

Anisotropic Thermal Expansion of Tetragonal Zirconia Polycrystals

Tzer-Shin Sheu*.*

Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2136

Thermal expansion coefficients (α_a and α_c) in two crystallographic axes (a and c) of the tetragonal phase are measured at 25°-1200°C in $ZrO_2-M_2O_3$ (M = Sc, In, Yb) and in ZrO₂-YTaO₄. The difference between these two thermal expansion coefficients, $\alpha_c - \alpha_a$, decreases with M₂O₃ or YTaO₄ composition even though the tetragonality (c/a)behaves differently in these two systems. The locus of $\alpha_c =$ α_a represents a maximum tetragonality for the tetragonal phase, but not the phase boundary for the cubic phase. The relationships among thermal expansion, temperature, and composition are discussed.

I. Introduction

IVALENT and trivalent metal oxides such as MgO, CaO, $D_{Y_2O_3}^{\text{VALENT}}$ and rare-earth oxides have been found to be the stabilizing agents in zirconia solid solutions.^{1,2} This is because the tetragonal phase (t) decreases both its tetragonality (c/a) and its transformation temperature to the monoclinic phase (m) by adding these oxides to the pure zirconia.³⁻⁶ Conversely, pentavalent metal oxides such as Ta₂O₅ and Nb₂O₅ act as destabilizers,^{6.7} because these oxides increase both the tetragonality and the transformation temperature of $t \rightarrow m$ when they are added to the 2 or 3 mol% Y2O3-tetragonal zirconia polycrystalline material (TZP). Therefore, it is generally believed that the transformation temperature of $t \rightarrow m$ is correlated with tetragonality.

However, the above correlation does not exist in the ZrO₂-YTaO₄ system, whose isothermal ternary oxide phase diagram at 1500°C is shown in Fig. 1. A stable tetragonal phase with a tetragonality larger than that in the pure zirconia has been reported to exist in the composition range 15-25 mol% YTaO₄ at 25°C.⁷ With composition less than 14.0 mol% YTaO₄, $t \rightarrow m$ transformation temperature decreases with increasing YTaO₄ composition. This suppression of $t \rightarrow m$ transformation temperature indicates that YTaO₄ oxide is a stabilizing agent. However, there is no strong evidence to prove whether the unquenchable tetragonal phase with 0-14 mol% YTaO₄ has the same crystal structure as the stable tetragonal phase with 15-25 mol% YTaO₄. In this study, a lattice parameter measurement at high temperature is used to investigate the phase continuity in the composition range 0–25% YTaO₄.

Anisotropic thermal expansion behavior ($\alpha_c \neq \alpha_a$) has been reported to affect tetragonality (c/a) for the tetragonal zirconia crystals,⁸⁻¹⁰ where α_a and α_c are thermal expansion coefficients for the crystallographic a and c axes, respectively. In the ZrO_{2} Y_2O_3 system, c/a and α_c/α_a are temperature-dependent, and both of them decrease as Y2O3 composition increases at temperatures of 25° -800°C.⁸ In the pure zirconia, c/a first increases and then decreases as temperature increases from $\sim 1100^{\circ}$ C up to ~2370°C.⁹ This reverse c/a behavior also exists in the t

Fig. 1. Part of the ternary phase diagram for the system $ZrO_2 - Y_2O_3 -$ Ta₂O₅ at 1500°C. Tss is *t*-ZrO₂ solid solution, Css is *c*-ZrO₂ solid solution, TZ is Ta₂Zr₆O₁₇, YT is YTaO₄, YT₃ is YTa₃O₉ (Ref. 7).

phase,¹⁰ which is the product of the diffusionless phase transformation from the cubic phase to the tetragonal phase. The maximum c/a is shifted to a lower temperature as Y_2O_3 composition increases. Based on these temperature- and compositiondependent tetragonality curves in the ZrO₂-Y₂O₃ system, the anisotropic thermal expansion of the tetragonal phase will be discussed in this study. In the ZrO₂-YTaO₄ system, the tetragonal phase shows some interesting phenomena for its tetragonality and its $t \rightarrow m$ transformation temperature. Its anisotropic thermal expansions will be measured to compare with those in the $ZrO_2 - M_2O_3$ (M = Y, Yb, In, Sc) systems.

II. Experimental Procedure

Different compositions of tetragonal zirconia polycrystalline materials were produced by making fine powder, sintering, and heat-treating. Fine powder was prepared from precursor metal hydroxide using a coprecipitation method. Starting materials were 99.9% pure M_2O_3 (M = Y, Yb, In, Sc), 99.9% pure Ta₂O₅, and 93.1% pure ZrOCl₂-8H₂O (the remaining balance is H₂O). M₂O₃ and Ta₂O₅ were dissolved in hot acid (HCl or HNO₃), and ZrOCl₂-8H₂O was dissolved in distilled water. Two solutions, containing M^{+3} (or Ta⁺⁵) plus Zr⁺⁴ and NH₄OH (10 wt%), were added simultaneously and mixed together to let a gellike metal hydroxide precipitate out by controlling the pH value above 9. Precipitate was separated by filtration and was washed with water to eliminate chlorine ions. Then it was dried in an oven at 80°C. Dried precipitates were calcined in an air oven for 2 h at 650°C. Pellets were formed under a uniaxial pressure and were then isostatically pressed at 340 MPa. Subsequently, green pellets were sintered and heat-treated in air in a furnace with MoSi₂ heating elements.

D. B. Marshall-contributing editor

Manuscript No. 195164. Received March 26, 1992; approved March 29, 1993.

^{*}Member, American Ceramic Society. [†]Current address: Department of Biologic and Materials Science, School of Den-tistry, University of Michigan, Ann Arbor, MI.

For the lattice parameter measurement, samples in either a sintered powder or pellet form were used. Diffraction patterns of these samples were obtained using a high-temperature X-ray diffractometer (Geigerflex, Rigaku, Tokyo, Japan). An Al_2O_3 plate was used as a sample holder and as an internal standard to calculate the lattice parameters. The reference diffraction peaks of Al_2O_3 were calibrated by pure Pt powder. The lattice constants of pure Pt metal at different temperatures were calculated from the thermal expansion data published by the National Bureau of Standards¹² and from the Pt lattice constant at room temperature shown in JCPDS card number 4-802. Transformation temperatures between the tetragonal and the monoclinic phases were measured by a dilatometer unit. The operating temperature range was 25°–1300°C; heating and cooling rates were 10°C/min.

III. Results

(1) Phase Continuity in the Composition Range 0–25 mol% YTaO₄

A sample with 13.0 mol% YTaO₄ contains both the tetragonal phase and monoclinic phase at room temperature. Its phase evolution at high temperatures is shown in Fig. 2. The characteristic monoclinic and tetragonal peaks $(11\bar{1})_m$, $(111)_m$, $(111)_r$, $(004)_r$, and $(400)_r$ are used to identify these two phases. At 600° and 900°C, the tetragonal phase and the monoclinic phase coexist. At 1200°C, only the tetragonal phase exists. This phase evolution indicates that the monoclinic phase at low temperatures is progressively transformed into the tetragonal phase at high temperatures. The same phase evolution is also found in the samples with composition less than 13.0 mol% YTaO₄. The diffraction peaks in Fig. 2 shift to the low 2θ angle as the temperature increases, due to the larger lattice constants at high temperatures.

At 1200°C, only the tetragonal phase is present in the composition range 0–25 mol% YTaO₄. Its lattice constants versus composition are shown in Fig. 3. Both lattice constants *c* and *a* are linearly dependent on composition. Figure 3 also shows the relationships between lattice constants and composition at 25°C. Lattice constants for samples with composition less than 14.0 mol% YTaO₄ are obtained from data at high temperatures by using an extrapolation method, because the tetragonal phase is unstable at room temperature. A linear regression method indicates that pure tetragonal zirconia has lattice constants *a* =

Fig. 2. X-ray diffraction patterns of a 13.0 mol% YTaO₄ sample at three different temperatures.

Fig. 3. Lattice parameters at 25° and 1200° C. Open symbols are for lattice constant *a* and closed symbols are for lattice constant *c*.

5.0887 Å and c = 5.1849 Å at 25°C, which is consistent with previous data.^{3.4} Based on the above lattice constant continuities at 1200°C and at room temperature, it is suggested that only one tetragonal phase exists in the composition range 0–25 mol% YTaO₄.

(2) Tetragonality and Anisotropic Thermal Expansion Coefficients

Tetragonality (*c/a*) in the ZrO_2-YTaO_4 and $ZrO_2-M_2O_3$ systems at 1200° and 25°C is presented in Fig. 4. As $YTaO_4$ or $MO_{1.5}$ composition increases, tetragonality increases in the ZrO_2-YTaO_4 system but it decreases in the $ZrO_2-M_2O_3$ system. The slope of tetragonality versus composition, as indicated under each curve, is smaller at 1200°C than at 25°C in both cases. The *t* \rightarrow *m* transformation temperature in these two cases, measured by the dilatometric method, is suppressed as $MO_{1.5}$ or $YTaO_4$ composition increases. It implies that the *t* \rightarrow *m* transformation temperature decreases with increasing tetragonality, but it is reversed in the $ZrO_2-M_2O_3$.

Thermal expansion coefficients of the tetragonal phase versus its lattice constants are given in Fig. 5. The ordinate and the abscissa represent the average thermal expansion coefficients (α_a or α_c) in the two different crystallographic axes (c or a) at temperatures 900°-1200°C and the lattice constants (c or a) at

Fig. 4. Tetragonality in the ZrO_2 -YTaO₄ and ZrO_2 -MO_{1.5}. Open symbols are for temperature at 1200°C and full symbols are for temperature at 25°C. Data under each curve is the slope of tetragonality versus composition.

Fig. 5. Relationships between thermal expansion coefficient (α_c or α_a) and lattice constant (*a* or *c*). Arrows indicate data for pure ZrO_2 .

1200°C, respectively. In ZrO₂–M₂O₃, α_a and α_c increase with increasing lattice constants. It is reversed in the ZrO₂–YTaO₄ system. For the crystallographic *a* direction, pure zirconia has the highest thermal expansion coefficient in ZrO₂–YTaO₄ but not in ZrO₂–M₂O₃. For the crystallographic *c* direction, pure zirconia has the highest thermal expansion coefficient in both systems. The anisotropic thermal expansion coefficient ratio (α_c/α_a) versus composition is shown in Fig. 6. α_c/α_a decreases with increasing MO_{1.5} or YTaO₄ composition. Schubert's data at 25°–800°C for the ZrO₂–Y₂O₃ system⁸ is close to ZrO₂–Yb₂O₃ in this study.

IV. Discussion

(1) Thermal Expansion in $ZrO_2 - Y_2O_3$

Alderbert and Traverse⁹ and Sheu *et al.*¹⁰ have reported on the tetragonal phase (*t* or t') containing a temperature-dependent tetragonality, which first increases to a maximum and then decreases as temperature increases. Fundamentally, the *t* and t' phases are the same tetragonal polymorph in the zirconia solid

Fig. 6. Thermal expansion coefficient ratio (α_c/α_n) versus composition in the temperature range 900°–1200°C. Data for ZrO_2 –YO_{1.8} are taken from Ref. 8.

solutions.¹⁰ Based on these previous data, the thermal expansion behavior of the tetragonal phase in the $ZrO_2-Y_2O_3$ system is discussed as follows.

There are two critical temperatures for each composition in this temperature-dependent tetragonality curve. One is at T_c , the transformation temperature of the cubic phase (c) to the tetragonal phase (t or t^{\prime}). At T_{c} , the tetragonal phase shows a tetragonality anomaly, which decreases from $c/a \neq 1$ to c/a =1.^{9,10} This T_c temperature has been measured for the pure zirconia and the sample with 13.5 mol% $YO_{1.5}$. The other critical temperature is at T_a which has a maximum tetragonality $(c/a)_{max}$. At T_a , this temperature-dependent tetragonality (c/a = f(T)) has the following relationships: f'(T) = 0, and f''(T) < 0. Alternatively, f'(T) = 0 can be expressed as $\partial f(T)/\partial T = \partial (c/a)/\partial T = 0$. From $\partial (c/a)/\partial T = 0$, we obtain $(\partial c/\partial T) \times a - (\partial a/\partial T) \times c = 0$. Subsequently, $(\partial c/\partial T)/c =$ $(\partial a/\partial T)/a$, i.e., $\alpha_c = \alpha_a$, is obtained at T_a . This derivation indicates that the tetragonal phase has the same thermal expansion coefficients in the crystallographic a and c directions when its tetragonality reaches a peak maximum, $(c/a)_{max}$

Based on Alderbert's and Sheu's experimental data,^{9.10} a $ZrO_2-Y_2O_3$ phase diagram containing $(c/a)_{max}$, $\alpha_c = \alpha_a$, c/a = 1, T_a , and T_c is shown in Fig. 7. Several published phase boundaries of the tetragonal and cubic phases¹³⁻¹⁶ are also included. Symbols "*" are used to represent T_c temperatures. There are three data points for c/a = 1, at 25°, 600°, and 1200°C, respectively.¹⁰ This c/a = 1 curve at high temperatures is close to one of the cubic phase boundaries.¹⁶ Compared with the c/a = 1 curve, the $\alpha_c = \alpha_a$ or $(c/a)_{max}$ curve is very far from the cubic phase boundary. This locus of $\alpha_c = \alpha_a$ represents only a maximum tetragonality for the tetragonal phase, but not the phase boundary for the cubic phase boundary in Schubert's paper.⁸

(2) Thermal Expansion in $ZrO_2-M_2O_3$ and ZrO_2-YTaO_4

By introducing the lattice constants from a linear regression method and the lattice constants of pure zirconia³ at 25°C in ZrO₂–M₂O₃ and ZrO₂–YTaO₄, the average thermal expansion coefficients (α_c or α_a) of the tetragonal phase at 25°–1200°C versus its composition are shown in Fig. 8. For α_c , it decreases with increasing MO_{1.5} or YTaO₄ composition. For α_a , it increases with increasing MO_{1.5} composition (except for ScO_{1.5}) but decreases with increasing YTaO₄. Although thermal expansion coefficients (α_c and α_a) versus composition behave differently, the thermal expansion coefficient difference $\Delta \alpha$ (= α_c –

Fig. 7. Diagram showing the relationships among $\alpha_c/\alpha_a = 1$, $(c/a)_{\max}$, and c = a. Tss is *t*-ZrO₂ solid solution, Css is *c*-ZrO₂ solid solution, T is temperature. Symbols "*" are for temperatures T_c .

Fig. 8. Average thermal expansion coefficient at 25° -1200°C. Open symbols are for α_e and closed symbols are for α_a .

 α_a) versus composition in these two systems shows the same trend, that is, it decreases with MO_{1.5} or YTaO₄ composition. Compared with ZrO₂-Sc₂O₃ and ZrO₂-Yb₂O₃, ZrO₂-In₂O₃ and ZrO₂-YTaO₄ show a smaller change of $\Delta\alpha$ versus composition.

The relationships among the thermal expansion coefficient, the lattice constant, and composition in ZrO_2 -YTaO₄ and ZrO_2 -M2O3 are discussed as follows. For the thermal expansion coefficient (α_a or α_c) versus lattice constant (a or c) shown in Fig. 5, $(\partial \alpha_c/\partial c) > 0$ and $(\partial \alpha_a/\partial a) > 0$ in $ZrO_2-M_2O_3$, and $(\partial \alpha_c/\partial c) < 0$ and $(\partial \alpha_a/\partial a) < 0$ in ZrO_2 -YTaO₄. For the lattice constant (c or a) versus composition (X) shown in Refs. 3 and 10 and in Fig. 3, $\partial c/\partial X < 0$ (except for M = Nd, when $\partial c/\partial X > 0$)³ and $\partial a/\partial X > 0$ (except for M = Sc, when $\partial a/\partial X \le 0$)¹⁰ in ZrO₂- M_2O_3 , and $\partial c/\partial X > 0$ and $\partial a/\partial X > 0$ in ZrO_2 -YTaO₄. From the above two relationships, it can be inferred that for the thermal expansion coefficient (α_a or α_c) versus composition (X), ($\partial \alpha_c / \partial X$) < 0 and ($\partial \alpha_a / \partial X$) > 0 in ZrO₂-M₂O₃ (except for M = Nd, Sc), and $(\partial \alpha_c / \partial X) < 0$ and $(\partial \alpha_a / \partial X) < 0$ in $ZrO_2 - YTaO_4$. A schematic diagram to represent these relationships is given in Fig. 9. There exists c = a in $ZrO_2 - M_2O_3$, but not in $ZrO_2 - M_2O_3$ YTaO₄. $\alpha_c/\alpha_a = 1$ is present in both systems. By extrapolating data to $\alpha_c/\alpha_a = 1$ in Fig. 6, the locus of $\alpha_c = \alpha_a$ at 900°-1200°C in ZrO₂–M₂O₃ is approximately at 6 mol% ScO_{1.5}, 7 mol% YbO_{1.5}, and 9 mol% InO_{1.5}, respectively. This $\alpha_c/\alpha_a = 1$ is far from the cubic phase boundary in ZrO₂-M₂O₃. In ZrO₂-YTaO₄, the locus of $\alpha_c = \alpha_a$ is approximately at 25 mol% $YTaO_4$ at 900°-1200°C, even though the cubic phase does not exist in this system. This locus of $\alpha_c = \alpha_a$ is close to the tetragonal phase boundary at 900°-1200°C in ZrO₂-YTaO₄.

Fig. 9. Relationships among lattice constant, thermal expansion, and composition in the (a) $ZrO_2-M_2O_3$ and (b) ZrO_2-YTaO_4 systems.

Tetragonality is related to the magnitude of oxygen sheartype shifting in [001] {110}.¹⁷ This oxygen shifting produces two different Zr–O bonds, four short ones and four long ones, for each Zr atom. In pure zirconia, Alderbert and Traverse⁹ have found that the long Zr–O bond has a higher thermal expansion coefficient up to a certain temperature, and then it is reversed because this long Zr–O bond becomes unstable. This phenomenon causes the presence of $(c/a)_{max}$ or $\alpha_c = \alpha_a$ in the curve of tetragonality versus temperature. The presence of $\alpha_c = \alpha_a$ in the ZrO₂–M₂O₃ and ZrO₂–YTaO₄ systems suggests that the bond length change due to the effect of temperature in these two systems behaves like that in pure zirconia. However, why the thermal expansion coefficients of the tetragonal phase decrease with increasing lattice constants in the ZrO₂–YTaO₄ system is not fully understood.

(3) Thermal Stresses

In the tetragonal zirconia polycrystals, partially stabilized zirconia, and zirconia-toughened ceramic materials,11,18-20 the thermal stresses from different kinds of mismatch (volume, expansion, etc.) have been shown to affect the transformability of tetragonal grains (or particles) in these materials. In the classical nucleation theory, the thermal stresses have accounted for the stress-induced transformation from the tetragonal (t) to the monoclinic (m) phase.^{21,22} The anisotropic thermal expansion causes thermal stresses among differently orientated grains in the tetragonal zirconia polycrystals. Some grains are locally subjected to high thermal stresses. With increasing grain size, these thermal stresses are further increased up to the critical stresses to trigger the $t \rightarrow m$ transformation. In ZrO₂-M₂O₃ and ZrO₂--YTaO₄, the anisotropic thermal expansion coefficient difference ($\Delta \alpha = \alpha_c - \alpha_a$) in the two crystallographic axes of the tetragonal phase decreases with MO_{1.5} or YTaO₄ content. Lower thermal stresses are expected to exist in the tetragonal polycrystals with a higher MO_{1.5} or YTaO₄ content. As a result, the $t \rightarrow$ *m* transformation is more difficult to trigger by these thermal stresses.

Anisotropic thermal expansion is also temperature-dependent. A transition temperature T_a has been shown in Fig. 7. When $T < T_a$, then $\alpha_c > \alpha_a$; when $T > T_a$, then $\alpha_c < \alpha_a$. This reverse anisotropic thermal expansion behavior changes the magnitude of thermal stresses for the tetragonal zirconia polycrystals. For example, with the same grain size, tetragonal polycrystalline material being heat-treated above T_a and then quenched to the ambient temperature has lower thermal stresses than the sample being heat-treated at T_a . This is because the thermal stresses arising from cooling from T_a to the ambient temperature are relaxed by the reverse type of stresses arising from the heat-treating temperature T to T_a . Because of this characteristic curve of α_c/α_a versus temperature, a post-heat treatment just below temperature T_a for a long period of time is suggested to improve the transformability of the tetragonal polycrystals.

V. Conclusions

(1) From the lattice parameter measurements at high temperatures, a single tetragonal phase is determined to exist from $0-25 \text{ mol}\% \text{ YTaO}_4$ in the $\text{ZrO}_2-\text{YTaO}_4$ system. Its tetragonality (*c/a*) is larger than that in pure zirconia and increases with increasing YTaO₄ composition. However, with composition higher than 15 mol% YTaO₄, this tetragonal phase is stable at room temperature.

(2) Anisotropic thermal expansion coefficients of the tetragonal phase are measured at 25°-1200°C in ZrO₂-M₂O₃ and ZrO₂-YTaO₄. Thermal expansion coefficients, α_c and α_a , vary with M₂O₃ or YTaO₄ composition. However, the ratio and the difference of these two thermal expansion coefficients, α_c/α_a and $\alpha_c - \alpha_a$, decrease with increasing M₂O₃ or YTaO₄ composition, respectively.

(3) From the relationships among thermal expansion, temperature, and composition, the locus of $\alpha_c = \alpha_a$ exists in both

 $ZrO_2 - M_2O_3$ and $ZrO_2 - YTaO_4$. This locus of $\alpha_c = \alpha_a$ indicates a maximum tetragonality $((c/a)_{max})$ for the tetragonal phase, but not the phase boundary for the cubic phase.

References

¹M. Marezio, "Refinement of the Crystal Structure of In₂O₃ at Two Wavelengths," Acta Crystallogr., 20, 723-28 (1966). ³D. K. Hohnke, "Ionic Conductivity of Zr₁₋₂, ln₂,O₂, "*J. Phys. Chem. Sol*-

ids, 41, 777-84 (1980).

M. Yoshimura, "Phase Stability of Zirconia," Am. Ceram. Soc. Bull., 67

[12] 1950-55 (1988).
 ⁴J. Lefevre, "Fluorite-Type Structural Phase Modification in Systems Having a Zirconium or Hafnium Oxide Base," *Ann. Chim. (Paris)* (in Fr.) 8 [1-2] 117-

49 (1963); or translated by A. L. Monka, Report No. ORNL-TR-201.
49 (1963); or translated by A. L. Monka, Report No. ORNL-TR-201.
⁵R. R. Lee, and A. H. Heuer, "Morphology of Tetragonal ZrO₂ in a Ternary (Mg, Y)-PSZ," J. Am. Ceram. Soc., **70** [4] 208–13 (1987).
⁶D. J. Kim, "Effect of Ta₂O₅, Nb₂O₅, and HfO₂ Alloying on the Transformability of Y₂O₃-Stabilized Tetragonal ZrO₂," J. Am. Ceram. Soc., **73** [1] 115–20 (1990) 115-20 (1990).

⁷D. J. Kim, and T. Y. Tien, "Phase Stability and Physical Properties of Cubic and Tetragonal ZrO2 in the System ZrO2-Y2O3-Ta2O5," J. Am. Ceram. Soc., 74

and Tetragonal ZrO₂ in the System ZiO₂ = 1₂O₃ = 1₃O₅, *J. Chr. Ceram. Soc.*, *i*= [12] 3061-65 (1991).
*H. Schubert, "Anisotropic Thermal Expansion Coefficients of Y₂O₃-Stabilized Tetragonal Zirconia," *J. Am. Ceram. Soc.*, **69** [3] 270-71 (1986).
*P. Alderbert, and J. P. Traverse, "Structure and Ionic Mobility of Zirconia at High Temperature," *J. Am. Ceram. Soc.*, **68** [1] 34-40 (1985).
*T. S. Sheu, T. Y. Tien, and I-W. Chen, "Cubic-to-Tetragonal (*t'*) Transformation in Zirconia Containing Systems," *J. Am. Ceram. Soc.*, **75** [5] 1108-16.

mation in Zirconia-Containing Systems," J. Am. Ceram. Soc., 75 [5] 1108-16

(1992). "A. H. Heuer, and M. Ruhle. "On the Nucleation of the Martensitic Transformation in Zirconia (ZrO2)," Acta Metall., 33 [12] 2101-12 (1985).

¹²T. A, Hahn, and R. K. Kirby, "Thermal Expansion of Platinum from 293 to 1900°K." Institute of Materials Research, National Bureau of Standards, Washington, DC, 1971.

³H. G. Scott, "Phase Relations in the Zirconia-Yttria System," J. Mater. Sci., 10 [9] 1527-35 (1975).

¹⁴A. H. Heuer, and M. Ruhle, "Phase Transformations in ZrO₂-Containing Ceramics: I, The Instability of *c*-ZrO₂ and the Resulting Diffusion-Controlled Reactions"; pp. 1–13 in Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. American Ceramic Society, Columbus, OH, 1984.

¹⁵F. F. Lange, "Transformation Toughening: Thermodynamic Approach to the Phase Retention and Toughening"; pp. 255-74 in Fracture Mechanics of Ceramics, Vol. 6. Edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselmann, and F. F. Lange. Plenum Press, New York, 1983

¹⁶V. S. Stubican, G. S. Corman, J. R. Hellmann, and G. Senft, "Phase Relationship in Some ZrO₂ Systems"; see Ref. 12, pp. 96-106.

¹⁷G. Teufer, "The Crystal Structure of Tetragonal ZrO₂," Acta Crystallogr., 15, 1187 (1962).

¹⁸R. C. Garvie and M. V. Swain, "Thermodynamics of the Tetragonal-to-Monoclinic Phase Transformation in Constrained Zirconia Microcrystals," J. Mater. Sci., 20, 1193-200 (1985)

19S. Schmauder, W. Mader, and M. Ruhle, "Calculations of Strain Distributions in and around ZrO2 Inclusions"; see Ref. 14, pp. 251-55.

²⁰A. H. Heuer, M. Ruhle, and D. B. Marshall, "On the Thermoelastic Martensitic Transformation in Tetragonal Zirconia," J. Am. Ceram. Soc., 73 [4] 1084-93 (1990).

²¹I-W. Chen and Y. H. Chiao, "Martensitic Nucleation in ZrO₂," Acta Metall., 31 [10] 1627-38 (1983).

Y. H. Chiao, "Nucleation and Growth Processes of Martensitic Transformation in ZrO2 Particles"; Ph.D. Thesis. Massachusetts Institute of Technology, Cambridge, MA, Sept. 1986.