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Abstract

A general approach to the displacement or position control of a nonlinear
flexible structure using electrohydraulic servo actuators is developed. Our
approach makes use of linear feedback of measured structural displacements
plus linear feedback of the actuator control forces; a nonlinear feedforward
function of the displacement command is also used for control. Based on a
mathematical model of the closed loop, general conditions for closed loop stabil-
ity are obtained. In the special case that the feedback is decentralized the sta-
bilization conditions are stated in terms of simple inequalities; moreover, the
stabilization conditions are robust to structural uncertainties since the condi-
tions do not depend on explicit properties of the structure. Such robustness is a
direct consequence of use of force feedback rather than, for example, accelera-
tion feedback. Conditions are also developed for selection of the feedforward
control to achieve zero steady state error; but this condition does depend on
explicit properties of the structure. The theoretical results developed in the
paper should provide a framework for advanced applications of control of
mechanical systems using electrohydraulic servo actuators.
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1. Introduction

FElectrohydraulic servo actuators have been widely used for position con-
trol of large loads. Common applications include position control of antennas,
of airframe surfaces, and of machine tools. Such applications are character-
ized by relatively simple load dynamics and use of a single actuator. In applica-
tions where substantial stability margin is required, use of actuator force (or
pressure) feedback and displacement feedback as inputs to the electrohy-
draulic servo valve has proved desirable [1,2]. Recent work on use of electrohy-
draulic servo actuators for position control of robotic devices [3] and for posi-
tion control of civil engineering structures [4] are characterized by compli-
cated structural load dynamics and use of multiple actuators. Our objective is
to demonstrate the feasibility of using a generalized form of actuator force (or
pressure) feedbacks and displacement feedbacks as inputs to the multiple elec-

trohydraulic servo valves.

In this work a general mathematical theory is developed for the multivari-
able displacement control of an arbitrary nonlinear flexible structural load con-
trolled by multiple electrohydraulic servo actuators. Specific mathematical
equations are developed to describe the structural load dynamics and the
actuator dynamics. Closed loop control is investigated using force and dis-
placement feedback, plus feedforward of the position command. General sys-
tems theoretic conditions on the feedback are developed for which the closed
loop is guaranteed to be stable; it is shown that the suggested feedback loops
result in a particularly robust closed loop system. The general stabilization

conditions are considerably simplified to simple inequalities if decentralized
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feedback control is used. Mathematical conditions are also given for selection
of the feedforward control to achieve zero steady state controlled displacement
error. Two special cases of the general results, that appear of particular

interest in certain applications, are examined.

2. Mathematical Models

Consider a general structural load controlled by multiple electrohydraulic
servo actuators. A typical part of the system, showing a part of the structural
load connected to one of the electrohydraulic servo actuators, is shown in Fig-

ure 1,

The mathematical model of the structural load to be controlled is first
described. For simplicity, a finite dimensional model of the structural load

dynamics is assumed of the form

Servo
Valve t
| it f Load |
IR0 Mass RO oo
: Element
i 2 L_.. L/]
Figure 1

Displacement Control of Flexible Structures 4



RSD-TR-8-83

Mz + F(z) = Bf (1)

Here z = (z,,...,z,) denotes a generalized structural load displacement vector
and f = (f,...../m) denotes the hydraulic control force vector on the struc-
tural load. The n X n mass matrix M is assumed to be a constant symmetric,
positive definite matrix. The n X m influence matrix B is a dimensionless
matrix which reflects the location of the actuators and the geometry of the
structural load. Note that the displacement vector w = (wl,..'.,w,,,) of the

structural load at the locations of the actuators is given by
w=B"r (2)

where the superscript T denotes matrix transpose. The flexible nonlinear res-
toring force function F:R™ » R™ is assumed to be continuously differentiable
such that: tor given initial displacement z (0) and velocity z(0) and given con-
trol force function f(t), ¢ = 0, equation (1) has a unique solution defined for
t » 0. Further, it is assumed that F:R™ » R™ has incremental positive stiff-
ness in the sense that for each z € R™ there is a scalar potential function

Q:R™ - R’ satisfying @(0) = 0 and
i z|12<Q(z)<p ||z||® torallzecR™
with u; = 0, uz = 0, such that
F(z+Z) - F(Z) =VQ(z) for all z € R™ .

One common case is where the structural load dynamics are characterized by
an elastic restoring force so that F(z) = Kz, with K and n X n matrix that is
symmetric and nonnegative definite. Many structural loads have very small

intrinsic damping; in fact, feedback control is often used to actively augment
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the structural damping. In this work it is assumed that there is no explicit

damping in the structural load dynamics.

Conventional characteristics of the electrohydraulic servo actuators are

assumed [1]. The force f; between the i** actuator and the structural load is

given by

Ji=Ap, . i=1,.m (3)

where 4, is the effective piston area and p, is the differential pressure in the
cylinder of the i servo valve. The usual flow balance relation for the i** servo

valve is assumed
N A .
Az + B P Quy — Lipy, i=1,....m . (4)

Here 2, is the relative displacement of the piston of the i** servo valve and u; is
the current controlling the i® servo valve torque motor. Also V; is the effective
volume of the i** servo valve cylinder, B; is the fluid bulk modulus, I, is a leak-
age parameter and & is an input flow sensitivity parameter; each of these

parameters is assumed to have a positive value.
The force f between the structural load and the i** actuator is given by
Ji=k¥zi—w) . i=1..m (5)

where k} denotes the stiffness of the connection between the structural load

and the 1** electrohydraulic servo actuator.

Thus equations (1) to (5) form the basic mathematical model of the gen-
eral structural load influenced by the multiple electrohydraulic servo actua-

tors. These equations can be simplified and expressed in a more compact
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form. Although there are numerous choices of primary variables that could be
selected our subsequent analysis will be based on use of the structural load dis-
placement vector z and the actuator force vector f. Then the above equations

can be written in the vector form

Mz + F(z) = Bf (6)

Ki'f =-BTz ~Glf +v . (7)

Here

Kh—’l = dlag

1
=, +
B\Af ki’ B AR kP

denotes the effective compliance between the actuators and the structural

load; the leakage sensitivity matrix is

L,
Gl = dlag

" Am ]
and the effective actuator input vector is given by

Q, @
™

v Upy,

Our subsequent development is based entirely on equations (8) and (7), which
form a general mathematical model for a structural load controlled by multiple

electrohydraulic servo actuators.

Although the mass of the hydraulic piston has not been explicitly taken
into account in this development, it can be handled within the general frame-
work of equations (8) and (7). In particular the piston mass and the transmis-

sion stiffness can be included as part of the structural load equation so that the
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form of equations (6) and (7), including piston mass effects, is preserved.

3. Control Objectives

The specific displacement control objectives are now stated. A general
controller consisting of linear feedback of displacement and force and non-
linear feedforward of the position command is suggested. The resulting closed

loop multivariable system is described.

Suppose that ¥ = (u,,....Ym ) Where

y=Cz (8)
denotes the output vector displacement of the structural load to be controlled.
In particular, if ¥ = (¥,.....Jm) denotes a constant command or set point dis-
placement vector then the control problem is to select the actuator input vec-

tor v sothat y(t) » 4 as t - =, for each initial state.

Our approach is to make use of suitably defined feedback to achieve the
desired result. In particular, it is assumed that the control is based on feed-
back of the displacement vector w of the structural load and feedback of the
force vector f; such feedback depends on use of displacement transducers
suitably mounted on the structural load and of force transducers (load cells)
between the actuators and the structural load. A similar development could
easily be carried out if feedback of the displacements z,,...z, of the servo
valve pistons and feedback of the servo vale differential pressures p,.....pm

we 'e assumed.

Note that in general the displacement vector y to be controlled is not the

displacement vector w fed back to the controller. These two structural load
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displacement vectors are the same only if C = BT,

The assumed form for the controller, stated here in terms of the effective

actuator input vector v, is given by

v =G(y)-Gw -Gy . (9)
Thus the controller is defined in terms of a nonlinear feedforward function
G:R™ -» R™ of the displacement command and a linear feedback function of

the measured displacement and force vectors. Here G% is m x m displacement

feedback gain matrix and G' is m x m force feedback gain matrix.

The closed loop equations are obtained by substituting the control relation

(9) and equation (B) into equations (8) and (7) to obtain

Mz + F(z) = Bf (10)

Kt =-BTz + G§) - G*BTz - ¢/ 1 (11)
where &f = GF + G,

The specilic control objectives can now be stated more explicitly in terms
of the above closed loop. The feedforward function G:F™ » ™ and the feed-
back gain matrices G% and Gf are to be selected so that for any constant dis-
placement command vector § the solution of equations (10) and (11) satisfy
y(t) » 4 as t » = for each initial state. This implies that the closed loop is glo-
bally asymptotically stable. Depending on the specific form of the controller,
even if the closed loop is stable there could be a steady state error between the
controlled structural displacement and the command displacement. Hence
selection of the specific controller should also be made to eliminate, if possible,

the steady state error. In many practical situations the structural restoring
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forces, as defined by the vector function F:R™ » R™, are not accurately known;
hence, the above results should be robust to uncertainties in the structural

restoring forces.

In the next selection, guidelines are given for selecting the feedforward
function G:R™ ~» K™ and the feedback gain matrices G* and G/ to achieve the
desired closed loop properties. The main difficulty is illustrated by the block
diagram of the closed loop, in Figure 2, where explicit coupling between the

structural load dynamics and the actuator dynamics is clear.

4. Analysis of Closed loop Properties

In this section the basic theoretical result of the paper is presented. An
interpretation of the result in systems theoretic terms is given. The general

result is then specialized to the case where control is based on decentralized

feedback.
t Structural
Load
Electrohydraulic
Servo —
Actuators - v
Figure 2
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As mentioned previously, satisfaction of the control objectives depends pri-
marily on selection of the feedback gains so that the closed loop is globally
asymptotically stable. The main theoretical result to follow gives systems
theoretic conditions on the feedback gain matrices G% and G/ which guarantee
that the closed loop is stable. Specification of the feedforward function

G:R™ -+ R™ is also given so that there is no steady state error.

As a preliminary, assume the nonlinear algebraic vector equations
F(z)-Bf =0 (12)

GCBTz + G f =q (13)

has a unique vector solution for each ¢ € R™ denoted by z = X(g), f =¥ (q)

where X:R™ » R™ and ¥.R™ -+ R™. Define the vector function S:R™ -+ R™ by
S(g) = CX(q) . (14)

Theorem. Suppose that
(a) M is symmetric and positive definite, and F:R™ -+ R™ has incremen-

tal positive stiffness (as described previously);

(b) the transfer function matrix defined by

Hy(s) = [K,{“s s G,]"'

I+ lG“‘l
s

is strictly positive real (as detined in Appendix A).
Then the closed loop, defined by equations (10) and (11), is globally
asymptotically stable, and for any constant displacement command vec-

tor y

Displacement Control of Flexible Structures 11



RSD-TR-9-83

y(t) » S(G(Y)) as t » e,
for each initial state.
If in addition,
(¢) S(G(y)) =y forally € R™

then for any constant displacement command vector
y(t) »7 as t >,

for each initial state,.

The constant vector X(G(%)) and W (G(7)) are the equilibrium displace-
ment veclor and force vector corresponding to the displacement command
vector i/. Although the closed loop, as shown in Figure 2, exhibits inherent cou-
pling between the structural load dynamics and the actuator dynamics it is
possible to Wefine the "effective” actuator dynamics H,(s), as above, so that

the closed loop in Figure 2 is equivalent to the closed loop as shown in Figure 3.

y
1 Structural B,
....__* - .
Load
S(G( ) }‘.__—’—_.__
Hy(®) g 1

Figure 3
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Based on condition (a) it can be shown that the structural load dynamics indi-
cated in Figure 3 are positive. By condition (b), the effective actuator dynam-
ics are strictly positive. On the basis of a standard argument in systems theory
it follows that the closed loop, as a feedback connection of a positive system

and a strictly positive system, is necessarily globally asymptotically stable.

The details of the proof are given in Appendix B.

Conditions (a) and (b) in the Theorem constitute a set of sufficient condi-
tions for stability of the closed loop. Note that condition (a) is a weak assump-
tion about the qualitative properties of the structural load. Condition (b)
depends only on the effective actuator compliance matrix K, ! and the feed-
back gain matrices of G* and G/. Thus the diagonal compliance matrix K;!
summarizes the actuator dynamic characteristics in a simple way. Note also
that condition (b) is independent of the specific characteristics of the struc-
tural load. Thus, if the actuators and feedback gains are selected so that con-
dition (b) is satisfied, it follows that the closed loop is globally asymptotically
stable for any incremental positive stiff structure. This robustness property is
particularly desirable since, as mentioned, detailed characteristics of the
structural load are not often known. Conceptually, acceleration feedback could
be used in place of force feedback, and stabilization conditions could be
developed using positivity arguments. However, it turns out that the stabiliza-
tion conditions for such feedback gains do depend on the properties of the
structural load. Thus displacement and acceleration feedback does not have
the same robustness property. Consequently, in applications where the struc-
tural load is uncertain a strong case is made that force (or pressure) feedback

is preferred to acceleration feedback.

Displacement Control of Flexible Structures 13
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Condition (c¢) in the Theorem indicates that the feedforward function
G:R™ -+ R™, should be selected as the inverse of the defined function
S:R™ » R™, in order that the steady state error be zero for any constant dis-
placement command. Such a specification of the feedforward control depends
on the feedback gain matrices G% and G and on the flexible structural restor-
ing force function F:R™ -» K™ Although closed loop stabilization can be
achieved independently of the structural load characteristics, accurate dis-
placement control of the structural load does require detailed knowledge of the

structural restoring forces.

An especially important practical case is where the control relation (9) is
based on decentralized feedback, that is the i* electrohydraulic servo valve
input v; depends only on feedback of w; and f; for each i = 1,....m. Thus G%

and &/ are diagonal matrices

G* = diag(g§.....gm) (15)

GI = diag(g{....94) . (18)

Such decentralized feedback control is especially easy to implement since con-
trol of the i electrohydraulic servo valve depends only on local feedback of
displacement and force. For such decentralized feedback condition (b) of the
Theorem can be written in terms of simple inequalities. This result is

expressed as follows.

Corollary. Suppose that
(a) M is symmetric and positive definite, and F:R™ » R™ has incremen-

tal positive stiffness:

Displacement Control of Flexible Structures 14
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(b) the inequalities
kigf>gf>0 i=1,..m
are satisfied where

L= d +—1— t=1,..m
ki BAE kb T

Then the closed loop, defined by equations (10) and (11), with decentral-
ized feedback gain matrices as in (15) and (18), is globally asymptoti-

cally stable, and for any constant displacement command vector 7

y(t) » S(G(Y)) as t » =
for each initial state.
If, in addition,
(¢) S(G(y)) =y forally € R™
then for any constant displacement command vector 7
y(t)+§ as Lt
for each initial state.

The Corollary follows since the inequalities in condition (b) can be shown in

guarantee satisfaction of condition (b) of the Theorem. (see Appendix C for

proof).

Selection of particular values of the gain matrices G% and G and the feed-
forward function G:R™ » R™ can be made using, in part, the guidance sug-

gested by the above theoretical results.

It the feedforward controller suggested above cannot be used due to

ignorance of the structural restoring force function then the controller may be

Displacement Control of Flexible Structures 15
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based on explicit feedback of the error 4§ — vy, where C = BT is assumed. In
such a case the feedforward function can be chose as the linear function

G(y) = G%y so that the controller is given by
u=GY-y)-67r

Selection of the control gain matrices G% and G, as before, does not depend
on explicit knowledge of the structural load to satisfy the stabilization condi-
tion. Note that if G* and Gf are chose to be diagonal then the controller is
completely decentralized. However, for this controller based on error feedback
there is a steady state control error given by ¥ — S(G%%). Reduction of this
steady state error can be achieved by use of high gain displacement feedback,
i.e. "large G*". But there is clearly a trade-off in selecting G® to achieve some

accuracy specification while also satisfying the stabilization condition.

5. Control of Multiple Structural Modes

Using a Single Flectrohydraulic Servo Actuator

In this section a particular case is considered where it is desired to control
the displacement of a single point on the structural load using a single actua-
tor. A schematic of such a contiguration is shown in Figure 4. As a further sim-
plification the flexible structural load is assumed to be elastic so that
F(z) = Kz, where K is symmetric and nonnegative definite. Since the struc-
tural load is assumed to be elastic the feedforward function G:R! » R! can be
taken as a linear function G(y) = g*y. where g* is a feedforward gain parame-

ter.
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/77 01 Y

/'’ (/¢ v/ q

10, \
Note assumed elastic ‘
connections between L

mass elements

I

LA A A A VA

Figure 4
Thus the closed loop is described by the equations
Mz + Kz = Bf
Sf=-BTz+g'§-g*BTz -g'f

ky

where [, Y. BTz are scalar valued and g%, g%, g7 are scalar gain parameters.

Displacement Control of Flexible Structures 17



RSD-TR9-83

In this case, the closed loop is globally asymptotically stable if
kng? >9¢>0 .
If, in addition, the feedforward gain parameter is

gt = d
d
c{}( + B ﬂ;—]BT
g

then for any command displacement vector i

-1
B

y@)»4 as t » =,
for each initial state.
It is clear that selection of the feedback gain parameters to satisfy the sta-
bilization condition does not depend on knowledge of the structural load, while

the indicated choice of the feedforward gain parameter to achieve zero steady

state error does require explicit knowledge of the stiffness of the structural

load.
To illustrate the above special case consider an example.

Example 1. A simple example is shown in Figure 5, where it is desired to con-
trol the displacement of the second mas m; using a single electrohydraulic
actuator, based on feedback of the displacement z; of the first mass and of the

force f between the actuator and the first mass. The equations describing the

closed loop are

m,."r', +k(z,~z2)=f

TVLgiz + kl(xg -x1) +kazo =0

Displacement Control of Flexible Structures 18
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/' (7!
'
m, — Xp
k,
IR
f
! S — 1,
NN PY

Figure 5

L, _
g =T Emr ey —gini-gls

In this particular case the closed loop is stable if the feedback gain parameters

satisfy
khg! > 9a >0 .

It, in addition, the feedforward gain parameter is

+glk,

k
s~ ,d 2
' =9 [1 t
then for any command displacement 3,

Za(t) » Yo as t » oo

Displacement Control of Flexible Structures
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for each initial state.

8. Control of Multiple Structural Modes

Using Equal Number of Electrohydraulic Servo Actuators

In this section it is desired to control the n-vector z of structural load dis-
placements using n electrohydraulic servo actuators. A schematic of such a
configuration is shown in Figure 8. As a further simplification the flexible

structural load is assumed to be elastic so that F(z) = Kx, where K is

(C ([ /Lyt 7

7/'//// ’ . (
fa
R0 9 — x,
RN |.l‘
rl 7t u
t
TR A — —>x
7 (¢ (7 7 l(
te Lt/ ﬁ
f,
R e —_— X

tt?vr 127

Note: ulmedexﬁ:et'm YA A
mass elements

Figure 6
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symmetric and nonnegative definite matrix. Since the structural load is
assumed Lo be elastic the feedforward function G:R™ -» R™ can be taken as a

linear function G(y) = G*y, where G* is an n x n feedforward gain matrix.

Thus the closed loop is described by the equations

Mz + Kz = f

Kilf =z + G°§ - GOz - G/ 1
where f, ¥, are n-vectors, and decentralized feedback is used so that

G? = diag(g%.....93)

G’ = diag(g{....9)

In this case the closed loop is stabilized if the feedback gain parameters

satisfy
kigf>98>0, i=1,..n .
If, in addition, the feedforward gain matrix
G =G+G'K
then for any command displacement vector ¢
z(t) Yy as t » o,
for each initial state.

It is clear that selection of the feedback gain parameters to satisfy the sta-
bilization condition does not depend on knowledge of the structural load, while
the indicated choice of the feedforward gain matrix to achieve zero steady

state error does require explicit knowledge of the stiffness of the structural
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load. Note that, in general, the feedforward gain matrix is not diagonal, so that
the controller is decentralized only in terms of the feedback. If the feedfor-
ward gain matrix were constrained to be diagonal then, in general, there would

be a nonzero steady state error.

FExample 2. Another example is shown in Figure 7, where it is desired to con-
trol, independently, the displacements of each of the two masses using two
electrohydraulic actuators, based on decentralized feedback of the two dis-
placements z, and z of the two masses and feedback of the two forces f, and
f 2 between the actuators and the masses. The equations describing the closed

loop are

-

¢ (1 ety 7

. ke
/71 (/77

l (1 try

t (/7 7

A A A A

Figure 7
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m,z, + ky(z, - z) = [,

Moz + k(23 —2,) +kaza= o

1, . _ _
wif1= =2+ gl + glele — gz - g{s,
h
1, . — _
";Efz = —zg + ghih + 9%l —gdz. —gife .
In this particular case the closed loop is stable if the feedback gain parameters
satisfy

kyg{ >gf>0
kfgf >gd>o0 .

If, in addition, the feedforward gain parameters

gh =gt + g{k,
9% = "U{kl

gt = —gik,
gle =98 + gl (k, + k)

then for any command displacements ¥, and j

z(t) -+
Zg(t)*‘gg as b » o,

for each initial state.

7. Conclusions

A general approach to the displacement control of flexible structures using
electrohydraulic servo actuators has been suggested. Under standard assump-

tions, mathematical models have been developed to describe the closed loop.
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It is demonstrated, in terms of the developed theory, that use of decen-
tralized force (or pressure) feedback and displacement feedback can stabilize
any structure with incremental positive stiffness, if the feedback gains are
chosen to satisty certain simple inequalities. This result is significant, since a
similar result for robust stabilization is not true if control is based on accelera-
tion feedback instead of the force feedback. Careful attention has also been
given to a proper selection of the feedforward function to achieve zero steady
state error; but the suggested feedforward function does explicitly depend on

the nonlinear structural load characteristics.

Specific details for choosing the values of the feedback gain parameters
have not been presented here, but it is felt that the general framework

developed here is an essential step before addressing specific parametric

design issues.
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9. Appendix A

Consider the abstract feedback relations

e =7 —-Qu
u = He .
The following system theoretic results are will known [5,6,7].

Theorem Al. Let Bl = L, [0,%) be the Hilbert space of vector valued, square
integrable, functions defined on [0,) and let l‘a be its extension. Let G and H

be abstract causal operators which map m, into l‘l, and ¥ into ll letr €
. If there exists 6 > 0 such that

T

T
{f’(t)H[f](t)dt = 6 {fr(t)f(t)dt

T
JrT)elreydt = o
forall f € ¥, and forall T> 0, thene € #.

Theorem A2. Let ¥ and 8, be as above and suppose

H{fr]t) = fh(t -7)f (1)dT ftor all <,
(]
where h is a square impulse response matrix, zero for negative arguments, with
elements that are Fourier transformable. Then H satisfies the above strict posi-

tivity conditions if its Fourier transform, denoted by H(jw), is strictly positive

real, i.e. if

BHGw) + H (jw)| =26 > 0 tor all w .

10. Appendix B

The proof of the main Theorem is given:

Detine Z = B(G(5)) and f =W (G(H)). and ¥ =z -z, f = f - T.
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Then equations (10) and (11) can be written as

Mz + F(£) = Bf
K\ =-BT5-GBTE -/ f .
and
y = CF +S(G(y)) .
where F(Z) = F(z +Z) - F (). Also define w = BTZ . Then the
equivalent black diagram of Figure 3 is obtained where the structural

load dynamics are defined by the nonlinear equation

MZ + F(%) = Bf
W= BT% .

The effective actuator dynamics are defined by the linear equation

A AL ~ ~

Ki'f=-u-Guw-G6'f

which has the transfer function matrix, from to —f, given by H,(s) as
defined in the Theorem. In the notation of Theorem Al = G[f](t)
defines the nonlinear structural dynamics and —f(t) = H[{](t) defines

the linear actuator dynamics.

Now, by condition (b) of the Theorem and Theorem A2 it follows that the

operator H is strictly positive.

Now considering the operator G define the function

V(E) = J(ETME + Q(F))

so that

Thus

dV,~ - g
E-t-(z)-ﬂ?’f .
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T
VEM) = [FTO6L 0t .
Since M is symmetric and positive definite and F:K™ » RB™ has incrementally
positive stiffness it follows that V(£ (7)) = 0; thus the operator G is positive.
Hence, from Theorem Al it follows that if r € 8 then e € B8. As described
in [7] this guarantees that CZ(t) » 0 as t » = for each initial state. Hence,

y(t) » S(G(%)) as t » = for each initial state.

11. Appendix C

The proof of the Corollary is given:
Assume that G% and G/ are diagonal as in (15), (18).

Since Kj! is diagonal then

k(s +g%) k™Ms + g%)
H = diag | -2, . A I
o(8) = diag | ) S(s + kgl
and
. ..  [eRkig] -g%) ki (kR gd —9%)
+ = P
¥lHg(jw) + Ha(j w)] diag 7 + (kig{)? o + (kPgL Y2

is thus strictly posilive real from condition {b) of the Corollary; thus the Corol-

lary follows from the Theorem.

_7
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