant) surface, then the system dynamics should reflect the robot dynamics plus
‘the contact force required to maintain satisfaction of contact between the end
effector and the surface. If two robots are to cooperatively grasp a rigid object,
then the system dynamics are defined by the dynamics of each robot and by the
constraint that they are grasping a common object. These robot tasks are
beyond the capability of most current industrial robots; there is no existing

method for control of the robots to cause them to carry out the desired task.

It is suggested here that the proper way to view such advanced robot prob-

lems is through a formulation involving constrained Hamiltonian control systems.
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