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An emerging challenge facing those who are concerned about the efficacy 
of public health programs is to understand how information from the 
DNA revolution might be used to improve our ability to predict the 
initiation, progression and severity of a common disease having a complex 
multifactorial etiology. In the course of research to evaluate the role of 
information about DNA, combinations of genome types and environ- 
mental exposures that predispose to disease will be identified. Such infor- 
mation is expected to be useful in efforts to identify individuals and 
families at higher risk of disease and to predict their responses to a 
proposed therapy. This paper begins with a discussion of the features 
of a realistic biological model for the study of a common multifactorial 
disease. We present evidence for the complexity in the relationship 
between genome type variation and variation in risk of coronary artery 
disease (CAD) and review the preliminary results of our studies to 
determine whether information about genome type variation can improve 
our ability to predict the distribution of CAD among individuals in the 
population at large. Such studies make it apparent that new analytical 
strategies are necessary to deal with the plethora of genome type infor- 
mation available for the evaluation of risk of a common disease like 
CAD. This shift in the research paradigm will build upon new strategies 
to understand the organization of natural systems that are coming from 

I outside the mainstream of genetic research. 

The dominant contemporary research paradigm 
for studying the genetics of human disease has its 
roots in the work of Garrod (Schull & Chakraborty 
1979, Scriver & Childs 1992). This strategy seeks 
to identify and characterize the “inborn error” in 
a particular gene that is responsible for an individ- 
ual’s diseased state. It has been most successful for 
those monogenic diseases characterized by a direct 
one-to-one, Cartesian, mapping between allelic 
variation in a single “disease” gene and the Mende- 
lian segregation of the disease phenotype among 
family members. For each in a long list of such 
diseases (McKusick 1990), an alteration in a single 
gene is necessary and sufficient to cause disease. 
These diseases and their causal mutations are rare 
in the population at large. The etiology of such 
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single gene diseases, however, is not necessarily 
simple. Complexity arises most commonly when 1) 
different mutations in a disease gene may explain 
the same disease phenotype in different individuals, 
2) mutations in different genes may be responsible 
for the Mendelian segregation of the disease in 
different families and 3) the genetic background 
and/or exposures to external environmental fac- 
tors modify the severity of disease. Many extra- 
ordinary successes with the monogenic human dis- 
eases over the past 10 years have been realized as 
a consequence of combining molecular and physio- 
logical studies with the statistical tools of segre- 
gation and linkage analysis (Davies et al. 1983, 
Kan & Dozy 1978, Rommens et al. 1989). These 
successes have encouraged the selection of the 
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In this paper we present the features of a realistic 
model for studying the biology of common multi- 
factorial diseases, review our preliminary studies 
that address the three central questions defined 
by this model and discuss the implications of our 
findings for the design and interpretation of future 
genetic studies. We consider the study of the gen- 
etics of coronary artery disease (CAD) in the popu- 
lation at large to illustrate the issues. 

single gene model as the first choice for studies of 
the common human diseases having a complex 
multifactorial etiology. 

Single gene models are not sufficient for studies 
of common multifactorial diseases, such as CAD, 
cancer, diabetes and the psychiatric disorders (Sing 
et al. 1992, Sing & Moll 1990, Sing & Reilly 1993, 
Weiss 1993). In every case, a particular manifes- 
tation of disease may aggregate in families but only 
in rare instances does it segregate according to 
Mendelian rules (Sing & Reilly 1993). In no case 
has the distribution of a common disease among 
individuals in the population at large been ex- 
plained adequately by a single gene model. Disease 
is explained by rare allelic variations in a single 
gene in only a small fraction of those affected. 
In most cases, mutations in “susceptibility” genes 
contribute to small increases or decreases in risk 
of disease. A mutation in any one of these genes 
is not sufficient to cause disease. 

Few molecular biologists recognize that the 
multifactorial diseases, which account for the ma- 
jor burden of public health costs in the human 
population (Baird et al. 1988), are a consequence 
of interactions of the effects of many genes with 
exposures to many environmental factors (Stroh- 
man 1993, Tauber & Sarkar 1992). For these com- 
mon entities it is axiomatic that genome type by 
environment interaction effects determine risk of 
disease (Zerba & Sing 1993). This is documented 
by the observation that in the population at large 
many different combinations of genotypes and ex- 
posures to high risk environments are associated 
with a particular disease phenotype (Reilly et al. 
1993a). Awareness of this fact has convinced a few 
medical researchers that the single gene, inborn 
error of metabolism paradigm that is appropriate 
for the study of phenotypes inherited in a Mendeli- 
an fashion, must be supplanted by a research strat- 
egy that accommodates the complex etiology of 
the common multifactorial diseases that aggregate 
but do not segregate (Gottlieb 1992, Sing et al. 
1992, Sing & Reilly 1993). 

The need for a shift in our working definition 
of the etiology of common multifactorial diseases 
may be clear to those of us working in the area, 
but the direction that should be taken is not. At 
this time no appropriate analytical strategy to tack- 
le the genetic analysis of such diseases is available. 
Regardless, we believe that it is better to acknowl- 
edge the problem at hand and work toward de- 
veloping the models and research strategies that 
are a realistic representation of nature than to rede- 
fine the questions of interest so that we can use 
well-established models and analytical tools that 
are not even a weak mimic of the etiology of dis- 
ease. 

Modeling common multifactorial diseases 

There are four features of CAD that must be con- 
sidered in selecting a model for the joint distri- 
bution of causes and disease endpoints among indi- 
viduals in the population at large (Sing & Moll 
1990): 

1) Many genes and many environmental factors 
influence the incidence of disease. Most genetic 
variations will be common, i.e. be polymorphic 
in the population under study, and be associated 
with small phenotypic deviations from the norm 
of the population. 

2) Variations in different subsets of genes combine 
with different environmental exposures to pre- 
dispose to CAD in different families (Sing & 
Reilly 1993). Most families with disease will be 
segregating for only a subset of the many genes 
involved in determining the distribution of risk 
of disease among individuals in the population 
at large. 

3) The impact of a single- or multi-locus genotype 
on predisposition to CAD is conditioned by the 
genotype of other loci and the state of other 
risk factor traits, both internal and external to 
the individual. Only a fraction of those individ- 
uals with a particular common variation of a 
specific genetic or environmental cause will de- 
velop disease. 

4) Quantitative variation in biochemical and 
physiological traits link discrete variations in 
genome type with interindividual variation in 
the probability of having, or acquiring, disease. 

A visualization that illustrates important aspects 
of these features is presented in Fig. 1. We review 
elsewhere (Sing et al. 1992, Sing & Reilly 1993) the 
salient attributes of CAD that are shared by all 
complex adaptive systems (Salthe 1985, Simon 
1962). These attributes are: 1) a hierarchial re- 
lationship between genome type variation and in- 
terindividual variation in the disease phenotype 
involving many agents organized into a complex 
network, 2) a coherency in the network of agents 
within and across levels in the hierarchy that has 
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alternative to the Baconian-Cartesian, inborn er- 
rors of metabolism, paradigm. They are: 

Fig. 1. A visual representation of the biological complexity of 
coronary artery disease. 

been established by evolutionary and physiological 
constraints, 3) emergent properties, at each level 
in the hierarchy, that are a consequence of interac- 
tions among agents in the network and between 
these agents and the effects of exposures to en- 
vironmental variations external to the network, 
and 4) dynamic changes in the relationships be- 
tween agents, within and across levels in the hier- 
archy, over time. These attributes demand that the 
causes of CAD not be studied separately from the 
causes of health. The same coherent network of 
interrelated agents that define normal variability is 
also involved in defining the phenotypes of disease. 
Disease is a consequence of a disturbance of the 
levels of, and relationships between, these agents 
that is not compensated for by normal homeostasis 
(Childs 1977). Age of onset, rate of progression 
and degree of severity are emergent properties that 
can only be defined as an age-dependent prob- 
ability function of the levels of, and relationships 
between, the agents in the pathways connecting the 
genome “in the basement” with clinical phenotypes 
at the upper level. 

Definition of fundamental research questions 

We believe a research program that incorporates 
the characteristic features of complex adaptive sys- 
tems can contribute to a more realistic understand- 
ing of the role of genetic factors in the etiology 
and prediction of common multifactorial disease 
like CAD. Specifically, research on three questions 
seems relevant at this time to help establish an 

What are the coherent systems of biochemical 
and physiological agents at the intermediate level 
in the hierarchy that connect variation in ge- 
nome type with variation in risk of disease? 
(Question l), 
What is the genetic architecture of interindivid- 
ual variability in, and covariability between, 
these intermediate risk factor traits (i.e. coher- 
ency between genome and intermediate trait 
levels)? (Question 2), and 
Does knowledge about genome type variation 
improve our ability to predict the emergent prop- 
erties of onset, progression and severity of dis- 
ease beyond that provided by the intermediate 
traits and measures of exposures to high risk 
environments? (Question 3) 

The first two questions address the nature of the 
complexity of the mapping between genome type 
variation and variation in risk. The third question 
uses this information to address the public health 
question that motivates the consideration of meas- 
ures of genome type variation. In the process of 
addressing these three questions, a more realistic 
model for the biology of multifactorial diseases 
like CAD will be revealed and the role of genetic 
information in prediction of endpoint phenotypes 
will necessarily take its appropriate position of im- 
portance among the plethora of agents involved in 
disease etiology. 

Evidence for complexity In the genetlcs of CAD 
Insights from studies addressing Question 1 

There is a long list of agents that have been impli- 
cated in the etiology of CAD (Davignon et al. 
1983, Ross 1993). Most intermediate risk factor 
traits involved in linking genome variation with 
variation in risk of disease have been measured in 
blood and plasma. Successes of the studies of lipid 
metabolism, hemostasis and blood pressure regula- 
tion and the inaccessibility of tissues that are in- 
volved have dampened incentive to develop new 
measures of relevant subsystems in the network 
of causation. Epidemiological studies that suggest 
only half of the cases of CAD are associated with 
the available risk factor traits have reinforced ef- 
forts to develop new methods of measurement in 
hopes of exposing the causes of the unexplained 
cases. Recent research on LDL oxidation (Es- 
terbauer & Jurgens 1993), visualization of the dis- 
ease (Hixson 1991, Stanford & Rumberger 1992) 
and the measurement of molecules associated with 
atheromatous tissue (Ross 1993) illustrate the po- 
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ances between pairs of traits. Knowledge about the 
influences of genetic variation on intragenotypic 
variances and covariances between risk-factor 
traits and on the intragenotypic differences in re- 
lationships of these traits with concomitants, such 
as age and body size, may provide disease risk 
information that is not obtained by considering 
the trait means only (Murphy 1979, Murphy & 
Trojak 1986, Reilly et al. 1991, Reilly et al. 1992, 
Reilly et al. 1993c, Waddington 1957). 

We refer to the studies of allelic variation in 
the gene coding for the apolipoprotein (Apo) E 

tential for further elucidation of the processes im- 
plied by Fig. 1. A sobering reality that is reinforced 
by all of these efforts is that there are tens, possibly 
hundreds, of intermediate biochemical, physiologi- 
cal and anatomical agents involved in determining 
risk of CAD. These intermediate traits are inter- 
related metabolically and cannot be considered in- 
dependent risk factors for CAD. Epidemiological 
studies that evaluate the role of interindividual 
variation in coherency in this network of agents 
in determining risk of CAD could provide new 
insights. 

Insights from studies addressing Question 2 

Studies to define the genetic architecture of CAD 
have focused on the genetic architecture of the 
quantitatively varying intermediate traits. Each of 
these many intermediate traits is likely to be influ- 
enced by many gene products. Two sorts of studies 
to identify and characterize the genes that influence 
interindividual variation in these traits have been 
carried out (Sing et al. 1988). The top-down ap- 
proach attempts to identify the role of unmeasured 
allelic variations that have large effects on the level 
of one, or possibly two, of the traits identified in 
studies designed to answer question 1 (Moll 1993). 
The bottom-up approach relates measured allelic 
variations to phenotypic variation in one or more 
of these intermediate traits. Genes are selected for 
study because their products are involved in reg- 
ulating the metabolism of the traits of interest. 

Most investigations of measured genetic causes 
of variation in quantitative traits have focused on 
estimating the effects of single locus genotypes on 
the average level of one or more traits (Boerwinkle 
et al. 1987, Kaprio et al. 1991, Lusis 1988, Sing & 
Davignon 1985, Sing & Orr 1976, Xhignesse et 
al. 1991). However, the influence of such genetic 
variation on the mean level of a trait measures 
only one type of genetic influence on phenotypic 
variation. The ability of individuals with a particu- 
lar genotype to adapt to perturbations from the 
environment is reflected in the intragenotypic 
phenotypic variances and covariances of the inter- 
mediate traits. The phenotypic variance of a trait 
may vary among genotypes because individuals 
with a particular genotype may be better buffered 
against exposures to environmental variations than 
individuals with a different genotype. Further- 
more, many of the intermediate traits commonly 
associated with risk of CAD are interrelated meta- 
bolically. We must expect that genotypic variation 
determining a protein polymorphism will have ef- 
fects on the levels of many traits. The resulting 
effects on coherency between traits will be ex- 
pressed as intergenotypic differences in the covari- 
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Fig. 2. Hyperspace of nine lipid and apolipoprotein traits in 
(A) females and (B) males, adapted from Reilly et al. (1991). 
To remove scale differences among traits, the gender-specific 
distribution of each trait was standardized to approximate a 
N(0,l) distribution. The genotype-specific mean and standard 
deviation of each standardized trait are represented by the 
length of the corresponding rays that are drawn from the mte- 
section of the I I p I I (the Euclidean distance) and Total Variance 
values for each genotype where I I P I I, = (pZToral c, + p21nTr,g, + 
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for I = ~ 3 2 ,  E33, and E34. 
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molecule to illustrate the nature of the complexity 
of the genetic architecture of the quantitative inter- 
mediate traits. Fig. 2 summarizes the complex pat- 
tern of influences of the three common Apo E 
genotypes on the means and intragenotypic vari- 
ances of the univariate distributions of nine lipids 
and apolipoproteins in females and males reported 
by Reilly et al. (1991). To remove scale differences 
among traits, each trait was standardized to ap- 
proximate a N(0,l) distribution. In this figure a 
multivariate measure of mean levels (i.e. Euclidean 
distance 1 1  p I I) and trait variance (i.e. total variance 
adapted from Van Valen (1974)) are combined with 
each trait’s contribution to these measures, de- 
picted as rays on the upper and lower semi circles, 
respectively. The range of 1 1  p 1 1  and the rank of the 
genotypes with respect to I I p I I are approximately 
the same between genders, even though the contri- 
bution of each trait to 1 I p 1 1  is different across gen- 
der and genotype. With respect to the intrageno- 
typic variances, both the range and the rank of 
total variance are different between genders. We 
see a corresponding difference in the contribution 
of each trait to the total variance of each genotype 
and gender. This figure illustrates that the gene 
coding for Apo E is both a level and variability 
gene with regard to multiple measures of lipid me- 
tabolism. 

Fig. 3 presents an example from the work of 
Reilly et al. (1992) to explore the consequences of 
genotype-specific regression on concomitants for 
drawing inferences about the complex mapping 
function that must exist between the Apo E geno- 
type and measures of lipid metabolism. These re- 
sults were observed in males but not females. First 
we note that the marginal HDL-C means of the 
three common genotypes were not significantly dif- 
ferent when variation in the waist-to-hip ratio 
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Fig. 3. Apo E genotype influence on HDL-C (mgidl) regression 
on WHR in males, from Reilly et al. (1992). SSR=weighted 
sum of squared deviations, of the Apo E genotype-specific 
predicted values, from the average predicted value for a given 
level of WHR. 

(WHR) was ignored. Likewise, the Apo E geno- 
types were not associated with significantly differ- 
ent mean WHR values when HDL-C values were 
ignored. However, as WHR varied the influence of 
the Apo E genotype on the expected value of HDL- 
C changed considerably. The ~ 3 2  genotype was 
associated with the lowest levels of HDL-C when 
WHR was below approximately 0.90 and was as- 
sociated with the highest levels when WHR ex- 
ceeded approximately 0.95. In the tails of the WHR 
distribution, we observed the greatest differences 
among genotypes in predicted HDL-C values while 
around the mean of the WHR distribution we ob- 
served the smallest differences among genotypes. 
This example illustrates that the component of 
phenotypic variance attributable to a genetic poly- 
morphism may be dependent on the level of a 
second trait. In this case, the significant effect of 
the Apo E polymorphism on HDL-C levels was 
manifest only in the tails of the distribution of 
WHR; the marginal effects on HDL-C, when 
WHR was ignored, were trivial. 

An added complexity that enters into the study 
of genetic architecture of CAD is the fact that the 
interactions between genome type and environ- 
ments change over time. Different genes may play 
roles at different times throughout the life cycle. 
Different environments may be interacting with 
genome effects at different times. Few genetic 
studies are designed to investigate these possi- 
bilities. A recent report (Schwartz et a]. 1993) that 
the contribution of genetic factors to interindivid- 
ual variation in ambulatory blood pressure meas- 
urements varies throughout the day documents the 
reality of the problem. The contribution of genetic 
factors to determining interindividual differences 
was greatest during the part of the day when the 
subjects were active and virtually absent when sub- 
jects were in bed. It is patent that a realistic biologi- 
cal model must consider that the observed pheno- 
type of a trait for an individual at a particular 
point in time, P,,, is the result of: 1) interactions 
between the effects of the entire constellation of 
genes that make up each individual’s unique ge- 
nome type and the effects of a unique suite of 
environmental experiences defined by time (and 
hence space) (GE, in Fig. 4A (Dobzhansky 1960, 
Williams 1956, Zerba & Sing 1993)) and 2) chance 
events ( E ~ ~ ~  in Fig. 4B (Zerba & Sing 1993)). An 
individual i’s functional phenotype (GEJ repre- 
sents the deviation of hidher expected phenotype 
value at time j from the average of all functional 
phenotype values, p, that define the population of 
inference over all measurement times. Changes in 
an individual’s functional phenotype value over 
time are a consequence of interactions of his/her 
genome type with environments indexed by time. 
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perienced over time by the individual. The effects 
of GE, and qjk are confounded at any particular 
point in time. Studies of variation in patterns of 
phenotypes as responses of genome types to exper- 
imentally defined changes in the environments are 
the key to understanding the etiology of genome 
type-environment interaction (Boerwinkle & Hall- 
man 1993). Studies that sample at times before, 
during and after an environmental perturbation 
have the potential for separating the functional 
phenotype value, GE,, from the influence of chance 
events and for estimating the contribution of ge- 
nome type variation to variation in response as 
well as variation in average level (Fig. 4C (Zerba & 
Sing 1993)). 

The examples given above can only provide a 
small window into the true complexity of relation- 
ships between genome type variation and variation 
in intermediate risk factor traits. Only a fraction 
of the genes involved have been identified and de- 
scribed and hence most of the genome type vari- 
ation is not accessible for the bottom-up studies. 
Furthermore, in addition to each gene being in- 
volved in determining variation in many traits, 
each of the intermediate traits involved in determi- 
ning risk of disease will be influenced by variation 
in many genes (Kaprio et al. 1991, Kessling et al. 
1992). These considerations of the genetic architec- 
ture of intermediate traits should send a clear mess- 
age to those working on the genetics of common 
multifactorial diseases. The mapping across levels 
is many-to-many. Prediction of quantitative risk 
factor levels using genetic information is context 
dependent. Simple linear models of the relation- 
ships between genome type variation and interindi- 
vidual variation in risk of disease destroy the po- 
tential for making meaningful inferences about 
how level, variability and covariability of risk fac- 
tor traits contribute to determining risk of disease 
onset, progression and severity. The study of the 
distribution of genome type by environment inter- 
action effects must take priority over the alterna- 
tive of separate genetic or environmental studies. 

A - I 

I 
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Fig. 4. From Zerba & Sing (1993). Relationships between the 
idealized observed phenotype of an individual, its functional 
phenotype and environmental perturbations. (A) The interac- 
tion of genome type with environmental perturbations deter- 
mines a pattern of variation in the functional phenotype of an 
individual over time. The functional phenotype of a trait for 
an individual i at time j is represented as the deviation of the 
average pattern of its functional phenotype (GEJ from the 
average of the functional phenotype values (p ) for all individ- 
uals that define the population of inference over all measure- 
ment times. The same population of individuals defines p 
throughout the time period considered. (B) Chance events con- 
tribute to an individual’s observed phenotype at any particular 
point in time. P,lk is the k th measurement of the trait phenotype 
of individual i at time j, p is the population mean of the trait 
across all individuals, all environments at time j and all possible 
measures of i at time j, GE,] is the deviation of the phenotype 
from the population mean attributable to the interaction of the 
i th individual’s genome type with all lasting environmental 
effects prior to time j and E , , ~  is an independent and additive 
contribution of random variation in individual i’s phenotype 
associated with time j. p +GE,l is the functional phenotype 
defined in panel A above. E , , ~  includes random environmental 
perturbations with no lasting impact, i.e., environmental pertur- 
bations which do not become part of GE,l at time j + 1 or later, 
and measurement error. (C) The effect of GE,, on the observed 
phenotype value at time j can be distinguished from that of E , , ~ ,  

in theory, through repeated sampling of individual i across 
multiple times near j. 

The etiology of an individual’s functional pheno- 
type at a particular time is a complex function 
of uncountable gene-gene and gene-environment 
interactions that influence physiological processes 
at all levels between genome and the traits of inter- 
est. Neither genes nor environments alone cause 
the particular deviation of an individual’s func- 
tional phenotype from the mean of the population. 
The phenotype is a derivative of physiological and 
biochemical functions that are themselves emerg- 
ent properties of interactions among genes and 
environments. The dynamic expression of the ge- 
nome type is orchestrated by the environments ex- 

Information about DNA variation can improve the ability 
to predict CAD 

Research on Questions 1 and 2 will identify genes 
involved in determining interindividual variation 
in intermediate traits that are predictors of CAD. 
Question 3 asks whether variation in these genes 
provides additional information about risk of dis- 
ease that is not provided by the measures of inter- 
mediate traits. This would be the case if the meas- 
ured genome type variation has pleiotropic effects 
on traits that have not been discovered, or cannot 
be measured in vivo, or if the ability of an inter- 
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mediate trait to predict disease was dependent on 
genome type. Therefore, research addressing Ques- 
tion 3 must also consider genes that may be in- 
volved in determining risk but were not identified 
as contributing to the genetic architecture of the 
measurable intermediate traits. 

To illustrate the potential power of DNA infor- 
mation for predicting CAD we turn again to our 
work with the gene coding for Apo E (Reilly et al. 
1993b). Fig. 5 gives the logistic regression analysis 
of selected predictors of parental CAD measured 
for a sample of healthy asymptomatic males ages 
27 to 62 representative of the Rochester, MN, 
population. We begin our example by considering 
the relationship between the selected intermediate 
traits and probability of having a parent with defi- 
nite CAD to address Question 1. Age and plasma 
Apo E level are evaluated in the four logistic re- 
gression models presented in the left panel of Fig. 
5. Age and Apo E level each make a significant 
contribution to predicting parental CAD when 
considered separately, Models I and 11, respec- 
tively. The contribution of these two traits is not 
additive, as indicated by the significant interaction 
effect revealed by comparing Models I11 and IV. 
The conclusion is that the ability to predict the 
probability of having a parent with CAD using the 
plasma Apo E level is not independent of the age 
of the asymptomatic adult child being measured. 
Question 2 has been addressed in a study of the 
Rochester population by Kaprio eta]. (1991). Poly- 
morphic variation in the gene coding for plasma 
Apo E explains only 10.64% (p= ~ 0 . 0 0 1 )  of inter- 
individual variation in plasma Apo E levels ad- 
justed for variation in age, height, weight and 
smoking behavior. 

Question 3 is addressed in the right panel of Fig. 

Without Genotype Informalion With Genolype Information 
I 1- 

*a = 0.10 
* * m = n o n  28.07 _ _  *** cy = 0.001 

x2r**i** '[*I o,14 z[*l 
Model I I1 TI1 IV V VI VII 

Model I - Age Only 
Model I1 - Apo E Only 
Model 111 - Age + Apo E 
Model 1V - Age + Apo E + Age x ApoE 
Model V - €(43 t 44) vs Others 
Model V I  - Age + ApoE + €(43 + 44) +Age x ApoE + 

Age x E(43 + 44) + ApoE x €143 +44) 
Model VIT - ModelVl + Age x ApoE x E(43 t44)  

Fig. 5. Complexity in the prediction of parental CAD: Chi- 
square values ( 2 b g  Lrnodcl ,- log Lmodct wllh lnlcrcepl o,,tyl) associated 
with logistic models of selected predictors with and without 
Apo E genotype information. 

5 which presents the analysis of the null hypothesis 
that adding information about allelic variation in 
the gene coding for plasma Apo E does not im- 
prove the ability to predict the probability of 
having a parent with CAD. Fitting restricted Apo 
E genotype effects only, Model V (the ~ 4 3 + ~ 4 4  
genotypes pooled compared to the other four geno- 
types pooled), did not result in a statistically signifi- 
cant result. When Apo E genotype information 
was added to the prediction model, and only first- 
order interactions with age and plasma Apo E 
level were considered, there was no evidence for 
improvement of prediction (Model VI compared 
to Model IV, Chi-square = 1.01). However, when 
the second-order interaction of Apo E genotype 
stratification with age and plasma apo E was con- 
sidered in Model VII, there was statistically signifi- 
cant evidence, at the 0.10 level of probability, for 
improvement in prediction. This choice of signifi- 
cance level for the test of interaction is consistent 
with the arguments presented by Wahlsten (1990) 
and Zerba & Sing (1993). The surfaces of the pre- 
dicted probabilities for the two groups of geno- 
types over the observed range of ages and Apo E 
levels are presented in Fig. 6. 

Again, we believe the message is clear. Simple 
additive models for the prediction of CAD destroy 
the potential for making strong inferences. In most 
cases investigators would have stopped fitting 

EM+ E44 GENOTYPES 

OTHER GENOTYPES 

0.25 v m  

1.w- 

0.75- 

0.50- 

Fig. 6. Surfaces of the predicted probabilities of parental CAD 
illustrating the Apo E genotype by Age by plasma Apo E level 
interaction. 
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have documented the presence of coherence among 
these agents within and across levels. Genome type 
by environment studies are convincing evidence of 
the dominant influence of the dynamic aspects of 
disease etiology over the static effects of separate 
measures of the genome and the environment at a 
particular time. The causes of disease cannot be 
studied separately from the causes of health. It 
follows that there is a critical need for a shift in 
the research paradigm used in studying common 
multifactorial diseases. Models for complex adap- 
tive systems (Waldrop 1992) and the methods of 
study that are being considered in computer 
science, economics, evolutionary biology and phys- 
ics need to be explored. We must combine the 
knowledge gained in the past 20 years (information 
gathering phase) with more realistic biological 
models that are emerging to establish a new way 
of answering questions about balance, pattern and 
organization rather than continuing to only de- 
scribe the agents that are involved. 

models with Model IV, missing Model VII and 
its information about the genetic contribution to 
prediction. The relatively simple consideration of 
all three levels in the hierarchy presented in the 
models given in Fig. 5 further emphasizes that 
prediction using intermediate quantitative traits 
can be context dependent. It is most likely that the 
stratifications of the population by Apo E geno- 
type are associated with other (unknown) factors 
that influence the relationship between Apo E 
levels and age. It should be apparent to all but 
the most ardent reductionist that these genotype- 
dependent relationships between two risk factors 
and the probability of having CAD in a parent 
suggest a very difficult analytical problem when 
multiple genes, multiple measures of intermediate 
traits, multiple measures of exposure to the en- 
vironment and the dynamics of change in environ- 
mental exposures over time are considered. 

Implications for future studies 
We believe that the examples presented above 
document the complexity of the relationship be- 
tween genome variation and variation in risk of 
CAD. The Baconian-Cartesian Mendelian method 
is not a valid model for the genetics of common 
multifactorial diseases. Genome types define the 
initial necessary conditions that place limits on the 
developing organism. Emergent disease properties 
associated with these genome types at a particular 
time in the life cycle are a function of interactions 
with exposures to past (since conception) and cur- 
rent environmental conditions. The simple single- 
gene models for diseases like CAD distort the 
multifactorial reality. A new research paradigm 
must recognize the primacy of interactions between 
genome types and exposures to environments. 
Neither genome types, nor environmental con- 
ditions are sufficient alone to determine onset, pro- 
gression and severity of disease. 

The utility of DNA information is context de- 
pendent. To accurately identify susceptible sub- 
groups, screening for functional alterations in 
DNA will require auxiliary information about 
other genes and environmental factors. An under- 
standing of potential effects of the interactions of 
an individual’s initial biological conditions coded 
in the genome type with exposures to environ- 
ments, and the epigenetic consequences of these 
interactions during the life cycle, will direct medi- 
cine to those changes in the environment that will 
minimize disease for the individual, the family and 
the population. 

Modern molecular methods have revealed the 
involvement of many genetic, biochemical and 
physiological agents. Statistical association studies 
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