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Summary. Many hormones are secreted in pulses. The pulsatile relationship between hormones regulates many biological
processes. To understand endocrine system regulation, time series of hormone concentrations are collected. The goal is to
characterize pulsatile patterns and associations between hormones. Currently each hormone on each subject is fitted univari-
ately. This leads to estimates of the number of pulses and estimates of the amount of hormone secreted; however, when the
signal-to-noise ratio is small, pulse detection and parameter estimation remains difficult with existing approaches. In this
article, we present a bivariate deconvolution model of pulsatile hormone data focusing on incorporating pulsatile associations.
Through simulation, we exhibit that using the underlying pulsatile association between two hormones improves the estimation
of the number of pulses and the other parameters defining each hormone. We develop the one-to-one, driver–response case and
show how birth–death Markov chain Monte Carlo can be used for estimation. We exhibit these features through a simulation
study and apply the method to luteinizing and follicle stimulating hormones.
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1. Introduction
Hormones in the endocrine system interact to regulate im-
portant functions such as growth, stress, and reproduction
(Sherwood, 2005). Many of the hormones in these systems
are pulsatile hormones, where the hormone is secreted into
the circulatory system via boluses of hormone, called pulses.
To understand the mechanisms behind endocrine diseases, en-
docrinologists and other biomedical investigators are most in-
terested in characterizing the features that define the pulsatile
secretion in a time series of hormone concentrations. To study
pulsatile hormones, blood samples are collected from subjects
every 5–15 minutes over a period of 6–24 hours. Hormone as-
says are run on the samples resulting in time series of hor-
mone concentrations. Traditionally, each individual hormone
series on each subject is characterized separately in analysis.
Then, in a second-stage analysis, the pulsatile characteris-
tics (pulse frequency, pulse mass, total secretion, and half-life)
are compared between groups of subjects. Various statistical
models have been developed to characterize a single hormone
series on a subject (Kushler and Brown, 1991; Veldhuis and
Johnson, 1992; Guo, Wang, and Brown, 1999; Johnson, 2003;
Liu and Wang, 2006). By far, the most commonly applied
approach is based on deconvolution (Veldhuis and Johnson,
1992).

The above methods work well in characterizing pulsatile
hormones such as luteinizing hormone (LH) and growth hor-
mone (GH), but there are various hormones where pulse
detection and parameter estimation is still difficult. For
adrenocorticotropic hormone (ACTH) and cortisol the coeffi-
cient of variation is larger than that seen with LH and GH. In

the case of follicle stimulating hormone (FSH), the pulse mass
relative to the half-life is small and the signal-to-noise ratio
is small, making pulse detection and parameter estimation
additionally challenging using existing methods.

Driver–response pulsatile associations are known to exist
between many sets of hormones (Clarke and Cummins, 1982;
Clarke et al., 1984; Marshall et al., 1993; Dorin et al., 1996).
In a driver–response model of pulsatile association, a pulse
in one hormone results in a pulse in another hormone after
a short period of time. Despite the possible estimation ben-
efits when incorporating these known pulsatile associations,
development of bivariate models has been limited because of
the complexity of jointly estimating two sets of pulsatile pa-
rameters. To our knowledge, there is only one model that
includes a pulsatile association component (Guo and Brown,
2001). This model is limited in that it assumes an instan-
taneous pulse secretion and only has a discrete measure of
the temporal association between the pulses. These restrict
the hormones to which this model can be applied. Other bi-
variate approaches for hormone data relate hormone concen-
trations or the underlying circadian rhythms (Diggle, 1990;
Wang, Guo, and Brown, 2000). They are not appropriate for
modeling pulsatile associations when decay rates or secretion
lengths differ between the hormones, as is the case with most
hormone pairs.

In this article, we develop a new bivariate model of pulsatile
hormones. We focus on incorporating a pulsatile association
component because it is the major component of association
in pulsatile hormone time series and is the mechanism that
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biologically ties together pairs of hormones most strongly. We
show that in situations where there is known to be an as-
sociation between pulses, incorporating the pulsatile associ-
ation improves estimation of the pulsatile parameters. This
is especially true in hormones that are difficult to estimate
univariately. In Section 2, we develop the one-to-one driver–
response pulsatile association model. We describe the birth–
death Markov chain Monte Carlo (BDMCMC) estimation al-
gorithm for the one-to-one driver–response model in Section
3. In Section 4, we apply the model to our motivating data set,
a pair of LH–FSH series, in which FSH pulsatility is charac-
terized poorly when fitted alone. In Section 5, we investigate
the estimation properties and improvements over a univari-
ate BDMCMC fitting algorithm for simulated data similar to
LH and FSH. Discussion and model extensions are offered in
Section 6.

Before defining the model, we note that in this article
driver–response terminology, which often implies causality, is
not meant to imply that the underlying association in the
model must be causal. The application of the following models
is equally viable in situations where one series exhibits a tem-
poral association such that pulses in one series are followed in
time by pulses in another series with no causal element. This
also implies that this class of models cannot be used to prove
or disprove causality.

2. The Bivariate Deconvolution Model
Deconvolution is the most widely used model to fit pulsatile
hormones and is applicable to a wide range of hormones
(Dorin et al., 1996; Matt et al., 1998; Kasa-Vubu et al.,
2002). This makes the interpretation of the parameters fa-
miliar to clinical investigators. It is for these reasons that we
base our association model on this mathematical framework;
however, other frameworks are equally plausible. The general
forms of the deconvolution approach for pulsatile hormone
data are covered in detail by Veldhuis and Johnson (1992)
and more recently extended to the Bayesian framework by
Johnson (2003). Thus, we move to our bivariate deconvolu-
tion model. In this section, we focus on developing the one-
to-one model, where the driver and response pulses exist in
pairs. It is the most common pulsatile association and ap-
plicable to our motivating example. However, the model is
generalizable to non-one-to-one driver–response associations.
Extensions are discussed in Section 6 and implementation is
considered future work.

2.1 The One-to-One Deconvoluation Model
Let {xt} be the time series of concentrations of the driver
hormone and {yt} be the time series of concentrations of the
response hormone for one subject, where t = 1 , . . . , n. Param-
eters and functions subscripted by x will refer to the driver
hormone. Parameters and functions subscripted by y will refer
to the response hormone.

In the deconvolution framework, the observed hormone
concentrations are represented by the convolution integral
plus error: log(xt ) = log(

∫ t

−∞ Sx (z)Ex (t − z) dz) + εxt and

log(yt ) = log(
∫ t

−∞ Sy (z)Ey (t − z) dz) + εy t . Sx (·) and Sy (·)
define the hormone secretion functions, Ex (·) and Ey (·) define
the hormone elimination functions, and εxt and εy t are the

errors consisting of both biological and technical components.
The hormone concentration is modeled on the log scale to ac-
count for the fact that hormone concentrations are positive.
Alternatively, one could model the hormone concentration on
the natural scale and assume a constant coefficient of vari-
ation error structure. In further development, the secretion
and elimination representations are similar for the driver and
response hormone but with the subscript of y replacing the
subscripts of x. Thus, we only describe, in detail, the driver
hormone.

In deconvolution models of hormone data, the secretion
function is specified by, Sx (·) = bx +

∑k

i=−∞ fxi{t; θxi (t)}.
The first part of the sum, bx , is a nonpulsatile, basal se-
cretion rate and assumed constant over time, as is the case
for most hormones. Each component in the summation de-
fines one of the k pulsatile secretion events. Each pulse is
defined by a rate function, f xi{t;θxi (t)}, where θxi (t) is a
set of pulse-specific parameters (such as the location and
pulse mass), where the complete set of pulse-specific pa-
rameters is denoted as θx = (θx1 , . . . , θxk ). In this imple-
mentation, the secretion rate functions had a similar Gaus-
sian form for each hormone and each pulse; fxi{t; θxi (t)} =
Axi exp [−0.5{(t − txi )/σx}2]/

√
2πσ2

x . Each Gaussian curve
has the set of pulse-specific parameters θxi (t) = (txi , Axi ),
where the ith pulse is centered at the location, txi and has
mass Axi . The pulse width σ2

x is assumed common across
pulses because estimation in noisy series is difficult. The
Gaussian form has been the most commonly used func-
tional form of the pulsatile secretion; however, other positive
functional forms could easily be considered in the Bayesian
framework.

In implementation, an initial concentration, C 0x, is added
to the model to represent the concentration at the start of ob-
servation that is due to pulsatile secretion occurring, but not
completely decaying, before the start of observation. Essen-
tially C 0x represents the components of the sum that occurs
before the first pulse in the observation period (i.e., i ≤ 1).
Finally, we assume that the elimination function, Ex (t), is
modeled as a single exponential decay, where λx is the con-
stant decay rate.

When explicitly combining the model specifications, we ar-
rive at the following model of hormone concentration for the
driver hormone:

xt = C0x exp {−λx t}

+
∫ t

−∞

[
bx +

k∑
i=1

Axi
1√
2πσ2

x

exp

{
−1/2

(
txi − z

σx

)2
}]

︸ ︷︷ ︸
Sx (t)

× exp {−λx (t − z)}︸ ︷︷ ︸
Ex (t)

dz + εxt .

2.2 Priors
To complete the Bayesian specification of the model, we define
a set of priors and hyperpriors and assume that some of the
priors depend upon a set of hyperparameters, ω, such that
the prior factors are as follows:
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p
(
Σe , bx , by , λx , λy , σ2

x , σ2
y , θx , θy , ω, k

)
= p(Σe )p(bx )p(by )p(λx )p(λy )p

(
σ2

x

)
× p

(
σ2

y

)
p(θx , θy |ω, k)p(ω)p(k). (1)

We note that the prior on the pulse-specific parameters is a
joint prior and used to define the pulsatile association com-
ponent of the model.

There are two association components relating the pulse
locations, tx and ty , and the pulse masses, Ax and Ay . Given
the close timing of the driver and response pulses in a one-
to-one model, the one-to-one assumption results in the same
number of pulses in each series. Thus, in the model, we as-
sume for each driver pulse there exists a response pulse such
that ty i = txi + τ i where τ i ∼ Gamma(α, β), i.e., the lag
time between the driver and response pulses is a random ef-
fect with hyperparameters α and β. In addition, the pulse
masses, log(Axi ) and log(Ay i ), are linearly associated. We
impose the linear association by assuming that the masses
are random effects with a bivariate log-normal distribution,
(log(Axi ), log(Ay i ))′ ∼ BivNormal(log(μmx , μmy)′, Σm ). The
log-normal distribution was chosen to accommodate the posi-
tivity constraint of the pulse masses. Other distributions, such
as a truncated normal or t-distribution are equally plausible.
With these specifications the prior on the pulse component
factors as: p(θx , θy |ω, k) =

∏
k
i=1 p(Axi , Ay i |ω, k)p(τ i |ω,

k), p(txi |ω, k).

2.3 Parameter Specification in the Priors
In implementing the one-to-one model we specified the follow-
ing priors. We assumed, a priori, that the distribution of the
number of pulse pairs was a truncated Poisson(λ), truncated
at 50. This upper boundary is above the number of pulses that
occur in pulsatile hormone series in one day. In the LH–FSH
example, λ = 23 and λ = 13 in the simulation. These values
were based on previous research. However, the estimation is
not sensitive to the value of λ.

Conditional on the number of pulse pairs, k, the driver lo-
cations, txi , are distributed as a random permutation of ev-
ery third-order statistic from 3k + 2 independent and iden-
tically distributed uniform(−40, T + 10) random variates
(Richardson and Green, 1997; Stephens, 2000a; Johnson,
2003). This choice increases the probability that each pulse
is modeled as one Gaussian without becoming too periodic.
To accommodate partial pulses at the beginning and ending
of a series, we choose values for pulse locations slightly before
and after the start and end of observation (T).

Table 1 contains information about the priors on the com-
mon parameters and association components. For the lag dis-
tribution, we focused on estimating the mean and assumed
that the mean and the variance are the same in the lag
distribution (i.e., β = 1). We used the conjugate hyper-
priors for the pulse mass distribution and the pulse mass
variance–covariance matrix. The hyperpriors on the mean of
the log(pulse mass) were vague with a mean of 1.5 for the
driver (LH) and 0 for the response (FSH). The variance–
covariance matrix in the hyperprior of the pulse masses was
set as a 2 × 2 diagonal matrix with diagonal components
(10, 000, 10, 000). The priors and hyperpriors on the vari-
ances of the random effects are shown in Table 1. The priors

Table 1
Prior information for the simulation and LH–FSH example.
A “•” is used when the values were similar for the driver

and response hormones.

b•/λ• Unif(0, 50]
λ• Unif(0, 1000]
C 0• Unif{0, 2 × max(xi )}, Unif{0, 2 × max(yi )}
Σ−1

m Wishart4[Sm ]
S−1

m Diag(20, 20)
α Gamma(1.5, 0.1)
Σ−1

e Wishart2[Se ]
S−1

e Diag(100, 100)

on the variance–covariance matrix of the masses and widths
were informative to reflect our belief that the mass is sim-
ilar. We chose the actual values based on Johnson (2003)
and scaled the values to match modeling the log of the pulse
masses.

For the baseline, decay rates, and initial concentration we
choose uniform priors over ranges that are much larger than
biologically plausible values (see Table 1). For example, the
baseline cannot be larger than the maximum of the data, so
we chose a value higher than the maximum of both data sets.
C0 would be unlikely to be much more than the maximum of
the data or the size of a few pulses depending on the decay
rate. Here the maximum of the data was larger than the pulse
masses and we conservatively took a multiple of the maximum
hormone concentration. The half-life is well defined for many
hormones so we set a boundary that was four times that of
the larger of the reported value in the literature of the two
hormones under study.

The parameter choices for the univariate analyses were
analogous to what was defined above.

3. Estimation of the One-to-One Model
To estimate the posterior distribution we used BDMCMC
(Stephens, 2000a). The major assumption of BDMCMC is
that the joint posterior of the pulse-specific components and
the number of pulse pairs must be exchangeable. In our
situation, the exchangeable assumption implies that the la-
beling of the pulse pairs be unimportant. In the examples in
this article, the biological process (i.e., the parameters) does
not change over the course of one day of study. Thus, the la-
beling of the pulse pairs is not important. In the one-to-one
setting, the pulse-specific parameters can be represented as
a pair (e.g., (Axi , Ay i ) and (txi , τ i )) and Johnson’s (2003)
BDMCMC algorithm can be extended with just a larger set of
parameters associated with each birth or death in the process.

The mathematical derivations of the birth–death stage of
the algorithm can be found in Web Appendix A. In the
MCMC stage, we used a Metropolis–Hastings/Gibbs sam-
pler (Tierney, 1994) to update the parameters conditioned
on the number of pulses at the end of the birth–death stage.
When full conditionals did not have a closed form, we used
a random walk Metropolis–Hastings sampler to simulate the
distributions.
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For the univariate models, the BDMCMC estimation algo-
rithm was applied as described in Johnson (2003).

3.1 BDMCMC Implementation
For the LH–FSH example and each of the simulated bivariate
and univariate series, we ran the BDMCMC chain for 250,000
iterations. The birth rate, λb , and the simulation time, t0, be-
tween MCMC updates in the BDMCMC algorithm are related
and fairly arbitrary. We set t0 = 1 and λb = mean number of
pulses in the Poisson prior on the number of pulses. We inves-
tigated the sensitivity of our choice of t0 and λb on a subset
of the simulated series. As expected, when t0 was larger, the
time in the birth–death simulation was longer; however, the
results did not change. The results for λb were similar for val-
ues in a wide range of λb . We discarded the first 20,000 itera-
tions as burn-in. Every 50th iteration was saved and used for
summarizing the posterior distributions. The variances in the
proposal distributions for the Metropolis–Hastings steps were
chosen to obtain acceptance rates between 25% and 50%. We
assessed convergence and mixing visually using serial plots of
the draws.

We initialized the algorithm by assuming there was one
pulse, i.e., k = 1. We started the chains at various points over
reasonable ranges of the parameters to assess the sensitivity
of the starting value. As long as the values were not extreme,
the results were similar. For both the real data example and
the simulations, we used historical knowledge about the values
of the half-lives (Schally et al., 1971) of LH and FSH (LH =
60 minutes and FSH = 240 minutes). The pulse widths were
initialized at 10 and 30 minutes2 for LH and FSH, respectively,
based on preliminary univariate analyses. The minimum of
the data was used to guide the starting value for the baseline.
When initializing the pulse masses, pulses were more likely
to be modeled as one component if the initial mean pulse
mass in the pulse mass hyperprior was larger than truth. We
initialized the mean of the pulse mass distribution at a value
approximately 0.25 log(concentration) units larger than truth.

Our modeling situation is similar to modeling mixtures of
distributions, which results in label switching. Label switching
means at different iterations the same pulse pairs will be la-
beled with a different index. Usually the pulses are adequately
separated in time such that sorting by their location in time
resolves most of the label switching; however, when one pulse
is modeled as two components, ordering via time does not
always resolve the issue. In postsimulation processing, we re-
solved this situation by combining pulse-specific parameters
when the driver locations occurred within four sampling units
of one another. This minimized the remaining label switch-
ing. The algorithm that was used to combine the secretion
events is presented in Web Appendix B. Alternate approaches
to post-simulation processing may also be applied (Stephens,
2000b; Johnson, 2003, 2006).

To assess model fit we generated a sample from the poste-
rior predictive distribution and calculated the χ2 discrepancy
as outlined by Gelman et al. (1995).

4. Motivating Real Data Example
LH and FSH are two pulsatile hormones of interest in the
reproductive system. In general, LH pulses are more clearly
defined, but FSH pulses are often difficult to detect and char-

acterize because of the smaller pulse masses and longer half-
life. In a natural setting, both LH and FSH are driven by
gonadotropin releasing hormone (GnRH; Schally et al., 1971;
Marshall et al., 1993). Thus, we would ideally use the GnRH–
FSH driver–response relationship to characterize FSH. How-
ever, GnRH hormone levels are often below assay sensitivity
in human blood. Thus, GnRH pulse detection is not possible
in human studies. Because both LH and FSH are driven by
GnRH and the LH response to GnRH is sooner than FSH, the
LH–FSH pair of series can be modified to exhibit a driver–
response association (without the causal element). In this ex-
ample, we focus on improving the estimation of FSH pulatile
characteristics by using the LH–FSH relationship. In our ex-
ample, blood was collected every 7.5 minutes for 24 hours. We
shifted the LH observations two sampling units backward in
time (15 minutes) prior to analysis to guarantee FSH pulses
occur after LH pulses regardless of any noise in estimating
the locations.

Figure 1 shows the observed and fitted values along with
the joint posteriors of the pulse locations for both fits for the
LH–FSH series. For LH, we note that the pulse locations are
similar between the univariate and bivariate fits. The fitted
lines are also similar for both methods of fitting LH and both
fit the observed data well indicating that adding the less clean
FSH series to the model does not degrade the fit for LH.
For FSH, the number and precision of the pulse locations is
less in the univariate fit compared to the bivariate fit. The
univariate fit shows that the larger trends are being fitted
and many pulses are being smoothed through. None of the
fits indicate significant lack of fit using the posterior predictive
distribution.

Table 2 contains the mean and 95% equal tails credible
intervals for the parameter estimates for the two fits. The pa-
rameter estimates and credible intervals are similar for the
LH series. Notable differences for FSH include the substan-
tially fewer number of pulses in the univariate fit and much
less precision in the locations of the pulses. This results in a
much lower estimate of the total pulsatile secretion. In addi-
tion, the half-life and pulse width estimates for FSH are much
higher than the bivariate fit and much higher than is usually
considered biologically plausible by endocrine investigators.
This along with the large difference in the number of pulses
between LH and FSH are the major indicators that something
may be incorrect in the univariate fit of FSH and would sug-
gest alternative models might be useful. When studying the
pulses that are detected in the bivariate fit and not in the
univariate fit, we note that the pulses were not systematically
smaller and were not essentially zero (Web Table 1). In fact,
the average size of the missing pulses was only slightly lower
with an average of 0.5 concentration units compared to 0.6
concentration units for the pulses detected in the univariate
FSH fit. This reassures the authors that the one-to-one model
is valid.

5. Simulation
To further assess the bivariate model and to confirm our use
of the bivariate model in the LH–FSH case, we simulated 100
bivariate hormone series under a one-to-one driver–response
association. We fitted each set of series with the bivariate
model and also fit each univariate series with the analogous
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Figure 1. Observed and expected LH and FSH concentrations for one subject. The top figure is LH, and the bottom is FSH.
The solid gray lines are the observed hormone concentration profiles and the solid black line is the mean of the posterior
predictive distribution for the bivariate fit and the dashed black line is the expected curve for the univariate fits. The histograms
on the bottom axes represent the joint posteriors of the pulse locations for the univariate fit (top) and bivariate fit (bottom).
The data are from Pincus et al. (1998).
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Table 2
Summary statistics for the common parameters for the example LH–FSH series from the bivariate and univariate fits: Mean =

mean of the posterior and CI = credible interval

LH FSH

Bivariate Univariate Bivariate Univariate

Parameter Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

No. of pulses 22.60 (21, 24) 23.55 (23, 25) – 11.33 (5, 16)
No. of secretion 28.62 (27, 31) 28.20 (25, 31) 28.6 (27, 31) 11.6 (5, 16)

events
Baselinea 0.98 (0.2, 1.6) 1.03 (0.2, 1.6) 2.25 (0.31, 3.81) 2.95 (0.6, 4.5)
Half-lifeb 53.47 (44.19, 65.06) 53.70 (44.41, 65.69) 253.73 (110.56, 460.90) 438.64 (143.31, 804.41)
Secretion widthc 8.20 (4.43, 12.58) 8.72 (4.61, 13.79) 40.67 (1.07, 127.77) 76.67 (2.62, 302.32)
Total pulse sec.a 87.19 (81.46, 93.67) 88.00 (81.12, 95.71) 13.02 (9.91, 17.12) 6.23 (2.96, 9.62)
Mean of lag dist’n.b 15.39 (10.73, 20.25) – – –
Mean log(sec.) mass 1.02 (0.82, 1.20) 1.03 (0.81, 1.24) −0.88 (−1.30, −0.54) −0.74 (−1.79, −0.24)
Log(sec.) mass var 0.20 (0.10, 0.38) 0.25 (0.12, 0.48) 0.18 (0.041, 0.53) 0.47 (0.015, 2.63)
Mass correlation 0.61 (0.13, 0.87) – – –

aunits = ng/ml.
bunits = minutes.
cunits = minutes2.

BDMCMC univariate model and fitting algorithm. The pa-
rameters in the simulation were chosen to represent hormone
profiles similar to LH and FSH data presented in the previous
section. In the simulation, we assumed a sampling interval of
7.5 minutes for a duration of 24 hours. The pulse masses were
drawn simultaneously from a bivariate log-normal distribu-
tion with a mean of 1.24 for the driver hormone and −0.74
for the response hormone. The variance of the driver masses
was 0.15 and 0.14 for the response hormone. The masses had
a correlation of 0.85. The pulse widths were 10 minutes2 for
the driver and 30 minutes2 for the response. The half-lives
(λ•/log(2)) were 60 and 240 minutes for the driver and re-
sponse, respectively. The baselines (b•/λ•) were 0.65 concen-
tration units for the driver and 3.0 concentration units for
the response, where a “•” is used when the driver or response
designation is not important. For the driver series, the inter-
pulse interval was drawn from a gamma distribution with a
mean of 98 minutes (13 sampling units) and a variance of 52.5
minutes2 (7 sampling units2) (Mauger, Brown, and Kushler,
1995). In addition, a minimum interpulse interval of four sam-
pling units was imposed to prevent two pulses from occurring
simultaneously. The time between a driver and response pulse
was drawn from a gamma distribution with a mean of 15 min-
utes and a variance of 20.0 minutes2. Finally, for both series,
the errors were drawn independently from two Gaussian dis-
tributions with a variance of 0.05 for the driver hormone and
a variance of 0.005 for the response hormone.

5.1 Simulation Results
Table 3 contains the true parameter values and the summa-
rizations of the posterior distributions, average biases, and
equal tails 95% credible intervals. We used the mode of the
posterior distribution of the pulse number after postsimula-
tion processing to summarize false positives and negatives for
the pulse locations. For the bivariate model there were 27 false
negatives out of 1463 pulses (1.8% false negative rate) and

three false positives (one in each of three series). There were
an average of 14.6 pulse pairs per series. Sixteen series had
one to three pulses missing (average = 1.3) and one had six
missing. The average frequency of the mode of the posterior
distribution of the number of pulses was 71%. The estimates
of the common pulse parameters and the pulse-specific pa-
rameters had minimal bias with the exception of the response
half-life and pulse width, which are both biased high. How-
ever, the bias and precision are improved using the bivariate
fit. The total pulse secretion was estimated well and the cov-
erage is good for all parameters. There was no evidence of
lack of fit based on the posterior predictive density and the
χ2-discrepancy statistic.

For the univariate deconvolution method, the driver series
has a slightly higher false negative rate of 3% (44 false neg-
atives) and a slightly higher false positive rate of 0.5% with
seven series having one false positive each. The false nega-
tives were spread across 20 series with one to six false neg-
atives each (mean = 2.2 pulses). The mode of the posterior
distribution of the number of pulses had an average frequency
percentage of 66%, slightly lower than the bivariate fit. The
parameter estimation was similar between the bivariate and
univariate fits, with the parameter estimates having minimal
bias. This confirms that going with a bivariate fitting when
one series is not well defined does not decrease the estimation
performance of a fairly clean series. In fact, there is some indi-
cation that bivariate fitting may help to define the parameter
estimates and the number of pulses slightly better.

For the response series, only two series had the correct num-
ber of pulses estimated. There were one to nine pulses missing
in each series with an average of five pulses missing in each
series. The posterior distribution of the pulse mass was wide
and the posterior mode had an average frequency percentage
of only 22%. The parameter estimate is quite biased for the
half-life and pulse width, such that the estimates are moving
into nonbiologically plausible ranges. The coverage is low for
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Table 3
Parameter summary statistics for the common parameters for 100 simulated series estimated using bivariate and univariate
models: D = driver hormone, R = response hormone, units in parentheses, PM = posterior mean, CI = credible interval

Bivariate Univariate

True Mean Width of Coverage Mean Width of Coverage
Parameter value of PM (SD) 95% CI of 95% CI of PM (SD) 95% CI of 95% CI

D baseline (conc.) 0.65 0.84 (0.37) 0.39 96 0.94 (0.43) 0.41 94
D half-life (min.) 60 56.89 (9.74) 10.22 96 55.85 (10.85) 11.01 93
D pulse width

(min.2)
10 15.15 (10.06) 10.80 98 15.04 (10.18) 10.76 98

R baseline (conc.) 3.00 2.38 (0.59) 0.79 92 3.02 (0.37) 0.68 99
R half-life (min.) 240 330.05 (87.99) 120.36 97 487.76 (87.84) 170.08 68
R pulse width

(min.2)
30 89.54 (59.57) 79.38 99 122.80 (54.11) 126.41 100

Mean of lag dist’n
(min.)

15 13.86 (3.10) 3.60 95 – – –

D mean log(mass)
(log(conc.))

1.24 1.23 (0.13) 0.14 96 1.23 (0.13) 0.16 95

R mean log(mass)
(log(conc.))

−0.74 −0.75 (0.19) 0.23 97 −1.32 (2.70) 0.87 100

D var log(mass)
(log(conc.)2)

0.15 0.14 (0.069) 0.081 94 0.21 (0.10) 0.14 97

R var log(mass)
(log(conc.)2)

0.14 0.12 (0.077) 0.10 91 0.47 (2.51) 1.10 100

Mass correlation 0.85 0.61 (0.23) 0.27 92 – – –

Bias in total secretion and pulse-specific parameters

True Mean bias Coverage Mean bias Coverage
Parameter value of PM (SE) 95% CI of 95% CI of PM (SE) 95% CI of 95% CI

Number of pulses 14.6 −0.24 (0.078) (−1.06, 0.94) 99
D univariate – −0.31 (0.010) (−1.39, 1.02) 98
R Univariate – −4.63 (0.12) (−8.42, −0.35) 63
Total D secretion

(conc.)
55.1 0.93 (0.66) (−9.7, 13.8) 92 0.59 (0.73) (−11.0, 14.2) 91

Total R secretion
(conc.)

7.6 0.24 (0.14) (−2.3, 3.6) 95 −3.08 (1.27) (−5.0, −0.02) 54

D location (min.)a – 0.24 (0.17) 27.10b 97 −0.029 (0.18) 22.75 93
D masses (conc.) 3.46 0.10 (0.018) 2.64 93 0.086 (0.019) 2.35 88
R locations (min.) – −0.85 (0.21) 34.90 96 −1.22 (0.77) 179.78 98
R masses (conc.) 0.48 0.025 (0.0037) 0.56 96 −0.094 (0.0059) 0.58 84

aN = 1436 for bivariate, N = 1413 for univariate driver, N = 985 for univariate response.
bAverage width of 95% CI.

the half-life (60%) and the width of the 95% credible interval
is very wide for the pulse width. The total secretion is biased
low and the estimate is on average only estimating 50% of the
true pulse secretion in the series.

Figure 2 contains the simulated and expected values for
one example of simulated pairs of series. Web Table 2 con-
tains the parameter estimates for the example in Figure 2.
The fitted hormone concentrations are essentially identical
for the driver series. In general, the driver series is fitted well
with both methods. However, the size of the fifth pulse is
underestimated in both fits because randomly the noise re-
sulted in consistently low hormone concentration values. For
the response hormone, neither models produce the close fit
to the observed data compared to LH, which is an artifact of
the low signal-to-noise ratio in the response series. However,
the bivariate model represents the more classical pulsatile

fit we expect, whereas the univariate fit seems to be overly
smooth and modeling the more global trends in the data. In
addition, the bivariate model fitted the true concentration
curve quite closely. However, none of the fits exhibit lack of
fit using the posterior predictive distribution.

6. Discussion
In this article, we presented a new model of a pulsatile driver–
response association between two hormones. The framework
behind the model is more flexible than the existing bivari-
ate model because it incorporates both temporal and pul-
satile mass associations. Although we focused on a one-to-one
pulsatile association, the model framework is not restricted
to a one-to-one association. Two examples of non-one-to-one
driver–response associations include an imperfect driver as-
sociation where a response pulse is more likely to occur for
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Figure 2. An example set of expected and simulated hormone concentrations. The top figure is the driver hormone, and the
bottom the response hormone. The true pulse locations are the ticks just under the observed series. The gray lines with the
“dots” are the observed data, the solid gray lines are the true hormone concentrations. The solid black lines are the expected
bivariate fits and the dashed black lines the expected univariate fits. The histogram below each series is the joint posterior
distribution of the pulse locations for the univariate fit (top) and the bivariate fit (bottom).
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larger driver pulses and a two-driver situation where, in truth,
there are two drivers of the response hormone but only one
driver was collected in the experiment. In the first case, there
would be missing response pulses and in the second case,
there would be missing driver pulses relative to the one-to-
one model. These extensions might be incorporating by the
introduction of an indicator function, ri . For the imperfect
driver model, when ri = 1, a corresponding response pulse
is generated according to p(Ay i |Axi ) based on the bivari-
ate log normal defined in the one-to-one model. The response
pulse location would be generated according to one-to-one
timing model. If ri = 0, (Ay i , ty i ) is missing. The probability
of a response pulse occurring could be modeled by a logit:
logit[p(ri = 1)/{1 − p(ri = 1)}] = a + bAxi .

For the two-driver model, the response hormone contains
more information than the driver hormone and the model
would be conditioned on the response mass. Although this
does not follow the temporal ordering of the biology, all pulses
are observed at the time of analysis. Thus, one may condi-
tion on either the driver or mass information when modeling
the association. In this extension, if ri = 1, there is a cor-
responding driver pulse generated according to p(Ay i |Axi ),
which is based on the bivariate normal defined in the one-to-
one model and the driver pulse location is generated using a
slight variation of the one-to-one timing model: txi = ty i −
τ i . When ri = 0, (Axi , txi ) are missing. The probability of
a driver pulse being observed could be modeled by a logit:
logit[p(ri = 1)/{1 − p(ri = 1)}] = c + dAyi .

In further extensions to the model, one could consider as-
sociations between the nonpulsatile components, such as the
baseline or decay rates. However, the pulsatile associations are
often of most interest to the investigator. In addition, the se-
cretion mechanism is thought to be most tightly linked as the
elimination kinetics are farther down the pathway. Although
the single subject model is easily extended to incorporate ad-
ditional pulsatile associations, the estimation extension likely
requires modeling all subjects together on series of 24 hours
or less in length to provide enough pulses for adequate esti-
mation. Modeling all subjects together has yet to be accom-
plished with pulsatile hormone series. Thus, we focused on the
one-to-one model, which is estimable using a single bivariate
series. We leave the model extensions as future work.

For the one-to-one driver–response case, we showed that
by using the underlying biological pulsatile association, one is
able to improve estimation of the number of pulses. This re-
sults in less biased estimates of other parameters for hormones
that are not estimated well univariately. Bivariate fitting may
be particularly useful when neither the driver nor response
hormones are accurately characterized when analyzed alone.
However, in this paper we focused on the situation where one
series is very difficult to characterize to match with the data
we had received.

It is interesting to note that the global measure of fit is not
sensitive to detecting differences between the bivariate and
univariate fits. This may be because of the flexibility and al-
most overparameterization of all pulsatile hormone models.
This implies that model fit may not be most useful in helping
to identify the appropriate association structure and decid-
ing when to use a bivariate model. Many other aspects of the
estimation offer clues to whether the one-to-one association

assumption is appropriate. First, it is reassuring that the bi-
variate model cannot be used to claim pulsatility in a series
when there is none. When fitting series where at least one
of the series was not pulsatile (i.e., random noise around a
mean), the estimation algorithm does not run in almost every
case. In the rare instance that the program does not hang,
the MCMC chains do not converge.

Additionally, when the user fits two pulsatile series that are
not associated assuming a one-to-one association, the mean
of the pulse lag distribution is usually very large (50–75 min-
utes for over half the series fitted in our simulation) and the
correlation between the masses is zero or negative. On close
inspection the user would also find pulses of size zero (or es-
sentially zero) in one or both of the series matching with larger
pulses in the corresponding series indicating an artificial asso-
ciation. Finally, it is likely that the univariate pulse locations
would not be a subset of the bivariate fit. Similar problems
arise when a pulsatile association exists but it is not one to
one. Although there was strong biology behind the one-to-
one assumption for the LH–FSH example, we did compare
the pulses detected in the bivariate fit but not in the univari-
ate fit. As one might expect, the pulses detected in the bivari-
ate fit are slightly smaller on average (this is likely the reason
they were not detected univariately), but they are not sys-
tematically below the univariate fit and certainly not close to
zero. However, formally testing these concepts requires pop-
ulation models.

So, how might one determine when a bivariate association
might be of use? The usual indication that something is not
correct in the univariate fit lies in the estimates of the param-
eters, mainly the half-life and pulse width. Much is known
about the half-life of our hormones and endocrine investiga-
tors would certainly claim that the parameter estimates in
the univariate fit of FSH are not biologically plausible. In
addition, the number of pulses differs vastly between two hor-
mones that are known to work in tandem. Finally, the fitted
curves in the univariate fit appear overly smooth compared
to the usual pulsatile models in a hormone that is known to
be pulsatile. In conclusion, using the known pulsatile associ-
ation between two pulsatile hormone series can help with the
parameter estimation of pulsatile series that are difficult to
fit univariately. The general underlying idea of incorporating
biological associations may also be useful in many other areas
of physiological modeling.

7. Supplementary Material
The Web Appendices and Tables referenced to in Sections 3,
3.1, 4, and 5.1 are available under the Paper Information link
at the Biometrics website http://www.biometrics.tibs.

org.
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