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A framework is developed for sampled data control of flexible structures, in
terms of discrete time recursive equations in second order form. This frame-
work is used to analyze the sampled data control scheme where the loop is
closed using constant gain output velocity feedback. It is well known that the
closed loop is stable if colocated velocity feedback with symmetric and positive
definite feedback gain is used, so long as the sampling rate is sufficiently high.
In this work it is shown that the closed loop can be stablized using sampled data
output velocity feedback for arbitrary sampling rate. Our approach leads to
explicit stability conditions in terms of the feedback gain matrix, the sampling
time, and the matrices describing the flexible structure. -






TABLE OF CONTENTS

Models for Sampled Data Controlled Flexible Structures .....................
Conditions for Closed Loop Stabilization .......c..cccoovvvvvrivivveiinrinninnnnnennnn.
EXBIMPLE ....ooovvviiiiiiiiiiiiiiiiees et cee it s e eserer e e e s sees e e eeeaes e eeas
CoNCIUSIONS ...euuiiiiiiiiiiniii it ree e e e e e e e
AppendixX ...
References .......o.ccovviiiiiiiiiiiiiitiei ittt e e e

11

18

17

18






RSD-TR-7-83

1. Models for Sampled Data Controlled Flexible Structures

A sampled data controlled flexible structure can be defined as a distri-
buted parameter system, where the structure input is the output of an ideal
zero order hold and the structure output is sampled. Although distributed
parameter models typically involve infinite dimensional variables, our analysis

is based on the finite dimensional model

Mz + Kz = Bu . (1)

For simplicity in the subsequent development no structural damping is
included. The structural displacement vector z = (z;....,z,.) and the force
input vector u = (2;,....u»). The mass matrix M and the structural stiffness
matrix K are assumed symmetric and positive definite. Throughout, we con-

sider velocity output of the form
y=Cz (2)
where the velocity output vector ¥ = (y,,...,¥m). The input influence matrix B

and output influence matrix C are assumed to be dimensionless.

The structure input u is defined in terms of the input sequence u; by the

ideal zero order hold relation

w(t)=wu, kT<t <kT+ T . (3)

The output sequence y; is defined in terms of the structure output y by the

ideal sampling relation.

Ye =y (kT) (4)
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The fixed value T > 0 is the constant sampling time. This open loop sampled
data controlled structure can be viewed as a discrete time system with input

sequence u; and output sequence ¥y, where k =0,1,. ..

Let & be n X n nonsingular modal matrix and let Q® be n x n diagonal modal

frequency matrix [1] satisfying

THE =1, 8TK® = 0P = diag (w},....0?) . (5)

Introduce the coordinate change

z = (8)

so that (1), (2) can be written in modal coordinates as

7+ 0% =38Thu | (7)
y=Cén . (8)

It is an easy task to solve the vector equation (7), using the constraint (3), to
obtain

Nae+r = ¢0sQT 7 + Q7 'sinT 7,

9
+ Q% - cosQT) 8T By, |, ®)

7'),4.1 = -QsinQT 7, + cosQT ‘;73

10
+ Q7'sinQT 87T By, |, (10)

where 7, = n(kT), n =n(KT), and sinQT = diag (sinw,7.....sinw, T), cosQT =
diag (cosw, T,...,cosw, T) [2].

Although the first order recursive equations (9), (10) could be used it is

more convenient for our purposes to make use of a second order recursive
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equations in 7, alone

7');4.1 - 2cosQT ".]k + hk-l = Q-lstT @TB(‘U* - 'u.,,_l) (11)

Y = Chn, (12)

The modal equations (11), (12) form the basis for our subsequent analysis. It is
natural to make use of the recursive equation for 7, alone in considering velo-

city feedback systems.

It should be noted that relations (11), (12) involve no numerical approxi-

mation; they are valid for any sampling time T > 0.

Constant gain output velocity feedback has been studied extensively for

analog controlled structures. Our interest is in use of constant gain output

rd

velocity feedback for sampled data controlled structures.

Consider the closed loop sampled data controlled structure defined by

(11), (12), using the control input sequence
Uy = =Gl (13)

where G is a constant m x m feedback gain matrix. Substituting (13) in (11),

(12), a closed loop recursive equation is obtained

Nesr = [ZcosQT - 07 sinQT @TBGCiJ]‘r'),,

, (14)
+ [1 - 0" 'sinQT @TBGCQ]m,_l =0 . '
The closed loop characteristic equation can be written as
d(T.z) = det.[zzl - (2cosQT - Q" 'sinQT $TBGCE)2 (15)
15

+ (I — Q7 'sinQT 87 BGCE| =0 .

Sampled Data Control of Flexible Structures 5
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The objective of constant gain velocity feedback control is to make the closed
loop as described by (14) geometrically stable, i.e. to make the closed loop

characteristic zeros lie inside the unit disk.

We use equation (14) as basis for our subsequent analysis of the closed
loop. If sinQT is nonsingular the following implications hold: if 1'7,, -0 as k-»x
then necessarily u, +0 as k += and 7, »0 as. k »=; consequently n':k -0 and z; -0

as k oo,

2. Conditions for Closed Loop Stabilization

Recall the following results for constant gain output velocity analog feed-
back control where u = —Gy. If colocated force actuators and velocity sensors
are selected so that C = BT then the closed ldbp analog cortrolled structure is
asymptotically stable if G is any symmetric, positive definite matrix, and if a
certain controllability assumption is satistied [3,4,5]. Moreover, this resuilt
does not depend on the particular values of the modal frequencies and modal

functions.

We first mention a rather obvious result that if the sampled data feedback
control is chosen according to the analog feedback theory the closed loop is
stable for sufficiently small sampling time. The brief proof is included for com-

pleteness; it also sérves as an introduction to our subsequent development.

Theorem 1.

Assume that
(a) ¢ =BT,

(b) the matrix pair 0%, T B is complete controllable;

Sampled Data Control of Flexible Structures 8
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(¢) G is symmetric and positive definite.

The closed loop equation (14) is geometrically stable for sufficiently small sam-
pling time T > 0.

Proof: Consider the associated polynomial

2
p(T w) = det2(/+cosQT - 0~ 'sinQT $7 BGCH) TB‘wT
(18)
+ 207 'sinQT @TBGC'@% + 2(I - cosQT)| .

Using the results in [3] the polynomial defined by
lim p(T,w) L
T-0 T?

has all zeros in left-half-plane; hence there is T > 0 such that p(7T,w) has all

zeros in left-half-plane for 0 < T < T . Using the bilinear transformation

T = (17)

{=—

2

it follows that the zeros of d(T,z) are necessarily in the unit desk; hence (14) is

stable.

This result has limited application since there is no indication of the range
of values of the sampling times, relative to the feedback gain matrix, required
for closed loop stability. In [B] conditions are developed which, in principle,
characterize a range of values of the sampling time for which the closed loop is
stable. Unfortunately, the conditions depend on an a priori computable bound

on an exponential matrix; computation of such a bound, in analytical terms, is

Sampled Data Control of Flexible Structures 7
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not considered in [6]. Of course one could perform a numerical search, based
on the characteristic polynomial d(7,2) ( or equivalently p(7T,w)) for a specific
case, to determine a range of values of the sampling time for which the closed
loop is stable. However, for the case of colocated velocity feedback there are
no known explicit conditions, in terms of the sampling time and feedback gain

matrix, which guarantee stability of the closed loop sampled data system.

We now present the main result of the paper: a set of explicit conditions on
the input and output influence matrices, the sampling time and the feedback
gain matrix for which the closed loop sampled data controlled structure is
stable. The key idea is to suitably modify the assumptions so that the approach

used in the proof of Theorem 1 can be followed.

Theorem 2.

Assume that sinQ1T is nonsingular and
(a) the matrix pair [I + cosQT]™! [ - cosQT], 7B is completely controll-
able,
(b) The matrix 0'sinQT T BGC® is symmetric and positive definite;
(¢) the matrix I + cosQT — Q~!sinQT 8T BCG$ is symmetric and positive

definite.
The closed loop equation (14) is geometrically stable.
Proof: The assumptions, as in the proof of Theorem 1, guarantee that the zeros
of p(T,w) defined in equation (18) are in the left-half of the complex plane.

The bilinear transformation defined in (17) guarantees that the zeros of d(7T,z)

are necessarily inside the unit disk in the complex plane. Hence equation (14)

Sampled Data Control of Flexible Structures 8
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is stable.

This general result gives sufficient conditions on the influence matrices B
and C, the feedback gain matrix G, and the sampling time T. for which the

closed loop system is stable.

A few general statements can be made regarding satisfaction of conditions
(b) and (c¢) of Theorem 2. First, note that it is the matrix product BCG which
appears in the conditions; in general this matrix product is required to be nei-
ther symmetric nor positive definite. Also, for fixed influence matrices B and
C conditions (b) and (c) of Theorem 2 can be viewed as characterizing the rela-
tion between the teedback gain matrix G and the sampling time T for which the
closed loop is stable. Informally, note that condi,tionb(c) implies that if the
sampling time T > 0 is "small” then the feedback gain matrix G may be "large”,
while if the sampling time is "large” the feedback gain must be "small”. In addi-
tion as the sampling time satisties T -» 0 condition (¢) becomes trivially satis-
fied and condition (b) implies that BGC tends toward a symmetric matrix, just
as required in Theorem 1. Satisfaction of the conditions in Theorem 2 do
require explicit knowledge of the modal data. Note also that for fixed influence
matrices B and C, e.g. C = BT, and a fixed sampling time T there is no guaran-
tee that there is a feedback gain matrix G which satisfies the above stability

conditions.

There are two special cases where the existence of a stabilizing feedback
gain matrix can be guaranteed. These two cases are indicated in the following

two corollaries.

Sampled Data Control of Flexible Structures 9
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Corollary 1

Assume that sinQ7T is nonsingular and
(a) the matrix pair [/ + cosQT]™! [ — cosQT], 7B is completely controll-
able;

(b) the influence matrices C and B satisty
C = BT sinQT Q71T 19! |

Then there exists a feedback gain matrix G satistying
(c¢) the gain matrix G is symmetric and positive definite;

(d) the matrix / + cosQT - T®TCTGC® is symmetric and positive definite
such that the closed loop equation (14) is geometrically stable.

~ The assumptions that B and C satisfy condition (b) implies that the force
actuators and the velocity sensors be selected in a specific way; the actuators

and sensors would generally not be co-located.

Corollary 2.
Assume that sinQ27T is nonsingular and

(a) rank B =rank C =n.

Then there exists a feedback gain matrix G satisfying
(b) the matrix Q~'sinQ7 #T BGC?® is symmetric and positive definite;
(c) the matrix / + cosQT — Q7 'sinQT T BCG® is symmetric and positive
definite

such that the closed loop equation (14) is geometrically stable.

Sampled Data Control of Flexible Structures 10
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In this case, with at least as many actuators and sensors as there are

modes to be controlled, there is no need for an explicit condition on the influ-

ence matrices. The feedback gain matrix can always be suitably chosen to

satisfy the stabilization conditions. But in general the feedback gain matrix,

satisfying the conditions of Corollary 2, would be neither symmetric nor posi-

tive definite.

These several sufficient conditions for stability of sampled data controlled

flexible structures indicate the impbrtance of the sampling constraint. The

general results are now illustrated with an example.

3. Example

Consider the two mass and three spring connection indicated in Figure 1,

with notation also given in Figure 1. This is the same example studied in [7].,

—AWWA—{ ™, ~W— m, =AM

O\ NN

A /1077

Fgure 1.

/
/
/
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where analog feedback was used to stabilize the closed loop. Our objective is to
consider the use of sampled data feedback to achieve stabilization of the spring

- mass system.

For simplicity,the numerical values for the masses and spring stiffnesses

are chosenasm;=mg=1,k;=1,kz =4,k =2, so that
_ 1 0. _|3 -2
=l 1| K=|la s

Suppose that the control forces ©; on mass m; and w3 on mass mp are

given by the analog feedback relations

ul= -g,z! - g(z' - z%)
u? = —g(z? - z') - g, z?

so that g;, g2, g can be viewed as damping parameters for three analog
dampers (or dashpots) as shown in Figure 2. From the results in [7] it follows

that the system is stable if
g120, gag=0, g=0

with at least one strict inequality. Further, this conclusion does not depend on
the particular numerical values of the masses and spring stiffnesses con-

sidered.

Now suppose that the control forces are given according to the sampled

data feedback relations

uy) = -g,z — g(zd - zf)

Sampled Data Control of Flexible Structures 12
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Lan—L L w2 A

/, x* %2
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/

/

A A A A

Figure 2.

OO

ul? =-g (:"’Asz - -ﬁl) - 92-';:32

corresponding to equation (13) with sampling time T > 0. Hence the parame-

ters g,, g2, g can be viewed as damping parameters for three digital dampers,

located as shown in Figure 2. Corollary 2 can be used to show that

the spring -

mass system, controlled by the indicated digital dampers, is stable if, in addi-

tion to the previously stated requirements for the analog feedback case, the

feedback gains also satisfy the equality
gz —29,-3g =0

and the inequalities

1. + cosVRT - Si;:gT (4g, + g2+ g) >0,

Sampled Data Control of Flexible Structures
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sinv7T
1. + cosV7T - v (g1 + 4gz + 9;) > 0.

These conditions define an explicit region in the four dimensional parameter

space for g,, ga, g, T for which the closed loop is stable.

An illustration is now given for the case where a single digital damper is
located between the two masses so that equal and opposite control forces are

applied to the two masses. Consider the sampled data feedback relation

- @ — ' 1 -2
uy = ~uf = —glc,z,) +cgz,,]

where c,, c; are the output influence coefficients which must be explicitly

chosen to satisfy condition (b) of Corollary 1 withn =2, m = 1, and

B=[_11',] C=[eycad G=[g]

From condition (b) of Corollary 1 it follows that

_ 1 [2sinvET _ 3sinV7T

©Q1= 5" var t T
¢, = L|SiIDVET _ 6sinVTFT
2T 5| VBT NTT

The additional conditions of Corollary 1 require that the feedback gain Satisfy
g > 0 and that the matrix

l . 2_«— 3 . V— s V_

5 sin _T evhis _Tsinv7?T

3 . , 9 .
msx.m/ETsm 7T 7 sin 7T

1 + cosVET 0 g
0 1 +cosV?T| ~ 5T

Sampled Data Control of Flexible Structures 14
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be positive definite. Thus, on the basis of Corollary 1 the spring - mass system,
controlled by the single digital damper as indicated, is stable if the above con-
ditions on ¢;,c; and g are satisfied. Notice the important feature that the con-
trol force from the digital damper does not depend on the relative velocity

-1

Te —zz

. But rather, to compensate for the sampling effects, the control force
depends on the determined linear combination of the mass velocities. These
conditions define an explicit region in the two dimensional parameter space for

g.T for which the closed loop is stable.

It should be mentioned that the closed loop characteristic polynomial, of
fourth degree with coefficients depending on the feedback gains and the sam-
pling time, could in principle be used as a basis for stability analysis. However,
the resulting necessary and sufficient conditions for stability have an exceed-
ingly complicated dependence on the feedback gains and the sampling time.
Although our conditions above are only sufficient conditions for stability, they
expose rather clearly the dependence on the feedback gains and the sampling

time.

4. Conclusions

We have presented two results which can serve as guidelines for choice of
the feedback gains and the sampling time to guarantee that the sampled data
controlled structure is stable. In Corollary 1 the stability conditions are that
the feedback gain matrix be symmetric and positive definite, plus satisfy addi-
tional constraints, while the input and output influence matrices satisfy a cer-
tain matrix equation. In Corollary 2 the stability conditions are that the input

and the output influence matrices have rank n, while the feedback gain matrix

Sampled Data Control of Flexible Structures 15



RSD-TR-7-83

satisfy conditions which do not require it to be symmetric or positive definite.
In each of the theorems the dependence on the sampling time is made explicit.
The complexity of these results, in comparison with the simple results for sta-
bilization using analog velocity feedback, is due to the complicated dependence

on the sampling time.

Sampled Data Control of Flexible Structures 16
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5. Appendix

The main result of the paper, namely Theorem 2, was stated in terms of
the modal matrices ¢ and Q, as characterizations of the flexible structure. By
appropriately defining certain matrix functions as power series that result can
be expressed in terms of the mass matrix M and the stiffness matrix K of the

flexible structure.

Define the n X n matrix functions

¥, = dcosITd!
- (_l)i (M-'lK)i T2i
¥, = -
1= 5 G

¥g = $sinQ7TQ"17T-19!
- -1 g\ 2l
¥y = z (M .K T
So (Ri+ 1)
Then it can be shown that Theorem 2 can be restated as

Theorem 3.

Assume that ¥; is nonsingular and
(a) the matrix pair M{I+¥,]"}[/-¥,], B is completely controllable;
(b) the matrix M ¥,M~! BGC is symmetric and positive definite, |
(c) the matrix ¥ + M¥, -~ TH¥,M™~! BGC is symmetric and positive defin-

ite.

The closed loop equation {14) is geometrically stable.

Sampled Data Control of Flexible Structures 17
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