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ZERO DIVISORS AND COMMUTATIVITY OF RINGS

INTRODUCTION

In this paper a study is made of the effect of the structure
of the set of zero divisors on the associativity and commutativity of
an glternative ring. A ring satisfies the alternative law if the asso-
clator (x,y,z) = (xy)z - x(yz) is an alternating function of its
arguments., In the case of a finite associgtive ring this problem has
been studied by Herstein (2). The theory of the‘radical of an alternative
ring has been given by Smiley (12), and his definition will be used
throughout.

By the center of an alternative ring A we mean the set C of all
elements ¢ such that (c,A,A) = (c,A) = 0. Here (x,y) = xy - yx is
the commutator of x and y. If an alternative ring properly contains its
center and all its zero divisors lie in the center, i1t will be shown that
the éet of zero divisors forms an ideal. Accordingly we first study
alternative Zorn rings (8) where the set of left zero divisors forms a
proper left ideal. Such a ring is a division ring medulo its radical

and, conversely, in a Zorn ring which is a division ring medulo its radical
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the set of left zero divisors forms a left ideal. 1In Section 3 we assume
that all the zero divisors of an alternative ring lie in the center and
then give sufficient conditions for the ring to be commutative and associ=~
ative. In particular this turns out to be the case for an algebraic
algebra over an algebraically closed or finite field. In the next section
we assume only that the nilpotent elements lie in the center but here deal
only with algebraic algebras. Under suitable hypotheses on the base field
it is again true that the algebra.is associative and commutative. TIn the
last section we extend our results to real Banach algebras, replacing the
concept of zero divisor by that of topological zero divisor. In particular
we show that a real Banach algebra with all its topological zero divisiors
in the center is the quaternions or commutative.

We wish to express our thanks to Professors I. Kaplansky and M.

Ward for several conversations with regard to this paper.

CHARACTERTZATION OF COMPLETELY PRIMARY ZORN- RINGS

We shall call g ring A a Zorn ring if it is alternative and
if every element a 1s either nilpotent or has a left multiple ba which
is a non-zero idempotentl. An element & of A 1is called a EEEE.EEEE
divisor if there exists a 4 # O in A such that ad = 0. Then we

have the following:

1 For a discussion of Zorn Rings see (7) and (8).
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THEOREM 1. Let A be a Zorn ring in which the set L of left zero

divisors forms a left ideal # A. Then L = R, the radical of A, and

A - R is a division ring.

REMARK: It is known from some recent work of Bruck and Kleinfeld
that every alternative division ring 1s either associative or a Cayley-
Dickson algebra. We should also like to point out that Theorem 1 generalizes
a theorem of McCoy (9, Theorem 3).

PROOF:  Since A 1is Zorn, R 1is a nil ideal and so R = L. Now
suppose L 1is not nil; then by the Zorn assumption I contains a non-zero
idempotent e. Thus for all ‘a in A, a = ae + (a - ae). The Theorem
of Artin states that any subring of A generated by two elements is
associative, Therefore (a - ae)e = 0, s0 a - ae as well as ae is in
L. This implies that A = L, a contradiction., Therefore I is nil
and L = R.

By Lemma 18 of (8) A = A - R is also a Zorn ring. A contains

no left zero divisors except 0, for if ad = 0 in A then ad lies in
R. But then (ad)? = O for some minimal n. By the Theorem of Artin we

can write 4§(ad)n'¥] = 0, so either a or d is in R. Thus A is
a Zorn ring with no left or right zero divisors except 0, and therefore
K is easily seen to be a division ring.

We next prove a partial converse of Theorem 1.

THEOREM 2. Let A be a Zorn ring with radical R and suppose that

A - R is a division ring. Then L, the set of left zero divisors in A,

35 either R or all of A.

— eiep— —
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PROCF: Suppose there is an a not in R such that ad = 0,
a % 0. We will show that this implies L = A, and we begin by showing

that all idempotents are in L.

Since A - R 1is a division ring a 1is not nil. Thus there is a

non-zero idempotert e = a'a and we may assume ea' = a', Using the
Theorem of Artin, we see that f = aa' 1is again a non-zero idempotent.

Now if e isnot in L, x = ex for al x in A; 1n particular 4 = ed.
Then we have (a',a,d) = 4, and by (2.20) of (1) Kﬁ',a,d),a’,g = (e~ f)d.
Thus 4@ = (e - f)d. Bute -f = r is in R so that rB = 0. A
stralghtforward computation shows that d = r®d for all integers m, and

therefore 4 = 0, & contradiction. Hence e 1is in I .and there is a

non-zero element g of A such that eg = 0. Now let j be any
idempotent. If j does not lie in L, x = Jx for all x in A.
Therefore g = Jjg = (J = e)g which again implies g = 0. Thus

all idempotents are in L.
Now let x be any non-radical element of A. Again there are non-

zero idempotents e = x'x and f = xx', and we have x = xe + (x - xe).

Since x - xe lies in R, (x - xe)¥ = 0 for some minimsl k. Suppose

first k>1l. Since e and f are in the subring generated by x and x',

the Theorem of Artin allows us to associaste any expression involving only
these four symbols. Thus we have x(x - xe)¥™1 = xe(x - xe)¥-l, 1f x
is not in L, this ylelds (x - xe)k-l1 = e(x - xe)k-l, But f£(x - xe) =0,

and this given (x - xe)k-1 = (e - £)(x - xe)¥~l which as before implies
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(x - xe)k~1 = 0. Hence if k>1, x is in L.

Now suppose k = 13 then x = xe, There is a non-zerc d 1in
A such that ed = 0, and therefore (x,e,d) = xd. But by (2.13) of
(1) x(ax) = (xd)x = (x,e,d)x = (x,xe,d) = (x,x,d) = 0. So
x i1s in L wunless dx = O. But then 0 = (d,x,e) = (x,e,d) = xd,

s0 that in this case also x 1is in L. Thus every element of A is in
L.

It should be noted that we do not assume the presence of a unit.
If'y, however, a unit is present the proof Theorem 2 can be simplified
considerablyg. Furthermore, if a Zorn ring A satisfies the hypothesis
of Theorem 1, the right zero divisors are either A or R. In the
latter case A has a unit. An exsmple of a Zorn right where the left
zero divisors coincide with A and the right zero divisors coinclde with
R is furnished by the set of all 2 x 2 matrices with entries from a
field and with their second column censisting entirely of zeros.

We now give examples to show that something like the Zorn
assumption 1s needed to insure the validity of Theorems 1 and 2. Let
C be the ring of all polynomials with integer coefficients and zero
constant term. Let B be the direct sum of & countably infinite number of
replicas of C. Finally let A bethe ringobtained by adjoining a unif to B
in the usual fashion. (10, p. 87). Then the zero divisors of A form

an ideal, namely the ring B, but A 1is seml-simple.

2 Cf. the proof of Theorem 5.
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The hypothesis of Theorem 2 is somewhat redundant. For if A

is an altefnative ring with a nil radical R and A -~ R is a division

ring, then A 1is automatically a Zorn ring. However, if we merely

assume that R 1is nil and A - R is a domain of integrity, Theorem 2

no longer holds. The following example is offered. Iet B and C be

the additive groups, of order 2 and 3 respectively, made into zero rings.

et D = B+ C and adjoin a unit to D in the usual mannér using the

ordinary integers. The resulting ring A has D for a radical and

A - D 1is the ring of integers. However, the zero divisors in A do not

form an ideal.

ZERO DIVISORS IN THE CENTER

By the center C of a Zorn ring A we mean the set of all ¢ in
A for which (c,A) = (c,A,A) = 0. Suppose that all the left zero
divisors lie in Cj; it is then clear that all the right zero divisors lie
in C., If A properly contains C we have the following:

LEMMA 1. Let A be an alternative ring with all the zero

divisors in the center. If A properly contains C the zero divisors

form.EE ideal.

PROOF. If u 1is a zero divisor it is clear that any multiple
of u 1is also a zero divisor, If A 1is noncommutative, there is a pair of
elements x,y in A with (x,y) = xy -yx # 0. If u is any zero

divisor of A, an easy computation shows that u(xy-yx) = 0. Hence
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the difference of any two zero divisors is again a zero divisor. A
similar argument works if A 1is nonassociative.
For the remainder of this section we shall assume that A is
a Zorn ring properly containing its center C and that all zero divisors
lie in C. There are now two possibilities: if the only zero divisor
1s O it is easily seen that A is a division ring- On the other hand, if
non-zero zero divisors'éré present, the proof of Lemma 1 shows that every
commutator and assoclator is a zero divisor and so an application of
Theorems 1 and 2 and Lemme 1 then yields the following: the set of
zero divisors coincides with the radical R of A, A - R is a commutative
associative field F, and the only non-zero idempotent of A 1is its unit.
Furthermore, by the Zorn assumption it follows that every element of A
not in R has an inverse, In particular, therefore, C - R 1is a field Z.
Since every associator and commutator is in the center, (2.7) and
(2.9) of (1) show that the mapping X—yDypx = (x,y,z) is a derivation.
Again using the fact that all associators are in the center we obtain

the following formula:

Dyg(cxB) = mex®-1 DyzXx = mexB-L (x,y,z) for ¢ in C &;ﬂ . (3.1)
By using (2.6) of (1) and the Thecrem of Artin, we see that in certain special
cases the mapping x——aDyx = (x,y) is a derivation; in fact we have

Dy(ex®) = mex®-1 Dyx = mex®*Ll (x,y) for ¢ in ([y]. (3.2)

We now consider the structure of F over Z. First suppose F

is of characteristic zero. Assume that A 1is nonassociative and that F
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is of transcendence degree less than 3 over Z. Then there are three

elements Xx,y,z in A such that (x,y,z) ,% 0. These map into elements

X,y,z2 of F and we may always assume, by relsbelling if necessary, that

for some minimal n

£(x,y,2) = P, (v,2)x% .., + P, (y,2) = 0,

where P; lies in 77,] and P, # 0. Lifting T to A we obtain a
relation f(x,y,2) = Qu(¥,2)x® + ... + Qo(¥y,2) = 0 where @Q; is in

dy,4 and q, # 0. But then

Dyzf = EQH(Y)Z)Xn‘l"' e +Ql(3’:zzl' (x,5,2) = e&(x,5,2) (x,y,2) = oO.

Since (x,y,z) # O, this shows that g(x,y,z) is in R. But then
2(x,¥,2) = 0 in F, contradicting the minimality of n. In case A
is associative but noncommutative a similar argument will show that the
transcendence degree of F over Z 1is at least 2.

Suppose now that F is of characteristic p # 0. Then
P = pe, e the unit of A, isin R so that by Lemma 1, p(%x,7,2) = p(X,¥)
= 0, for any x,y,z in A, Formuale (3.1) and (3.2) then show that xP
is in C for all x of A. Thus F is a purely inseparable extension of Z;
in fact every element of. F satisfies an equation of the type wP -a = 0,
a in Z. By methods similar to the ones used in the case of characteristic

zero we can show that Z 1s of transcendence degree at least 2 over its

prime field. Summing up we have
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THEOREM 3. Let A be a Zorn ring properly containing its

center C and with all its zero divisors EE C. Then A 'EE a division

ring'gz the set of zero divisors coincides with the radical R # (0) of A.

Furthermore, A -R 1is a field F and C - R 1is a field Z. If F has

characteristic zero then it has transcendence degree at least 2 over Z,

—

If F has characteristic p % O then F 1is a purely inseparable

extension of Z, and Z has transcendence degree at least 2  over its

prime field.

COROLLARY. Let A be an algebraic alternative algebrs over a

quasi-algeébrically closed perfect fieldd with all its zero divisors in the

center; then A is associative and commutative.

Theorem 5 generalizes a theorem of Herstein (2).

‘We now give examples of associative noncommutative Zorn rings with
every zero divisor in the center. Let H be the field of rational functions
in two varisbles x,y over the field of two elements. Let J be the

commutative algebra H + Ha, with a® = 0. Finally let A be the

algebra J + Ju.; Jv + Jw over J with the multiplication table

3 A field is said to be quasi-algebraically closed and perfect if it
satisfies the following: (i) There are no noncommutative alternative
algebraic. division algebras over it. (ii) If the field is of charac-
teristic p # 0, it contains with every element its pth root.
Examples of such fields are given by algebraically closed fields and
and finite fields. |
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u v w
u ‘ X W XV
v a+ w y yu + av
W au + Xv yu | Xy + aw

Then A 1s an assdciative algebra of finite dimension over H and thus
is a Zorn ring. The zero divisors are all the multiples of a and so
lie in the center. However (u,v) # O, and A is noncommutative. Here
Z = H and F = H(J/X, Jy).

Qur second example is obtained as follows: Let P be the field

of all rational numbers and let J be the commutative algebra P + Pa,

with a2 = 0. Let B be the algebra over J with basis elements
Uy i,y = 0,1,2, ..., with the multiplication Ui gUkh = Uitk $+h
~ Jkau Then B 1is an associative, noncommutative algebra

i+k-1, j+h-1 *

with all its zero divisors in the center. It is, however, not a Zorn
algebra, but we can embed B in an algebra A of right quotients using the
method outlined on pp. 118-119 of (4). It is only necessary to verify that
for any two elements o and B of B with B not a zero divisor, there
exist elements o5, B; of B such that pa; = afy, with B1 not a

zero divisor. For By we choose ﬁe and set @, = 208 - pa. To see
that @ and By actually satisfy the condition, it is only necessary to
note that all commutators of B . 1lie in the center. The algebra A is

then seen to be a Zorn algebra with all its zero divisors in the center.

10
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—

In this case Z = Pand F = P(x,y), x = Eio, Yy = Yy transcendental
over P,

The method of the last example can be used to treat the case of an
arbitrary associative ring B with all its zero divisors in the center. In
fact, such a ring is either a domain of integrity or it has non-zero zero
divisors. In the latter case, if it properly contains its center, it can
be embedded in a right quotient ring A. Indeed, exactly the same oy and
Bl as in the second example can be chosen. The ring A 1is an associative
ring properly containing its center C and with all of its zero divisors in
Cs The zero divisors then form an ideal I‘ and again we have fields
F = A-TI and Z = C - I. Since A 1is noncommutative, the structure

of F over Z must be exactly the same as in Theorem 3.

NILPOTENT ELEMENTS IN THE CENTER

Wé now study alternative rings in which all the nilpotent elements
lie in the center. However, we first of.all restrict ourselves to the
associative case. An easy computation shows thét all the idempotents lie
in the center (3, Lemma 2). We first prove a result which is stated as an
exercise in some lecture notes of Professor Kaplansky.

LEMMA 2. Let A be an asgociative ring with the descending

chain condition on right ideals. Suppose that all the nilpotent elements

lie in the center of A. Then A 1is a direct sum of a commutative nil ring

and a finite number of rings each of which has all its zero divisors in the

center .

11
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PROOF. Let €1y +eey € be a maximal set of orthogonal

idempotents in A, If e = ji:ei, A(l -e) 1is nil and Ae; 1is a

two-sided ideal, sinece e; is in the center. Thus A = A(l - e)

®ae;® ... Ae, . Since e, ..., ey is a maximal set of orthogonal

idempotents, the only idempotent in Aej is ey , its unit. Suppose a 1is

a zero divisor in Ae,; then ab = 0, D # 0. If a were non-nilpotent,

since Ae; 1is in particular a Zorn ring, fhere would be an a' in Aey

such that a'a = This would lead to b = 0, a contradiction.

ei.
The only other class of rings we study in this connection are

alternative algebraic algebras., We have first

IEMMA 3. Let A 23 an associative algebraic algebra over a

quasi-algebraically closed perfect field. Suppose that all the nilpotent

elenments 9£ A are in the center. Then A is commutative,

PROOF. ©Since the radical R of A 1is a nil ideal, R 1is
commutative., Furthermore R consists of all nilpotent elements of A so
that A - R has no non-zero nilpotents. Then the Corollary to Theorem 6
of (5) and the properties of the base field show that A -~ R is also
commutative. Thus R and A - R are locally finite, and so by Theorem 15
of (5) A is also locally finite. Hence if X,y are any two elements of A
they generate a finite.dimensional algebra D, with all its nilpotents in
the center. Lemma 2, in conjunction with the Corollary to Theorem 3, shows

that D, and hence A, is commutative.

12
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To extend this result to an alternative algebraic algebrs

satisfying the conditions of Lemma 3, we proceed as follows: We consider

the subalgebra generated by two elements of A. By the Theorem of Artin

it i1s assoeilative and so we can apply Lemma 3 to see that it, and hence A,

is commutative. If the base field (I)is not of characteristic 3, it follows

immediately that A is also associative E; (2,6] . If, however, <I) is

of characteristic 3, we first note that the commutativity of A implies

that x— (x,¥,2) is a derivation. Thus x2 is in the center of A for

all x in A. Now we consider the finite dimensional commutative associative

algebra CI)(X) generated by x over <]> . If R(x) is the radical of

<I>(x),<1>(x) - R(x) 1is a direct sum of finite algebraic extension fields

of <£). Since <I>is perfect each of these is also, and so every element

of (I)(x) - R(x) has a cube root., Thus x = yJ)+ r, where y is in A

and r 1s nilpotent, and this implies that x is in the center of A.

We have proved

_'THEOREM b, Let A be an alternative algebraic algebra over a

quasi-algebrically closed perfect field. Suppose that all the nilpotent

elements lie EE the center 9£ A. Then A ig,associative and commutative.

BANACH ALGEBRAS

We now give results analogous to those of sections 2 and 3 for
Banach algebras. In what follows the Banach algebras will always be taken

as real; 1l.e,, the underlying Banach space is a vector space over the real

13
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numbers, The concept of a ieft zero divisor is replaced by that of a left
topological zero divisor: x 1is a left topolegical zero divisor if there
exists a sequence y,, |‘yn" = 1, such that xy,— 0. We recall the
‘definition of the spectrum, s(x), of an element x of a real Banach
algebra. The complex number A = & + ip £ 0 is in s(x) 1if and only
1f (%2 - 20x)/02 + B2 is not quasi-regular. For a discussion of s(x)
as well as the definition of the radical we refer to (6) and (11). Here
we only note that s(x) is a bounded closed subset of the complex plane.

THEOREM 5. Let A be a real Banach algebra. Suppose that the

set L # A of left topological zero divisors forms a left ideal. Then

L = R, the radical of A, and A - R is the reals, complexes, or quaternions
Conversely, if A - R 1is the reals, complexes, or guaternions, L = R or
AC

PROOF. It is well known that R is contained in L, Let a, not
in R, be a left topological divisor. Then we may assume that s(a) % 0,
for since a is' not in R some left multiple of a has that property. Let
ko = Qg + iﬁo be’a non-zero boundary point of s(a). Then by Lemma 3.3
of (6) 1+ Kﬁe - Baoa)/ao2 + Béa , and hence a02 + de - 200a + a° is
a left topological zero divisorh. Now if b 1is any element of A, -azoba,
bae, and '4202 + Qf - 208 + é% are all elements of L. Since L 1is a left

ideal this implies that (0y2+8,9)b, and hence b, is in L. This contradicts

L # Ay so L = R. Thus b[} + (a2 - Baoa)ﬂzog +§302] ig in R for all

4 Even if there is no unit we may evidently speak of X + x, where A 1is
a scalar, as being a left topological zero divisor.

1k
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b in A and for A, = 0y + 1B, a non-zero boundary point of s(a).
Hence A - R has a right unit u. But if u is a representative of u
in A, oL + (b2 - 2a'b)/a'@ + B'2] is in R, where b ‘is not in R and
A' = a'+ ip’ is a non-zero boundary point of s(b). Thus every non-zero
element of A - R has a right inverse, so that A -~ R is a division
algebra. But the only real Banach division algebras are the reals, complexes,
or guaternions.

If A -R 1is the reals, complexes, or quaternions, since s(a)
= s(a + R), s(a) consists of at most two points for all a in A. Thus
by Theorem 1.5 of (11) either L = A or there exists a unit e in A. In
the latter case if a 1s not in R we know that there is an a' in A
such that a'a = e+ r, r ih R. But e + r has an inverse in A, so that
a has an inverse also; thus L = R.

Cbrresponding to Theorem 3 we have

THEOREM 6. Let A be a real Banach algebra with all its topological

zero divisors in the center, C. Then A 1is either the quaternions or it is

commutative,

PROOF. If A has no non-zero topological zero divisors it is
well known that A is the reals, complexes, or gquaternions. Suppose now
that non-zero topological zero divisors are present and lie in C. If A
properly contaihs- C the same arguments as in Section 3 show that the set of
topological zero divisors is an ideal and so must coincide with R, the radical
of A. Since, Just as befofe, the commutators, (x,y), lie in R, A - R is
the reals or complexes. However, C 1s also a real Banach algebra with no
topological zero divisors outside R. Combining Theorem 5 with that fact
that A c¢ontains C properly, we see that C - R 1is the real field. Then

A - R 1is a quadratic extension of C -~ R, The same reasoning as in the

15
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proof of Theorem 3 then shows that A must bé commutative,

Kaplansky5 has shown that a complex B¥..algebra with all its
nilpotents in the center is commutative. This theorem provides an analogy to

our Theorem L.

5 To be published in the Report on Topological Algebra.

16
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