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ABSTRACT

Necessary conditions for the optimality of junctions between singular
and nonsingular subarcs are developed for singular optimal control problems.
Previously known necessary conditions concerning the continuity and smooth-
ness of a piecewise analytic optimal control at a junction are clarified and
extended. The main result is that the sum of the order of the singular arc
and the lowest order time derivative of the control which is .discontinuous at
the junction must be an odd integer when the strengthened generalized
Legendre-Clebsch condition is satisfied. Also, new necessary conditions
which do not require an analyticity assumption are developed. These aid in

characterizing problems which may possess nonanalytic junctions.



1. Introduction

Optimal control problems in which the control variables appear only
linearly admit the possibility of the occurrence of singular extremals. The
analysis of such problems is complicated by the fact that the solution, in
general, consists of some combination of singular and nonsingular subarcs,
the number and sequence of which are not known a priori. If the solution is
totally singular, recent results [1], [2] are available to prove optimality in a
large number of cases. If the solution is totally nonsingular, it is the famil-
iar bang-bang control generated by a switching function with isolated zeros,
as determined by the minimum principle. However, the mathematical char-
acterization of optimal controls which contain both singular and nonsingular

subarcs is far from complete,

This paper is concerned with the problem of characterizing the con-
tinuity and smoothness properties of the optimal control at a junction between
singular and nonsingular subarcs. The analysis was motivated by the pre-
liminary results obtained in this direction by Kelley, Kopp, and Moyer [3] and

Johnson [4]. We shall comment on their results in a later section.



2. Problem Statement

The class of problems to which this analysis applies is the following.

Determine the scalar control wk(t), t€ [tg,t f] which minimizes the functional

t
f
T = Glegxt) + ([ [Lo (30 + L e, xpulat @.1)
to
where the system equation is
x = £ (t,%) + £ (t.x)u (2.2)

subject to the constraints

lutt)] S K@), te [to,t (2.3)

N
{to.x(to) . tp. x(t)} € S (2.4)

Here x is an n-vector and S is a closed subset of Rzm_Z . The scalar functions
fo, fu, Ly, Lu are assumed to be analytic in both arguments in a suitable do-
main, and K(t) is assumed to be continuous and piecewise analytic for

te [to ,tf], i.e.,, K(t) is permitted to have a finite number of ''corners''. Of
course, the usual case |u| = K with K = const. is included as a special case.
We restrict attention to a scalar control in order to simplify notation. A

similar analysis holds for each component of a vector control.

Clearly, the Hamiltonian for this problem is linear in the control, i.e.,

Ht,x,\,u) = XTfO (t,x)+Lg (t,x)+ [fou (t,x)+Lu(t,X) Ju (2.5)
The multiplier equations are then given by

N = -H {,%,\,u) (2.6)

m
where HX is also linear in u. The coefficient of u in (2.5) is called the

switching function, which we shall designate as ¢{t), i.e.,

¢(t) = H (€,x(), M) (2.7)

The minimum principle (i.e., Pontryagin's maximum principle in a

minimum form) states that for almost every t € [ty ,tf] and each u satisfying



lu| £ K(t), the optimal control u*(t) must satisfy

H(t,x(t),Mt), we(t)) = HE,x(t), M), w) (2.8)
Therefore, as is well known, on each open subinterval of [tg ,tf] there are two
distinct possibilities for u*, Either

u¥(t) = -K(t) sgn ¢(t) (2.9)

or
b@t) =0 (2.10)

Equations (2.9) and (2.10) define, respectively, the nonsingular and singular

subarcs of the optimal control,

The class of problems defined above will be called singular control

problems, even though only a portion of the total trajectory may be singular,



3. Notation and Definitions

The following definitions will clarify the terminology used in this

paper.

DEFINITION 1. A function g is said to be piecewise analytic on an interval

(a,b) if it is piecewise continuous on (a,b) and analytic on each subinterval for

which g is continuous.

DEFINITION 2. A junction between singular and nonsingular subarcs of the

control is said to be a nonanalytic junction if the control is not piecewise ana-

lytic in any neighborhood of the junction.

DEFINITION 3. In a singular control problem, let (d°%/dt’% [H_(t,x,0)] be
the lowest order total derivative of Hu in which u appears explicitly., Then

the integer q is called the order of the singular arc,

Implicit in Definition 3 is the property that u first appears explicitly
in an even order derivative of Hu, i.e,, it is correct to refer to q as an

integer. For a proof of this property see Robbins [5].

We also need the well known generalized Legendre-Clebsch necessary

condition for optimality of singular subarcs [3].
THEOREM. (Generalized Legendre-Clebsch condition) On an optimal singu-
lar subarc of order q, it is necessary that

2q
(—1)‘31—?—{d H:! 20 (3.1)

ou dt,zq u

Condition (3.1) hereafter will be called the GLC condition. By the

strengthened GLC condition we mean that strict inequality holds in (3.1).

In this paper it will be convenient fo consider the lowest order deriva-
tive of a function to be its zeroth derivative, by which we mean the function

itself. We shall use the notation

") =g, g(i)f(—i-ig— , i=1,2,.
dt

Also, where the context makes the meaning clear, we shall use u to designate

the optimal control instead of u*,



4, The Junction Theorems

As indicated in Section 1, the theory for totally singular and totally
nonsingular optimal controls is rather well developed. The main difficulty
with singular control problems occurs when both singular and nonsingular
subarcs are present. Since a useful sufficient condition for such problems is
not available, one is led naturally to the study of necessary conditions which
are valid in the neighborhood of a junction between singular and nonsingular
subarcs. It is expected that such conditions can be used to eliminate candi-
date extremals and/or predict beforehand the way in which singular and non-
singular subarcs must be joined, e.g., whether the optimal control is con-

tinuous or discontinuous at a junction.

If the optimal control is well-behaved in a neighborhood of a junction,

then the following property must hold.

THEOREM 1. Let tc be a point at which singular and nonsingular subarcs of
an optimal control u are joined, and let g be the order of the singular arc.
Suppose the strengthened GLC condition is satisfied at tC, i.e., (-1)q(8/8 u)Hl(lzq)
>0, and assume that the control is piecewise analytic in a neighborhood of tC.
Let u(r) (r 2 0) be the lowest order derivative of u which is discontinuous at
tc. Then q + r is an odd integer.

(2q)
u
contains u explicitly, from (2.2), (2.5), and (2.6) we see that it must have the

Proof., Since H is the lowest order time derivative of Hu which

form

Hl(:q) (t,x,7,u) = A(t,x,\) + Bft,x,\)u 4. 1)

Define the functions « and p as follows.
aft) = A, x{E),\({t)) (4.2)
B(t) = Bt,x(t),\(t) (4.3)

From the hypotheses it is clear that o and p are continuous and have at least
r continuous derivatives at tc. The switching function ¢ as defined by (2.7)

has exactly 29 + r - 1 continuous derivatives at tc.



Let ¢ be a nonzero real number of arbitrarily small magnitude such
that tC + ¢ is a point on the nonsingular side of tc and tc - ¢ is a point on the

singular side. Let u and U designate the control u on the nonsingular and

(1) ()

singular sides of t , respectively. By u (tc) and U

(1) (1)

(tC) we mean the limit

as e 0ofu (tC +¢) and u (tc - ¢), respectively.
We wish to expand <}>(tC + €¢) in a Taylor series about tc. Letk = 2q + r.

() will be the lowest order derivative of the switching function ¢ which

Then ¢
is discontinuous at tc, and since ¢ = 0 on the singular side of t , the first non-

zero term of the Taylor series will be the term containing ¢<k). Noting that

r
¢(k) =4 [a + ﬁuJ 4. 4)
dat”
we can write
X (r) L/r N (r-1) ) k
¢(tc+e) =5 [a (tc)+i:26<i>p (tc)un (tc)] +0(c ) (4. 5)

where Leibniz's formula [6] for differentiation of a product has been used to

differentiate ﬁun.

On the singular arc

(2q)

b = a+pu, =0 (4. 6)
Therefore, o = —Bus, and
@ _ & [ . ]. K/r).-D) @)
o'’ = e ’:—ﬁusj = §<i)ﬁ ug 4.7)
Substituting from (4.7) into (4. 5)
K&y (r-1) @) (i) k
Pt Te) = . <i>ﬁ (tc)[un () -ug (tc)] +0() (4.8)
1=0 ’
Ifr> 0,
u(i)(t)=u(i)(t), i=0,.. .,r-1 (4. 9)
n C S (¢}

Therefore, (4.8) becomes



k
ot +e) = o pe ) ) - ul e )]+ 0 (4.10)
Leto = -sgn ¢(t + ¢) so that un(t) = oK(t). Then recalling that u(i) t)
_ lm @), noc
= > n (C ¢) we have
ur(li)(tc) = ch(i)(tc), i=0,...,r (4.11)
Now consider the following series expansion on the singular arc.
< e) () o r
oKt - e)-ult -¢) = = >3+ oK (t)-ul ()| +0() (4.12)
i=0 g -

The right hand side of (4.12) can be simplified using (4. 9) and (4. 11) to obtain

rr
oKt -€)-ult_-¢)= fl%——‘— [u(r)(t )—um(tc)] +0(") (4. 13)

n C S

Substituting from (4. 13) into (4. 10) and recalling that k = 2q + r, we obtain

2q_,

€ r! k
B oK - ) -ut -]+ o) (@14

bt +e) = (-1)

From the application of the minimum principle on the nonsingular subarc
(Equation (2.9)) we have ¢ = 1 if ¢(tc +e)<O0Oando = -1 if ¢(tc +¢)> 0.

Therefore, the following inequality must hold.

1) & Bt )[K(t - ) xuft_ - €)]<0 (4.15)

From the GLC condition we have

1Y pe) > 0 (4. 16)

Multiplying the left hand side of (4. 15) by the positive quantity in (4.16) we

obtain

(-1 )q“qwt IKE, - ) £ul -€)]<0 4.17)

Since |uft)] £ K(t) for all te [to.te], and the singular arc is tacitly assumed

to be interior almost everywhere, the bracketed quantity in (4. 17) is strictly



positive, regardless of the choice of sign on iu(’cC - €). Also N regard-
less of the sign of e. Therefore, condition (4.17) reduces to

qt+r

(-1) <0 (4.18)

from which it is clear that g + r is an odd integer. This completes the proof.
Theorem 1 implies the following important corollaries.

COROLLARY 1. In g-even problems, assuming u is piecewise analytic
and the strengthened GLC condition is satisfied, the optimal control is continu-

ous at each junction.

COROLLARY 2. In g-odd problems, assuming u is piecewise analytic
and the strengthened GLC condition is satisfied, the optimal control either has
a jump discontinuity at each junction, or else the singular control joins the

boundary smoothly, i.e., with continuous first derivative,

In the corollaries above, especially Corollary 1, which applies to the
g-even case, the assumption that u is piecewise analytic is not to be taken
lightly. In fact, the authors have not seen or been able to produce a g-even
example with a continuous junction, i.e., the junction is usually nonanalytic if

q is even.

The conclusions reached by Kelley, Kopp, and Moyer [3] are consistent
with those stated in Corollaries 1 and 2, with one important exception — they
ruled out the possibility of a continuous junction for g-odd problems. This
erroneous conclusion resulted from the claim that continuity of u implies
(8/8u)H]izq) > 0 which is not true in general, as can be seen from (4.15) (in
which p = (a/au)Hl(fQ)), That such a junction is realizable will be demonstrated

by means of a simple example in a later section,

Theorem 1 requires that the strengthened GLC condition be satisfied

at the junction point. While this is the usual and most important case, the
possibility exists that the GLC condition is satisfied with equality. To treat
this case, note from Definition 3 that for a qth order singular arc the GLC
expression (8/811)H1(12q) (i.e., B) cannot be identically zero on the singular sub-

arc. Therefore  in view of our analyticity assumptions, a derivative of some
9 El



order must be nonzero at the junction point tC even if B (tc) = 0. This leads
to the following theorem, which is a generalization of Theorem 1, but is stated
separately to avoid obscuring the result for the important case covered by

Theorem 1.

THEOREM 2. Let tC be a point at which singular and nonsingular subarcs of
an optimal control u are joined, and let q be the order of the singular arc.
Assume that the control is piecewise analytic in a neighborhood of tc. Let

u(r) (r 2 0) be the lowest order derivative of u which is discontinuous at tc,

(m) (m 2 0) be the lowest order derivative of the GLC expression

and let B
(8/8u)Hl(lzq) = B which is nonzero att . Then, ()ifm=r, g+ r+ mis an
(m) - gtr+m

()] =(-1)

odd integer; (i) ifm> r, -sgn[ﬁ(m) (tZ)ﬁ o

Proof Outline. The proof is similar fo that for Theorem 1; however,

in order to obtain a nontrivial term in the Taylor series expansion for ¢(1:C+ €),

one must consider higher order terms with the result that (4.15) is replaced

by

i e e N

By (&, C“G)ius(tc-e)]<0 (4.19)

A Taylor series expansion for p(t) on the singular arc yields

- = V) + (™) . (4. 20)

where the subscripts s and n on B(m) (tc) indicate the limit at tc on the singular
and nonsingular sides, respectively. Since {3(:1) (tc) # 0, from the GLC condition

and (4.20) we have

+
CpEm amgm) s g @. 21)
S ¢
From (4.19) and (4. 21) it follows that
+r+ m) + -
TR ) g 7y < 0 @. 22)
Ifm=r, ﬁ(m) is continuous at to, in which case (4. 22) implies that q+r+m
(m)

is an odd integer. Ifm>r, B may not be continuous at tc, and the conclu-~

sion of Theorem 2 for this case follows.
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The main restriction in Theorems 1 and 2 is the assumption that the
control is piecewise analytic in a neighborhood of the junction. This hypothe-
sis is usually satisfied on the singular subarc, but not always on the nonsingu-
lar subarc. Thbus, we are led to consider properties which do not require the
assumption of analyticity, as stated in the following theorem. The functions

A and B in this theorem are those defined by the identity (4.1).

THEOREM 3. Let u be an optimal control which contains both singular and
nonsingular subarcs, where the singular subarcs are of order q. Then, (i) if
H(Zq) # 0 on the nonsingular side of a junction, the control must be discontinu-
ous; (ii) if H‘gzq) = 0 on the nonsingular side of a junction and B # 0 at the
junction, the control must be continuous; (iii) if A =0 and K(tc) # 0 at a junc-
tion point tc’ the control must be discontinuous.

Proof. Using the same notation as in the proof of Theorem 1, and re-

(2q)
u

a(tc) + B (tc)un(tc) #0 = a/(tC) + ﬁ(tc)us (tc) “4.23)

calling that H = 0 on the singular subarc, we have for case (i)

from which we obtainu_(t ) # u (& ).
n'c s'c
For case (ii) we have

alt) + Bl Ju () =0 =af) + Bl )u (k) (4. 24)

Since ﬁ(tc) # 0, we must have u.n(tc) = ug (tc).

For case (iii) A = 0 implies u = 0, and since Iun(tc)[ = K(tc) # 0, the

control must be discontinuous.

Case (iii) of Theorem 3 may appear to be a rather special case, but it
occurs frequently enough to be of interest Note that this result is independ-
ent of an even or odd assumption. Because of this, we can couple (iii) with
the previous result for g-even problems to obtain the following interesting

property.

COROLLARY 3. If q is even, A=0, K(t ) # 0, and Bt ) =B(t_.x({t ),

N (tc)) # 0, where tc is a junction point between optimal singular and nonsingular
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subarcs, then the junction is nonanalytic.

Proof. Assume the contrary, i.e., that the optimal control is piece-
wise analytic in a neighborhood of tc. Then by Corollary 1, the control is
continuous at tc. But, by Theorem 3 (iii) the control is discontinuous, which

supplies the necessary contradiction.

In the next section this corollary will be used to predict the nonanalytic

junction in the well-known Fuller problem.
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5. Example of a Nonanalytic Junction

Consider the Fuller problem [7], which is to minimize

T
3 =Jz§x§dt (5.1)
0
subject to
Xy =Xz, x;(0) =&, #0 (5.2)
Xz =u Xz (0) = &,
lu[= 1 (5.3)

where T is fixed. The Hamiltonian, the multiplier equations, and the switch-

ing function are given by

H = h\xp + hpu+$xd (5. 4)
7\.1 ==Xy, )\1 (T) =0 (5.5)
e A2 (T) =0

$=H_ =), (5.6)

= u (5.7)

from which we see that the order of the singular arc is even, namely q = 2,
Also, the strengthened GLC condition holds, and A(t,x,\) =0. Thus, we
have precisely the conditions of Corollary 3, indicating that any junctions

which occur must be nonanalytic junctions.

This problem has been studied thoroughly by Fuller [7] and Johansen

[8], and the result is well known. The singular arc is given by

us=x1=x2=0 (5.8)

Since &; # 0, the initial control must be nonsingular., The nonsingular arc is

characterized by the nonlinear differential equation

o™ = -sgne 5.9)
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The solution of (5.9) yields a switching function with an infinite number of
zeros such that the ratio of the lengths of successive intervals between zeros
is a constant. If T is sufficiently large, the resulting nonsingular (bang-bang)
control drives the state to the origin in a finite time tC, with an infinite num-
ber of switches occurring in a neighborhood of tc’ at which point the optimal
‘control becomes singular. The control is clearly discontinuous at the junction
point tcj as it must be according to (iii) of Theorem 3. Even though q is even,
Corollary 1 is not violated because the control is not piecewise analytic in a

neighborhood of the junction.

The predicted behavior at the junction is useful knowledge for numeri-
cal computational schemes, e.g., Jacobson [9] was able to successfully com-
pute bang-bang solutions for this problem with T sufficiently small so that
the singular arc did not occur. However, for large T the nonanalytic junction
came into play. After computing about ten switches, the method became un-

stable [10].

Note that the optimal control for this ''innocent looking'', second-order
example is measurable but not piecewise continuous. Aside from its physical
applicability, the existence of such examples is useful for motivating the

assumption of measurable controls in the proof of the minimum principle.
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6. Example of a Smooth Junction with g Odd

This example demonstrates not only the realizability of a smooth junc-
tion with q odd, but also the dependence of junction phenomena upon boundary

conditions. For this case we consider the performance index

T
J = —%5(3:% - x2)dt 6.1)
0

where T = 2,985. The equations of motion and constraints are given by

O, X]_(T) =0 (6.2)

5{1 =Xz, X3 (O) =
L =u x2(0) =1, %, (T) =0,
lul = 1 (6.3)

The Hamiltonian and the multiplier equations are given by

H=\x; +\u+3x3 - 4xi (6.4)
A= xg
6.5)
)'\2 = ")\1 - X,

The switching function and its second derivative are

(b Hu = )\.2 (6.6)

Hll ==X -u (6.,7)

so the singular arc is first order, i.e., g is odd. From (6.7) we see that the
strengthened GLC condition is satisfied. Setting the right hand side of (6.7)
equal to zero and substituting in the equations of motion (6.2), it is readily

verified that a singular arc emanating from the initial state (0,1) is given by

u =-sint

S

X; = sint (6.8)
X, = cost
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If the terminal state (o; ,0,) is chosen to lie on the trajectory (6.8),
the solution is totally singular, as can be shown by the sufficient conditions in
References [1] and [2]. However, in this paperbwe are concerned with junc-
tions. Consider the case where o; = 0, o, = -N2 . For this case we propose
as a candidate for the optimal control

(6.9)

-sint, te [o,—g)
. {

-1 ; tE [_:T]

This control is admissible and satisfies all the necessary conditions for opti-
mality, including that of Theorem 1. There is a junction at tc =% . The con-
trol and its first derivative are continuous at tC, but the second derivative is

discontinuous, so we have r =2, q =1, and q + r is an odd integer.

The authors are unaware of any workable sufficient conditions in the
literature which are applicable to this particular type of problem, i.e., non-
convex and containing both singular and nonsingular subarcs. Consequently,
we employed a gradient type numerical method to justify that the candidate
control is indeed optimal, within the bounds of a numerical justification. The
modified cbnjugate gradient method of Pagurek and Woodside [11] was used
with penalty functions to enforce the terminal constraints. The result is
shown in Figure 1, The control is continuous and smooth at the junction as

expected.

It is apparent that the fortuitous occurrence of this smooth junction is
a direct result of our judicious choice of the terminal boundary conditions. In
fact, to generate this phenomenon, the form of the candidate control was first
selected on the basis of intuition; then a convenient point on the resulting
trajectory was selected as the fixed terminal state, and finally the correspond-

ing time was taken to be the explicit final time,

By changing the terminal state, we were able to generate discontinuous
controls, which undoubtedly are the usual case, These are shown in Figures
2 and 3. For these cases r = 0, and the condition of Theorem 1 is satisfied
again, To further emphasize the special character of the smooth junction,

the phase plane trajectories for the controls in Figures 1-2 are given in Figure 4,
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7. Conclusion

Necessary conditions for the optimality of junctions between singular
and nonsingular subarcs in singular optimal control problems have been de-
veloped. Necessary conditions developed previously by Kelley, Kopp, and
Moyer [3], which involve an analyticity assumption, have been clarified and
extended. The main result in this direction is that the sum of the order of the
singular arc and the order of the lowest time derivative of the control which
is discontinuous at the junction must be an odd integer when the strengthened
generalized Legendre-Clebsch condition is satisfied. Also, new necessary
conditions which do not involve an analyticity assumption have been developed.
These conditions aid mainly in characterizing problems which may possess

nonanalytic junctions.

It should be emphasized that these are local necessary conditions for
optimality. Yet, as indicated by the example in Section 6, the point at which
a junction occurs is determined mainly by initial and terminal boundary con-
ditions, i.e., by essentially nonlocal information. This means that any junc-
tion theory which, for example, might be used to establish criteria for switch-
ing between singular and nonsingular arcs in an indirect computational

scheme will have to take such nonlocal information into account.

It is becoming increasingly apparent that a close relationship exists
between singular problems and bounded state problems [12][13]. In this re-
gard it is interesting to note that the result of Theorem 1 bears some similar-
ity to a result of Jacobson, Lele, and Speyer [13] which identifies certain
properties of optimal trajectories associated with odd order state space con-
straints, Such similarities suggest the possibility of a duality between these

two classes of problems which might be profitably exploited.
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Figure 4. Phase plane trajectories for the
controls in Figures 1 and 2.






