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Abstract

A lumped shape memory alloy (SMA) model is derived from the thermodynamic model of
Chang et al (2006 Contin. Mech. Thermodyn. 18 83—118), using a set of simplifying
assumptions, that reduces the system of partial differential equations for an SMA/bias spring
actuator to a nonlinear, first-order, ordinary differential equation. Dimensionless state variables
and parameters are defined that are useful for characterizing the actuator system and for
studying its performance and scaling. A general analytical solution to the nonlinear differential
equation governing phase transformation is found in terms of the Lambert function for a
piecewise constant Joule heating input and a constant temperature convective environment. The
analytical solution provides a useful and convenient tool for assessing the time-dependent,
hysteretic response of this simple class of SMA actuators, with which design and optimization

studies are performed.

(Some figures in this article are in colour only in the electronic version)

Nomenclature

Independent variables:

t time

T dimensionless time

X reference axial coordinate
SMA phases:

A Austenite

M Martensite

M*, M~ tensile-M, compressive-M
M*/M~  thermal-M

SMA state variables:

& nominal axial strain

T absolute wire temperature
£1,&,&  mass fractions MT, M~, A
SMA thermodynamic variables:

¢ specific Helmholtz free energy
o nominal axial stress
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N

M, U1
2

qx

As’ Af
Ms’ Mf

specific entropy
thermo-driving force A — M™
thermo-driving force A — M~
axial heat flux

A start, finish temperatures

M start, finish temperatures

SMA physical, mechanical, and electrical constants:

L,d
A

0
E

B
C1
Pe

reference wire length, diameter
reference cross-sectional area
mass density

elastic modulus

transformation strain

phase interaction parameter
electrical resistivity

SMA thermodynamic constants:

Tr

As

H

Co

Vo, Mc

reference transformation temperature
equilibrium A — M entropy jump
enthalpy

specific heat

kinetic law stiffness, critical driving force
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oM M*/M~ — M reorientation stress
K reference thermal conductivity

Spring constants:

kg, kg bias, external spring stiffnesses
A bias spring-SMA length mismatch

Actuator, control and environmental variables:
F SMA axial force

80, €0, 09 SMA pre-elong., pre-strain, pre-stress
Fg, Fg bias, external spring forces

OB bias spring displacement

Ta, h ambient temperature, film coefficient
P, electrical power input

t* characteristic time

Eins Eout energy input, external work output
Dimensionless actuator variables:

0 SMA temperature

0 ambient temperature

0% SMA steady state temperature

o SMA axial stress

f SMA A — M™ driving force

A, As A start, finish temperatures

1\_45, Mf M start, finish temperatures

_e electrical power

a,, b, time interval constants during transformation

w Lambert function

Eim» Eou energy input, external work output

Dimensionless actuator constants:

A, C SMA latent heat, specific heat

iLe A — M critical driving force

oM M*/M~ — M reorientation stress
09 SMA pre-stress

Omax maximum SMA stress

1B, NE bias, external spring stiffnesses

n spring ratio

A bias spring mismatch

Op external spring stroke

1. Introduction

Since their discovery over 50 years ago, there has existed
a longstanding interest by engineers to use shape memory
alloys (SMAs), such as Nitinol, in various thermomechanical
actuator applications. The underlying, reversible, martensitic
phase transformations lead to the shape memory effect and
superelasticity. Due to their extremely high energy density,
NiTi SMAs can be exploited to generate large amounts of
mechanical work in light-weight, compact actuators. It is
fair to say, however, the design and analysis of actuators
with SMA elements has been rather challenging due to
the complexity of the thermomechanical behavior of SMAs.
They exhibit extremely nonlinear, hysteretic, stress—strain—
temperature behavior, which is tightly coupled to ambient
heat transfer conditions and imposed boundary conditions.
Furthermore, transformation in NiTi SMAs may exhibit
instabilities and consequent localization and propagation
phenomena in their time-dependent strain and temperature

fields [2, 3]. Fortunately, continuing research in recent years
has matured the understanding of SMA behavior and the
material is more readily available commercially, improving the
potential for developing novel SMA actuators.

The literature is replete with SMA constitutive models of
varying complexity (see [1, 4-6] for a few recent examples).
The ongoing trend has been to achieve more accuracy and
rigor with increasingly complex models. At the same time,
the solution of even simple boundary value problems is not
a straightforward matter, requiring the solution of coupled,
partial differential equations (PDEs) governing equilibrium,
heat transfer, and phase transformation kinetics. Usually this
must be accomplished numerically to capture the detailed time-
dependent nonuniform distributions of the state variables.

For design and optimization studies, a tractable setting
is desirable, so our more modest aim in this paper is to
demonstrate a simple model of a prototype SMA wire/bias
spring actuator that admits analytical solutions for the time-
dependent behavior. One of the few examples in the literature
coming closest to a closed-form SMA actuator solution was
provided in Wu er al [7], but unlike our current case, the
SMA constitutive model used resulted in a linear PDE that
was solved by separation of variables in terms of an infinite
series solution in a somewhat different boundary value problem
context.

Our paper is organized as follows. Section 2 defines
the thermomechanical problem of interest for our prototype
actuator system and shows how the full 1D constitutive model
of Chang et al [1] can be reduced to a ‘lumped’ model, having
a minimum set of degrees of freedom, by neglecting the details
of nonuniform strain and temperature fields. The resulting
model has similarities to many others, including Brinson [8],
but with different kinetics. Under our simplifying assumptions,
the set of governing PDEs is reduced to a single nonlinear,
ordinary differential equation (ODE). We define dimensionless
parameters and state variables in order to study the scaling of
the solution over a large range of pre-strain, spring properties,
environmental conditions, and power inputs. Section 3 shows
how the governing ODE during phase transformation can be
integrated exactly in terms of a known special function, the
Lambert function. We believe this is the first such analytical
solution for a thermo-mechanically coupled SMA/bias spring
model. Section 4 provides a numerical example of the time-
dependent behavior of a prototype actuator and a discussion
of sensitivities of various parameters. Section 5 discusses a
systematic approach to the design and optimization of such as
actuator, considering the sizing of springs, actuation stroke,
actuation times, minimum power requirements, and energy
usage and efficiency. Lastly, summary and conclusions are
provided in section 6.

2. Thermomechanical problem of an SMA actuator

As defined in Chang er al [1] the thermomechanical problem
of interest involves a thin SMA wire of initial length, L,
and diameter, d, under uniaxial tensile loading (see figure 1).
The reference configuration chosen for the SMA wire is
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Figure 1. Prototype uniaxial SMA/bias spring actuator working against an external spring as electrical power is applied to the SMA element:
(a) reference configurations for SMA element, bias spring, and external spring, (b) after cooling and assembly, (c) contraction of SMA

element during Joule heating, (d) reset configuration when cold.

unstressed austenite at a sufficiently high temperature (above
the stress-free austenite finish temperature, Af). We define
a reference transformation temperature for the material, Ty,
at a lower temperature where martensite and austenite are in
thermodynamic equilibrium (near the average of the stress-
free martensite start temperature, M, and austenite start
temperature, As). The SMA wire is immersed in a thermal
bath (gas or liquid) with convective film coefficient, &, at
an ambient temperature, T,, that is sufficiently below Ty to
cause the initial stress-free state of the SMA to be thermal
martensite. The left end of the wire in figure 1 is held fixed,
and a bias spring of stiffness kg and initial length mismatch
to the SMA element of A (figure 1(a)) is force-fit into place.
The SMA pre-stress, in mechanical equilibrium with the bias
spring force, results in an elongation of the SMA by an amount
8o that is assumed to produce tensile martensite (a check for
validity of this assumption is provided later). After assembly
of the SMA/bias spring actuator, an external spring of stiffness
kg, representing the stiffness of whatever external object is
to be actuated against, is attached in its natural (force-free)
configuration (figure 1(b)). Electrical power, P., can then be
applied to resistively heat the SMA wire, causing it to revert to
austenite and to contract against the action of both springs to
some displacement 6 (figure 1(c)). Subsequently, switching off
the electrical power causes the SMA temperature to return to
ambient temperature and transform back to tensile martensite
(figure 1(d)).

The following subsections present (1) a review of the full
uniaxial thermodynamic model of Chang et al [1], (2) some

simplifying assumptions, and (3) the resulting lumped form of
the governing equations.

2.1. The full 1D constitutive model

The constitutive model of Chang et al [1] is the starting point
for the derivation of the reduced-order, lumped SMA model,
so it is briefly reviewed here for completeness. For clarity,
we have already omitted strain gradient effects, which are
ignored in our current context. The state of each point in
the SMA wire is determined by the strain field, e(x, 1), the
temperature field, 7 (x, ), and the internal phase field vector,
E(x,1) = (&, &), for tensile (M™) and compressive (M)
variants of martensite, respectively. Constitutive relations were
derived from the specific Helmholtz free energy,

ST, &) = E4 + (512+$2)AE
0
—(T —Tr)(&1 + &) As
+oa(l—§& —&)E +&)
+ (co — so)(T —TR) — co T In(T/ TR),

where the separate lines on the right-hand side are respective
contributions from elastic energy, phase-dependent entropy,
energy of mixing, and phase-independent thermal energy. The
mass density is p, the elastic modulus of pure austenite is E 4,
the difference between the effective martensite and austenite
elastic moduli is AE = Ey — E,4 (usually a negative
constant), and the stress-free transformation strain is 8 (a
positive material constant). Thermal expansion is neglected

[e — (&1 — &)Y

2.1
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in the elastic energy, since its effect is usually small compared
to the transformation strain. The specific entropy change from
austenite to martensite is As = sy — 54 (a negative constant),
which is related to the latent heat of transformation. The free
energy of mixing has a material constant, ¢y, that affects the
slope of the pseudoelastic transformation path. Lastly, so and
co are material constants representing the specific entropy and
specific heat, respectively.

The non-negativity requirement of the local entropy
production leads to the Gibb’s relations

d
5= _a_"T’ = S0+ (&1 + £) As + ¢ In(T/ Ty),
2.2)

a9
0O =Py = [Ea+ (61 +&)AE][e — (6 — &)B],
where o is the nominal stress. Entropy production arises from
the heat flux and phase transformation terms, and sufficient
conditions to satisfy the second law of thermodynamics are

oT
—qi— =20, (2.3)
0x
0 >0 2.4)
"’ al‘ = 9 .
where ¢, is the axial heat flux, and p = —¢¢ is

the thermodynamic driving force for phase transformation
conjugate to the rate of change of § = (§,&). The
first inequality in (2.4) is easily satisfied by assuming the
conventional axial heat conduction law ¢, = —K 0T /0x,
where K is a positive thermal conductivity for the material.
Written explicitly, the thermodynamic driving forces are

_%_ﬁ_“_ﬂ[ 4 }

U786 T 0 T 20 LEa+ & +E)AE
(T = TR)As — e (1 — 26 — 265) , 2.5)
3 Bo  AE o :
“2__8_&__7_5[EA+(&+&)AE}
+ (T — Tr)As —cr (1 — 2§, — 2&,) . (2.6)

The second inequality in (2.4) is satisfied if the ‘projection’
of the driving force to its conjugate phase fraction rate is non-
negative. A simple, piecewise linear, kinetic relation is chosen,
according to

&3

ot

where vy is the ‘stiffness’ coefficient of the kinetic law, (x) is
the Macaulay discontinuity function ({(x) = x for x > 0 and
(x) = 0 for x < 0), and m is the unit vector in the direction of
phase transformation in (&}, &) space. The parameter, u., is
a positive constant that represents the critical thermodynamic
driving force necessary for hysteretic phase transformation.
Within the phase fraction space described above, the direction
of phase transformation is assumed to be a unit vector collinear
with the thermodynamic driving force (m = p//p-p),
except at a boundary of the admissible phase region (§; = O,
& = 0,o0r & + & = 1) where it is a unit vector tangent to
the boundary to keep the phase fractions within the admissible
region (see figure 2).

vo{f +m — pc)m 2.7

Co &

1 1400
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& G E_,1 o 9 E_,1
0 unloading 1 0 1
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Figure 2. Admissible phase fraction space: (a) superelastic path in
tension, (b) shape memory eftect path.

Assuming traction-free lateral boundary conditions and no
body forces, mechanical equilibrium requires that the axial
force be constant along the length, or

oF
ax
where the axial tensile force is simply ' = o A. The heat

equation, accounting for sensible and latent heat, axial heat
conduction, lateral convection, and Joule heating, is

Ale2L (w—To ) %
C —_— —_— .
pA|com = =Trg) =

0, (2.8)

2.9
0x ax 29)

where h is the Fourier law coefficient (or convective film
coefficient) for lateral heat transfer from the wire. The
governing equations for the thermomechanical boundary value
problem are the field equations (2.8) and (2.9), subject to the
kinetic law (2.7) at each point x € (0, L), and the appropriate
mechanical and thermal boundary conditions at x = 0, L.

B aT P
=— <KA—> — hnd(T —T,) + f

2.2. Simplified model

In addition to the assumptions already inherent in Chang er al
[1] (no inertia effects, no R-phase, no thermal expansion, and
no plasticity or shakedown effects), the following assumptions
are made to simplify and reduce the system of partial
differential equations to ordinary differential equations.

(1) Spatial gradients of strain (¢), temperature (7'), and phase
fraction (&) are neglected. This means that transformation
is assumed to be uniform (no transformation fronts or
boundary effects), and axial heat conduction is ignored.
It is a reasonable assumption for wire with constant
cross-sectional area (A) that has already been conditioned
(trained) to have repeatable cyclic behavior, and for SMA
wire that is thermally insulated at its ends. This is verified
in section 4.2 by comparison of the simplified model to a
finite element simulation.

(2) The SMA element is always under sufficient tension (after
assembly) to avoid thermal martensite. In other words,
ur < 0, is sufficiently negative to cause & = 0 for all
time ¢+ > 0. This assumption is valid if the bias spring
constant and pre-strain are sufficiently large. A condition
will be given later to check the validity of this assumption.
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(3) The elastic moduli of austenite and martensite are the
same (AE = 0). This assumption poses no significant
restriction if unloading of the martensite are avoided
during assembly and operation.

(4) The mixing energy between austenite and martensite is
neglected (c; = 0). This assumption neglects any
hardening or softening during superelastic transformation,
which may be reasonable, or not, depending on the desired
accuracy of the simulation.

(5) The characteristic speed of phase transformation is fast
compared to heat transfer rate and mechanical loading
rate (i.e., we take the limiting case vp — o0). This
assumption is reasonable for slow to moderate loading
rates where displacement rates are small compared to the
inherent velocity of martensitic transformations. Roughly
speaking, inherent martensitic transformation propagation
velocities are only an order of magnitude slower than
elastic wave velocities, as measured in high rate impact
experiments [9]. For Nitinol this should not be a serious
restriction for moderate displacement rates, say § <
10> ms™'.

(6) The electrical power P, and ambient temperature 7, are
piecewise constant functions of time.

The state of the wire is now minimally defined by three
time-dependent variables, the strain (¢), the temperature 7 (¢),
and the single phase fraction £(¢) for tensile martensite (§ €
[0, 1]). Under these assumptions, the specific Helmholtz free
energy of the SMA material reduces to

E
M&T£)=5;k—§m2—G*—HEAS
+ (co —30)(T —Tr) —co T In(T/ Tr),

and the following simplified constitutive relations for nominal
stress (o), entropy (s), and transformation driving force (u =
JL1) are obtained.

(2.10)

o =E[e—&B)] (2.11)

s =80+ EAs + coIn(T/TR) (2.12)
Bo

(2.13)

po=C (T = T,

Figure 3(a) shows isothermal constitutive responses in
stress—strain—temperature space predicted by the simplified
model using typical SMA properties of table 1, which were
calibrated to the room temperature superelastic wire used in
Chang et al [1] (guideBB-30 from Memry Corp.). This
simplified model has constant stress transformation paths
(which could also have been derived from a simple Gibb’s
mixture rule of the phases.) Figure 3(b) shows a quasi-phase
diagram in stress—temperature space, and figure 3(c) shows
a stress-free shape memory cycle along with an isothermal
superelastic response. In fact, figure 3(c) shows a two-way
shape memory effect, since the simplified two-phase (A and
M) model cannot capture a zero strain martensite that would
be necessary to capture a one-way shape memory effect.
The behavior of the simplified model, consequently, is more
representative of a highly conditioned SMA that has two-way
shape memory. If the actual SMA being used has a one-
way shape memory, the model should not be used at certain

low stress/low temperature regimes. A suitable check will be
provided later in this paper to ensure the model’s validity in the
latter case.

2.3. Simplified governing equations

For this simplified model, the governing equations for the
actuator’s operation are algebraic equations for equilibrium
and transformation kinetics and an ordinary differential
equation in time for heat transfer.

Neglecting inertial effects, equilibrium requires the axial
force in the SMA wire to be uniform. It is balanced by the
forces in the bias spring and external spring

F(1) = Fg (1) + Fe(0). (2.14)

Accounting for the natural configurations of the springs and
the SMA constitutive equation for stress (2.11) leads to the
equilibrium equation for # > 0 (after assembly),

EAle — BE]l =k [A — Le] + kgL [go — €], (2.15)
where ¢9 = 8p/L is the pre-strain in the SMA wire
caused during cold assembly. Equation (2.15) is an equation
relating the unknowns &(z) and &(¢), where the explicit time
dependence has been omitted for brevity. At ¢ = 0, just after
assembly, the external spring is not yet loaded and the initial
condition is defined by

EAleg — &Pl =kp[A —¢oL], (2.16)
from which the pre-strain, ¢y, can be found.

From an analysis of martensite reorientation, using the
full model [1], the stress required for reorientation from
thermal martensite to tensile martensite is oy = pue/ (B ﬁ).
Using the initial condition for equilibrium (2.16) leads to the
following condition that must be satisfied for the bias spring
mismatch and stiffness to cause full reorientation of martensite

(6o =1,
£A
oL)

Considering now kinetics, forward transformation
(A — M™) occurs when the thermodynamic driving force, u,
reaches the critical value, u., and the amount of tensile marten-
site has not yet reached saturation (0 < & < 1). Conversely,
reverse transformation (M+ — A) occurs when the thermo-
dynamic driving force reaches the critical value,— ., and the
amount of austenite has not yet reached saturation (0 < & < 1).
Otherwise, no phase transformation occurs (é = 0, where a dot
above a variable denotes a derivative with respect to time, ?),
and the kinetics equation is not active. During phase transfor-
mation, however, the SMA stress and temperature are coupled
through one of the following conditions

'B—G+(T—TR)AS
P

Ao Mg (2.17)
L~ E '

and & >0(A— M),
and £ <0 (M'T — A).
(2.18)

e if€ €10, 1)

— e if€ € (0, 1]
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Figure 3. The simplified constitutive model: (a) isothermal responses, (b) transformation stresses, (¢) shape memory cycle (¢—7 plane) and
superelastic response (o—¢ plane).

It is apparent from these equations that forward and reverse stress (2.11) as
isothermal superelastic transformations are predicted to occur g (e —EB) + P (T — Tx) As

along stress plateaus with stress hysteresis 2pu./B centered o
C

on the stress (T — Tr)(—pAs)/B. These equations represent B if§ €[0,1) and 5 > 0,

implicit relations between the state variables e(¢), T(¢) and = Plke £ € 0, 1] 4 E-o (2.19)
— if &€ € (0, an < 0.

&(1), which can be rewritten using the constitutive equation for B
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Table 1. SMA parameters.

Mechanical Thermal Physical, kinetic, electrical
L=60mm 7Tz =2493K 0 =65x10°gm
d=0.762mm TxAs = —16.74J g7 pn.=1.01Jg"!

B =00591 ¢, =05Jg'K! Pe=1x10°Qm

E =70 GPa

Finally, the heat equation (2.9) now simplifies to

pALcyT = pAL [sgn(é)uC - TAs] £ —hmdL(T —T,)+ P,

(2.20)
where the left-hand side is the rate of energy associated with
sensible heat, the first term on the right-hand side is the latent
heat source rate (sgn is the signum function), the second term
is the heat loss rate to the environment, and P, is the applied
Joule heat rate.

2.4. Dimensionless parameters and equations

To simplify the equations and clarify the scaling of various
quantities we define the following dimensionless variables for
time, stress, and temperature

~

T= (2.21)
__ 0o
s=g (2.22)
0= <1 — 1) A, (2.23)
Tr
where
g = Ped (2.24)
4h
is a characteristic time for the rate of sensible heat change, and
_ _PhsTk (2.25)
BE

is a dimensionless (positive) reference latent heat (associated
with the reversible case . = 0), which incidentally, is
also related to the Clausius—Clapeyron slope of stress-induced
transformation.  The following dimensionless parameters
(constants) are also helpful to define,

0, = I 1) (2.26)
a — TR ) .
F= 20 (2.27)
c=——, .
As
P
= , 2.28
He BE (2.28)
_ kL (2.29)
ng = EA’ .
kel (2.30)
Ng = EA .
0= nB + NE ’ 2.31)
14+ ng +nE

A= A (2.32)
- L bl .
_ P
= (2.33)
7dLTrh

where 6, is a dimensionless ambient temperature, ¢ is a
dimensionless specific heat, . is a dimensionless critical
driving force, np is a dimensionless bias spring constant, ng
is a dimensionless external spring constant, n € [0, 1) is a
dimensionless ratio of spring constants, A is a dimensionless
bias spring/SMA length mismatch, and P, is a dimensionless
electrical power.

Time derivatives in the heat equation (2.20) can be
converted to dimensionless time derivatives, denoted by (-)' =
d(-)/dt, by the chain rule d9(-)/dt = 9(-)/dt/t*. Now the
respective governing equations for equilibrium, kinetics, and
heat can be written in dimensionless form as

e(t) —eo+ (1 =n[l-§)]=0,

e(r) — BE(r) —O(r) —sgn(&)jic =0, (2.35)

cl0(m)+0'(r) =0, — P] —[e(x) — BE(T) + A& (1) = 0.

(2.36)
Equation (2.34) assumes the condition for full initial
reorientation of martensite (2.17) is satisfied (discussed further
in section 5), rewritten in dimensionless form as

(2.34)

- 1
AZ>B+ou [1+—j|, (2.37)
B
where &y = jic/+/2 is the dimensionless stress to orient

Martensite (M /M~ — M™). The respective pre-strain and
dimensionless pre-stress in the SMA element (related by &g =
B + 0y) are

A
g = M7 (2.38)
14+ np
_ (A —B)ng
oy= ———. 2.39
0 1+ B 39)

According to equations (2.34) and (2.35), the dimensionless
start and finish temperatures for the actuator are dependent on
the pre-stress and spring stiffnesses, given by

A = &0 + fle, A = &0 + fic + B,
_ ) . _ . ) (2.40)
M, = 0y — [ic + B, M; = o0 — flc.
A dimensionless steady state temperature, based on the current
power level and ambient conditions, is defined as

9% =6, + P., (2.41)

which is shown later to be the asymptotic temperature for long
times (t — 00). A comparison between it and the appropriate
dimensionless transformation temperature of equation (2.40)
can quickly assess whether transformation will start and/or
complete. Furthermore, it is convenient to define a normalized,
time-dependent, driving force function (for strictly p, > 0) as

w(e(r),0(x), £(1)) _ e(t) — B&(r) —6(1)

C

f(@) =
(2.42)



Smart Mater. Struct. 18 (2009) 065001

J A Shaw and C B Churchill

which can be monitored to determine whether or not phase
transformation occurs. This allows equation (2.35), when
active, to be written simply as

[ =sgn(&. (2.43)
3. Analytical solution
In this section analytical solutions to the system of

equations (2.34)—(2.36) are derived for (), 6(t), and &(7)
for piecewise constant electrical power input. Assuming that
condition (2.37) is satisfied, the initial conditions at T = 0 are
e(0) = &9, 6(0) = 6,, and £(0) = 1. Presuming sufficient
initial pre-stress exists to create M ™' and sufficient electrical
power is supplied to completely transform the SMA wire to
Austenite, the stress—strain path is uniquely determined by the
equilibrium equation (2.34).

3.1. Mechanical equilibrium paths

An example actuator response, based on equilibrium
considerations alone, is shown in figure 4. The initial
equilibrium point between M (dotted line) and the bias spring
is shown by the solid circle. Open circles show the end
points on the pure Austenite elastic curve (dotted line). Note
that, using the equilibrium equation (2.34) and the constitutive
equation (2.11), one can show that the slopes of the respective
dimensionless paths are

do —1B, bias spring only

de — (1B +1E),

bias plus external springs.
3.1
Our immediate concern is to quantify the transient
response of the actuator. The character of the time-dependent
solution depends on whether or not phase transformation
occurs during the time interval, so the general solution can be
derived piecewise in time starting from an initial condition for
each time interval 7, < 7 < 1,41, wheren =0, 1,2, .... The
power input and ambient temperature for each time interval
are then denoted as }36,,1 and 6, ,, respectively. Each 7, for
n = 1,2,...1s a time instant that defines either the onset
or termination of phase transformation or a change in power
level or environment. The normalized driving force function,
f(7) of equation (2.42), is monitored during the evolution to
determine whether or not phase transformation occurs and to
determine the time, t,, for the onset of transformation.

3.2. Solution without phase transformation

If no phase transformation occurs during the interval 7, <
T < 7,41, the phase fraction remains constant at its initial
value, £(t) = &(1,) = &,. By equilibrium (2.34) the strain
e(t) = e(tr,) = ¢, also remains constant at its initial value
according to

en==e—BL—-—nd=§). (3.2)

Temperature, 0(7), is the only variable that evolves with time.
Substituting &'(tr) = 0 into (2.36), results in the classical

0.8
(¢
(GPa)
0.6
0.4
0.2
A
0 —
0 10

—» € (%)
Figure 4. Example actuator response during heating in SMA stress

versus strain space: (a) response with bias spring only (dashed line),
(b) response with the addition of the external spring (bold line).

sensible heat equation
0' (1) + 0(1) = Oy + P, 3.3)

which has the general solution
0(z) = 6,° + (6, — O)e™ 7™,

T € [Ty, Tl (3.4)

where 0, =
interval, and

0(t,) is the initial temperature for the time

05 =6,, + P, (3.5)

is the dimensionless steady state temperature for long times
(t — o00) for the current power and environment.

This solution is valid until phase transformation is
detected at time 7,4, for which

A— M": S (@) =1,
and f'(t,41) >0, and £ <1,
Start § or 3.6)
Mt — A: S (@) = —1,
and f'(1,41) <0, and & > 0.

Since temperature is the only evolving variable, the direction
of transformation can be determined equivalently by

f,(tn+l) > 0= 9/(1_"+1) <0,
3.7

and (@) < 0= 0'(ty1+1) > 0.

Defining the starting stress for the interval as o, = ¢, — B&,,
onset of transformation is detected when

6" = On (3.8)
05 — [on +sen(@)ac] ) '

Tor1 = Tp, +In (

provided, of course, that the logarithm is positive.
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3.3. Solution during phase transformation

If, on the other hand, transformation occurs during a time
interval 7, < v < 71,4, all three state variables, (1),
0(t), and &(7) evolve from their starting values when phase
transformation begins at time t,,. During the time interval, (1)
and 6(7) can be solved in terms of & (7) using equations (2.34)
and (2.35), which when substituted into (2.36) gives the
following nonlinear, first-order ODE for &(7).

c[Bn+ 60— sgn(Eiie — 03] — [(14¢) B + G0 + A€ (1)
+ Bné() ['(t)—¢] =0. (3.9)

Using the initial condition &(t,) = &, for the interval, the
solution is found to be

1 ,
«f(l’) — gn +—[a,— W ane[an*buC(T*Tu)] ,
by [ ( )] (3.10)
TE [Tnv 7:n-‘rl]

where the following dimensionless constants are defined for
the time interval

_ B —&) + 6 — [0 + sen(Ejic]
T Bne+ A+ 63 +sen(E) e

_ Bn
 Bne+ 2467 +senE)ine’

3

3.11)

n

and where W(z) is the Lambert function [10], also known
as the Product-Logarithm. This is a special function defined
as the implicit solution to We" = z. It is available as a
built-in function in symbolic manipulation software, such as
Mathematica®, or can be calculated iteratively as shown in
Boyd [11]. The Lambert function W(z) is real valued for
z > —e~ !, below which a branch cut exists. It has unique real
values for z > 0 and has two real values for —e™' < z < 0
as shown in figure 5. In our case, only the principle branch,
W(z) > —1, is relevant, so W can be alternately defined by
W(ye’) =y for y > —1. From this definition, we see that

lim W (a, e/ ™) = g, (3.12)

T—T1,
making it apparent that the initial condition is recovered in
equation (3.10). While equation (3.9) is nonlinear, it is only
first order, and the solution (3.10) was discovered with the
help of Mathematica® once suitable simplifying constants were
defined by equation (3.11). The reader can readily verify the
solution by substituting equation (3.10) into (3.9).

The remaining state variables follow from the solution
above. Using equations (3.10), (2.34), and (2.35), it can be
shown that

0(t) =0n — ? [an — W (@, <] (3.13)
8(T) =&, + w [an - W (an e[an—bnf(‘f—fn)])] , (314)

where the initial values are uniquely identified with &, by

On = B (1 — &) + 60 — sgn(§") it (3.15)

1 -
W
0
I T T 1
-0.5 0 0.5 1 1.5
—_— 7
-1 4
\
\
\
\
\ -2
\
\
\
-3 4

Figure 5. The real-valued part of the Lambert W (z) function.

en = B[+ (1 —n)éa] + 0. (3.16)

From (2.11) the evolution of the dimensionless stress is then

6(1) =0, — @[an—

. W (ay el —biee=)]

(3.17)

Phase transformation terminates when either the driving
force is no longer sufficient to sustain the transformation or
when the phase fraction saturates, i.e.,

A— M": [t =1,
and  (f'(ta41) <Oorg =1),
End { or (3.18)
A<M S (Tay) = —1,
and  (f'(ty41) > 0oré =0).

Alternatively, the termination condition can be found as
follows. It can be shown according to equation (3.13), that
the long time, asymptotic temperature is still 67° as defined
in equation (3.5). Note that the temperature evolution is
always monotonic within each time interval. If 6;° does not
exceed A; during heating, or drop below M; during cooling,
phase transformation does not reach saturation and the given
solutions are valid until the next power change or ambient
condition change. In this case, the steady state value of the
phase fraction for long times, &% = £(o0), is found from
equation (3.9) by setting §’(0c0) = 0 and solving as

Gy — sgn()jic — O3
B '

If, conversely, one of the threshold temperatures is predicted
to be exceeded by 6;° the transformation saturates at one of
following final phase fraction values

£ (3.19)

0, &' <0,

& = N £ 50 (3.20)

In this case, the time interval is to be subdivided, and a new
time (7,41) is calculated for the termination of transformation.
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Table 2. Spring parameters, environment constants, and electrical
power.

Springs Ambient Power

kg = 26.60 N mm™!
kg = 13.30 N mm™!
A = 5.688 mm

T, = 223.15K
h=90Wm?2K"!

P.=1301W

The time (7,4;) at which this happens is found by solving
equation (3.10) for &(7,+1) = &. While at first glance it might
appear that an iterative numerical solution is necessary, it can
be solved analytically as follows. First, define the intermediate
variable

[an—=bn (Tt —Tn)])

yo=W(ane (3.21)

which must satisfy

Yo =an + b, (&, — &) . (3.22)

By the property y = W (ye”) equality between the two can be
rewritten as
lan —bnc(Tu1— )]

(3.23)

yne"" = aye

which can then be solved for 7,4 (with y, replaced) as

by,
(1 e (i &))}
ap

(3.24)
In fact, this is just a special instance of the implicit form of
equation (3.10) where time can be considered a function of the
phase fraction

—1In

1
Tn+1 —Tn+g|:‘§f_§n_bn

1 1 by
() =T+ [«5 —& —-—1In <1 -—¢ —Sn))} - (3.25)
C bn an

4. Numerical example

As a numerical example, the simplified model is compared to
the finite element calculations of Chang et al [1]. The finite
element model was implemented using an in-house research
code. Weak forms of the equilibrium and heat equations were
solved through staggered Newton—Raphson iteration between
thermal and mechanical degrees of freedom. The kinetic law
was implemented using an explicit 4th-order Runge—Kutta
algorithm. The results presented here used 200 elements along
the specimen length, with displacement and its gradient given
by Hermite cubic shape functions and temperature by linear
shape functions.

The SMA material parameters are taken from table 1,
while table 2 lists the spring parameters, ambient environment
constants (—50°C stagnant air), and electrical power history
similar to that used in [1]. The finite element simulation
used thermally insulated ends, for which the temperature field
was relatively uniform (as opposed to constant temperature
boundary conditions), to provide a fair comparison with our
lumped model simulation. The full set of dimensionless
constants is provided in table 3. (The subset of mechanical
parameters from this list were used to construct figure 4.)
These parameters result in a steady state temperature rise of
AT 100.6°C (A6 P, 0.01061) above the
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Table 3. Dimensionless parameters.

SMA Springs Ambient Power

B =0.0591 n=0.06977 6, = —0.002758 P, =0.01061
A =0.02630 ng =0.05

¢ =7.446 ne = 0.025

jfi. = 0.001587 A = 0.0948

Table 4. Dimensionless actuator transformation temperatures.

A
0.00741

A,
0.00329

M,
0.00424

M;
0.00011

ambient temperature when power is applied, a characteristic
time of t* 6.88 s for sensible heating, and an
initial pre-stress of oy 119 MPa (op 0.001 70).
The specific dimensionless (stress-dependent) temperatures at
which transformation occurs in the actuator during heat and
cooling are provided in table 4.

4.1. Time-dependent response

Simulation results for a complete heating/cooling cycle are
shown graphically in figures 6 for dimensionless quantities.
A column of plots are shown against a common time axis
for (a) the applied power (P,), (b) evolution of temperature
(@), stress (o), and strain (g), and (c) M phase fraction (&)
and normalized driving force (f). Electrical power (1.3 W)
is applied for about 7.268 dimensionless time units (50 s),
and then turned off for the same time period. Initially, the
phase fraction, strain, and stress remain constant, and the
temperature rises rapidly according to an exponential curve
during sensible heating. This is interrupted once M+ — A
phase transformation starts, at which point the phase fraction
and strain decrease while the stress increases. The temperature
continues to rise by another exponential-like curve, but at
a slower rate, since both sensible heat and latent heat must
be supplied to transform the SMA material. Once the
transformation is complete (¢ = 0), the phase fraction, strain,
and stress again remain constant while the temperature rises at
a more rapid rate according to sensible heating only.

When the power is turned off, a similar, but reverse
direction behavior, occurs. The phase fraction, strain, and
stress stay constant initially while the temperature decreases
rapidly according to sensible cooling. At the onset of
A — M transformation the temperature decrease is arrested
somewhat as latent heat is extracted from the surroundings.
Once the transformation saturates (& 1), the actuator
has reset to its initial phase fraction, strain, and stress, and
the temperature decreases asymptotically toward the ambient
temperature according to sensible cooling again. Overall, the
start and termination of phase transformation are accompanied
by noticeable discontinuities in the rates of change of all state
variables. Finally, the response path taken for the entire cycle is
plotted in stress—strain—temperature space in figure 7, showing
the complete hysteresis loop.
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(a)

Figure 6. Dimensionless SMA actuator response: (a) the applied
power history, (b) temperature, stress, and strain, and (c) M ™ phase
fraction and normalized driving force. Light and dark shaded areas
indicate time regimes for pure M and A phases, respectively.

4.2. Comparison to finite element simulation

To explore the reasonableness of the lumped model solution we
now compare the above simulation to that of the previous finite
element numerical simulation (see figures 27 and 28 of [1]).
Figure 8(a) shows a comparison of the average strain histories.
Figure 8(b) shows a comparison of the temperature histories
(mid-span temperature for the FE case). The open and closed
circles show the onset and termination of transformations of the
lumped model. The slight delay in the onset of transformation
of the FE case was due to the input power history that was
slightly different, i.e., ramped up linearly over 2.5 s, rather
than instantaneously, to the final constant value (and then
ramped down over the same time interval when switched
off). Figure 8(c) shows force histories in the external spring.
Overall, the responses shown in figure 8 are reasonably similar,

11

Table 5. Numerical results: values at significant times.

TYI 8)1 (I)l

n T, i (s) 6, (°C) (%) & o (GPa) Event
0 0 0 —-0.00276 =50 6.081 1 0.0017 0.119 heat
1 0.843 5.8 0.00329 7.3 6.081 1 0.0017 0.119 A,

2 5504 379 0.00741 464 0.582 0 0.00582 0.408 Ay

3 7.268 50 0.00778 49.9 0.582 0 0.00582 0.408 cool
4 7.678 52.8 0.00424 163 0.582 0 0.00582 0.408 M,

5 9431 649 0.00011 —22.8 6.081 1 0.0017 0.119 M;

6 14.537 100 —0.00274 —49.8 6.081 1 0.0017 0.119 —

and other minor differences, such as the jaggedness in the
FE temperature history in figure 8(b) can be attributed to the
spatial non-uniformities due to mechanical instabilities and
localization effects (a focus of that study) captured by the
finite element simulation but not by our lumped model. As
a convenient design-level simulation model, we consider the
results of the lumped model to be quite satisfactory.

4.3. Actuation times

Of particular interest is the duration of time needed to complete
such an actuation cycle. Table 5 provides both dimensionless
and dimensional values at significant times during the cycle.
In this example, sensible heating takes about 5.8 s before
transformation starts, M+t — A transformation takes about
32.1 s, and post transformation sensible heating occurs for
another 12 s, or so (arbitrary, depending on the duration of
heating). Sensible cooling takes about 2.8 s, starting from
about 50°C, and A — M ™ transformation takes about 12.1 s.
In this case, the time for transformation during heating is
longer than that during cooling due to the heat losses to the
ambient environment, but in general that need not be the case
if the electrical power input during heating is large enough.

It is also interesting to study the times necessary to start
and finish transformation as a function of different heat transfer
environments and electrical power inputs. Setting 6(1;) = A,
in equation (3.8) with the appropriate initial conditions, the
dimensionless time needed to start M — A transformation

is
7,']:111( )

The dimensionless time needed to finish M+ — A transforma-
tion can be found by setting £(7,) = 0 in equation (3.10) with

the appropriate starting conditions.
0% + 1 — i 1
A ) — =, (42)
c

B )l“(

These two are converted to dimensional times (¢; and 1)
and are plotted in figure 9 as a function of convective film
coefficient (h) and electrical power input (P.), respectively,
while holding all other parameters fixed. One can see in
figure 9(a) that the chosen electrical power (P, 1.3 W) is
insufficient to start the transformation (1; — o0) for convective
film coefficients larger than about 158 W m2K"!, and it is
insufficient to finish the transformation (1, — o0) for values
larger than 93.9 Wm~2K~!. Figure 9(b) shows that for a

0% — eu

——— 4.1
9% — A 4.1)

6% — As

t=f+ 1+ D ———
2 1 < QSS_Af
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Figure 7. Dimensional SMA actuator response in stress—strain—temperature space along with planar projections.

fixed convection coefficient (# = 90 W m~2 K~!) the times
to start and finish transformation are strongly dependent on
the electrical power input. A modest increase in power input
will dramatically decrease the time needed. For low power
input they asymptotically approach infinity at particular power
levels, 0.741 W to start and 1.25 W to finish the MT — A
transformation. Accordingly, our chosen power, 1.3 W, is
barely sufficient for our example actuator system.

5. Design aspects

In this section we consider some issues related to actuator
design based on our simple actuator model. The numerical
example of section 4 was an ad hoc design, and no attempt
was made to optimize it. Here, we discuss a systematic design
approach by considering minimum requirements for feasible
actuation. We also show how the design could be optimized
given SMA stress limits and constraints on power and energy.
We start with the parameters of table 3 and then consider
modifications of parameters one at a time. Thus, parameters
of table 3 are assumed unless stated otherwise throughout this
section. The following considers actuation stroke, sizing of
springs, actuation time, minimum power requirements, and
energy usage and energy efficiency. The section concludes
with a discussion of potential refinements to the model to
improve its accuracy and generality for design.
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5.1. Actuation stroke

The maximum stress clearly occurs when the SMA element is
fully A phase. From equations (2.34) and (2.39) the maximum
stress in general is

C_"max:C_TO'i_;Bn' (51)
This can be combined with eqn. (2.38) to obtain the actuation
stroke of the external spring, g = Ae L, which is calculated
using

Ag =gy — 6maXa (52)

since the dimensionless stress, o,y 1S the numerical equivalent
of the minimum SMA strain during actuation. This simplifies

to
p

Ae=pl—n=—"——" (5.3)

1+ ng + 1E
According this expression, the best case is (0g/L)max = B,
which corresponds to complete dead loading (ng = ng =

0). It predicts that the stroke is independent of the starting
(ambient) temperature and the initial mismatch (A), and
that larger values of ng and ng reduce the actuator stroke
somewhat. However, one should be wary of this conclusion,
since the elastic modulus for Martensite was assumed to
be the same as that of Austenite in our simplified SMA
model. In reality, the Martensite mechanical response is quite
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Figure 8. Comparison of simulation histories between lumped actuator model (solid line) and finite element (FE) simulation (dashed line) of
Chang et al [1]: (a) SMA strain (global average for FE case), (b) temperature (mid-length for FE case), (c) external spring force.
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Figure 9. Times to start, #; (A,), and finish, 7, (Af), M+ — A transformation: (a) as a function of convective film coefficient, #, (b) as a
function of electrical power input, P.. All other parameters are fixed as given in table 2. Open and closed circles correspond to the numerical

example.

nonlinear at large strains, having a tangent modulus much A possible refinement for generalizing the model to more
lower than the Austenite modulus. We consider this to be the accurately predict the actuator stroke under general conditions
most severe limitation of our model, since 8 is treated as a is discussed later in section 5.7. Nevertheless, the actuator
material constant. Changing the ambient temperature 6, and/or model as presented is simple and convenient, so we continue
the pre-stress 6y may give less accurate stroke predictions. to explore its design implications in the next several sections.

13
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A He designs
min N 0.003 [1,=0.00159
(u=1.01 J/g)
0.1+ 0.0015 .0948)
B 0‘ /4
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Figure 10. Minimum bias spring mismatch (Amin) as a function of
dimensionless bias spring stiffness (1) to ensure initial complete
reorientation of Martensite (M ™) during initial actuator assembly
(cold). The gray region indicates feasible designs for values of B and
L. of table 3.

5.2. Sizing of springs

As discussed in section 2.4, equation (2.37) is the design
condition to ensure that full initial tensile Martensite (§y = 1)
exists upon assembly of the actuator. The lower bound of
feasible designs is

Boin = B+6u [1 + i}, (5.4
B
recalling that 5y, = jic/~/2 is the dimensionless stress needed
to ensure M exists when cold. This is plotted in figure 10
(solid black line). In our design example this corresponds to
the minimum pre-stress condition oy > om(= 78.5 MPa).
The filled black circle in the figure is our chosen design (A =
0.0948), while the open circle is the minimum feasible value

0.1
Me
0.08
0.06 B
Feasible Omax
designs
0.00857
0.04 - (<400 MPa)
0.00N 4
0.02
Q
3
0 T o' T
0 0.02 0.08 0.1

(Amm = 0.0827) for the same bias spring stiffness. This latter
case can be considered an ‘optimal’ choice, since it minimizes
the stress in the SMA element. For reference, the other lines
in the figure indicate lower bounds to other feasible designs for
SMA wire with other values of hysteresis (fi.).

Throughout this study we have assumed that no cyclic
shakedown, or ratcheting, of the SMA element occurs during
operation of the actuator. This is true only if the SMA element
has been conditioned (or trained) to achieve repeatable cyclic
response, or if the stress level is kept sufficiently low. In
either case the maximum SMA stress must be maintained
acceptably low during operation. With the maximum stress
from equation (5.1), the maximum stress for the ‘optimal
design’ is

T = Ou + B, (5.5)
These constant maximum stress lines are plotted, respectively,
in figures 11(a) and (b) in the space of bias spring and external
spring stiffnesses. The space in figure 11(a) is truncated by
a dotted line, which is the minimum bias spring stiffness
(7B.min = 0.0325) for the chosen bias spring mismatch (A =
0.0948) according to equation (2.37). The solid black circle
indicates the maximum stress of 408 MPa for the chosen values
of ng and ng in table 3. Figure 11(b) has no such restriction,
since A = Apin has been substituted into equation (5.5). In
this case, the open circle indicates a lower maximum stress
of 367 MPa, since the optimal bias spring mismatch has been
used. The shaded regions of figure 11 show regimes of g and
ne to keep the maximum stress under a hypothetical design
value of 400 MPa.

Another possible step to minimize the worst case stress is
to use a very compliant bias spring with a suitable value of A
to maintain oy = oy;. The designer should use as compliant a
bias spring as is reasonable to meet actuator size requirements.
In the limit as ng — O the bias spring mismatch gets very
large (A — 00), which corresponds essentially to dead loading
by the bias spring. While this may be difficult to achieve in

0.1

Mg
0.08

Feasible
designs,
(<400 MPa)

(b)

Figure 11. Design stresses as a function of bias spring (ng) and external spring (ng) stiffnesses: (a) ‘non-optimal design’ using A = 0.0948
(solid circle is the example of section 4), (b) ‘optimal design’ using A .
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Figure 12. Dimensionless maximum stress (6.°°%) as a function of

max

external spring stiffness (ng) for dead loading bias (ng = 0,
0o = Om)-

practice, we consider it as a limiting ideal case. Substituting
ng = 0 in equation (5.5) gives a best case maximum stress of

BnEe
1+’

O—_best

max = UM +

(5.6)

which is plotted in figure 12. For the chosen value of ng =
0.025 this give a maximum stress of only 0.002 56 (179 MPa)
as shown by the open circle in the figure.

5.3. Actuation times

Here we revisit the issue of actuation times to start and finish
M™* — A transformation. Equations (4.1) and (4.2) can be
rewritten explicitly in terms of P, as

1( P ) (5.7)

Ti=Mm{=—=1, .
! Po+ 6, — A,

P.+ 6,4+ A — fic P. + 6, — A, 1

n=10+(1+ - In(—= — | — -

Bnc P.+6,—A¢) ¢

(5.8)

Figure 13(a) shows how figures 9(a) and (b) collapse to a
single plot on a dimensionless basis, since the definition of
P, includes both the input power and the film coefficient.
Other parameters in table 3 are held fixed. Open and closed
circles correspond to the example of section 4. Dotted lines
indicate minimum dimensionless powers to start (0.006 04) and
finish (0.0102) the transformation, i.e., where t; — o0 and
T, — 00, respectively. The figure also shows the time interval
(AT113 = 15 — 11) during which transformation occurs.

5.4. Minimum power requirements

Minimum dimensionless powers to start and finish the
Mt — A transformation are the singular points of equa-
tions (5.7) and (5.8), given by

|

As - Gu’
Af - 93.’

start

finish.

(Pe)min = (59)

15

8———
2 g
8 5
o: o
6- | $(0.0106, 5.504)
| 1(0.0106, 4.662)
ol
.|
0 .’
0 0.01 0.02 0.03 0.04

HEG

Figure 13. Dimensionless times (7) during M T — A transformation
as a function of dimensionless power (P,): start time, 7; (to reach
A,), time period during M+ — A transformation, At},, and finish
time, 7, (to reach Ayg).

3
P Power to
(‘\e/v\”l")'” finish transformation
2 A A
(90, 1.3)
14
0 T T T
0 50 100 150 200
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Figure 14. Minimum power requirements to start (A) and finish
(Af) M™ — A transformation as a function of film coefficient.

These can be converted to dimensional power requirements
using definition (2.33) as simple linear functions of the film
coefficient as plotted in figure 14, keeping all other parameters
fixed in table 3. The gray region shows feasible powers to
achieve complete actuation. The solid circle is the example
of section 4.

Again using equation (5.9) we now consider relaxing
other parameters to study the minimum power requirements
for alternate designs. Figure 15 shows lines of constant
dimensionless power needed to achieve A in the design space
of dimensionless bias and external spring constant (17g) and
bias spring mismatch (A). The lower bound (dotted black line)
is the minimum design curve consistent with the solid black
line of figure 10, which requires a minimum power of P, =
0.00547. The bold dotted black line corresponds to the power
(P, = 0.0106) used in the example of section 4. The gray
region is the feasible design space for (17, A) for this power
level. The solid black circle is the corresponding coordinates
(B, A) of the example, and the open circles indicate the
minimum and maximum values of A for the same nB.
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Figure 15. Minimum dimensionless power curves to start M+ — A
transformation, P.(As), in the design space of dimensionless bias
(np) and external (A) spring constants.

Figure 16(a) then shows lines of constant dimensionless
power needed to achieve A; in the design space of
dimensionless bias spring and external spring stiffnesses
(8, ng) while holding A = 0.0948 of the example. Clearly,
larger values of np and ng require larger power levels, since
they raise oy,ax and thus raise the corresponding transformation
temperature, A¢. The gray region is the feasible design
space for (ng, ng) for the power level Pe = 0.0106. The
solid black circle is the corresponding coordinates (g, 7g) =
(0.05, 0.025) of the example, and the open circles indicate
the minimum and maximum values of ng for the same ng.
Figure 16(b) shows a similar design plot where an optimal
value of Ay is chosen according to equation (5.4). This better
choice expands the design space to larger permissible values of
ng for a given power level, or allows a lower power level to be
used for a given (ng, ng) design.
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5.5. Energy usage

Another consideration beside power requirements is the
amount of input energy necessary to start and finish actuation.
This could be important if the power source has a finite energy
storage, such as a battery or capacitor. Since the applied
power is assumed constant during the actuation portion of the
cycle, the input energy is simply &, = P.At. Defining a
dimensionless input energy as

&n= (5.10)

where a characteristic energy has been defined as £* = FALB,

the dimensionless input energy necessary to reach A¢ from 7,
is

En=7CP. 1o, (5.11)
which, using equations (5.7) and (5.8), works out to be
= = Ise Ise ea )\ - _c
5in=Pe|:Eln<_ >+( o “)
Pe + Gu - Af :377
P, + 6, — A,
x In <e+7"‘> - 1] (5.12)
Pe + ea - Af
The total input energy can be partitioned as
_ o P,
gin,S =cC Pe In{f ———— . (513)
Pe + 93 - Af
- _ [ (P46, + A — jic P+ 6, — A,
5in,T=Pe|:( +7+ M)ln(i_-'_ _)—1i|,
:3’7 Pe + 93 - Af
(5.14)

where c':zin,s is the total sensible heating contribution to reach
A;, and &1 is the latent heat and spring energy during
transformation from A to A¢. Equations (5.13) and (5.12)
are plotted against P. in figure 17(a) using the remaining
parameters of table 3. One can see that the required input
energy drops dramatically as the power is increased, since

0.1

Mg

T T
0.06 0.08

4’“8

(b)

Figure 16. Minimum dimensionless power curves to finish M T A transformation, 13e (Ay), in the design space of dimensionless bias (17g)
and external (ng) spring stiffnesses: (a) with fixed A = 0.0948, (b) with A = A, from equation (5.4).
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Figure 17. Input energies as a function of applied power to reach A¢ with shaded regions indicated sensible heat and latent heat/spring energy
portions. Numerical example values are shown by open and closed circles. (a) Dimensionless plot, holding all SMA parameters and ambient
temperature constant, (b) dimensional plot, holding all parameter values except input power constant.

the time for ambient heat loss is reduced. The shaded areas
show the individual contributions of the sensible heat and latent
heat/spring energy contributions. Figure 17(b) also shows a
corresponding dimensional plot, holding all parameters fixed
except the input power, to give a sense of the energy and power
magnitudes for the numerical example.

In the limit as P. — oo the actuation is adiabatic (no
ambient heat loss) and the input energy reaches a finite lower
bound. The infinite limit can be found by a change of variables
to a zero limit and then an application of L’Hopital’s rule as

In I+ay
. x+a . 1+by
IimxIn{ —— ) = lim ———~
X—00 x+5b y—0 y

. a—>b

Iim ——————— =a—
y—=0 (1 +ay) (1 + by)
Accordingly, equations (5.13), (5.14), (5.12) become

(5.15)

e =7 (Ar—6,), (5.16)
Soor = 3B+ A+ 60, (5.17)
ExX =3B+ i+ G0 +¢(Ar—6,), (5.18)

as P, — 0o. The lower bound values c'::iffs and éi‘f are shown
by dashed lines in figure 17(a).

5.6. Energy efficiency

The numerical example of section 4 applied power longer than
was necessary to achieve full actuation, just for illustration
purposes. In practice, a lower power could be used to maintain
the actuator position, or better yet, a latching mechanism
could be employed. Inducing temperatures above A does
no additional work against the external spring, so is wasted
energy. In this section, we consider the efficiency of the
actuator on an energy basis. We compare the input energy (now
denoted &;,, dropping the subscript 2) to the output energy
(Eout) of the actuator. The output energy is simply the work
done against the external spring, which is

_ ,BTIE
2(1 4 ng 4 ne)*’

(5.19)

out
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Figure 18. Energy efficiency (Eou/&in) as a function of
dimensionless power ( P.) for the design of table 3 (bold line) and
with minimum bias spring mismatch (thin line).

using a similar dimensionless energy (é‘lu‘ = out/E). The
energy efficiency is the ratio Eqgu/Ein (01 Eout/Ein)s
@ _ B ne
En  2(1+ng + 1)’
0% — A

o -olen (55
X {(6” —6,)|cIn
—1
_>_1“ .
0% — Ay

0% — Ay
0% + 1 — [t
i < + Mc) In <
Bn
The best efficiency in the limit of infinite power input is
< 50ut ) > :8 E

& ~ (L+np+np)°
X [

1

Bn+2(%+a0+¢ [Ar — 6,])
The efficiency curve, equation (5.20), is plotted in figure 18
(bold line) against the dimensionless power input using 6%
P, + 0, with the remaining parameters taken from table 3. The
efficiency of our numerical example is quite low (0.147%),
while the best case efficiency is 0.605% for infinite power

(5.20)

(5.21)
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input. The case of optimal bias spring mismatch (A ) is
also shown for comparison (thin line), having slightly better
efficiency (0.206%) at the chosen input power and upper bound
efficiency (0.634%). While the energy density of SMA’s is
several orders of magnitude larger than other typical adaptive
materials [12], the energy usage can be quite lossy for a given
work output, which is a well-known issue for typical SMA
actuators. As a final case, it is also interesting to study the
best possible energy efficiency of dead loading (n = 0). For
this case, the constants in equation (3.11) simplify to

60_(Ise+9a+ﬁc)
ht Pet 0+ flc
by =0,

ay =
(5.22)

where o op is the dead load stress.
equation (3.9), simplifies to

The governing

cai—(1+a)é'(r) =0, (5.23)
which has the simple linear solution in time
£ = (r — ) (5.24)
)=(T—-1 . .
! 1 + aq

(5.25)

50ut
&

00
[llc + 50 - ea] )

(o]
> = = — (5.26)
o)+ A+c

Proceeding as before, accounting for the time to reach Ag and
the time to transform the SMA element, the dead load energy
efficiency is
& . P
°“‘=50{5Peln[_ < }
Ein Pe + 60, — (ftc + 00)
P. (A + o) }“
Pe+ea_ (ﬁc"'&O)
Notf: that AS = Af = [ic + 0y in this case. The limiting case
of P, — 00is
Figure 19 shows contours of energy efficiency, equation (5.25),
in the space of oy and P, leaving the SMA parameters and
ambient temperature fixed according to table 3. The efficiency
generally improves as o0y increases, due to the greater output
work done, except near minimum powers (slanted dashed line)
where time for actuation becomes long. Here, one can see
that energy efficiencies of a few per cent can be achieved for
moderate dimensionless stress and power levels.
5.7. Potential model refinements
The actuator model presented herein was developed primarily
with simplicity and ease of use in mind. Once the parameters
(B, nB, A) have been calibrated to give an accurate pre-
stress 0y, we expect the model to give reasonably accurate
performance predictions. However, as noted in section 5.1,
allowing np and/or A to change for fixed 8 would produced
only rough approximations of the pre-stress, since the low

temperature Martensite isothermal responses are actually quite
nonlinear and temperature dependent.
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Figure 19. Contours of energy efficiency (Equ/Ein) as a function of
dimensionless power (P.) and stress (0) for a dead load actuator.

Here, we discuss how the model could be generalized
somewhat for design studies, focusing on improving the
predictions of &y, thereby giving more accurate calculations
of the actuator stroke over the design space of (7, A). There
are many ways this could be accomplished, for example using
a more sophisticated SMA constitutive model, but instead we
outline here an incremental extension of the current model
that seems to be a pragmatic alternative that retains the useful
analytical solutions. For design purposes, the limitation of the
current actuator model stems from treating f as a material
constant, independent of the actuator design and ambient
temperature. We now relax this interpretation and use it as a
fitting parameter for a range of different bias spring designs in
order to more accurately capture the initial stress, 6.

Figure 20(a) shows eight isothermal, displacement-
controlled, load—unload experiments on NiTi wire specimens
(as used in Chang et al [1]) at relatively low temperatures
between —60°C and 10 °C. Each as-received specimen
was cooled monotonically from room temperature before the
experiment, so many started in the R-phase initially and were
transformed to tensile Martensite during the loading process,
hence the appearance of a double ‘knee’ at low strains for the
lowest temperature experiments. (Note that the appearance
of the R-phase has no bearing on the quality of the actuator
predictions, since the SMA operates at much higher stresses
and temperatures at low strains, where the R-phase never
appears.) The experiments at the highest temperatures actually
show the superelastic behavior of the material. Points at the
termination of the loading plateaus are shown by large dots.
The overall envelope of these points was fitted by a three-
parameter curve (M *-fit) of the form (see figure 20(b))

5(g0) = a + be, (5.27)

with fitting constants

{a,b,c} ={7.9561 x 107*,1.7118 x 107>, 80.622}. (5.28)
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Figure 20. (a) Low temperature isothermal experiments on NiTi wire (same material as used in Chang et al [1]) with large solid dots showing
the termination points of the loading plateaus. The dotted gray line shows the predicted value for Martensite reorientation from the
constitutive model (o = 78.5 MPa), which agrees with the plateau stress of the experiment at —50 °C. (b) Dimensionless stress—strain paths
of the actuator, (A, ng) = (0.0948, 0.05), for bias spring only (thick dashed line) and with external spring, g = 0.025 (thick solid line). The
M -fit curve is a fit of the loading plateau termination points, according to equation (5.27), which represents the pre-stress o, of the actuator

at “full’ M+,

The curve represents the loci of the initial states of the actuation
cycle for the whole class of designs. Again, we must check
that the assembly takes the SMA to a point somewhere beyond
the plateau of the isothermal (cold) response, i.e. pre-stress
must intersect the M *-fit curve above the ambient temperature
indicated on the curve. (This criterion is satisfied, for
example, by the intersection point shown in figure 20(b), which
corresponds to the plateau stress for an isothermal response
near —33°C, well above the point corresponding to the
ambient temperature —50°C.) Each design, i.e. combination
of (A, nB), can be calibrated to a particular value of g,
that once fixed, is associated with M+ (§y = 1). For our
previous values (A, ng) = (0.0948,0.05) a new value of
transformation strain was calculated, 8 = 0.0514 (as shown in
figure 20(b)), somewhat smaller than used before (0.0591), but
probably more accurate in light of these particular experiments.
The actuator path in SMA stress—strain space is shown in
figure 20(b) for the cases with a bias spring only (dashed line)
and with an external spring (thick solid line) for which the
predicted dimensionless stroke is 4.89%.

The calculations of fitted transformation strain () and the
cold assembly strain (gy) are accomplished as follows. The
intersection point (small solid dot) in figure 20(b) is defined by
equating the dimensionless stresses

go— B =a+be”, (5.29)

but now &y is a function of B and A according to
bc .
— —e

equation (2.38). The solution is
()]
1B B

1 1
o = 1 —_ = [ + —W
A c
where W is again the Lambert function, and {a, b, ¢} are
the fitting constants of the M™ envelope. Accordingly, the
transformation strain is found to be
(A%))} . (531

1+773|:a 1 <

a
(5.30)

bc .
—e
B

= —+-W
B c

p=1-

19

Contours of constant &y and § in the design space of (g, A)
are shown in figures 21(a) and (b), respectively. The open
circles in the figure are the values at (13, A) = (0.03, 0.0948)
associated with (g, B) (5.34%, 5.14%). These show
monotonically increasing values of ¢y and S as either value
of (g, A) is increased.

The dimensionless actuator stroke can be calculated from
equations (5.2), (2.34), and (5.30) as

1

Ae

S § -

1+77B+77E{ ( )
bc .
—e

L Gl

—+-W

m C
A contour plot of constant A¢ in the space of (ng, ng) for
A 0.0948 is shown in figure 22. One can see that for
constant np, increasing 1g, the actuator stroke is monotonically
reduced, yet for constant 7g, increasing np, the actuator
stroke increases then decreases. For our chosen parameters,
(ns, ne) = (0.05,0.025), the actuator stroke is 4.78% as
shown by the open circle in the plot. The stroke without an
external spring is slightly larger, 4.89%. Additionally, the
dotted line in the plot shows that the stroke changes in a non-
monotonic manner (increasing then decreasing) as ng + 71g is
increased through this point (or most others for that matter),
contrary to the overly simplistic equation (5.3).

As a final comment, the original actuator model was
simple, making it especially convenient for first-order design
calculations. The purpose of this section was to suggest a
possible refinement, reusing as much of the previous actuator
model as possible, yet this was achieved at the expense
of introducing some additional complexity. We have not
yet investigated all the implications on the design guidelines
presented in earlier parts of this section using this more refined
model. That is left for future work, where we also intend to
perform relevant experiments on SMA bias spring actuators
using the current SMA material for direct comparison, in order

A— 4
B

(5.32)
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Figure 21. Contours of constant & (a) and 8 (b) as a function of (15, A). The open circles show the points (75, A) = (0.05, 0.0948).
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Figure 22. Contours of constant dimensionless actuator stroke, A¢ in
the space of dimensionless spring constants (ng, 7g) for A = 0.0948.
The open circle shows the point (1g, 7g) = (0.05, 0.025).

to validate predictions over a wide range of conditions and
design parameters.

6. Summary and conclusions

A reduced-order thermodynamic model was presented for a
prototype uniaxial SMA/bias spring actuator immersed in a
thermal bath and actuated by Joule heating. The constitutive
model, a derivative of a more complex, experimentally
validated model Chang et al [1], was used to solve mechanical
equilibrium, heat transfer, and kinetic laws, but in lumped
form. A dimensionless set of equations was derived, resulting
in a minimum set of dimensionless parameters governing the
transient actuator response.

The actuator behavior was governed by a first-order,
nonlinear ordinary differential equation (ODE) during phase
transformation, rather than the usual set of partial differential
equations (PDEs). Analytical solutions were then derived for
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the time-dependent actuator response, during both sensible
(only) heating/cooling and the combination of sensible/latent
heating/cooling for martensitic transformation.  To our
knowledge, the latter is the first such analytical solution
available for an SMA actuator system. During transformation,
the evolution of strain, stress, temperature, and tensile
martensite phase fraction were found in terms of the special
Lambert function, given a prescribed ambient temperature and
input power. The analytical solution compared favorably to a
finite element simulation using the parent model [1].

The analytical nature of the transient solution to the
governing ODE allowed us to study several important
actuator performance indicators in terms of the governing
non-dimensional parameters. Actuation time, spring size,
maximum stress, minimum power, and energy efficiency were
derived in closed form. By contrast, countless simulations
using traditional numerical techniques to solve PDEs would be
required to encompass the entire range of potential actuators.
The simpler approach herein gives the designer a quick and
convenient model to assess the various measures of actuator
performance.

While the model presented gives a good first approxima-
tion of actuator performance, its most limiting assumptions are
(1) uniform temperature field, (2) uniform strain field, and (3)
the rather crude fit of the low temperature martensite reorien-
tation response by the simple constitutive model. Assumption
(1) is reasonably satisfied if the ends of the SMA wire are ther-
mally insulated. Assumption (2) is reasonably satisfied if the
SMA wire has been conditioned (pre-cycled) to eliminate the
occurrence of strain localization associated with transforma-
tion fronts, yet the simple actuator model still gave satisfying
results compared to the finite element simulation (that included
transformation fronts), at least in terms of the gross behavior
of the actuator. Assumption (3) was not an issue, provided the
transformation strain parameter (8) gave a good estimate of
the pre-stress in the SMA element. This pre-stress also needed
to be sufficiently large to ensure tensile martensite existed in
the actuator’s cold state. To achieve accurate stroke predic-
tions for a range of design parameters and ambient conditions
it was necessary to reinterpret § as a design parameter, rather



Smart Mater. Struct. 18 (2009) 065001

J A Shaw and C B Churchill

than a material constant, by fitting it to the post-plateau tensile
martensite responses.

We expect this simplified setting will be a useful first-order
calculational tool for sizing SMA actuators, predicting their
performance, and for use in design optimization software to
effectively integrate such actuators into complex systems. We
hope it will be a convenient tool for engineers to perform initial
actuator design studies in a systematic way.
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