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Abstract

Mathematical models for constrained robot dynamics, incorporating the
effects of contact forces required to maintain satisfaction of the
constraints, are used to develop explicit conditions for stabilization and
tracking using feedback. The control structure allows feedback of
displacements, velocities and the contact forces. Global conditions for
tracking based on a modified computed torque controller and local conditions
for feedback stabilization using a linear controller are presented. The
framework is also used to investigate the closed loop properties if there are
force disturbances, dynamics in the contact force feedback loops or
uncertainty in the constraint functions.
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1. Introduction and Motivation

Current industrial robots are characterized by a wide diversity of
physical design configurations. However, the basic task capabilities of
most current robots are quite limited. The most common tasks involve
so-called "pick and place” operations, which characterize the vast majority
of current robot applications. |f robot technology is to have a more wide
ranging impact on industrial practice it is essential that the task
capabilities of robots be substantially expanded.

A robot can be viewed as a physical mechanism for performing
work; the mechanism is often defined as a connection of articulated links
constructed so that the end of the last link (which may include a gripper
holding an object or a tool holder containing a tool) is the location at which
the work is performed. It is natural to focus on the so-called end effector
of the robot and to define particular robot tasks in terms of desired
motions of the end effector; this is the common view in dealing with "pick
and place” operations. However, there are many industrial tasks (most of
which cannot be automated using current robots) that are defined in a
fundamentally different way. In particular, there are numerous tasks
which cannot be defined solely in terms of motion of the end effector. Of
specific interest in this paper are tasks which are characterized by
physical contact between the end effector and a constraint surface. A long
list of such tasks can be given, including scribing, writing, deburring,
grinding and others [1-7]

There have been numerous research publications which have deait
with such applications. Although the primary focus of such research has
not often been on the role of constraints in defining the tasks, research on
compliant control [8-11]and force feedback control [12-19] are closely
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related. Several formal control design approaches have been proposed and
there have been descriptions of related robot experiments. However, there
has been no theoretical framework established which can serve as a basis
for the study of robot performance of constrained tasks.

It is the premise of this paper that there is a need for a carefully
developed theoretical framework for investigation into application of
robots to such tasks. Furthermore, it is our premise that such a theoretical
framework should explicitly incorporate the effects of contact forces
required to maintain satisfaction of the constraints. Specifically, we
present a dynamic model of a robot, incorporating constraint effects; the
form of the model follows from classical results in dynamics [20-21] and
has recently been recognized as the proper theoretical model for
constrained robot problems [22-27].

This model is used in this paper to develop theoretical conditions
for closed loop stabilization and tracking using a class of feedback
controllers.  The constraints are assumed to be nonlinear and the
development is based on a canonical coordinate transformation for which
the constraints are expressed in a simple form. Global tracking conditions
are developed for the case of nonlinear dynamics using a modification of
the computed torque method. Local stabilization conditions are aiso
developed using a linear controller. The results are specialized to the case
of linear constraints, for simplicity.  Such stabilization conditions are
new and serve to provide a theoretical basis for the use of force feedback
in constrained systems such as has been suggested in [16].

We further investigate the properties of the closed loop using the
proposed controller structure; we show that “high gain displacement
feedback loops” reduce the steady state displacement regulation error for
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constant force disturbances and uncertainty in the constraint function. we
also show that "high gain contact force feedback loops” reduce the steady
state contact force regulation error for constant force disturbances and
uncertainty in the constraint function. Further, closed loop stabilization is
shown not to be affected by a certain class of dynamics in the contact

force feedback loops.

2. Formulation of Constrained Dynamic Equations

Our development is based on a Lagrangian formulation of robot
dynamics where we assume the existence of a symmetric and positive
definite matrix valued inertia function

M: Rn — Rnxn
a scalar valued potential function

V:R" - R!
and a vector valued constraint function

@ R" — RM
such that the equations of mofion of the robot are defined in terms of the

Lagrangian function L(g,q) = 0.5 @ M(q) q - V(q) and the constraint function

@d(q) as
dal(q,0) - aLlq,q =J@N *u (1
dt 2q 2q
@q =0 (2)

For simplicity in our development, we do not take into account kinematic

relations between robot coordinates and constraint coordinates; thus q is a

vector of generalized displacements, g is their time derivative, A is a

vector of generalized contact forces (multipliers) associated with the

constraints and u is a generalized force which depends on a control input,
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disturbance inputs or dissipative effects to be included in the model.
For simplicity throughout all functions are assumed to be sufficiently

differentiable and

J(g) = 2 8(q) (3)
24
Thus the equations of motion for the constrained robot are given by
M(@)q+ F(q,q) =J(@Q)A +u (4)
@ =0 (5)
where
Fla,0)= d M) § _g52aMa)a, 2V (6)
gt 24q 2q

Note that if B(q) = O is identically satisfied then alse J(g) q = O.
Thus, the constraint manifold S in RZ" defined by

S = ((q,q): @(q)=0,J(q)q=0) (7)
is fundamental in the development. In particular, if conditions given in
[25-26] are satisfied, then there is a unique solution of (4)-(5), denoted by
q(t) satisfying (q(t),a(t)) € S, for each (q(0),q(0)) € S. That is, S is an
invariant manifold. Thus the constraints on the robot can be viewed as
restricting the dynamics to the manifold S only rather than to the spaée
RZ" It is this distinction that is critical in forming the constrained robot
dynamics; this is also the fundamental source of difficulty in analysis and
control of the robot dynamics.

We again emphasize the important role of the constraints in the

constrained dynamics, especially as relates to the stabilization problem.
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In particular, it is easy to see that a closed loop system that is
asymptotically stable if constraints are ignored may, in fact, not be
asymptotically stable if the constraints are imposed. To make this point

clear, a simple example is provided by the linear system

Ky tX %ot 2%, =0

o+ Xy * X5t Xp =0
which is asymptotically stable, but if the constraint Xy * Xy = 0 is imposed
it can be shown that the resulting constrained linear system

X+ Xy + X+ 2% =N

Ko+ Xy * Ko * o = A

Xy *+ %X =0

is not asymptotically stable; its responses are oscillatory.

3. Transformation of Constrained Dynamic Equations

In order to carry out our subsequent development we assume that
the constraint function satisfies
Assumption | There s an open set Ve R and a function 2 V — A"
such that

Aqqx) =0 forall goe V. (6)

Let @(q) = 0; assumption 1 holds in some neighborhood of q if
rank J(@ = m, according to the implicit function theorem, although a

reordering of the variables may be required.
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Let Assumption 1 hold with V = R"™  Consider the nonlinear

canonical transformation X : R" — R" defined by

Xy g, - (a,)
X = =X(q) = (9
X2 G2
which is differentiable and has a differentiable inverse transformation
Q:R"— R" sych that

q Xy + O(x5)
q-= = Q(x) = . (10)
G2 X2

The differential equations (4), when expressed in terms of the variables x

are easily obtained. In particular, let

Im ) O(xz)
0 X2
T(x) = 2Q(x) = (11)
X 0 !
n-m

be the nonsingular Jacobian of the inverse transformation. By abuse of
notation we often write T(xz) or T(q) in place of T(x). Thus the differential
equation (4) is transformed to
T'(x) MIQ(X)) T(x) % + T'(x) (F(QMX),T(X)X) + MQ(x) T(x) X)
=T'(x) u+ T(x) JQ(x)) A (12)
and the constraint equation (5) is transformed to

X]=0. . (13)



For simplicity in the notation define

M(x) = T'(x) MQX))T(x) (14)

FOx,%) = T00 {FQO0, TOOR) + MQG)) T(x) X} (15)
and introduce the partitioning of the identity matrix

|n=[E‘,‘:E'2] (16)

where E; 15 an mxn matrix and EZ is an (n-m)xn matrix. The equations (12)
and (13) can be written in reduced form as
By (ko) By ¥o + By FlXo, ko) =B, T U+ Ey TSN (17)
Ey M(%g) E'p %o * Eo F(Xo,%o) = Eo Ti(Xo) U (18)
Xy =0 (19)
where we note that in (18), E, T'(xz) J'(xz) = 0 follows from Assumption 1.

The notation F(x,,k,) denotes F(x,X) evaluated at x' = (0,x’,), X = (0,k ), etc.

An important special case occurs if the constraints are linear; it
can then be shown that the above development can be carried out explicitly
in terms of a singular value decomposition. We make
Assumplion 2 Assume that aq) = J q where J is @ constant mxn malrix
with rank of J being m.

Then it follows that there is a singular value decomposition of J such that

J=UZV (20)

where U and V are mxm and nxn orthogonal matrices respectively, and

3=[D:0], D=diagldy,...,dp) (21

withd;>0,1=1,...,mbeing the singular values of J.



Now the previous development holds with

Q(x) = Vx, X(g@) = V'q, and T(x) = V. (22)
The development is considerably simplified in this case; consequently
specific results are subsequently presented for the case of linear

constraints.

4. Global Tracking using Nonlinear Feedback

In this section, we consider a general tracking problem where
vector functions g4R' — R, A4R! — R™, are given such that q = g4(t)
satisfies constraint equation (S) identically. Our objective is to determine
a nonlinear feedback controller to solve the following tracking problem. A
feedback control u (depending on the tracking functions gy, (Jd, qd Ag, and
the feedback functions g, G and M) is to be selected so that for all
(9(0),q(0)) € S it follows that the closed loop responses satisfy

qt) > g4(t) ast = o

A(t)—»?\d(t) ast — oo

For simplicity ih the presentation we consider a version of the computed
torque controller [12,28], modified to accomodate the use of feedback of
the contact force.

Based on equations (17)-(19) a modification of the computed torque
controller, which takes into account the constraints and the tracking

contact force objective, is characterized by



(%) U= M(x) E'p Xpg + Flxy, Xo) = Ti(xo) J(%,) Ay

+ M%) ' Gy, (Rog = %) + M(Xo) E'y Gy (Xpg = X5)

+ By BBy T(%o) J(xo) (A= Ay) (23)
where G, and G4 are (n-m)x(n-m) constant feedback gain matrices and G, is
an mxm constant feedback gain matrix. The closed loop equations are

By Mxy) E'p £854 G, 85+ Gyep } = (1 + G E, Txp) J(xo) N = N ) (24)
E, M(xy) E'y {65+ G, €5+ Gyeol =0 (25)
e;=0 (26)
where e, = x, - £, X(qd), e, =X,

Conditions on the gain matrices so that the tracking problem is
solved are readily obtained from equations (24)-(26).
First, we write the controller equation (23) in terms of the original

coordinates. The controller expression is given by

U =M@ T(Q) Tlag) ™! Gy + Fla,d) - J(@) Ag
+ M@ {T(a) T(@) " - Ta) Ttay ™" Ttay) Tlag™ "4y}
+M(@) T(@ E'» 6, E, {T(ag ™! 44 -T(@™" &)
+ M) T() E'5 G4 E, {X(ag) - X(@)}
+T(@ T E 6E, TU@ J(@) A - Ay (27)

The following result is obtained.
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Theorem . Suyppose that Assumption ! Is satisfied with V = A1~M  The
closed logp system defined by equations (4)-(5) and (27) is globally
asymplotically stable in the sense that

qt) = gu(t) ast— oo
At) = A lt)as t — oo
for any (q(0),g(0) e S if G, and G, are symmelric and positive definite and

G, 1s symmelric and nonnegative aefinite

We now consider the simpler case where the constraints are linear.
In such case the feedback controller (27) can be written as

u=M@) Gy * FQ8) - J Ag+ M@ VE, G Ey V' (3 - )
+ MQ) VE,GyE, Vilgg-@) + VE, G Ey VIIN-Ag) (28)
where G, and G4 are (n-m)x(n-m) constant feedback gain matrices and G is

an mxm constant feedback gain matrix. Conditions so that the closed loop
system solves the tracking problem are obtained as follows.

corollary 2 Suppose that Assumption 2 1s satistied The closed loap
system aefined by equations (4)-(5) and (28) is globally asymptotically
stable in the sense that

qt) = qu(t) ast = e
A(t) = Aylt)ast — e
for any (q(0)q(0)) € S if G, and G,are symmetric and positive definite and

G, 1s symmelric and nonnegative definite.

It is important to note that the dependence of the controller on the

contact force in expressions (27) and (28) is crucial; in particular, the
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tracking contact force term -J'(g) Ay cannot be replaced by the feedback

contact force term -J'(q) N because the closed loop system in such case is
ill-posed. Such an incorrect approach has, in fact, been proposed in the
literature. One proper form for introducing feedback of the contact force is

through the controller expressions given by equations (27) or (28). Note

that the closed loop can be stabilized even if Gf = (; feedback of the contact

force is not required for stabilization. But, as we subsequently indicate,
there are advantages in using feedback of the contact force. The control
relations (27) and (28) suggest that feedback of g and q is required, but it

should be kept in mind that those relations can be expressed in terms of

feedback of g, and g, only, using the constraints.

A schematic diagram of the closed loop system, indicating the
control structure (28), is shown in Figure 1, for the case where the
constraints are linear. The viewpoint of the controller as a computed
torque controller, modified to conform to the constraints, and depending on

feedback of g, g and A is clarified from that figure.

9. Local Stabilization using Linear Feedback
In this section, we consider a regulation problem where constant

vectors gy e R, A € RM Ug € R™ are given such that g =qq, A = Ay, U=y
satisfy equations (4-5) thereby defining an equiiibrium condition. Our
objective is to determine a feedback controller to solve the following

regulation problem. For simplicity in the presentation we consider a linear
controller. A linear feedback control u (depending on the regulation vectors



Ug Gg. Mg and the feedback functions g, g and A) is to be selected so that
there is a neighborhood N of (g4,0) in R2" sych that for all (g(0),G(0)) € SAN
it follows that the closed loop responses satisfy

qt) = gq ast— o

Mt)— Ay ast— e

Assuming that the constraint function is nonlinear, consider the

linear feedback controller, based on the reduced equations (17)-(19), given
by

U= Uy + Tlrog) M- £y 6, Xy ¢ E'y Gy Ey (Xog ~Xo)
where G, and G, are (n-m)x(n-m) constant feedback gain matrices and G; is

an mxm constant feedback gain matrix. The linearized closed loop

equations are
E, MlXog) E'5 €5 + G, &5 + [ G4+ EKixg) E'p Jey =0 (31)
e;=0 (32)
where _
K(X2d) = JF(x.X)
d X X=(O,X2d), X = (0,0)

The conditions on the gain matrices so that the regulation problem is
solved are readily obtained from equations (30)-(32).
First, we write the controller equation (29) in terms of the original

coordinates. The controller expression is given by
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U= uy - Tlag) ™ E,6,E,Tae ™'
+ T'(qd))" E'2 Gd E2 T(qd)'] (qd -q)
¢+ Tlag)™" £ 6., Tag Jiag (A - Ag) (33)

The following result is obtained.
Theorem 3. Suppose that Assumption ] 7s satjsfied in some neighborhood

of 4y . The closed loap system aefined by equations (4)-(5) and (29) is
Jocally asymptotically stable in the sense that there is a neighborhood N of
(94,0 such that

qt)—= gy ast— e

M) = Ay ast = e
for any (q(O)q(0) e S NN ir G, and G are symmelric and positive definite

such that all 2(n-m) zeros of

det {E, T(qy) (MGy) %+ K(qy)] T(qy)Ep+ 6,5 4G,/

have negative real parts and G,Is symmelric and nonnegative aefinite

where

Kl = Tla)™' 2 fTlg)Flg a’)// _
aq G943 G=0

We now consider the simpler case where the constraints are linear.

In such case the linear feedback controller (33) can be written as
Uu=uy-VE,G,E,V'q+ VE,GyE, V' (ay-0)
+VE, G E, VI A=Ay (34)
where G, and G are (n-m)x(n-m) constant feedback gain matrices and Gy is

an mxm constant feedback gain matrix. Conditions so that the closed loop
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system solves the regulation problem are obtained as follows.
Corollary 4 50ppose that Assumption 2 is salisried  7he closed loge
system defined by equations (4)-(5) ana (34) is Jocally asymplotically

stable in the sense that there is a neighborhood N or (q,,0) such that
Q)= qy ast = o
Art) = Ag ast— e

for any (¢(0)q(0)) e SAN if G, and G are symmelric and positive aefinite

such that all 2(n-m) zeros of

et (Ey V'IMGy)s5+ Kigy )IVE 2+ 6,546,

have negative real parts and G,1s symmelric and nonnegative gefinite and

Klgg) = i.f(ﬂi//
qg= Uﬂ(] 0

Again we mention that the control relations (33) and (34) have been

written in terms of feedback of q and g, but those relations can also be

expressed in terms of feedback of g, and 62 only using the constraints.

A schematic diagram of the closed loop system, indicating the
control structure (34), is shown in Figure 2, for the case where the
constraints are linear. The controller consists of a constant bias input
plus linear terms proportional to position error, velocity error and contact

force error, chosen consistent with the constraints.

6. Consequences of Model Imperfections
We have developed conditions which indicate how feedback
controllers can be developed so that the closed loop is asymptotically
- l 4_



stable. In this case stability is defined as robustness to changes in the
initial data that are consistent with satisfaction of the imposed
constraints. As has been demonstrated, feedback can be used to improve
the closed loop properties with respect to such uncertainties.

But feedback can be expected to play a further important role in
possibly reducing the effects of disturbances and model imperfections. In
this section we briefly consider the implications of using feedback in the
case that there are external force disturbances, additional dynamics in the
contact force feedback loops, and uncertainties in the constraints. To
avoid unnecessary complications, our developments are based on the
linearized equations, assuming that the constraints are linear, i.e. that
Assumption 2 holds. Thus our conclusions are approximations only valid
near an equilibrium. Nevertheless, the qualitative features of the
conclusions are of substantial importance as they suggest the general
implications of feedback. Our conclusions about the effects of model
uncertainties are limited; but the indicated linearized equations could form
the basis for a more detailed study.

Effects of Force Disturbances.

Suppose there is an external force disturbance so that the
constrained system is described by

M@ G+ Flg@=u+J A+ f (35)

Jag=0 (36)

where f represents the n-vector force disturbance. Recall that g = qd’
A= ?‘d» U= uy define a constrained equilibrium, corresponding to f = 0.

Assume that the controller is given by (34). Then, following the
development indicated previously, the linearized equations for the closed
_]5_



loop defined by (35)-(36) and (34) are given by
Ey Mxoq) E'p By + EK(Xog E'p 85 =
Uy *GIE, VI N-Ag+ E, VS (37)
Ey MiXyg) By 8y + G, 8y + [ Gy + E,Kx,) EpJey =E, V' (38)

e,=0 . (39)

The effects of the force disturbance, at least locally, are characterized by
equations (37)-(39).

Suppose that the feedback gain matrices satisfy the conditions of
Corollary 4. If f is a constant disturbance then there are steady state

position error and contact force error such that, at least locally, the closed
loop responses satisfy

q-0g— VEL [+ E, VK VEI TE, VI ast—oe  (40)

N-Ag= €V I I+ 6071 (E, V' Kigg) VE, (6,
CEQ VK VET T Ey-E\J VT ast—oee . (41)

Thus, the steady state displacement error does not depend on the force

feedback gain matrix G; and is inversely proportional to the displacement
feedback gain matrix G; The steady state contact force error does depend

on the force feedback gain matrix Gf and is inversely proportional to it.

Thus, "high gain” in the displacement feedback loops results in improved
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Steady state displacement accuracy for additive force disturbances. And
“high gain” in the force feedback loops results in improved steady state
contact force accuracy for additive force disturbances.

Effects of Dynamics in Force Feedback Loops. Suppose that there are

dynamics in the force feedback loops such as might be due to force sensor
dynamics. We make a simple assumption about the nature of these
dynamics so results are easily obtained; we do not examine the effects of
dynamics in the displacement and velocity feedback loops although that

might also be of importance.

Recall that g = a4 A= Ad, U =uy define a constrained equilibrium if

there are no sensor dynamics. Assume that the controller is given by

U= Uy -VE,G,E,V g +VE,GyE, V (gq- )
+V Ey G2
Z=-pz+pE VI A-N (42)

where z represents the m vector state of the force feedback loops. This
assumes first order feedback dynamics as a consequence of measurement
of the vector force E,V'J" A normal to the constraints. For simplicity we
take y as a positive scalar.

Then, following the development indicated previously, the
linearized equations for the closed loop given by equations (4)-(S) and (42)

are given by
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Ey Mg E'y 6y + E KXy E'ey= Bz +Ey VS (A=A ) (43)

Ey Mlxyg) Ep €5+ Gy &y + Gy + ExKlxog) E'p Jey =0 (44)
Z=-pz+pE VI AN (45)
e, =0 . (46)

The effects of the dynamics in the force feedback loops, at least locally,
are characterized by equations (43)-(46).

Suppose that the feedback gain matrices satisfy the conditions of
Corollary 4. It is easy to show that if y > 0 equations (43)-(46) are locally

asymptotically stable in the sense that for initial data near the equilibrium

qt) =gy ast—oe

Alt) — Ay ast— e

That is, the dynamics in the force feedback loops do not destabilize the
closed loop system so long as the feedback dynamics are of the assumed

simple form and the gains satisfy the conditions of Corollary 4.
Note that the assumption that the force feedback gain G; is nonnegative

definite is critical here.

Effects of Constraint Uncertainties. Suppose that there are uncertainties
in the constraint function; it is of interest to determine the effect of such
uncertainties on the previous results. Although there are various

_18-



assumptions that could be made, for simplicity we assume that the
constraint is linear and given by
Jg=A (47)

where A represents the constant m vector of constraint uncertainty.
Recall that q = dq A= Ags U = Uy define a constrained equilibrium,

corresponding to A = 0. Assume that the controller is given by (34). Then,
following the development indicated previously, the linearized equations

for the closed loop defined by equations (4), (34), (47) are given by
Ey MXog) Ep 8y + EK(Xp) Eip @y = (I + G E, V' I (A=A g)
- EyKlxog £ (E, V') T (48)
Ep Mlsog) E'p €5+ G, 65+ [Gy+ E KXy E'p J @ =
- EpKixpg) £ (€, V' J')". A (49)

e, = (E,vrTa . (50)

The effects of the constraint uncertainty, at least locally, are
characterized by equations (48)-(30).
Suppose that the feedback gain matrices satisfy the conditions of

Corollary 4. Then there are steady state position error and contact force
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error such that, at least locally, the closed loop responses satisfy
G- 0g— - VE, (64 Ey V' Kgp VE,]
Ey VKGg VE (B, V) Ta  ast—e (51)
N =Ag—= - € VI + 607 {E, V Klag) VE, [6,
+ E, V'K(gp VE, VI E, V(g VE,
- E VK VE, FE, VI A ast—oe (52)

Again we see that the steady state displacement error does not depend on

the force feedback gain matrix G; and is inversely proportional to the
displacement feedback gain matrix G, The steady state contact force error

does depend on the force feedback gain matrix G, and is Inversely

proportional to it. Thus, "high gain” in the displacement feedback loops
results in improved steady state displacement accuracy for uncertainty in
the constraint function. And "high gain” in the force feedback loops results
in improved steady state contact force accuracy for uncertainty in the
constraint function.

7. An Example
Consider a simple example of a planar Cartesian manipulator
constrained so that the end éffector follows an elliptic arc. We take the
equations of motion to be given by
X=u;+2a%x A (53)
y=uy*+ 2y A (54)
-20- |



with scalar constraint function given by
a2x2+y2-1=0. (55)
where 22> 0,

The control objective is to choose a feedback controller so that the
closed loop stably tracks the given functions Xy, y4 Ay Which are assumed
to satisfy the constraint equation (55), with X¢> 0. Our approach is based
on the developments in Sections 3, 4, and 5.

In the previous notation, let q' = (x,y) and let x' = (x,,xz) be defined

by
x-a l(1-y2)-1/2

y

X=X =
(56)

Thus
2)-1/2

T(x) = I I -a’ly(-y
(57)

0 |

The open loop nonlinear equations, corresponding to equations (17)-(19),
are

-2 %, %2712 %, - a7 (1-x,2073/2 %,2 =

Uy + 2 (1=x,2)71/2 p (58)
[1+ a7t (1=x,271 %21 %y ¢ @72 (1-%,2)72 %,%,2 =

-2 U,V uy vy (59)

Following equation (23), the nonlinear controller is given by

_2]_



Uy = - a7 "x, (1,272 %oy - @71 (1-%,2)73/2 %2
-2 (1%, 2 0y - a7 Tty (1-%,2)7 12 [ g (g - o)
+ GglXog - %o) 1+ g 2301 -%, 212 (N -2 (60)
Up = Xog =2 X Ag + Gy(Xog = Xo) + G4lXog = Xo) + G 2 X5 (A = Ag) (61)
so that the closed loop equations, corresponding to equations (24)-(26), are

-a"xz(l-xzz)'”zl'éz'« gvé2+ gd92]=

(1+g)2a(1-x,212 (A -2y (62)
52+gvé2+gdez=0 - (63)
e, =0 (64)

Thus if g, > 0, g4 0, g¢> O, it follows that, globally,

X DXy, Y 2Ygast— e

A— ?‘d ast— oo .

Also, the linear feedback controller given by the general form (29)
is

Uy = =22 (=%, D2 N+ g 22 -3, D12 (A - Ny (65)
The resulting linearized closed loop equations are given by

- a-‘X2d (1 ‘dez)-llz é2 =(1+ gf) 23 (I”X2d2)1/2 (A- Aﬂ) (67)

[1+ a7 T (1% %o 2185 + g, 6, + gy = 0 (68)

e, =0 (69)
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Thus, if g, > 0, 4> 0, g > O, it follows that, Tocally,
X X4, Yy ?ygast— e
A= Ay ast = e

The control formulas given here have been written in terms of
feedback of y, y and A only. Equivalent control formulas can be written in
terms of feedback of x, x and A only, or complete feedback of x, X, y, ¥ and A.
The effects of model imperfections could be examined for this example, as
described in Section 6. The computations are direct and hence are omitted

here.

8. Conclusions

Conditions for stabilization of a closed loop constrained robot have
been developed using mathematical models which explicitly include the
constraint functions. Global stabilization conditions have been developed
using a nonlinear controller which is based on a modification of the
computed torque method. Local stabilization conditions have also been
developed using a linear controller.

We have also investigated the properties of closed loop systems
using the proposed controller structure; we have shown that "high gain
displacement feedback loops” reduce the steady state displacememt
regulation error for constant force disturbances and uncertainty in the
constraint function. We also have shown that "high gain contact force
feedback loops” reduce the steady state contact force regulation error for

constant force disturbances and uncertainty in the constraint function.
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Further, closed loop stabilization has been shown not to be affected by a
certain class of dynamics in the contact force feedback loops.

The suggested approach to investigation of applications of robots
to tasks defined by constraints is new. We have shown that, although the
underlying mathematical issues are complicated, a formal mathematical
approach is tractable. Our emphasis here has been on feedback
stabilization. But, as indicated in [23,25] we believe that this approach
provides a theoretical basis for the investigation of a variety of problems

that involve the use of force feedback in constrained robot systems.
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