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SUMMARY. Recent interest in cancer research focuses on predicting patients’ survival by investigating gene
expression profiles based on microarray analysis. We propose a doubly penalized Buckley—James method
for the semiparametric accelerated failure time model to relate high-dimensional genomic data to censored
survival outcomes, which uses the elastic-net penalty that is a mixture of L;- and Ly-norm penalties. Similar
to the elastic-net method for a linear regression model with uncensored data, the proposed method performs
automatic gene selection and parameter estimation, where highly correlated genes are able to be selected
(or removed) together. The two-dimensional tuning parameter is determined by generalized crossvalidation.
The proposed method is evaluated by simulations and applied to the Michigan squamous cell lung carcinoma

study.
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1. Introduction

Microarray technologies, including cDNA and oligonucleotide
arrays, simultaneously obtain thousands of gene expression
measurements for each sample. Although a large number of
genes are believed to be mostly inactive, there are many genes
whose activities are associated with various physiological ef-
fects. An interesting and important task in analyzing human
genomic data is to relate gene activities to phenotypic or clin-
ical information.

The work of this article is motivated by the analysis of
lung cancer using oligonucleotide arrays that initially involved
the examination of lung adenocarcinomas (Beer et al., 2002),
which has been more recently expanded to squamous cell car-
cinomas of the lung (Raponi et al., 2006). These tumors are
strongly associated with tobacco use and along with adenocar-
cinomas account for the majority of nonsmall-cell-type lung
cancer. Because histopathology is insufficient for prediction
of disease progression and clinical outcomes in patients with
both types of nonsmall-cell-type lung cancer, a goal of this
study is to predict patients’ survival utilizing gene expression
data among 129 patients who presented with squamous cell
carcinomas of the lung (Raponi et al., 2006). The RNA from
each patient’s tumor is examined using Affymetrix U133A
microarrays containing over 22,000 probe sets. The patients
are randomly divided into two groups: a training set with 65
patients and a test set with 64 patients. We want to select
relevant genes from the training set and then use these genes
to predict survival for patients in the test set.
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In the past few years, there has been extensive research on
applications of microarray data to cancer studies. Many in-
vestigators have developed methods to predict cancer classes
using gene expression data, and demonstrated that analyzing
microarray data can be very helpful and promising in cancer
research. There has also been active methodological research
in relating gene expression profiles to censored survival phe-
notypes. In addition to the challenge of high dimensionality of
the gene expression data that all statistical methods need to
deal with, another major challenge is the incomplete survival
outcome due to limited follow-up time in such studies. While
much work is based on the Cox model (e.g., Tibshirani, 1997;
Li and Luan, 2003; Li and Gui, 2004; Li and Li, 2004; Gui and
Li, 2005), other survival models have also be applied to the
gene expression data. Among those, Ma, Kosorok, and Fine
(2006) studied the additive hazards model and Huang, Ma,
and Xie (2006) studied the accelerated failure time (AFT)
model.

For censored survival data, Li and Luan (2003) investigated
the L,-norm penalized partial likelihood estimation based
on the Cox model (Cox, 1972),where the penalty term is

?:1 ?, 3 is a p-dimensional parameter of interest (relative
hazards in the Cox model). This method includes all variables
and does not provide a way of selecting a small set of relevant
genes. Tibshirani (1997), Gui and Li (2005), and Park and
Hastie (2006) proposed the least absolute shrinkage and selec-
tion operator (LASSO)method that uses the L;-norm penalty
Z?Zl |B;] to the partial likelihood function. Tibshirani (1997)
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used the quadratic programming method for the optimiza-
tion, Gui and Li (2005) used a modification of the least angle
regression (LARS) algorithm by Efron et al. (2004), and Park
and Hastie (2006) proposed the predictor—corrector algorithm
for convex optimization that generalizes the LARS algorithm.
However, the L;-norm penalty suffers from two drawbacks
(Zou and Hastie, 2005):

(i) When there are several genes that share one biological
pathway, it is possible that their expression levels are
highly correlated. The L;-norm penalty, however, can
usually only select one gene. The ideal method should
be able to automatically select the whole group of rele-
vant and yet highly correlated genes while eliminating
trivial ones.

(ii) As shown in Rosset, Zhu, and Hastie (2004), the L;-
norm penalty can select at most n, the sample size, in-
put variables. But for microarray data, the sample size
n is usually in the order of 10s or 100s, while the num-
ber of attributes p is typically in the order of 10,000s.
So claiming that no more than n genes are involved in
a complicated biological process seems to be unrealistic
for many biomedical studies. The ideal method should
be able to select an arbitrary number of genes relevant
to the clinical outcome.

On the other hand, for censored survival data, a linear re-
gression model is a viable alternative to the Cox model, be-
cause it models failure time directly and thus has a simpler
and more intuitive interpretation. Let T'; be the random fail-
ure time and X; be the covariate vector for subject i, then

9(T;) = a+ X8+ e,

where g is a prespecified monotone function, ¢; is the error
term with an unknown distribution that is assumed to have
zero mean and bounded variance and be independent for all i.
When g(-) = log (+), the above model is called the AFT; see,
e.g., Kalbfleisch and Prentice (2002).

When T,; are subject to right censoring, Huang and
Harrington (2005) applied the partial least squares (PLS)
method based on the Buckley—James estimating equation
(Buckley and James, 1979) to estimate the covariates’ ef-
fects. But similar to the principle component approach, their
method in fact involves all the genes for prediction and cannot
directly specify relevant genes that are associated with sur-
vival time. Huang et al. (2006) proposed a regularized method
for the above linear model based on a weighted loss function.

In this article, we propose a doubly penalized Buckley—
James method for variable selection, parameter estimation,
and prediction for survival time using high-dimensional gene
expression data. It extends the elastic-net regression for linear
models developed by Zou and Hastie (2005) to right-censored
survival data. It has several attractive features that make it a
proper tool for analyzing microarray data with survival out-
comes. First, it carries out variable selection and estimation
simultaneously. Secondly, it can select an arbitrary number
of genes with nonzero coefficients, which is more flexible than
using only the L;-norm penalty. Thirdly, it automatically se-
lects highly correlated genes together that are likely to be
in the same biological pathway. This feature not only helps
us possibly understand biological processes more clearly, but

i=1,...,n, (1)
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also very much improves the prediction performance. Further-
more, in contrast to the usual belief that the intercept « is
not estimable, we conjecture that o can be consistently esti-
mated by relaxing the commonly used assumption of bounded
covariate support, which is supported by our simulation stud-
ies. Theoretical verification is still under exploration.

2. Doubly Penalized Buckley—James Method
2.1 Buckley—James Method

The linear model plays a fundamental role in statistical anal-
ysis. In the past three decades, many researchers (Miller,
1976; Buckley and James, 1979; Koul, Susarla, and Van Ryzin
1981, among many others) extended the least-square princi-
ple in order to accommodate censoring of the response vari-
able. Later, the rank-based estimating method drew great
attention; see, e.g., Tsiatis (1990) and Wei, Ying, and Lin
(1990). Ritov (1990) established the equivalence between the
Buckley—James method and the weighted rank based method;
Tsiatis (1990), Ritov (1990), Lai and Ying (1991), and Ying
(1993) provided the asymptotic properties of either the rank-
based estimator or the Buckley—James estimator. A nice sum-
mary can be found in Chapter 7 of Kalbfleisch and Prentice
(2002). Wei (1992) discussed some advantages of the Buckley—
James method over the Cox regression model, including sim-
pler interpretation and better fits for some data sets.

For notational simplicity, here let 7'; denote the trans-
formed failure time, e.g., the logarithm of the failure time.
Then model (1) becomes

T,=a+XB+e, i=1,...,n (2)

When T'; is subject to right censoring, we can only observe
(Y, 6;, X;), where Y; = min (T, C;), C; is the transformed
censoring time by the same transformation for 7T';, and §; =
1{1,<c;) is the censoring indicator.

If there is no censoring, the least-squares method can be
applied to estimate the parameters in model (2). For cen-
sored data, the key idea of the Buckley—James method is to
recover those censored T'; by their conditional expectations
given corresponding censoring times and covariates. This is
the same idea as the single imputation of Little and Rubin
(2002). Define the “imputed” failure time Y7} as

}/i 61 = 1,
Yi= ®3)

Absorbing the unknown intercept « into ¢; in model (2) and
set the new error term to be

&i=a+e=T —X3,

with the true 8, the quantity E(T;|T; > Y;, X;) for a cen-
sored subject i can be calculated by

E(T|T; > Y, X)) = XiB+ E(& | & > Y — X;f)
_ X;6+/ tdP (1)
Yi-X!8

1-F(Y; - X{8)
where F'is the distribution function of £ = 7' — X’ in which
the intercept is absorbed. That X; disappears from the con-
ditional expectation of £ is due to a common assumption of
independence between the error term and covariates in linear

(4)
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regression. Buckley and James (1979) substituted the above
F by its Kaplan-Meier estimator F' in order to estimate 3.
Then the least-squares method can be applied to the follow-
ing regression model

Vi =a+ X+, ()

where € are independent with zero mean. - -
Denote Y* = (Y, Yy,...,Y), X; = X; — X, where X =
S Xi/n, and X* = (X7, X35,...,X;). Then the least-

squares estimator of 8 in model (5) is
B — (X*/X*)—IX*ly*. (6)

The final solution requires an iterative procedure since val-
ues of Y} defined in (3) contain 5. When the iterated algo-
rithm converges, the intercept a can be estimated by & =
V3" X!B, where Y* =" Y;/n. Clearly whether a
can be consistently estimated directly affects the prediction
of survival time for additional independent samples.

2.2 Estimation of Intercept

Buckley and James (1979) claimed that the intercept cannot
be estimated consistently due to the existence of censoring. In
some of their simulations, however, Schneider and Weissfeld
(1986) and Heller and Simonoff (1990) found that the inter-
cept can be estimated quite well using the Buckley—James
method. Based on the work of Susarla and Van Ryzin (1980)
and of Susarla, Tsai, and Van Ryzin (1984), we conjecture
that the intercept can be consistently estimated when the
supports of some covariates are not restricted to finite inter-
vals. Under such an assumption, the supports of n = C —
X'8 and £ = T — X' are equivalent, which is a sufficient
condition of Susarla and Van Ryzin (1980) to obtain a consis-
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tent mean survival time (equivalent to intercept in our case
for a fixed ) from censored samples. The assumption seems
suitable to the gene expression data. The theoretical issues of
estimating 8 and « under the relaxed assumption on covari-
ates will be discussed elsewhere. The results of the following
simulation studies provide numerical evidence to support our
conjecture.
Consider the following model

T=2+4+X +¢, (7)
where € ~ N(0, 0.5%). Four different settings of the support
of X are investigated. In the first setting, X ~ N(0, 1.96/3);
in the second setting, X ~ U(—1, 1); in the third setting
X ~ U(-0.5, 0.5); and in the fourth setting, X ~ U(—0.25,
0.25). The censoring distribution is C' ~ U(0, 4) A V, here
V is a truncation time. For the first two settings, we tried
four different V: 1, 1.5, 2, and 3. For the last two settings, we
tried three different V: 1.5, 2, and 3 because V = 1 yields a
very high censoring rate that causes numerical instability. For
each setting, we simulated 1000 runs with two different sample
sizes: 50 and 500. For the case of sample size 50, we also drop
V =1 for all four settings due to the same aforementioned
reason. The simulation results are summarized in Table 1.
The first setting corresponds to unbounded covariate sup-
port, and it is clearly seen that the bias of the intercept es-
timator is minimal even for a very short follow-up time. The
bias of the intercept estimator exists in the other three set-
tings that have finite covariate supports, but is diminishing
with wider covariate support and extended follow-up time.
It suggests that the intercept estimator can be numerically
satisfactory if covariates have wide support. The bias for the
slope parameter 3 is minimal across all simulation settings.

Table 1
Intercept and slope estimation for four univariate accelerated failure time models obtained by the
Buckley—James method with different covariate support. The true intercept o = 2 and the true
slope B = 1. The empirical mean (standard deviation) for each of the two parameters is provided
in the table.

Sample size = 50

Sample size = 500

Truncation Censoring
time rate «@ I6] «@ I6]
X ~ N(0, 1.96/3)
1.0 0.90 1.972 (0.071) 0.999 (0.084)
1.5 0.79 1.981 (O 271) 1.023 (0 318) 1.987 (0.071) 0.997 (0.084)
2.0 0.67 1.982 (0.132) 0.999 (0.205) 1.995 (0.045) 0.998 (0.063)
3.0 0.52 1.992 (0.100) 1.003 (0.145) 1.999 (0.032) 1.000 (0.045)
X~ U(-1,1)
1.0 0.92 1.811 (0.026) 1.018 (0.037)
1.5 0.80 1.986 (O 310) 1.082 (0 435) 1.955 (0.067) 1.001 (0.103)
2.0 0.67 1.993 (0.150) 1.029 (0.247) 1.994 (0.041) 1.003 (0.067)
3.0 0.52 1.997 (0.099) 1.007 (0 170) 1.999 (0.031) 1.001 (0.052)
~ U(-0.5, 0.5)
1.5 0.86 1.803 (0.194) 1.059 (0 530) 1.800 (0.063) 1.011 (0.173)
2.0 0.69 1.941 (0.095) 1.002 (0.330) 1.957 (0.032) 1.003 (0.118)
3.0 0.51 1.995 (0.080) 0.989 (0 270) 1.999 (0.032) 0.999 (0.100)
~ U(—0.25, 0.25)

1.5 0.88 1.676 (0.180) 1.121 (1 027) 1.650 (0.059) 1.006 (0.310)
2.0 0.70 1.893 (0.080) 1.022 (0.618) 1.899 (0.031) 1.010 (0.227)
3.0 0.51 1.996 (0.075) 1.017 (0.563) 1.999 (0.029) 1.005 (0.196)
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2.3 Buckley-James Method with Double Penalization

In microarray data analysis, the number of covariates p is
usually much greater than the sample size n and the classical
Buckley—James method fails. Some regularization is needed to
obtain a stable estimator of 8 with smaller prediction error.
We propose a modified Buckley—James approach by using pe-
nalized least squares with both the L;-norm and the L;-norm
penalty terms. To be specific, we consider the following min-
imization problem
1 P P
ming Y (V7 - XPBP AN Y I8+ 8 ()
i=1 j=1 Jj=1
where A\; and A, are called the tuning parameters in the ma-
chine learning field and will be determined by crossvalidation.
In fact, every centered covariate is also scaled by its sample
standard deviation in order to make the numerical implemen-
tation more stable.

This type of regularization method with double penalties
was originally developed by Zou and Hastie (2005) for linear
models with uncensored data. They called it the elastic-net
regression. By using the mixture of the L;-norm and the Ly-
norm penalties, it combines good features of the two. Similar
to the regression with the L;-norm penalty, the elastic-net
method simultaneously performs automatic variable selection
and continuous shrinkage. The added advantages by including
the Ly-norm penalty are that groups of correlated variables
now can be selected together and the number of selected vari-
ables is no longer limited by n. The proposed doubly penal-
ized Buckley—James method extends these good features to
the linear regression with censored data. Following are the
major steps of the algorithm for a given pair of (Aj, Ap).

Algorithm. Doubly Penalized Buckley—James method

1. Let 8 be the initial value of j3.
2. At the m-th iteration,

(a) compute
Vi = 6+ (1-8)
o0
x ¢ XIpmb 4 /
;X! 8lm=1)

tdF(t)
1- F(Y; - X]m)

)

(b) compute 3™ by

n

1 P P
min g Y (V7 = X78) + M D181+ ) B (9)
j=1 j=1

i=1

(c) stop the iteration if |3 — B*)| < d for some k €
{0, 1,...,m — 1}, here d is a prespecified precision.

3. When convergence is claimed, rescale B obtained from
the last iteration to be (1 + A2)3, and compute & = Y™* —
p X/B
i=1vil-

Note that in the mth iteration, all the remaining mass is
placed at the last Y; — X, Bm=1) when calculating the condi-
tional expectation of residuals. The optimization in Step 2(b)
is a standard elastic-net problem and can be carried out by
the method of Zou and Hastie (2005). The stopping rule given
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in Step 2(c) considers possible oscillation among iterations, a
common phenomenon for a discrete estimating function for
which there is no clearly defined root except a region where
the estimating function changes sign. Oscillation occurs when
the numerical procedure reiterates among a few points in that
region, so numerical convergence can be claimed and the cur-
rent solution can be chosen as the final solution; see, e.g.,
Huang and Harrington (2005). Yu and Nan (2006) provided
a detailed discussion on numerical convergence of the rank-
based estimating method that has the similar problem as the
Buckley—James method. Our experience is that the oscilla-
tion is rare when the sample size is large and the number of
coefficients is small. It is not rare, however, for the simula-
tion settings in this article. In the following Section 4.1, 40%
of 200 simulation runs for both examples achieve numerical
convergence without oscillation, 1.5% of the second example
reach the prespecified maximum iteration number and the re-
sults of the final iterations are claimed as solutions, and all
other simulation runs have oscillations. Among all the simu-
lation runs with oscillations, the median and 95 percentile of
the cycle size (excluding the starting and ending iterations of
an oscillation cycle) are 3 and 14, respectively, for the first
example and 6 and 59, respectively, for the second example.
Within each oscillation cycle, we calculate the maximum of
the maximum absolute differences of all values of coefficients
obtained at all iterations in the cycle to that obtained at the
ending iteration (the so-claimed solution). The median and 95
percentile of such quantity are 0.021 and 0.087, respectively,
for the first example and 0.023 and 0.109, respectively, for the
second example. As what we would expect, for almost all the
oscillation cases in these simulations, the numerical values of
coefficients within an oscillation cycle are indeed very close
to each other and to the claimed solution comparing to the
biases reported in Table 2.

The final rescale step in the algorithm is very important.
We can see in Step 2(b) that 3 is doubly shrunken by both
the Li-norm and the Ls-norm penalties. This double shrinkage
actually introduces unnecessary extra bias comparing to using
either the L;-norm or the Ly-norm penalty only. Following Zou
and Hastie (2005), we rescale B by multiplying the amplifying
factor 1 + Xs.

Similar to the elastic-net method for the linear regression,
the doubly penalized Buckly—James model can select corre-
lated genes, and the number of selected genes can exceed the
sample size.

3. Tuning Parameter Selection

Given a pair of A; and Xy, we fit model (2) by the pro-
posed doubly penalized Buckley—James method. Let d,ﬁ,
and Y} be the values obtained in the last iteration. Assum-
ing le,...,ﬁsm are nonzero, and other Bj’s are all zero.
Let Xy be the matrix consisted of columns sq,...,s,, in X,
which are corresponding columns for nonzero Bj’s. Denote
q = Trace(Xo(X{Xo + M) 1X}) that is discussed in Zou,
Hastie, and Tibshirani (2005). Then following the ideas of
O’Sullivan (1988) and Nan et al. (2005) in choosing smoothing
parameters for censored survival data, we define the following
generalized crossvalidation (GCV):

Gev =Y (7 —a-X[B)’/(n— 0>
=1
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Table 2
Selection frequency and estimation bias for the doubly penalized Buckley—James method. The
summary statistics are based on 200 simulation runs. Bias here refers to the absolute bias and the
relative bias is calculated by using the absolute bias. Here * stands for the blocks of informative
covariates (with nonzero coefficients), and ** stands for the blocks of noninformative covariates
(with zero coefficients).

Frequency (%)

Relative bias (%)

Bias (|-])

Parameters (min, median, max) (min, median, max) (min, median, max)
n = 50, p = 40, P_nonsero = 15
a _ — 0.103
Block1* (93.0, 95.5, 98.0) (8.33%, 9.71%, 20.24%) —
Block2* (16.0, 21.5, 24.5) — (0.003, 0.015, 0.064)
Block3* (93.0, 95.5, 97.0) (3.31%, 15.09%, 22.41%) —
Block4** (21.0, 22.5, 27.0) — (0.143, 0.162, 0.191)
Block5* (91.5, 93.0, 96.0) (11.26%, 18.61%, 23.71%) —
Block6** (23.0, 26.0, 28.0) — (0.117, 0.169, 0.201)
Block7* (25.0, 28.0, 31.5) — (0.001, 0.028, 0.069)
n= 507 p= 1207 P—nonzero = 60
o — — 0.052
Block1* (86.0, 91.0, 95.5) (0.26%, 7.87%, 36.44%) —
Block2* (86.5, 90.0, 95.5) (0.64%, 8.83%, 30.99%) —
Block3** (16.5, 25.0, 28.0) — (0.001, 0.045, 0.170)
Block4** (14.5, 23.8, 30.0) — (0.003, 0.030, 0.082)

We calculate GCV for each pair of candidate (A, As) deter-
mined by the uniform design of Fang and Wang (1994), and
then select the pair that yields the smallest GCV.

4. Simulation Studies

4.1 Group Selection of Correlated Covariates

We consider two examples with different settings, p < n and
p > n, for assessing the group selection feature of the proposed
method. For the example with p > n, the number of nonzero
coefficients is in fact greater then n. For both examples, the
logarithm of true survival time is simulated by

T = X'B+ o€, where e ~ N(0,1). (10)

In the first example, we have n = 50, p = 40, and o = 8.
There are seven blocks of covariates and each of the first six
blocks contains five correlated covariates. Coefficients 3;’s for
jed{1,...,5 U {11,...,15} U {21,...,25} are nonzero and
drawn randomly from N(3, 0.5). Once these coefficients are
drawn, their values are fixed for all the simulation runs. The
other 25 (3;,5 are set to be zero. The covariate matrix X is
generated from a multivariate normal distribution with zero
mean and covariance matrix as

2o
)
S 0.2J
02J ;
Yo 0.2J
02J
b

where ¥ is a 5 X 5 matrix with diagonal elements to be 1
and off-diagonal elements to be 0.7, £; is a 10 x 10 identity

matrix, and J is a 5 x 5 matrix with all elements to be 1.
The logarithm of censoring time C'is generated from a uni-
form distribution U(—7, 7), where 7 is chosen to yield 50%
censoring rate. The observed log-transformed survival time is
Y=TAhC.

In the second example, 50 samples are also simulated from
model (10), but with p = 120 and o = 15. The first 60 coeffi-
cients are nonzero and drawn from N(3, 0.5), and their values
are then fixed for all simulation runs. The remaining 60 coeffi-
cients are set to be zero. The covariate matrix X is generated
from a multivariate normal distribution with zero mean and
covariance matrix as

%y
Yo 0.2J
0.2 X
X

where ¥ is a 30 x 30 matrix with diagonal elements to be 1
and off-diagonal elements to be 0.7, and Jis a 30 x 30 matrix
with all elements to be 1. The censoring time is generated in
the same way as in the first example.

For both examples, 200 runs are simulated. For each covari-
ate, we evaluate the frequency of being selected among 200
simulation runs and the sample average of its coefficient, and
summarize the results in Table 2. We see from this simula-
tion study that the doubly penalized Buckley—James method
tends to select highly correlated informative covariates (with
nonzero coeflicients) in groups with very high selection fre-
quencies, and meanwhile exclude noninformative covariates
(with zero coefficients) with reasonable frequencies for the
given sample size, even when the number of nonzero coeffi-
cients is greater than the sample size.
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Table 3
Comparison of different reqularization methods in terms of average RPE (empirical standard
deviation) calculated from simulated test sets, where the Buckley—James method does not apply in
Examples 3 and 4 due to p > n. BJ: Buckley-James; DP-BJ: Doubly penalized Buckley—James;
Ly-BJ: Li-norm penalized Buckley—James; Lo-BJ: Ly-norm penalized Buckley—James.

Example n P P nonzero BJ DP-BJ L,-BJ L,-BJ

1 50 8 3 0.46 (0.28) 0.28 (0.19) 0.28 (0.20) 0.34 (0.20)
2 50 8 8 0.48 (0.34) 0.23 (0.15) 0.35 (0.19) 0.26 (0.16)
3 100 120 6 — 0.45 (0.19) 0.50 (0.21) 1.58 (0.28)
4 50 120 60 — 0.63 (0.28) 3.08 (0.96) 0.86 (0.68)

4.2 Comparisons to Other Regularization Methods

In this section, we compare the doubly penalized Buckley—
James method to either the L;-norm or the Ly-norm penal-
ized Buckley—James method. Log-transformed survival times
are also generated from model (10). Log-transformed cen-
soring times are generated from a uniform distribution that
yields 50% censoring rate. Since the true survival time for
each subject is available in simulated data, we use the rel-
ative prediction error (RPE) obtained from an independent
test data set to evaluate the prediction performance, where
RPE~ (1/n)Y " (T; — & — X!B)?/o? and 3 is obtained from
the training data set.

For each of the following simulations, we generate an in-
dependent validation data set to choose tuning parameter(s).
So in fact we generate three independent data sets for each
simulation: a training set for model fitting, a validation set for
tuning parameter selection, and a test set for RPE calculation.
Their corresponding sample sizes are denoted as (n, ng, n3).
In practice, however, data are expensive and one would want
to use all data for both model fitting and tuning parameter
selection.

Four examples are considered here in this section. The first
two examples have the same settings as that in Tibshirani
(1996) with an exception that we consider censored data here.
The last two examples consider situations of p > n with several
groups of correlated covariates, and in the last example, the
number of nonzero coefficients is greater than n.

Example 1 considers a few large effects with sample sizes
(50, 50, 400) for the three data sets. We choose 8 = (3, 1.5,
0,0, 2, 0,0, 0) and o = 3. The pairwise correlation between
two predictors X, and X, is p(ji, ja) = 0.591772I,

Example 2 considers many small effects with sample sizes
(50, 50, 400). The only difference to method 1 is that 3; =
0.85 for all j.

Example 3 considers two groups of moderate correlated co-
variates in the case of p > n with sample sizes (100, 100, 400)
and p = 120. We choose o = 5 and set the first six slope param-
eters to be (3, 3, 2, 3, 3, 2) and all other 114 slope parameters
to be zero. The first three covariates consist of a group and
the next three consist of another group. Within each group,
the pairwise correlation between any two predictors X; and
X, is 0.5.

Example 4 has the same simulation setting as the second
example in Section 4.1 with sample sizes (50, 50, 400).

We conduct 200 simulations for Examples 1 and 2 and 50
simulations for Examples 3 and 4. The RPE values and cor-

responding standard deviations are listed in Table 3. We can
see that in all examples, the doubly penalized Buckley—James
method has not only the smallest RPE but also the smallest
standard deviation.

5. Squamous Cell Lung Carcinoma Data Analysis

The goal of the Michigan squamous cell lung carcinoma study
is to predict the survival of early-stage lung cancer patients
using microarray gene expression data. The study has en-
rolled 129 subjects with squamous cell lung carcinoma. RNA
samples are analyzed by using Affymetrix U133A microarray
chips. Subjects are divided into a training set that has 65
subjects and a test set that has 64 subjects. Gene expression
values are log transformed. Those genes with very low expres-
sion levels or very small variabilities are excluded. This step is
done by the Bioconductor package “genefilter” on the training
set. Then the rest of the genes are assessed by running uni-
variate AFT models using the Buckley—James method, again
on the training set, and 1000 genes with the smallest p-values
are selected.

Starting with these 1000 genes, the AFT model fitted by the
proposed doubly penalized Buckley—James method from the
training data set has selected 59 probe sets using the train-
ing set, see Table 4. Among those 59 probe sets, there are
four duplicated genes and five anonymous probe sets. Tun-
ing parameters (A;, A2) are determined by uniform design
and generalized crossvalidation described in Section 3. We
start with 233 points in the region [10, 200] x [0.001, 100] for
(A1, A2), where Ay is uniformly spread on the log scale. The op-
timal pair of (A, A2) determined by the training set is (18.56,
9.54).

The model with these selected 59 probe sets is then used
to predict the survival times for subjects in the test set. A
subject is assigned to the high-risk group if the predicted
survival time is less than 3 years, or to the low-risk group
otherwise. Kaplan—Meier curves for these two groups are plot-
ted in the left panel of Figure 1. We can see that the two
curves are separated well. The log-rank test yields a p-value
of 0.02.

We have also analyzed the data using the Cox model. In-
stead of fitting univariate AFT models by the Buckley—James
method, we fit univariate Cox models to select 1000 genes
to start with. We then fit a Cox model by using the doubly
penalized partial likelihood with both the L;-norm and the
Lo-norm penalties, which minimizes the following objective
function for G:
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Table 4
Probe set ID, gene symbol, and estimated coefficient for each of the 59 probe sets selected by the doubly
penalized Buckley-James model based on 65 subjects in the training set

Probe set Gene symbol Coef. Probe set Gene symbol Coef.
218433_at PANK3 0.624 219957 _at — —0.130
209220_at GPC3 0.543 210512_s_at VEGF —0.137
219128 _at FLJ20558 0.389 214791 _at LOC93349 —0.139
211578 s_at RPS6KB1 0.303 208862_s_at CTNND1 —0.142
203638_s_at FGFR2 0.274 212080_at MLL —0.143
214190 x_at GGA2 0.201 202005-at ST14 —0.181
211084 x_at PRKD3 0.159 218245 _at TSK —0.182
203895_at PLCB4 0.119 204027 s_at METTL1 —0.187
203639_s_at FGFR2 0.101 203040_s_at HMBS —0.193
208228_s_at FGFR2 0.084 201003 x_at — —0.211
207551 s_at MSL3L1 0.068 213240_s_at KRT4 —0.212
222099_s_at C19orf13 0.012 212680_x_at PPP1R14B —0.226
201545_s_at PABPN1 —0.001 212076_at MLL —0.228
203082_at BMSI1L —0.010 212836 at POLD3 —0.234
201613_s_at AP1G2 —0.013 201059 at — —0.255
219217_at FLJ23441 —0.013 204385_at KYNU —0.290
218810_at FLJ23231 —0.029 202978 s_at ZF —0.292
209457 _at DUSP5 —0.043 209709_s_at HMMR —0.329
204218 _at DKFZP564M082 —0.056 209446 _s_at — —0.347
209016_s_at KRT7 —0.057 211240 x_at CTNND1 —0.380
217253 at — —0.080 202253 s_at DNM2 —0.406
203545_at ALGS8 —0.080 217014 _s_at AZGP1 —0.456
221989_at RPL10 —0.086 203431 _s_at RICS —0.472
200747 _s_at NUMA1 —0.093 51192_at SSH3 —0.486
203212_s_at MTMR2 —0.094 36552_at DKFZP586P0123 —0.510
219919 s_at SSH3 —0.102 219241 x_at SSH3 —0.683
220668_s_at DNMT3B —0.109 213700_s_at PKM2 —0.762
202887 _s_at DDIT4 —0.118 218136_s_at MSCP —0.770
212669_at CAMK2G —0.119 202471 _s_at IDH3G —-0.914
212568 _s_at DLAT —0.126
exp(X!3) & the Cox model. Among the 59 probe sets selected by the pro-
” n & P ) posed method, 44 are also selected by the Cox model.
_logH Z Liv,>v;1exp(X},0) tM Z 1651 + A Zﬁj : Several of the genes identified using the proposed method
=D / J=1 J=1 are consistent with prior analysis of survival-related genes in

An iterative approach is used for solving the above optimiza-
tion problem. At each iteration, the partial likelihood is lin-
earized and then the elastic-net method is applied.

The doubly penalized Cox model has selected 204 probe
sets using the training set. The cumulative baseline hazard
function is estimated by the Breslow estimator. Then survival
probabilities for subjects in the training set are calculated and
the risk score X’B that yields a 50% survival probability at 3
years is chosen to be the threshold for high-/low-risk groups.
Kaplan—Meier curves for the two groups classified by such
a threshold in the test set are plotted in the right panel of
Figure 1. The p-value of the log rank test is 0.03.

From Figure 1 we see that the doubly penalized Buckley—
James method uses a smaller number of genes to yield a sim-
ilar separation of the high-/low-risk groups to the Cox model
in the test set. These two methods achieve agreements on 49
out of 64 subjects in terms of risk group assignments. Among
the 15 disconcordant assignments, 5 subjects are classified to
be high risk by the Buckley—James method and low risk by

squamous cell carcinoma lung cancer. The increased expres-
sion of the tyrosine kinase FGFR2 was observed to be associ-
ated with better survival (Raponi et al., 2006), which is also
demonstrated in this study based on a subset of the data in
Raponi et al. (2006). The biological basis for this relation-
ship is not established; however, the role of fibroblast growth
factor signaling is associated with normal lung development
and the interaction between the epithelial and mesenchymal-
derived cellular components of the lung (De Langhe et al.,
2006). Loss or decreased expression of FGFR2 may allow lung
squamous carcinoma cells to escape from this interaction and
affect differentiated function or cell proliferation. In analysis
of the other main type of nonsmall-cell lung cancer, namely
lung adenocarcinomas, the increased expression of both KRT7
(Gharib et al., 2002) and the angiogenic molecule VEGF (Beer
et al., 2002; Gharib et al., 2004) at the mRNA and protein lev-
els were investigated and shown to be related to poor patient
outcome. Both genes in the present study are also associated
with increased expression and a reduced survival consistent
with these earlier studies. Interestingly, increased expression
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Figure 1. Lung cancer survival curves (Kaplan—-Meier) of

the test set high-/low-risk groups classified by the doubly pe-
nalized Buckley—James method and the doubly penalized par-
tial likelihood method fitted from the training set: — high-
risk group; - - - low-risk group. Log rank p-value = 0.02 for the
doubly penalized Buckley—James method; Log rank p-value =
0.03 for the doubly penalized partial likelihood method.

of several of the other genes including DNA methyltrans-
ferase (DNMT3B), dynamin 2 (DNM2), and DNA polymerase
delta (POLD3) are suggestive of more DNA replications and
thus more highly proliferative tumors and are observed in
the present study to demonstrate increased expression in pa-
tient’s tumors with reduced survival. Additional studies will
be required to establish the direct relationships between the
expression of these genes and tumor behavior in squamous
cell carcinomas of the lung.

6. Discussion

A set of regularity conditions needs to be developed for the
consistent estimation of the intercept parameter in the linear
model for censored survival data. A relaxation of the require-
ment of bounded support for covariates will affect the exist-
ing asymptotic theory for the slope estimators developed by
Tsiatis (1990), Ritov (1990), Lai and Ying (1991), and Ying
(1993), and a uniform extension of Susarla and Van Ryzin
(1980) is important for obtaining an intercept estimator with
nice asymptotic features. All these theoretical issues are under
investigation and will be presented elsewhere.

A possible alternative approach of estimating the slope pa-
rameters is to use the rank-based estimating equations. When
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p < n, using Gehen weights yields a monotone rank-based es-
timating function that is an important feature for developing
sound numeric algorithms. A penalized method is needed for
the situation that p > n, however. Then an interesting ques-
tion would be: how to construct an objective function using
the rank-based approach, which allows utilizing the L;- and
the L,-norm penalties and yet still can be optimized by a
feasible numerical algorithm.

Gene pre-filtering is a common practice in analyzing mi-
croarray data. As a reviewer pointed out, this step would
affect the final gene list. Ideally the pre-filtering would be im-
plemented in each iteration of a standard crossvalidation pro-
cedure. In this article, however, we used the GCV approach to
reduce the computing cost, and there is no data elimination
involved, thus the iterative pre-filtering becomes unnecessary.
Note that our pre-filtering stage is completely based on the
training data, which should yield an honest prediction to the
test data. Understanding the effect of pre-filtering is an inter-
esting problem and clearly deserves further investigation.
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