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We present a review of limb development integrating current molecular 
information and selected genetic disorders to illustrate the advances 
made in this field over the last few years. With this knowledge, clinical 
geneticists can now begin to consider molecular mechanisms and path- 
ways when investigating patients with limb malformation syndromes. 

Developmental biology is now making astounding 
advances. The increasing correlation of specific 
embryological events with gene expression/function 
studies is providing clues to the fundamental cellular 
pathways that build animals and pattern organs. 
Connections to human disorders are made possible 
because of the remarkable functional conservation 
of many key patterning molecules and mechanisms 
between model systems and human development 
(1-5). It is now possible to explain in some detail 
how malformations occur, utilizing molecular mod- 
els. From a clinical standpoint, it could be said that 
we have firmly begun the field of molecular dysmor- 
phology. As stated by Wilson (6 ) ,  ‘a molecular 
biology of malformations would be greatly aided if 
the clinical science of dysmorphology could draw 
upon basic embryology for a clear set of rules’. These 
rules are now becoming clearer with the construction 
of molecular models ( 5 ,  7, 8). 

Significant advances in the identification of ge- 
netic determinants for limb morphogenesis have 
been made in model systems, which has accelerated 
progress in elucidating the genetic causes for sev- 
eral heritable limb malformations in humans. 
Table 1 lists numerous genes involved in human 
and/or mouse limb malformation syndromes, in- 
cluding 25 human syndromes, nine spontaneous 
mouse mutants, and 20 mouse knockouts. The 
knowledge of the patterning mechanisms and genes 
involved in limb development is illustrative of the 
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impact of contemporary biology and genetics on 
our understanding of clinical genetic dysmorpho- 
logy. 

General principles of limb development 

Much of what we know about the general mecha- 
nisms underlying limb development is the result of 
research using chickens and amphibians over the last 
50 years; however, this work has shown that impor- 
tant tissue domains, and signaling molecules ema- 
nating from them, are functionally conserved across 
species (2-5,9). The apical ectodermal ridge (AER), 
zone of polarizing activity (ZPA), the mesenchyme 
within the progress zone (PZ), and epithelial-mes- 
enchymal inductive interactions between these cellu- 
lar domains are necessary for normal morphogenesis 
(Figs. 1 and 2). The limb can be divided into three 
axes: proximal-distal (P-D), anterior-posterior 
(A-P), and dorsal-ventral (D-V). Development 
along these axes is mediated by the asymmetric 
expression of specific molecular triggers in the AER, 
ZPA, ectoderm, and mesenchyme. Growth of the 
limb bud mesenchyme is followed by formation of 
precartilaginous condensations which form in a 
defined order, beginning first in proximal regions 
through the processes of de nmo aggregation, bifur- 
cation or segmentation (Fig. 2; (10)). The regulated 
expression of downstream target genes of these key 
molecules modulates growth, death, adhesion and 
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Table 1, Ganes involved in limb development, as revealed by characterized nl:itations in humans or mice 

Gene Function Human disorder(s) Limb phenotype Mouse mutant(s) References 

P A  signaling and/or A-P patterning 
Shh Secreted signal 
PTC Shh receptor 

Hemimelia 
Short digital elements, 
po iydactyly 
poiydactyly, vanous de- 
fects 
Preaxial polydactly 
Upper and middle limbs 
shortened 
Polydactyly , 

Knockout 
Knockout 

(72) 
(70, 73, 74) 

(75-77) 

(78, 79) 
(80) 

(8 1 -89) 

BCNS 

Smith-Lemli-Opitz 7cholesterci 
reductase 
Bmp7 Secreted signal 
GU2 TF 

Knockout 
Knockout 

Gu3 TF Greig cephalopoiysyn- 
dactyly 
Pallister-Hall 
Postaxial polydactyiy 
type A 

Xt (extra toes), add 
(anterior digit defor- 
mity), bph (brachy- 
phalangy), 

syndactyly, short 
limbs 

AER, Mesenchymal signaling 
FGFRl FGF receptor Pfeiffer 

Apert 
Pfeiffer 
Jackson - Weiss 

Brachydactyiy , 
syndactyiy 
SYndaCtyiy? 
brachydactyiy 

FGFR2 FGF receptor 

Formiin cytoskeleton Syndactyiy , 
oligodactyly 

Id (limb deformity) 

Dorsal.ventrai patterning 
Wnt- 7a TF 
En- I TF 

Dirtal limbs ventralized 
Distal limbs dorsalized. 
syndactyly. postaxial 
polydactyly. digital reduc. 
tions 

Knockout 
Knockout 

Patterning and growth of c~ilagenous condensations 
Short, bent femurs and sox9 

m 3  
m5 
msr 
CR4BPIi 
Hoxa 10 
Hoxall 
H w 1 3  

HoxdlO 
Hoxdl 1 
Hoxd72 
Hoxdl3 

HoxD locus 
tEFl 

Ax-4 
p107 

PAX3 
W l  

TF Campomelic dysplasia 

TF Ulnar-Mammary 

TF Saethre-Chotm 

(CMPD1) 

TF H d t - O M  

tibiae; phalangeal defects 
Ulnar ray detects 
Radial ray defects 
Brachydactyiy . 
syndactyly 
Postaxial poiydactyly Knockout 
Upper limb defects Knockout 
Middie limb defects Knockout 

(28) 
(29, 30) 
(loo. 101) 

(102) 
(103. 104) 
(105. 106, 48) 
(107, 59, 108, 49) 

TF 
TF 
TF 
TF 

TF 
TF 
TF 
TF 

t 
TF 

TF 
Rb-like TF 

TF 
TF 

Hand-foot-genital (HE)  Digital reductions Hd (Hypocbcfyly). 
knockout 

Minor hindhrnb defects Knockout 
Middle limb defects Knockout 
Digital reductions Knockout 

S Y n W d a w  (SPQ syndactyiy. Knockout 
poiydactyly, brachydactyly 
Ulnar dysplasia U/ (Ulnaless) 
Short bones, carpal and Knockout 
tarsal fusions 
Poiydactyiy Knockout 
Slightly short, Knockout 
thickened bones 

Waardenburg type 111 digital defects 
Townes-Brocks preaxial polydactyly 

(1 09) 
(48, 110, 111) 
(50) 
(50, 56, 57, 54, 112, 58) 

Bonejcartilage maturation and growth 
smCDMP1 Secreted signal Hunter-Thompson Short bones, phalangeal bp (brachypodism) 

Grebe segmentation defects 
AD brachydactyly type C 

(1 18-1 21) 
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Table 1 I (Continued) 

Gene Function Human disorder(s) Limb phenotype Mouse mutant(s) References 

CBFA I TF Cleidocranial dysplasia Brachydactylys 
ICCD) 

Knockout; Ccd (122-1 26) 
. I  

FGFR3 FGF receptor Achondroplasia Short bones Knockout (bone (127-129) 
overgrowth) 

Thanatophoric dysplasia 
I, II 

FGDl RAS signalling Aarskog (FGD) Brachydactyly (1 30) 
~ 

The genes have been grouped according to general developmental processes for organizational clarity, though some genes have roles in more than one 
ca?egory. Limb phenotype refers to the general category of defects, in humans and/or mice, caused by the spectrum of known mutations In the gene. For 
the sake Of a cogent summary, specific correlations between phenotypes and individual mutations are not presented. In some syndromes, defects are often 
variable or incompletely penetrant. TF, transcription factor. 'Knockout', targeted mutagenesis. 
* Humans and mice that are heterozygous for Shh deficiency generally have holoprosencephaly without limb defects, while mice that are homozygous for Shh 
deficiency have severe embryonic defects including limb truncations. 
If Deiective cholesterol metabolism may impair normal post-translational processing oi Shh. 
7 Ulnaless may be a regulatory mutation within the HoxD gene complex. 
5 Brachydactyly was reported in one CCD family that had an unusual alanine repeat expansion in CBFAl . 

differentiation, as well as the subsequent growth of 
the cartilage and bone. Evolutionary or patho- 
logical differences in skeletal shape and size can be 
attsibuted to alterations in these signals. 

When, where, how many and what type? 

The central problem in the developing embryo is to 
promote appropriately-timed development of a 
certain number of limbs in specified positions each 
with a particular morphology (forelimb versus 
hindlimb). It has been demonstrated that the initial 
outgrowth of the limb buds results from reduced 
mesenchymal proliferation on either side of the 
future limb bud territory, whch continues to pro- 
liferate (9, l l) ,  suggesting that only mesoderm at 
the appropriate levels receives key signals that 
stimulate limb bud growth. The position of the 
presumptive limb field is prefigured prior to limb 
bud outgrowth (Fig. 1) and almost certainly in- 
volves signals from the Hox genes (9, 12). In differ- 
ent vertebrates, somite position is not correlated 
with limb position, but is correlated closely with 
Hox gene expression (13). An ectopic mouse fore- 
limb can be induced by changing the anterior ex- 
tent of expression of Hoxb8 (14), and, anterior 
displacement of the position of the endogenous 
forelimb bud can be induced by inactivating mouse 
Hoxb.5 (15). 

FGFIO: the best candidate limb inducer 

The intermediate mesoderm (IM) is important in 
the initiation and positioning of the early limb bud 
(Fig. 1; (16-19)). Critical signals for D-V and 
A-P patterning and growth induction are present 
long before a morphological limb bud is apparent 

(4, 20-25). A strong candidate for the inducer is 
FGF10, based on correlative expression and rnisex- 
pression experiments. FGF10 is expressed early in 
the intermediate and lateral plate mesoderm lim- 
ited to the presumptive limb territories, and is 
capable of inducing expression of FGF8 in the 
undifferentiated surface ectoderm overlying the lat- 
eral plate mesoderm prior to AER formation, and 
sonic hedgehog (Shh)  expression in the mesoderm 
(20). The entire lateral flank has the capacity to 
form limbs and several fibroblast growth factors 
(FGFs) can initiate a signalling cascade that results 
in fully-formed h b s  when applied to non-limb 
forming mesoderm in the flank (1, 20, 23, 36). 

Once organized, the limb bud is able to self-or- 
ganize itself, since transplantation of limb buds to 
ectopic locations results in fully-formed normal 
limbs (9). Cells derived from the initial prolifera- 
tion from the lateral plate mesoderm will give rise 
to cartilage, blood vessels and connective tissue in 
a specific pattern. Nerves, neural crest cells and the 
somitic cells which will develop into muscles enter 
the limb secondarily (Fig. 2; (27)). 

Holt-Oram and Ulnar-Mammary syndromes: disorders of 
T-box genes 

Other factors are involved in the determination of 
limb type. The isolation of the T-box family of 
genes and the elucidation of defects in these genes 
in Holt-Oram (TBXS) and Ulnar-Mammary 
(TBX3) syndromes has been particularly instruc- 
tive in the elucidation of the basis €or radial and 
ulnar ray defects (28-32). T-box genes, so-called 
because of a highly homologous DNA binding 
region shared with the brachyury gene or T (for 
tail) gene in mice, are transcription factors that are 
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Fig. 1. Early stages in limb bud formation. A) Schematic diagram depicting a transverse section through an early stage embryo at 
the somite level where a limb bud will form. The shading depicts FGFlO expression within the mesoderm that will contribute to 
limb bud mesenchyme, including the lateral plate mesoderm (LPM) and part of the intermediate mesoderm (IM). FGFlO may be 
a key signal initiating limb bud growth. Cells that will contribute to the dorsal limb ectoderm (green) are closer to the neural tube, 
while those that will contribute to the ventral ectoderm (orange) are more lateral. Between these regions is a rather broad domain 
of ectoderm (yellow) that will give rise to the AER (see text). NT, neural tube; NC, notochord; SM, somitic mesoderm; IM, 
intermediate mesoderm. B) The same transverse level of section at a slightly later stage in development. FGF8 is now expressed in 
the bud ectoderm prior to AER formation, perhaps induced by the FGFlO signal from the LPM. Wnt-7a and r-Fng are expressed 
in the dorsal bud ectoderm, while En-1 is expressed in the ventral ectoderm. Wnt-7a expression triggers Lmx-1 in the underlying 
dorsal mesenchyme. 

expressed in many regions of the developing embryo 
(3 1). Regional restriction of expression of these genes 
in the developing limb buds probably plays a role in 
the defects observed for these disorders (32). Differ- 

ential expression of Tbx genes (T-box genes) Tbx5 
and Tbx4may be involved in the distinction between 
forelimb and hindlimb, probably regulated in part by 
region-specific Hox gene expression (32, 33). 

Fig. 2. How to make a limb. Panels 1-4 depict the growth of the bud through time, while 5-8 show the phases of HOX gene 
expression during the same time points as panels 1-3. Note the orientation of the proximal-distal and anterior-posterior axes. 
Schematic expression domains of various genes are shown. Examples of malformations caused by stage-specific defects are also 
given. 1) Early limb budding. Early FGFlO expression in the LPM probably stimulates this process. The onset of Hox gene 
expression also occurs at this stage. Failure of limb bud formation at this stage could result in amelia. 2) The AER has formed along 
the anterior-posterior axis of the bud ectoderm; secreted FGFs stimulate mitosis in the underlying mesenchyme (PZ). Cells that are 
proximal to the PZ are condensing to form the humerus. A region of posterior mesenchyme (ZPA) secretes Shh, which is sensed by 
the surrounding mesenchyme and the AER and provides an anterior-posterior patterning signal. The l i b  bud is now an 
independent, self-organizing domain. A failure of AER or ZPA function at this stage could also prevent further bud growth, 
resulting in distal limb truncation. Neural and muscle precursors are migrating into the limb field. 3) The distal bud has enlarged 
and flattened, and the ZPA has moved distally along the bud. The radius and ulna are forming as cells aggregate in a branching 
pattern at the distal end of the cartilagenous humerus, which is maturing and lengthening. FGF4 is expressed in the posterior 
two-thirds of the AER. While the TBXS and TBX3 genes have wide and complex expression patterns, defects in TBXS or TBX3 
function cause primarily anterior or posterior defects in the Holt-Oram and Ulnar-Mammary syndromes, respectively. 4) Late 
limb bud development. The AER and ZPA are no longer active. All the major cartilage elements of the limb skeleton have 
condensed and their basic shapes and relative orientations are apparent. Cell death between the digits allows them to separate. 
Achondroplasia and Grebe syndrome are examples of defective limb bone maturation. 5)  Hox gene expression: In the limb, there 
are three major phases of Hox gene expression where multiple Hox genes are expressed. These roughly correlate with the growth 
and differentiation of the proximal, middle and distal limb skeleton. A particular Hox gene can be expressed in more than one 
phase. Phase I of Hox expression occurs early in a crescent pattern just underlying the ectoderm. 6) Phase 1 still persists, while 
phase 2 has begun in the posterior mesenchyme. 7) Phase 1 has shut off. Phase 2 has extended anteriorly but does not follow the 
distal growth of the bud, where phase 3 develops. Phases 2 and 3 are well correlated with the gowth and differentiation of the 
radius/ulna and digits, respectively. Hand-foot-genital (HFG) and synpolydactyly (SPD) are examples of syndromes, caused by 
defective Hox genes, that involve hand/foot defects. Dorsal-ventral patterning. Panel 8 depicts a view looking at the distal tip of 
the limb bud toward the body wall. Compare with Fig. 1. LPM, lateral plate mesoderm; AER, apical ectodermal ridge; ZPA, zone 
of polarizing activity; PZ, progress zone; M, myoblasts; N, neural precursors; H; humerus; R, radius; U, ulna. 
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PZ, to proliferate in an undifferentiated state (4). 
In the, progress zone model, cells that leave the 
progress zone sooner during growth and extension 
of the limb bud will occupy more proximal posi- 
tions, while those that exit the PZ later will form 
more distal structures. 

Induction of the AER and limb truncation phenotypes 

In addition to currently unknown signals from the 
mesoderm, another key molecular mediator of 
ridge formation is radical fringe (r-Fng) (34, 35). 
An ectodermal border, defined by r -Fng-expressing 
cells adjacent to non-expressing cells at the tip of 
the developing limb bud, creates a critical ‘molecu- 
lar boundary’ that is necessary for the formation of 
the AER. If the AER is experimentally removed at 
any stage of development, further distal limb de- 
velopment ceases, causing truncations. 

In experimental models, removal of a portion of 
the AER can result in asymmetries, such as the loss 
of digits; however, increasing the extent of the 
AER can result in polydactyly (4). In the chick 
mutants limbless and wingless, an AER is not 
properly formed, and FGF8 and other FGFs 
needed for early mesenchymal proliferation are not 
expressed (36). In the mouse mutant legless, 
hindlimbs fail to develop due to absence of the 
AER (37). FGF4 is normally expressed within the 
posterior two-thirds of the AER. Ectopic anterior 
expression of FGF4 in the AER is associated with 
polydactyly in the chick mutant talpid and mouse 
mutants Strong’s luxoid, extra toes, and Rim4 (4). 
Defective ‘formin’ expression in Zimb defornzity (Zd) 
mice leads to insufficient FGF4 expression in the 
AERY and consequent reduction in Shh expression, 
resulting in a multitude of bony reductions and 
fusions (38, 39). Therefore, early stages in the 
induction of the limb bud and the formation of the 
AER are critical to establishment of the limb bud 
and instructive as to potential defects underlying 
human amelia (40). 

Lumping or splitting in split hand-split foot malformation 
1 

Human ectrodactyly or split hand-split foot mal- 
formation (SHFM) is genetically heterogeneous 
with autosomal loci on human chromosome 7q 
( S H F M l )  and 1Oq (SHFM3). On 7q, a critical 
interval with three genes, DLX.5, DLX6, and 
DSSl ,  has been deiined on the basis of the posi- 
tions of distinct translocations and six interstitial 
deletion patients (41). Due to the absence of direct 
interruption of any of these genes by the transloca- 
tions, it has been hypothesized that alterations in 
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the regulation of expression of these three genes, 
either alone or in combination, leads to SFHM1. 

The mouse Dactylaplasia (Dnc) mutation results 
in a semi-dominant phenotype that resembles 
SFHM. Dnc maps to mouse chromosome 19, and 
the limb phenotype also depends on another locus, 
mdac (for modifier of Dnc), that acts in a recessive 
manner and maps to chromosome 13 (42). The 
Dac locus is within a region of chromosome 19 
syntenic to human chromosome 10q25 where the 
F d 8  locus resides; however, no mutations have 
been found in this gene (43). Dnc mutants exlubit 
excessive cell death within the AER, a potential 
mechanism for SHFM syndromes (43). 

HOX mutations in hand-foot-genital syndrome and 
synpolydactyly 

Growth and patterning along the P-D and A-P 
axes also require the products of the Hox genes. 
Hox genes are members of a highly conserved set 
of transcription factor genes that are found in all 
animal species (44, 45). They are expressed very 
early in embryonic development along the body 
axis, in specific spatial domains and in a temporal 
succession that correlates with the relative order of 
the genes in a particular complex, a feature termed 
colinearity. Colinearity of Hox expression is an 
ancient regulatory mechanism that distinguishes 
animals from other multicellular living organisms. 

Several Hoxn and Hoxd genes are expressed 
within the developing limb buds in a complex, 
dynamic pattern, with three phases of expression 
roughly correlating with the appearance of the 
stylopod (humerus/femur), zeugopod (radius/ulna 
or tibia/fibula), and the autopod (digital arch) (Fig. 
2; (5, 46, 47)). The construction of putatively null 
alleles of these Hox genes by homologous recombi- 
nation in mice, followed by creation of compound 
mutants of several Hax genes, has been very in- 
structive for understanding their role in limb devel- 
opment (48-53). These results suggest that the 
Hox genes influence the growth rates of mesenchy- 
ma1 condensations within their respective regions 
of expression, and can have effects at more than 
one stage of development in the timing of cartilage 
growth and differentiation. In addition, Hox genes 
mutated in combination were observed to have 
synergistic effects, implying that they have overlap- 
ping as well as unique functions in the specification 
of body morphology or growth (50, 54, 51, 55, 52, 
5, 53). 

Mice are not the only mammals to have mutated 
Hox genes. Recently, two human syndromes have 
been identified to be the result of mutations withm 
genes of the H O X D  and H O X A  complexes. One of 



Limb development: molecular dysmorphology is at hand! 

these, synpolydactyly (SPD), primarily affects the 
digit pattern due to a gain-of-function mutation in 
HOXD13 (56-58). In  this syndrome, syndactyly 
involving the third and fourth fingers (and occa- 
sionally the fourth and fifth toes) with partial or 
complete duplication of individual fingers and toes, 
is observed. The hand-foot-genital syndrome 
(HFG) affects both digital and genitourinary or- 
gan development, due to a premature stop codon 
mutation in the homeodomain of HOXA13 (59). 
The identification of these mutations reveals the 
importance of these genes for human morphogene- 
sis, which was predicted based on studies in mice 
and flies. Their digital arch malformations are con- 
sistent with the roles of these genes in controlling 
growth rates and allocation of mesenchyme in se- 
lected regions, since alterations in these processes 
would be expected to result in additional digits or 
deleted or hypoplastic elements. Genitourinary 
anomalies in HFG are consistent with the expres- 
sion of this gene in developing caudal trunk struc- 
tures and parallel those observed in Ho.rci13 
knockout mice (49). The occurrence of similar 
combined malformations in other human syn- 
dromes is compelling for potential alteration of 
Hox gene expression (44, 60). 

Hox genes expressed in the wrong place: a case of 
superiority 

Misexpression of Hox genes in places where they 
are not normally expressed can also result in defi- 
ciencies. For example, in the mouse mutant Ulnci- 
less, severe truncation of the rddius/ulna and 
tibia/fibula is associated with aberrant proximal 
expression of Hoxdl3 in the mesenchymal territo- 
ries that give rise to these bones (61, 62). These 
effects have parallels in flies and illustrate the prin- 
ciple of posterior prevalence: Hox genes normally 
active in more posterior regions are dominant if 
misexpressed in more anterior domains. Other limb 
misexpression studies with retroviruses in chick 
and mice support these observations and have re- 
vealed an ‘early’ role for Hox genes in mesenchy- 
ma1 proliferation and a ‘late’ role in growth of the 
proliferating cartilage of long bones (55, 63-65). 
This information teaches us that intercalary defi- 
ciencies or deletion malformations may result from 
regulatory mutations or induced misexpression of 
Hox genes, and not necessarily from deficient or 
abnormal HOX proteins. 

A-P patterning: what’s all this about a hedgehog? 
The ZPA within the developing limb bud is a 
cellular structure, located at the postero-distal 

margin of the limb bud, that received its name 
based on its characteristics in  reciprocal trans- 
plantation studies (Fig. 1; (4, 5, 9)). The ZPA 
directs A-P pattern formation and is formed 
early before substantial budding occurs. When 
cells from this region are excised and placed 
within the anterior segment of a limb bud, mir- 
ror-image duplication of the digits occurs, and 
the extent of the duplication depends on the 
number of transplanted cells, suggesting that the 
ZPA is the source of a secreted polarizing signal. 
Mirror-image digit duplications have been ob- 
served in humans, and probably result from ec- 
topic ZPA formation. Retinoic acid signalling is 
essential for ZPA development since competitive 
inhibitors prevent Ho.rb8 expression and ZPA de- 
velopment (25). Digits fail to develop when the 
ZPA is removed. Sonic hedgehog (Shh), a verte- 
brate homolog of the Drosophilu segment polarity 
gene hedgehog, can provide the ZPA polarizing 
signal and its effects are mediated by the action 
of Patched (Ptc). cirbitus interruptus (Gli in verte- 
brates), bone morphogenetic proteins (BMPs), 
HOX proteins, and other Sl7h pathway effectors 
(5, 66). Expression of Shh from the ZPA is main- 
tained by AER-specific signals; FGF-containing 
beads can provide these signals when the AER is 
removed (4). AER survival requires continued ex- 
pression of Shh. Therefore, a feedback loop be- 
tween sonic-expressing ZPA cells and the 
posterior AER is necessary for A-P patterning 
and distal growth of the limb. Shh expression is 
also dependent on signals from the dorsal ecto- 
derm, which can be replaced functionally by ec- 
topic application of Wnt-7A (4). 

Gli3: an impressive allelic series 

The Gli protein family composed of Glil, Gli2, and 
Gli3 are vertebrate homologs of the Drosophila Ci 
protein which is an important mediator of hedge- 
hog signaling ( 5 ) .  An interesting allelic series of 
mutations in human Gli3 has been discovered. 
Translocations or deletions interrupting Gli3 are 
associated with Greig cephalopolysyndactyly 
(Table 1). Since these mutations likely create hap- 
loinsufficiency for this gene product, it appears 
that dosage is important for regulating interdigital 
cell death and proliferation of mesenchyme. Other 
human Gli3 mutations may result in Pallister-Hall 
syndrome or postaxial polydactyly type A; these 
phenotypes may correlate with the position of the 
mutation in the gene relative to certain functional 
domains (67). 
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Dorso-ventral patterning: the up-side and the 
down-side 
The formation of the AER at the dorso-ventral 
boundary of the limb bud tip is a process separa- 
ble from that which determines the dorsal-ven- 
tral axis (5 ) .  Dorso-ventral patterning requires 
expression of Wnt-7A in the dorsal ectoderm, 
which induces expression of Lmx-1 in the dorsal 
mesoderm (68). However, En-1 is necessary to 
restrict expression of Wnt-7A and r-Fng to the 
dorsal ectoderm, thereby creating a D-V 
boundary and helping to position the AER. Fail- 
ure to set up these appropriate molecular 
boundaries can lead to abnormally-patterned 
limbs. Indeed, Wnt-7A mouse null mutants have 
‘ventralized’ limbs (69), and En-1 mouse mutants 
have ‘dorsalized’ limbs (Figs. 1 and 2 (71)). In 
addition, Wnt-7A induces expression of Lmx-1 in 
the dorsal mesoderm, imparting ‘dorsal’ specifica- 
tion; ectopic expression of Lmx-1 in the ventral 
mesoderm is sufficient to induce dorsal character- 
istics (68) .  

Conclusions and future directions 

The molecular rules for limb formation are 
rapidly being assembled. Critical advances have 
utilized animal model systems and mutants, ex- 
pression methodologies in situ, and the ability to 
misexpress molecules of interest with viruses, 
transgenic mice, or from surgically-implanted fac- 
tor-containing beads. By positional cloning and 
candidate gene approaches, human mutations 
have been identified as the basis for limb malfor- 
mations and syndromes. We have learned the 
identification of key molecules that define func- 
tional cellular domains, and that there is a re- 
markable conservation of the rules between 
diiparate species. This latter aspect is perhaps the 
most satisfying conclusion of the work of devel- 
opmental biology over the last 10 years - model 
systems are indeed useful and more directly ap- 
plicable to the interpretation of development and 
its anomalies in humans than previously believed. 
Over the next several years, we will learn more 
about the identity and function of factors that 
are important for positioning the limbs along the 
body axis through regulation of FGF expression, 
the mesodermal signals needed for AER induc- 
tion, and the discovery of new genes involved in 
limb morphogenesis or malformation. It is safe 
to say that we have entered onto a new vista in 
clinical genetics where we are now capable of in- 
’erring the involvement of specific developmental 
3athways or genes in human malformations. 
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