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ABSTRACT

In many manipulator configurations, where the end effector of the manipula-
tor is in contact with a fixed object, a complete mathematical model. for the
manipulator dynamics should include the effects of the resulting contact force
between the end effector and the fixed object. Equations for such a closed chain
manipulator are developed, where the end effector constraint is defined by a
smooth manifold. These equations are shown to be complete in the sense that
the direct dynamics problem and the inverse dynamics problem are well-posed.
This formulation suggests a new approach to planning and tracking control for

closed chain manipulators.
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1. INTRODUCTION

There are numerous applications where the end effector of a robot manipu-
lator is in contact with a fixed external object. These applications include the
use of manipulators for carrying out assembly and machining tasks. However,
the most common models éf manipulator dynamics do not take into account the
contact forces between the end effector of the manipulator and the fixed object
[5,6,11]. If the contact force can be directly sensed, then it is possible to expli-
citly eliminate the contact force from the model, and this forms the basis for
several control approaches [8,9,10,12]. However, direct and accurate sensing of
the contact force is not always possible so that a complete dynamic model of the
manipulator, including the effect of the contact force, is required. In tilis paper
we develop such a model and indicate two important dynamics problems, each

of which we show to be well-posed.

By imposing a contact constraint on the end effector, the manipulator links
form a so-called closed chain; hence, we refer to a closed chain manipulator.
Closed chain mechanical manipulators have been studied in [1,3,7], but the

treatment on which our results are based is in [3].

2. MODELLING A CLOSED CHAIN MANIPULATOR

Let p€R™ denote the position vector of the end effector of the manipula-
tor, in terms of a fixed workspace coordinate system. Suppose that constraints

on the end effector are given as
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¢(p) =0 (1)

where ¢:R® —R™ is twice continuously differentiable. A closed chain system is
formed through continuous contact of the tip of the manipulator with the mani-
fold defined by the constraints. Let S be a frictionless manifold defined by the

constraints

S={ p€ER": ¢;(p)=0, i=l,..,m } (2)

We also assume that the gradient vectors é,(p),..., V9,,(p) are linearly
independent for all pE€S, so that the constraints define an m dimensional
smooth manifold. If p, is a point on S, then we can define the normal space of S

at pg as

N(po) = {prp = Emj a; Vo (po), i=1,---,m} (3)

=1

and the tangent space of S at p, as

T(po) = {r:<py> =0, yEN(p,)} (4)

Mpy) and T(p,) are subspaces of R™ and are orthogonal complements of each

other so that

R"=T(po) ® N(py) (5)

In order that the manipulator does not lose contact with the constraint mani-

fold, it is required that the velocity of the manipulator end effector lie in the

3 Closed Chain



RSD-TR-13-84

tangent space of S and the contact force lie in the normal space of S. We refer
to the constraints on the end effector velocity and force due to contact as the

natural constraints.

Let ¢geR™ denote the vector of robot joint coordinates [5,6]. The relation

between robot coordinates and workspace coordinates can be expressed as

p = Hg) (6)

where H: R® —-R ™" is twice continuously differentiable. We also assume that the

manipulator is nonredundant, viz., the Jacobian matrix %’l is nonsingular
q

and square.

It is convenient to define the manipulator equations of motion in terms of’
the joint coordinates [4]. Let 7€R™ be the generalized joint torque vector
required to maintain satisfaction of the path constraints; then the dynamic
equations for a closed chain manipulator, taking into account the contact force,

can be written as [2]

Mqg+Flggd=T+r (7)

Here TER™ is the generalized input joint torque vector. M(q) denotes the iner-
tial matrix which is symmetric and nonsingular. F{q,q) comprises Coriolis terms,
centrifugal terms, and gravitational terms. Since no work is done by the con-

tact torque 7 in a virtual displacement éq ,
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n
Ynég =0
=1

or equivalently in workspace coordinates

n
N7 6p =0
I=1

where 6q ,..., 69, ( 6py ,..., 6p, ) represent scalar virtual displacements of the
end effector in robot (workspace) coordinates. 7 is the generalized force vector,

due to contact, in workspace coordinates. Using (6), we have

a_ non 0 (q)
Yoy =3 YT ——— 64 =0
=1 1=1l=1 1
Thus
n J0 H(q
T, = -7-:[ l( ) ’ (i=1,...,n)
=1 dq;
From the constraints we know that the virtual displacements dp ,..., ép, must
satisfy
n 0 ¢;(p) :
6¢; (p) = Z‘—"Z_" op, = 0, (r=1,...,m)
=1 Om
We now introduce Lagrange multipliers Ay, . . . ,X,, ; multiply this equation by

A i to obtain
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n 6¢J
) (p)

=1 op

6}71 = 07 (]=1)1m)

Sum up these m equations; using a previous equation obtain

n m  0¢;(p)
YT - XN opp =0
I=1 =1’ 9m
0 0
Since d:;l()P) yeors ¢gp(p) are linearly independent vectors, A\;, .. .,\,, can
be chosen such that
m  04;(p)
T = \; . ’ (I""]-; 1n)
l ng ’ apl

The corresponding contact force components, computed in robot coordinates,

are

n m 99; o0H,
Y (p) 1(9)

I=1j=1 op, dg; '

Let Jacobian matrices be defined as

then the complete set of equations of motion can be written, using vector nota-

tion, as
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Maq)g + Flg,q) =T + 1 (8)
r=JT(gDT () (9)
p = Hg) (10)
¢(p) =0 (11)
or equivalently as

Mq)§ + Flg,9) = T + JT (g)f (12)
f=DT(p (13)
p = H(q) (14)
¢(p) =0 (15)

where A\ = (A\y, ..., \,) T .

3. DIRECT DYNAMICS AND INVERSE DYNAMICS

Given a specified motion of the manipulator, satisfying the imposed con-
straints, can we compute the input joint torque vector which would generate
this specified motion and the corresponding contact force? This problem is usu-
ally referred to as the direct dynamics problem. Similarly, the inverse dynamics
problem considers the following: given the input joint torque vector, what is the
manipulator motion, satisfying the imposed constraints, and the corresponding

contact force necessary to maintain satisfaction of the constraints? Calculation
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of the contact forces plays an important role in these problems. The existence
(and uniqueness) of the manipulator motion and joint torques is also addressed.

Throughout this section, we assume that the constraint manifold is frictionless.

The desired motion of a manipulator is often specified in workspace coordi-
nates instead of robot coordinates. Using the coordinate transformation given

by (6) define

Hoi) 25 0]

then velocity and acceleration of the end effector in workspace coordinates are
p= JNg)q

5= Jg,)i + Ao)i

Assume the motion p({)eR" , t,<t<{; , given in workspace coordinates, satis-
fies (15). The corresponding contact forces and the system dynamics are impli-
citly defined by (12),(13),(14). Note that f{t) is defined in workspace coordi-

nates. We now make the following assumptions:

(A1) The inertial matrix M: R® -=R™ is nonsingular. F: R® XR"—R" is
bounded and Lipschitz continuous.

(A2)¢ :R™ —R™ is twice continuously differentiable.
(A3) J(q) is nonsingular for all g¢R" . D(p) has rank m for all peR " .
(A4) The m X m matrix

Alq) = D(H(q))Xq)M(g)J T (q) D T (Hl(q))

Closed Chain 8
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is nonsingular.

Two basic propositions are derived below.

Proposition 1:

Suppose that the torque vector T{t)ER™ 13 piecewise continuous on
to<t<t; . Given T(t) and initial values q(to) = qo, ¢(to) = qo, satisfying
H(q)ES, Nq0)3ET(H(qy)). Then with assumptions (Al)~(A4) there ezists a
unique contact force f(t) such that the solution of (12) satisfies the path con-

straints (15), assuming there is no finite escape time, for t,<t<t, .

Proof:

Our objective is to obtain an expression for the contact force which guarantees

satisfaction of the path constraints. To this end, suppose that ¢(p)=0 so that

280~ p)p =0

2 .
L — Dip)s + Dipdlp =0

where D(p,p) 2 % D(p(t)) . Since M(q) is nonsingular, ¢ is obtained as

§=MY) T-Fqgq) ]+ MY I (g)f

From (13) obtain

Algh = D(HQ)A)M () Flg,d) - T ]
- (H(9)(9,9) + D(H(9), X9)d)N9) | ¢
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Note that D(p) is not a square matrix in general. These are m linear equations in
m unknowns AER™ ; Since A(q) is nonsingular, A can be uniquely determined

as a linear function of ¢,¢, T

= g(¢,9,T)

where

q9,4,7) = A~ ()N H ) AIM (g Flg.9) - T ]
- A7)l D(H(q))J(9,9) + D(Hq),Aq))/q) 14

Hence, the resulting contact force is

f=DT(Ha)e4,4,T)

Eqns. (12), (13) reduce to the following initial value problem.

Mq)i + Flg.9) = T + JT (9D T (H(9))e(9,4, T
q(to) = g0, G{to) = Qo

This initial value problem has a unique solution q(t) defined for ¢, <t<ty, + 6
for some 6>0 . Assuming there is no finite escape time, the solution is defined

for t ,<t<¢, .

We now show that the constraints are satisfied throughout the motion. For
the contact force A = ¢(q,4,T) , ¢, <¢<t; , it can be verified that p(t)=H(q(t))

satisfies
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d’p(p) _
—P =0, to<I<t

But, since H{(qo)ES , Nq¢)3€ T(H{q,)) it follows that

dg(plt o))

#(p(to)) = 0, — =0

Thus necessarily

o(p(t)) =0, t,<t<Y

Proposition 2:

Given motion q(t), satisfying ¢(H(g(l))) =0 , t,<t<{; , which is twice
continuously differentiable. Under assumptions (Al)~(A3) , there exist input
joint torque vector T(t) and corresponding contact force vector f{t)cN(H(q(t)))

satisfying (12) for £, <t<¢, .

Proof:

From (12), (13), we have

Mq)§ + Flq,q) = T+ JT(q) DT (H(q)X

Given q(t), £(<t<t; , the left hand side of the equation is determined. Clearly

there are many T(t), \(¢) , {(<t<¢ , satisfying the equation.
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|

As indicated in the proof, there are many input joint torque vector func-
tions and contact force function which generate the same given motion. For a
specified contact force function, the torque T(t) is uniquely defined. The case of
an open chain manipulator corresponds to the assumption that the contact force

f)=0, t,<t<t , so that the torque T(t) is uniquely determined.

4. CONCLUSIONS

We have carefully developed a general model for a closed chain manipula-
tor, and we have shown that the direct and inverse dynamics problems are
well-posed. We believe that the closed chain manipulator model is the appropri-
ate model to use in control design and analysis, where the manipulation task

involves contact between the manipulator end effector and a fixed object.

Numerous approaches to control of manipulators, not including a closed
chain constraint, have been developed [5,6,11]. It is likely that those control
approaches can be suitably modified to apply to the closed chain case, but the

modifications and extensions have not yet been developed.

It is possible to eliminate the path constraint and the contact force from
the dynamic model [3], by a suitable elimination of variables. However, the
resulting equations are usually extremely complicated; moreover, elimination of
the contact force from the model may not be most desirable if the contact force
represents a variable to be controlled. Thus an interesting challenge is to

develop suitable control approaches, based on the complete equations (12)~(15)
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developed here.

In our development, a number of specific assumptions have been made.
Important extensions would include incorporation of friction effects on the con-
straint set, allowance of nonsmooth constraint sets, and consideration of con-
straint sets defined in terms of inequalities so that contact between the end

effector and the fixed object need not be continuously maintained.
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