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Abstract

For certain classes of flexible structures, e.g. large flexible space struc-
tures, active methods for elimination or reduction of structural vibrations are
required. Although much theoretical research on vibration control of flexible
structures has been done, the important effects of physical transducers, espe-
cially actuators, in achieving the vibration control objectives have generally

been ignored.

We consider a certain class of electromechanical actuators, where control
forces are generated by servo motors and transmitted to the flexible structure;
such electromechanical actuators are termed transmission type actuators. They
serve as adequate models for many actuation devices, including so-called

member dampers.

Our mathematical development focuses on lumped flexible structures con-
trolled by multiple actuators. The key feature in the development is the modifi-
cation of the dynamics of the flexible structure {(alone) by the presence of the

actuators.

The feasibility of such actuators used as vibration control devices is con-
sidered. A simple form of decentralized control of the actuators is presented,
where the objective is to add effective damping to the structural modes. The
decentralized control consists of internal compensation of each actuator plus
feedback of structural velocities. Conditions for stabilization of the closed loop
are presented. This feedback control scheme is illustrated by examining a gen-
eric example of a single vibration mode controlled by a single actuator; compu-
tations for this specific example demonstrate the limitation in damping that can

be achieved.






1. INTRODUCTION

Many future spacecraft are expected to include large flexible structures;
in order to meet stringent performance requirements in spite of environmental
and other disturbances methods for elimination or reduction of structural
vibration have been extensively studied. Although passive vibration control
methods are effective in some cases, active vibration control technology may
be necessary where high performance (e.g. pointing accuracy) of a spacecraft
is required. Our emphasis here is on use of active feedback control for
suppression of structural vibrations. There is a substantial literature on
methods for achieving vibration control for large space structures; summaries
of much of this work are available in the C. S. Draper Laboratory reports [1-3]

and the survey articles [4,5].

The published literature on vibration control of large space structures is
concerned, in the main, with the theoretical issues associated with the design
of control laws or control strategies. Numerous suggestions have been made
regarding the form of suitable control laws and the selection of control law
parameters. Such investigations have generally based the design and analysis
of control laws solely on the properties of the flexible structure to be controlled
and on the vibration control objectives. The important effects of physical
transducers, namely actuators and sensors, in achieving the vibration control |
objectives have been ignored. Of course, research has continued on the
development of transducer hardware suitable for use in large space structure
applications [8,7]. The objective of this paper is to reconcile the work on vibra-
tion control of large space structures (where transducer effects have generally
been ignored) with the work on transducers (where application to the particu-
lar vibration control objectives have generally been ignored). Although our

development will focus solely on the role of actuator transducers, a similar
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development likely holds with regard to the role of sensors. Thus, our main
emphasis in this work is consideration of the role of actuators as an important

and necessary part of the problem of vibration control of flexible structures.

Our work also has direct relevance to other technical areas where control
of flexible structures is an important issue. In particular, we refer to several
applications concerned with control of flexible structures through tensioned
cables; such applications have appeared in control of civil engineering struc-

tures [8-10] and in control of manipulators [11-12].

In order for our conclusions to be as general as possible the detailed
nature of éctﬁator hardware is not considered. Rather our interest i.s in the
dynamic effect that the actuators have on the flexible structure, with respect
to the vibration control objectives. Thus the content of the following sections is
concerned with the mathematical characterization of the actuators, the flexi-
ble structure and the feedback controller. This generality allows us to develop
qualitative insight into the role of actuators in vibration control of flexible

structures, for a wide variety of physical actuator implementations.
2. MODELLING

2.1. Actuators

Actuators are considered to represent the physical devices whereby
forces and moments are actually applied to a flexible structure. An actuator
can be characterized in terms of the physical nature of its input and output
signals. Throughout, an actuator input will be considered to be a voltage sig-
nal; the actuator output will be considered to be a suitably defined generalized
force or moment. If the structure is a truss connection of structural

members, an actuator may be configured to provide a force at a joint connec-

Robot Systems Division
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tion of several members, an axial force along a member, a moment at a joint,
or a bending moment on a member. If the structure is defined in terms of
individual mass elements, an actuator may be configured to provide forces or
moments on individual elements or between elements. Since the mathemati-
cal characterizations of all of these different physical actuator configurations
are similar it suffices to consider the output of the actuator to be a suitably

defined generalized force applied to the structure.

All electromechanical actuators consist of an electrical subsystem and a
mechanical subsystem with some electromechamcaﬁ interaction. The electri-
cal sﬁbsystem is assumed to be of a simple resistive form so that its associ-
ated dynamics can be ignored. The mechanical subsystem is assumed to con-
sist of an actuator inertia and stiffness that are significant in defining the
actuator dynamics. The electrorhechanical interaction provides a force on the
actuator inertia of electrical origin, with a resultant force being transmitted

to the structure.

2.2. Modelling Assumptions

In this section the basic assumptions which hold throughout the paper are

stated.

Although a flexible structure can often be described by a distributed
mass model using partial differential equations, our development will make
use of a lumped model for the structure. Thus the second order vector dif-

ferential equation
Mz + Dz + Kz = Bf (2-1)

is chosen to represent the model for structural dynamics. Here z denotes the
n-vector of generalized structural displacements, so the z and z are struc-

tural velocity and acceleration vectors. The n X n mass matrix ¥ is assumed

Robot Systems Division
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to be symmetric and positive definite. The n X n structural stiffness matrix K
is assumed to be symmetric; since our interest is in vibration motion rather
than rigid body motion K is assumed to be positive definite. The n X n damp-
ing matrix D is often rather arbitrarily chosen since there is sparse theory for
structural damping available for guidance. In this work, the damping matrix D
is assumed to be symmetric and non-negative definite; the common choice
D=0 is allowed. The right hand side of equation (2-1) characterizes the influ-
ence of the actuator forces on the structure; the m-vector f denotes the gen-
eralized actuator force vector while B is an n X m dimensionless influence
matrix. The specific form of the actuator force vector is examined in consid-

erable detail.

2.3. Model for Actuators and Structure

The basis for the development of the mathematical model of the actuators
and structure is the schematic diagram in Figure 1. The flexible structure is
assumed to be represented by a lumped mass model of which a single mass
element is shown in Figure 1. Each electromechanical actuator is character-
ized by an actuator inertia m{, and corresponding generalized displacement z;
of the actuator inertia element; the actuator force f* is transmitted to the
structure via an elastic transmission medium with stiffness k?; internal damp-
ing in each actuator, with damping parameter ¢}, is also assumed. The dis-
placement of the structure at the location of application of the force f* is

given by the i** component of Bz .

In order to obtain an explicit characterization of the actuator force vec-
tor f in equation (2-1), the Lagrangian function for the actuators and struc-

ture is

Robot Systems Division
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Figure 1. Actuator and Mass Element Interaction

L=2YzTwz + 1oTp2 - 127kz - L(2-B72)TK,(2-B"z)  (22)
2 2 2 2
where the generalized actuator displacement vector z = (2,, ... ,2,,) and the
actuator inertia and stiffness matrices are
My = diag (mg. ... .mg")
K, = diag (kl, ... k).
From Lagrange's equations obtain
Mz + Kz - BK,(z-BTz) = @, (2-3)
Mgz + Ky(z—BTz) = @, (2-4)

The generalized forces @, and &, are

@ = -Dz

Robot Systems Division
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Qo= —Co2z + Byu

where u = (u,, . . . U4, ) denotes the vector of actuator input voltages,
Cy = diag (cq, . ...cl)

and
B, = diag (bg,....bM).

In summary, the mathematical model for the actuators and structure is given
by

Mz + Dr + Kz = BK,(2-BTz) (2-5)

M,z + C,z + K,(z=BTz) = B,u. (2-6)

Thus in comparison with equation (2-1) the actuator force vector is given by

f =K, (2-BTz). (2-7)

An important feature of this mathematical model is that the actuator force
vector f depends not only on the generalized actuator displacement z but
also on the generalized structural displacement BTz at the locations of the
actuators. Moreover, since equations (2-5) and (2-6) are inherently coupled

neither the actuators nor the structure can be completely considered alone.

Thé above mathematical model should adequately characterize a large
class of flexible structures controlled by multiple electromechanical actua-
tors; the relevant assumptions on which equations (2-5), (2-8), (2-7) were
derived are now explicitly stated. The structural dynamics are characterized
by a lumped mass and stiffness model with proportional velocity damping; the
dynamics of the structure are assumed to be linear and only flexible modes
are included in the model, i.e. the rigid body motion of the structure is not

included. The actuators are of electromechanical type and are connected to a

Robot Systems Division
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single mass element of the structure through an elastic transmission medium
with finite stiffness. The actuator dynamics are assumed linear, and the
current voltage dynamic effects are ighored in comparison with the actuator

inertia effects.

3. DECENTRALIZED CONTROL DESIGN VIEWPOINT

3.1. Approach

A natural approach to the design of a controller is to develop a controller
for the flexible structure alone, ignoring all actuator dynamics. It is then
necessary to provide local compensation for each actuator as a means of justi-
fying the original assumption. The controller is thus separated into two
parts: a force controller, typically based on the structural dynamics only, and
an actuator servo controller for each actuator. This a priori assumed con-
troller configuration is referred to here as a decentralized controller. A
schematic of a closed loop, incorporating a decentralized controller, is shown

in Figure 2.

Our objective is to consider a general class of procedures for designing
such decentralized control schemes. Since much attention has been focused
on design of force controllers this issue is generally ignored here; for purpose
of illustration a force controller which depends on structural velocity feedback
only is subsequently employed. Our main attention is focused on design of the

actuator controllers.

This decentralized control design approach is conceptually appealing.
However, the equations which describe the flexible structure and actuators,
(R-5), (2-6), (2-7), are inherently coupled. This inability to completely separate

structural dynamics from actuator dynamics makes design of a decentralized

Robot Systems Division
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Figure 2. Decentralized Control Configuration

controller with guaranteed closed loop properties difficult. Hence, some

attention is given to evaluation of closed loop stability properties.

3.2. The Actuator Controllers

For simplicity, a force controller which depends on co-located structural
velocity feedback is assumed; such controllers are commonly suggested as a
means of augmenting the structural damping using active feedback control

[4,5]. Hence the command or desired actuator force vector fy is given by
fa= —CyBTz (3-1)

where fq = (fd,. . . .fI) and C; is the m X m feedback gain matrix, typically

assumed to be symmetric and positive definite.

Robot Systems Division
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Our objective is to choose a servo controller for each actuator, the actua-
tor controller, to cause the actual actuator force f to track the command
actuator force f4 as closely as is possible. The decentralization constraint
requires that control of the i** actuator may depend only on f} and local feed-
back of the z;. Hence the actuator controllers may be viewed as integral to the
actuators themselves; the claim is that such actuator controllers play a key

role in achieving the closed loop structural vibration control objectives.

A basis for choosing an actuator controller is now developed. The struc-
tural transfer function from the actuator force vector f to the structural dis-

placement vector BTz is
G,(s)= BT[Ms? + Ds + K]"'B (3-2)

and the transfer function from the actuator input voltage vector v to the

actuator force vector f is

Ga(s) = [I + (Mas? + Cos )K" + Go(s)]7'B,. (3-3)
Thus G,(s) represents the effective actuator transfer function, where the
structural loading effects on the actuator are taken into account.

The actuator controller should be chosen to represent a decentralized
and realizable approximation to the actuator inverse G; !(s). Although there
may be many suitable forms for such an approximate system inverse, our sub-
sequent development makes use of the actuator controller given by the

transform relation
U(s) = By Y[K, + Cs]K1Fy(s) - B,,“C,sZ(s) (3-4)

where

and

Robot Systems Division
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C = diag (cg +cf, ... el +cf).

The above form for the actuator controller does satisfy the decentralization
constraint since u; depends only on f} and z;. The actuator controller is

realizable for a force controller given by (3-1) as
w= —B;'C4BTz —~ By 'CK;\C4BTz — By 'Cr 2 (3-5)

Thus the actuator controller can be realized using structural velocity feedback
of BTz, structural acceleration feedback of BTz, and decentralized actuator

velocity feedback of 2.

Consequently, the effective transfer function from the command actuator

force vector f; to the actual actuator force vector f is given by
Gp(s) = [1 + MgsP(Ky + Cs)7! + (Mys® + Cs) (K, + Cs) 'K, G (s)]™! (3-6)

This transfer function for the actuator, and actuator controller, is not in gen-
eral diagonal due to the presence of the general nondiagonal structural
transfer function G(s) in the expression (3-8). Thus the effective actuator
dynamics, including the actuator controller, involve crossfeed between the
actuation channels, where the crossfeed effects are explicitly due to struc-

tural loading of the actuators.

The effective actuator transfer function G,(s) can be represented as a

feedback connection of
K,,[M,,‘s2 + Cs|[Mys? + Cs + K] s
and
sG,(s).

Each of these transfer function matrices is positive real, with the former
strictly positive real if ¢} +¢}>0,4=1,... ,m. From results in [13,14], the

actuator and actuator controller system, characterized by the transfer func-

Robot Systems Division
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tion matrix Gy(s), is stable if ¢} + ¢}>0i=1, ... m. Consequently, multiple
actuators, of the electromechanical type considered, cannot be destabilized

when connected to any flexible structure, in an open loop configuration.

3.3. The Closed Loop

The closed loop is now examined, where the force controller is given by
(3-1), the actuator controller is given by (3-5) and the actuator and structure
are described by (2-5), (2-8), (2-7). The closed loop system can be described

by the éecond order vector equations

M o] |z D 0|z
CK'CaBT M,| [2] T |ciBT G |z
K + BK,BT -BK,| [z 0
= 3-7
+ - KGBT Ka z O . ( )

This set of closed ioop equations does not have symmetric matrix coefficients
so explicit conditions for closed loop stability cannot be stated. Nevertheless,

equations (3-7) could form the basis for stability analysis of the closed loop.
An alternative description of the closed loop can be given in terms of
transfer function matrices. The return difference function for the closed loop
is given by
det[] + Gp(s)Gy(s)] (3-8)
where
Gp(s) = CysG(s).

Thus the closed loop is stable if and only if each zero of the return difference
function has negative real part. Such necessary and sufficient conditions for
closed loop stability are so complicated that little insight into the role of the

actuator dynamics is obtained.

Robot Systems Division
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Simpler conditions, which do give explicit insight into the role of actuator
dynamics on closed loop stability, can be developed using the robust stability

results of [15]. Suppose that each zero of
det [I + Gy(s)] (3-9)
has negative real part. If
3[Gr(iw) = I] < all + GM(jw)] (3-10)

holds for all @>0, the closed loop is guaranteed to be stable. Here 3[G] and
o[ G] denote the maximum and minimum singular values of a matrix G,

respectively.

The general assumption (3-9) is that the closed loop, ignoring all actuator
dynamics, is stable; that is certainly the case if C; is symmetric and positive
definite [3]. The frequency condition inequality (3-10) has a simple interpreta-
tion and can be checked graphically [5]. The right hand side of (3-10) depends
only on the structure dynamics and the force controller but not on the actua-
tor dynamics; while the left hand side of (3-10) represents a measure of the
variation of the compensated actuator dynamics from the ideal. Thus if the
compensated actuator dynamics are sufficiently close to the ideal, as meas-
ured by (3-10), it is guaranteed that the actuator dynamics do not destabilize
the closed loop. This sufficient condition for closed loop stability would, in
general, be checked numerically; but it does expose in an explicit way the

importance of proper compensation of the actuators.

In the case where multiple electromechanical actuators are used to con-
trol a flexible structure it can be shown that it is always possible to determine
an actuator controller of the form (3-4) so that the closed loop is stable.
Explicit guidelines for selection of the actuator parameters are difficult to

give. It appears desirable that the actuator inertias be as small as possible

Robot Systems Division
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while the stiffness of the elastic transmission medium be as large as possible.
As is usual large actuator feedback gain parameters C} may be required. Sub-
stantial trial and error may be required to select the actuator parameters

effectively in a particular case.

3.4. Comments

The decentralized control design approach is to impose the a priori con-
straint that the controller consist of a force controller and a set of actuator
controllers, one for each actuator, as shown in Figure 2. This approach is‘
natural when the structure is viewed as the "plant" and the actuator dynamics
are ignored; a controller obtained on the basis of this assumption is essentially

a force controller. The actuator controllers can subsequently be developed.

The main advantage of this control design viewpoint is that, since all
actuator dynamics are ignored in developing a force controller, there is a
reduction in dimensionality and hence complexity of the control design prob-
lem. Such an order reduction is often desirable as a means of obtaining a
computationally tractable control design problem. Specifically, this decen-
tralized approach depends on obtaining a force controller based on n struc-
tural modes, plué m single loop actuator controllers, as opposed to the use of
n + m modes, i.e. 2(n + m) state variables, if a centralized control design

approach is taken.

The major di‘sadvantage with this approach is that there can be no
guarantee of specific closed loop properties, e.g. stability. There is certainly
the possibility that a closed loop system, with controller chosen to stabilize
the closed loop ignoring actuator dynamics, may in fact be destabilized by
actuator dynamics. Thus closed loop characteristics, where the controller is

obtained using the decentralized design approach, should always be carefully

Robot Systems Division
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analyzed. As indicated, a complete eigenvalue analysis of the closed loop can
be performed using e.g. (3-7). An alternative, which often gives insight into
the specific importance of the actuator parameters, is to make use of the

robustness test as discussed.

4. VIBRATION CONTROL OF A TWO DEGREE OF FREEDOM SYSTEM
USING AN ELECTROMECHANICAL ACTUATOR

4.1. The Example

The previously developed theory is now illustrated by examining in some
detail a simple example of a two mass system, connected by a spring and
damper, controlled by a single electromechanical actuator. A schematic of
the system is given in Figure 3; the variable and parameter notation is also

given in figure 3.

Ac_:tuator Inertia M
/Wlth Damping C, a

Mass T1 Mass
M - d

L’ *1 Lax

Figure 3. Two Mass Elements and One Actuator

2
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Based on the assumptions made previously the spring mass-actuator sys-

tem can be described by the equations
Mz, + D(z~2g) + K(z,~Z3) = K3 (2 -2, + zp)
Maiz + D(.'l".'a—zl) + K(Zz"ﬂ?z) = - Ka(z -z, + 22)

M,,E + Cpz + Ky(z—z, + 23) = Bau

It is desirable to define the displacement £ of the center of mass of the sys-

tem and the relative displacement z between the two masses through

__ Mz, + Mz,
T M+ M2

=z -z

Thus the equivalent equations
z =0
T + 26,0z + wizr = pwl(z —z)
Z + R¢gwgz + wi(z —z) = Bu
are obtained where the parameters are defined by

o _ K(M+HM>)
wl=z ————
§ MM,
D(M+ M)

2(3 ws = Mle

Robot Systems Division
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Ce
R{gwq = A
ﬂu - Ma

As seen from equation (4-1), the actuator does not influence the motion of the
center of mass of the system. Thus our attention is focused on control of the
relative vibration motion about the center of mass as described by equations
(4-2) and (4-3). These equations are special cases of the previous equations
(2-5) and (2-6).

Two different control laws are now examined and the corresponding

closed loop characteristics are evaluated.

4.2. Vibration Control Without Relative Motion Feedback
First consider feedback control using only actuator velocity feedback, as
given by
Bau = —Crz,
that is, the control law does not make explicit use of the relative velocity

between the two masses. Such use of an actuator can be viewed as a passive

damper [16]; the control law is especially simple to implement.
Define the damping parameter ¢, from

CutCy
My

2()’0";; =

The closed loop characteristic equation can be written as

B¢ s [8%+2¢ w5 +(1+p)wf]
(s?+2¢s wss +0d) (s*+0f) + psPw?

= 0. (4-4)

Using this characteristic equation, it is easily shown that the closed loop sys-

tem is stable for any {,>0. The structure can be stabilized by using only

Robot Systems Division
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actuator velocity feedback as a passive damper. A root locus plot for (4-4), for
a particular case, is shown in Figure 4; dependence of the closed loop poles on
the actuator damping parameter {, is indicated. The structure can be stabil-
ized in this manner, but only modest damping of the closed loop can be
achieved using feedback of the actuator velocity only. The maximum damping
ratio for the dominant pole pair is 0.12, corresponding to selection of ¢, =

0.78.

4.3. Vibration Control With Relative Motion Feedback

In order to achieve additional closed loop damping, feedback of the actua-
tor velocity, plus feedback of the relative motion between the two masses, can
be used. As developed previously in equation (3-5), such a controller is given
by

(CatCp) ., -

B,,u = —sz - Cdz - Ka Cdz.

Define the damping parameter {4 from

_ Cy(M+My)
v

so that the effective actuator transfer function, based on (3-8), is

(B¢ pwes +0f)(s?+2¢, w8 +0f)
(824R¢s wss +08)(sP+2¢, ws +08) + pwf(sP+2¢, w,s)

Gr(s) =

and the transfer function G;(s), from ( 3-2), is given by

1
G,(s) = :
2 (s) S%+2¢&, wes +w?2

Thus the closed loop characteristic equation is
1 + 2¢4wssGr(s)G(s) =0 - (4-5)

The closed loop system can be shown to be stable for any ¢, >0 and any ¢z=0. A

Robot Systems Division
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Figure 4. Closed Loop Root Locus: Control Without
Relative Motion Feedback
Root Locus Parameter: {;
Data: p =0.2,0wg = 4.0,
w?=1.0¢ =005,
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root locus plot of (4-5), for the particular value {; = 0.78, is shown if Figure 5;
dependence of the closed loop poles on the damping parameter ¢; is indi-
cated. It is clear that significant damping can be obtained using this actuator
controller. As seen from Figure 5, there is a limit to the closed loop damping
that can be obtained. If {4 = 0.32 the damping ratios for the two pole pairs

are 0.50 and 0.58.

Instead of a direct analysis of the closed loop poles an analysis of the
closed loop using the robustness test (3-10) can be used. In this particular
example the frequency response for the scalar actuator error function
|Gy (jw) — 1] isindicated in Figure 8 for the chosen values of the parameters.
As an illustration the frequency response for the inverse return difference
function |1 ~ Gy !(jw)| is also indicated in Figure for the value {4 = 0.32. Cer-
tain conclusions can be drawn from Figure 6. First, for the specific case where
¢q = 0.32, and in fact for any value ¢;>0, the actuator dynamics do not desta-
bilize the closed loop. .Also,' the closed loop is most sensitive to disturbances
with frequency near 1.0 rad/sec, where the "loading peak” for the actuator
error occurs. The low frequency stability margins are large since the actuator
error is small. At high frequencies the actuator errors are relatively large, but
good stability margin is maintained due to the force controller characteris-
tics. These qualitative conclusions should be typical of a flexible structure
controlled by a single transmissionA type actuator, using a properly chosen
force controller. Experience has indicated that the magnitude of the load peak
for the actuator error is strongly affected by the open loop structural damp-
ing; the robustness condition may not be satisfied if the open loop structural

damping is sufficiently small.

Robot Systems Division
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Figure 5. Closed Loop Root Locus: Control
with Relative Motion Feedback
Root Locus Parameter: ¢4
Data: p = 0.2,02 = 4.0,
wf = 1.0, = 0.05,
$a = 0.78
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1+ 65! el

G (jw) = 1 N\

REQUENCY (RAD/SEC)

Figure 6. Example of Robustness Condition (3-10)
Data: p = 0.2,0¢ = 4.0,
w? = 1.0,{s = 0.05,
¢a = 0.78,{q = 0.32

4.4, Comments
A simple example with one vibration mode, controlled by a single actua-

tor, has been examined. Caution must be exercised in making general

Robot Systems Division
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conclusions on the basis of such a simple example, but the following comments

are suggested by the example.

It is possible to add damping to a structure by operating an elec-
tromechanical actuator as a passive damper using feedback of the actuator
velocity only. It appears that this control approach can add only a modest
amount of damping, however. In order to increase the closed loop damping,
feedback of the vibrational motion to be controlled is required. By careful
selection of the feedback gain parameters a substantial increase in the closed

loop damping can be achieved.
5. CONCLUSIONS

5.1. Extensions

A theory has been developed for flexible structures controlled by a cer-
tain class of electromechanical actuators. This theory has been based on
rather specific assumptions about the actuator characteristics and the
assumed controller forms. The specifics of these assumptions not critical and
extensions in several directions can be indicated. Our development has been
based on specific assumptions about the transmission actuator characteﬁs-
tics. A similar development can be made if slightly different assumptions are

made about the actuators.

Extension of the material on decentralized control is possible, in the
sense that modifications to the developed forms for both force controllers and
actuator controllers can be made. The development was carried out by con-
sidering a force controller defined in terms of constant gain structural velo-
city feedback; the form of actuator controllers suggested is consistent with

that class of force controllers. However, other classes of force controllers

Robot Systems Division
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could be used, including other output feedback forms or control based on
optimal linear quadratic-gaussian theory. In principle the actuator controllers
specified in Section 3 could be used in conjunction with any force controller;
the only limitation arises from the fact that the force controller and actuator
controllers must be realizable. Thus there are many extensions to the
developments in Section 3 that could be made. The key idea is that the force
controller be chosen to suitably control the structure, ignoring actuator
dynamics; and the actuator controllers be chosen to suitably compensate for

the actuator dynamics.

5.2. Summary

There has been substantial research into problems of active control of
flexible structures. With few exceptions, the effects of actuator dynamics as
part of the closed loop control scheme have been ignored. It is the premise of
this work that actuator dynamics may play an important role in feedback con-
trol of flexible structures. Specifically, if actuator dynamics are ignored in
the control design process their presence in an actual closed loop system may
tend to be destabilizing. Such an undesirable possibility is thought to be more
likely precisely in the class of problems considered, namely where a lightly
damped elastic structure is coupled to actuators with damped oscillatory

dynamics.

Our objective has been to develop a framework for the control design pro-
cess where effects of actuator dynamics are not completely ignored. It is
hoped that this work will serve to focus additional attention on the role of
actuators, and other instrumentation, as a critical part of closed loop control

of flexible structures.
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