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Summary. In this article we investigate regression calibration methods to jointly model longitudinal and
survival data using a semiparametric longitudinal model and a proportional hazards model. In the longi-
tudinal model, a biomarker is assumed to follow a semiparametric mixed model where covariate effects are
modeled parametrically and subject-specific time profiles are modeled nonparametrially using a population
smoothing spline and subject-specific random stochastic processes. The Cox model is assumed for survival
data by including both the current measure and the rate of change of the underlying longitudinal trajectories
as covariates, as motivated by a prostate cancer study application. We develop a two-stage semiparametric
regression calibration (RC) method. Two variations of the RC method are considered, risk set regression
calibration and a computationally simpler ordinary regression calibration. Simulation results show that the
two-stage RC approach performs well in practice and effectively corrects the bias from the naive method.
We apply the proposed methods to the analysis of a dataset for evaluating the effects of the longitudinal
biomarker PSA on the recurrence of prostate cancer.

Key words: Joint modeling; Longitudinal data; Semiparametric mixed models; Smoothing splines; Survival
analysis.

1. Introduction
It is common in medical research to collect both censored
time-to-event data as well as longitudinal measurements of a
biomarker. For example, in AIDS research, both time to death
and repeated measures of CD4 counts are often collected
(Tsiatis, DeGruttola, and Wulfsohn, 1995; Wang and Taylor,
2001), and in prostate cancer research, both time to cancer
recurrence and repeated measures of prostate-specific antigen
(PSA) are commonly observed (Law, Taylor, and Sandler,
2002). One is often interested in estimating the relative risk
of the event of interest associated with the longitudinal tra-
jectory of the biomarker. A challenge in analyzing such data is
that longitudinal data are only measured intermittently and
are typically subject to measurement error. Hence the true co-
variate values at each failure time are not available for many
subjects. There is a large body of recent literature on joint
modeling of longitudinal and survival data, see Tsiatis and
Davidian (2004) and Yu et al. (2004) for reviews.However,
the majority of the existing methods mainly focus on para-
metric models for longitudinal data using linear mixed mod-
els (Tsiatis et al., 1995; Faucett and Thomas, 1996; Wulfsohn

and Tsiatis, 1997; Xu and Zeger, 2001) or linear stochastic
mixed models (Bycott and Taylor, 1998; Wang and Taylor,
2001).

Our model is motivated by a study of cancer recurrence in
prostate cancer patients after radiation therapy. In prostate
cancer patients, a significant elevation of the PSA level is
known to precede clinical recurrence. It is of substantial in-
terest to estimate the dependence of the risk of cancer recur-
rence on the PSA level and its rate of change (Sartor et al.,
1997). The PSA level was only measured intermittently and
is subject to measurement error. A challenge in jointly mod-
eling cancer recurrence and PSA trajectories is the presence
of complicated nonlinear longitudinal PSA trajectories (Fig-
ure 1). Specifically, following radiation therapy, PSA declines
immediately, keeps steady during remission, and then rises
exponentially before prostate cancer recurrence. In addition,
the individual PSA trajectories vary substantially across sub-
jects (Figure 2). These data show that the traditional Cox
model/linear mixed model framework is not suitable for mod-
eling the PSA data and a more flexible nonparametric model
is desirable.
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Figure 1. Longitudinal PSA profiles.
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Figure 2. Observed PSA measurements and predicted longitudinal PSA curves using ORC under the spline SPMM for
six randomly selected patients.

To deal with the nonlinear trajectory of longitudinal co-
variates, Pauler and Finkelstein (2002) modeled the PSA
profile with a two-piece linear spline. Yu et al. (2004) used
a double exponential mixed-effect model. Brown, Ibrahim,
and DeGruttola (2005) proposed a Bayesian regression spline
method. However, these nonlinear models are mainly based

on stringent parametric assumptions, and may not be flex-
ible enough to capture complicated time trajectories, espe-
cially the considerable variation of the shapes of individual
trajectories.

We propose in this article a two-stage semiparametric
joint model for longitudinal and survival data, where a



1240 Biometrics, December 2008

semiparametric stochastic mixed model (SPMM; Zhang et
al., 1998) is assumed for the longitudinal data and a Cox
model is assumed for the event time. Specifically, the longi-
tudinal SPMM models covariate effects parameterically, the
individual trajectories nonparametrically using a population
smoothing spline and subject-specific random stochastic pro-
cess. This model not only provides a flexible way to capture
the curvy trajectory, but also provides the rate of change of
the curve as a by-product. The Cox model for survival data
assumes the hazard rate to depend on the current value of the
underlying smooth subject-specific trajectory and its rate of
change. We propose two types of regression calibration meth-
ods in our two-stage semiparametric joint model: risk set re-
gression calibration (RRC; Tsiatis et al., 1995) and ordinary
regression calibration (ORC).

The remainder of this article is organized as follows. Sec-
tion 2 describes the model. Section 3 presents the two-stage
estimating procedure. Section 4 describes the two regression
calibration methods. Section 5 gives simulation results. Sec-
tion 6 applies this method to the Michigan Prostate Cancer
Study (MPCS), followed by discussion in Section 7.

2. The Semiparametric Joint Models for Longitudinal
and Survival Data

2.1 The Survival Model Associating the Event Time
to the Biomarker

Let Ti and Ci be the event and censoring times, respectively,
for the ith subject (i = 1, . . . , m). We only observe Yi =
min(Ti , Ci ) along with an indicator ∆i that is equal to 1 if
the subject fails and equal to 0 if the subject is censored. Let
X∗

i(t) = {X∗
i(u), 0 < u ≤ t} be the true history of the

biomarker up to time t. X∗
i(Yi ) is the hypothetical true his-

tory of a time-dependent covariate, which is not observed.
Only intermittent measurements with measurement error
Xi = (Xi1, . . . ,Xini

)T are observed at time points ti =
(ti1, . . . , tini

). We assume that the censoring time Ci is in-
dependent of Ti .

To associate the event time t with the true history of the
biomarker up to time t, X∗

i(t), we assume the hazard is a
function of the current biomarker value using a Cox model

λ
{
t;X∗

i(t),Zi

}
= λ0(t)exp

{
αX∗

i (t) + γTZi

}
, (1)

where λ0(·) ≥ 0 is the baseline hazard function and Zi is a
vector of other covariates.

In the prostate cancer study the event time is also allowed
to depend on the rate of change of the biomarker trajectory.
We hence also consider the following hazard model:

λ
{
t;X∗

i(t),Zi

}
= λ0(t)exp

{
α1X

∗
i (t) + α2X

∗′
i (t) + γTZi

}
, (2)

where X∗′
i(t) is the current value of the slope of the true tra-

jectory X∗
i(t) at time t. Our goal is to estimate the risk coef-

ficients α = (α1, α2) and γ.

2.2 The Semiparametric Stochastic Mixed Model for the
Longitudinal Biomarker Trajectory

We assume the observed intermittent longitudinal measure-
ments Xij measure the unknown true values X∗

ij with additive
errors as

Xij = X∗
i (tij ) + εij , i = 1, . . . ,m j = 1, . . . , ni, (3)

where εij ∼ iidN(0, σ2
ε). Motivated by the MPCS data, we

assume that the true unobserved subject-specific trajectory
X∗

i(t) follows an SPMM (Zhang et al., 1998):

X∗
i (t) = ZT

i β + ψ(t) + Ui(t)
Tbi + Wi(t), (4)

where β is a vector of regression coefficients associated with
the covariates Zi, ψ(·) is an unknown smooth function of the
population trajectory that is estimated using a smoothing
spline, bi is a vector of subject-specific random effects that
are associated with the covariates Ui(t) and is assumed to
follow N{0, D(φ)}, and Wi (tij ) is a mean 0 integrated Wiener
(IW) stochastic process, whose covariance takes the form

γ(s, t) = cov{Wi(s),Wi(t)}

=
1

6
[ξmin2(t, s){3 × max(t, s) − min(t, s)}]. (5)

We also assume εij , bi, and Wi (tij ) to be mutually indepen-
dent.

A natural cubic smoothing spline ψ(t) can be viewed
as generated from a partial IW stochastic process (Wahba,
1978).Suppose in the SPMM model (4), Ui(t) = (1, t)T and
ψi(t) = ψ(t) + Ui(t)

T bi + Wi (t) denotes the individual
trajectory of subject i. Because the population time trajec-
tory ψ(t) is estimated as a smoothing spline, and Wi (t) is
assumed to be a mean zero IW process, the best linear unbi-
ased prediction (BLUP) estimator of the ψi(t) is a smoothing
spline. A key advantage of using this method is that we allow
for both the population longitudinal trajectory to be mod-
eled nonparametrically as a smoothing spline and subject-
specific curves to be estimated nonparametrically as smooth-
ing splines.

3. Two-Stage Estimation in the Semiparametric
Joint Model

3.1 The Approximate Survival Model Conditional on the
Observed Longitudinal Measures

As the Cox model (1) is a special case of (2), we focus our
discussions below on model (2). The Cox model (2) specifies
the dependence of the hazard rate on the true biomarker tra-
jectory X∗

i(t) and its derivative X∗′
i (t). Because X∗

i(t) is un-
known, one cannot estimate (α, γ) by directly fitting the Cox
model (2). Following Prentice (1982) and Dafni and Tsiatis
(1998), we use the survival model λ{t; X∗

i(t), Zi} in (2) and
the measurement error model Xi (t) |X∗

i(t) in (3) to derive
the hazard function conditional on the error-prone longitudi-
nal trajectory λ{t; Xi(t), Zi}.

Assume measurement errors are nondifferential (Carroll
et al., 2006), that is, λ{t |X∗

i(t), Xi(t), Zi} = λ{t |X∗
i(t),

Zi(t)}. Some calculations show that the induced hazard func-
tion λ{t; Xi(t), Zi} can be written as

λ{t;Xi(t),Zi}

= λ0(t)e
γT ZiE

(
eα1X

∗
i
(t)+α2X

∗′
i

(t)
∣∣Xi(t),Zi, Yi ≥ t

)
. (6)

One can see that the conditional expectation
E(eα1X

∗
i
(t)+α2X

∗′
i

(t) |Xi(t),Zi, Yi ≥ t) is a complicated function
of the unknown baseline hazard λ0(t) and the conditional
distributions of the covariate X∗

i(t) given Xi(t) and Zi, and
is thus not tractable. Similar to Dafni and Tsiatis (1998),
we propose to approximate this expectation by a first-order



Semiparametric Modeling of Longitudinal and Measurement Data 1241

approximation, which is often called a regression calibration
approximation, as

E
(
eα1X

∗
i
(t)+α2X

∗′
i

(t)
∣∣Xi(t),Zi, Yi ≥ t

)
≈ e

α1E

(
e
X∗

i
(t)

∣∣Xi(t),Zi,Yi≥t

)
+α2E

(
e
X∗′

i
(t)

∣∣Xi(t),Zi,Yi≥t

)
. (7)

Let X̂∗
i (t) = E(X∗

i (t) |Xi(t),Zi, Yi ≥ t), and X̂∗′
i (t) =

E(X∗′
i (t) |Xi(t),Zi, Yi ≥ t), then the corresponding induced

partial likelihood for model (2) is

L(α,γ) =

k∏
i=1

∏
l∈F (ti)

eγT Zleα1X̂
∗
l
(t)+α2X̂

∗′
l

(t)


 ∑

l∈R(ti)

eγTZleα1X̂
∗
l
(t)+α2X̂

∗′
l

(t)




Ji
, (8)

where t1 < t2 < · · · < tk are the k observed unique ordered
failure times, Ji is the number of failures at ti , R(ti ) is the
risk set just prior to ti , and F (ti ) is the set of subjects failing
at ti . The risk coefficients are estimated by maximizing this
induced partial likelihood.

3.2 Smoothing Spline Estimation in the Semiparametric
Mixed Model

We describe in this section smoothing spline estimation of the
population curve ψ(t) and the subject-specific curves ψi(t)
in the semiparametric mixed model (4). Let t0 = (t01, . . . , t

0
p)

be a vector of ordered distinct values of the time points
tij (i = 1, . . . ,m, j = 1, . . . ,ni ), which are the knots for
smoothing spline. Let Ψ = {ψ(t01), . . . ψ(t0p)}T and Ni be
the incidence matrix for the ith subject connecting ti =
(ti1, . . . , tini

)T and t0 such that the (j, l)th elements of
Ni is 1 if tij = t0l and 0 otherwise (j = 1, . . . ,ni , l =
1, . . . , p). Let Ui = {UT

i (ti1),UT
i (ti2), . . . ,UT

i (tini
)}T and

Wi = {Wi(ti1),Wi(ti2), . . . ,Wi(tini
)}T . Denote Γi the covari-

ance matrix of Wi, where the (j, l)th element of Γi is
γ(tij , til ).

We estimate the nonparametric function ψ(t) in (4) using
a smoothing spline. Assuming that the smoothing parameter
λ and the variance component {σ2

ε, φT , ξ} are known, the
fixed effect β and the smoothing spline estimator of the pop-
ulation mean curve ψ(t) can be estimated by maximizing the
penalized likelihood

−
m∑
i=1

(
Xi − ZT

i β − NiΨ
)T

V−1
i

(
Xi − ZT

i β − NiΨ
)

−
m∑
i=1

1

2
log |Vi| −

λ

2
ΨTKΨ, (9)

where Vi = UiD(φ)UT
i + Γi + Iiσ2

ε, Ii is an ni × ni identity
matrix, and K is smoothing spline smoothing matrix (Green
and Silverman, 1994). Following Zhang et al. (1998), we can
formulate the smoothing spline semiparametric mixed model
(4) as a working linear mixed model by writing the smooth-
ing spline estimator of Ψ as the BLUP estimator of a linear
combination of fixed effects and random effects. Specifically,
write Ψ = Tδ + Ba, where T = (1, t0)T , B = L(LTL)−1, K =
LLT , L is a p × (p − 2) full rank matrix. Then smoothing
spline estimation in (4) can proceed by fitting the linear mixed

model

Xi = NiTδ + Ziβ + NiBa + Uibi + Wi + εi, (10)

where δ and β are regression coefficients, a ∼ N(0, τI), bi ∼
N{0, D(φ)}, Wi ∼ N{0, Γ(ξ)} are random effects, and τ =
1/λ. Estimation of the smoothing parameter λ and the vari-
ance component {σ2

ε, φT , ξ} can proceed using restricted
maximum likelihood (REML) in (10). The smoothing spline
estimator of Ψ can be obtained from fitting model (10) us-
ing the BLUP as Ψ̂ = Tδ̂ + Bâ. For details, see Zhang et al.
(1998).

We focus here on estimating the true continuous subject-
specific trajectoies X∗

i(t) and its derivative X∗′
i(t). Specifi-

cally, for subject i, the true marker value X∗
i(t) at time t

and a subset of the complete history of the observed longitu-
dinal biomarker measurements X

¯ i = {Xi(ti1), . . . ,Xi(tij )}T ⊆
Xi have a joint multivariate normal distribution:



X∗
i (t)

Xi(ti1)

Xi(ti2)

...

Xi(tij )




∼ N







ZT
i β + ψ(t)

ZT
i β + ψ(ti1)

ZT
i β + ψ(ti2)

...

ZT
i β + ψ(tij )




,

[
Σ11 Σ12

Σ21 Σ22

]



.

Let Ū i = {UT
i (ti1),UT

i (ti2), . . . ,UT
i (tij )}T and t

¯i
= (ti1, . . . ,

tij )
T be the corresponding subset of the random effect ma-

trix and the time vector, thus we have

Σ11 = Ui(t)D(φ)Ui(t)
T +

1

3
ξt3

Σ22 = Ū iD(φ)ŪT
i + Γi(t

¯i, t¯i; ξ) + Ij×j × σ2
ε

Σ12 = ΣT
21 = Ui(t)D(φ)ŪT

i + Γ(t, t
¯i),

where Γ(t, t
¯i

) is the covariance matrix of W
¯ i, the (l , l ′)th

element of Γ(t
¯i
, t
¯i

; ξ) is γ(til, til′ ; ξ), and the lth element of
Γ(t, t

¯i
; ξ) is γ(t, til ; ξ).

Replacing the parameters in model (4) with their estimates,
the conditional expectation of X∗

i(t) given X
¯ i can be esti-

mated as

ÊX
¯ i,Zi

[
X∗

i (t)
]

= ψ̂(t) + ZT
i β̂ + Σ̂12Σ̂

−1
22

(
X
¯ i − ZT

i β̂ − NiΨ̂
¯ i

)
,

(11)

where Ψ̂
¯ i = {ψ̂(ti1), . . . ψ̂(tij )}T . It follows from (11) that the

conditional expectation of the derivative process X∗′
i(t) can

be estimated as

ÊX
¯ i,Zi

[
X∗′

i (t)
]

= ψ̂′(t) +
∂Σ̂12

∂t
Σ̂

−1
22

(
X
¯ i − ZT

i β̂ − NiΨ̂
¯ i

)
. (12)

To make inference for the risk coefficient estimators, we use
the standard errors calculated based on the induced partial
likelihood as if all the true covariate values were known. This
method does not take into account the uncertainty of these
estimated time-varying covariates, Ê(X∗

i (t) |Xi(t),Zi, Yi ≥
t) and Ê(X∗′

i (t) |Xi(t),Zi, Yi ≥ t). Therefore, the estimated
standard errors for the risk coefficients are likely to be biased
and tend to be smaller than the true variance of these risk co-
efficient estimates. The extent of this bias will be investigated
in simulation studies.
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4. Regression Calibration Methods for Estimation in
the Semiparametric Joint Model

We discuss two regression calibration methods in this sec-
tion. They differ in calculations of the conditional expecta-
tions E(X∗

i (t) |Xi(t), Zi, Yi ≥ t) and E(X∗′
i(t) |Xi(t), Zi,

Yi ≥ t) at time t. The first method, RRC, estimates the true
subject-specific longitudinal values X∗

i(t) at any time t by
fitting the SPMM (4) using subjects in each risk set. The sec-
ond less computationally intensive method, ORC, estimates
X∗

i(t) at any time t by fitting the SPMM only once using all
available longitudinal measures.

4.1 The Risk Set Regression Calibration (RRC) Method
Suppose that at any time t, the history of the observed lon-
gitudinal biomarker values up to time t, that is, Xi(t), for
all the subjects still at risk at time t follow the SPMM (4).
Let X

¯ i = {X(ti1), . . . ,X(tij )}T , where tij is the time point at
which the last measurement before t is measured. At the first
stage, we fit the SPMM (4) using the data X

¯ i and calculate
Ê(X∗

i (t) |Xi(t),Zi, Yi ≥ t) and Ê(X∗′
i (t) |Xi(t),Zi, Yi ≥ t) us-

ing (11) and (12). At the second stage, one replaces the con-
ditional expectation in the partial likelihood (8) at time t by
Ê(X∗

i (t) |Xi(t),Zi, Yi ≥ t) and Ê(X∗′
i (t) |Xi(t),Zi, Yi ≥ t) for

each subject i who has survived up to time t.
Note that in this two-stage method, three approxima-

tions are used. First, the conditional expected relative risk is
approximated by the first-order approximation (7). This ap-
proximation works well when the conditional distribution is
concentrated. Second, within each risk set, the joint distribu-
tion of the true marker value at time t, X∗

i(t), and the history
of the observed longitudinal measurements, Xi(t), are gener-
ally not normal. Even if this normality assumption holds at
t = 0, because withdrawal from each risk set is related to the
biomarker, as more people experience the failure event, the
distribution of the subject-specific random effects deviates
from the normal distribution. Therefore, the normality as-
sumption for the risk set at each event time is only an approx-
imation. Third, EXi(t),Zi,Yi≥t X∗

i (t) and EXi(t),Zi,Yi≥t X∗′
i (t)

are approximated with their BLUP estimators, which is the
Laplace approximation of these expectations and the Laplace
approximation often works well for continuous cases (Breslow
and Lin, 1995).

4.2 The Ordinary Regression Calibration (ORC) Method
Attenuation in regression coefficients in proportional hazards
models arising from covariate measurement error in the case of
time-independent covariates has been extensively investigated
(Prentice, 1982; Abelson and Prentice, 1997). Xie, Wang, and
Prentice (2001) proposed an RRC estimator for this prob-
lem and showed that under extreme dependence of either fail-
ure or censoring time on the covariate, their RRC estimator
eliminates much of the bias that presents in an ORC estima-
tor. However, under most of their simulation conditions, both
RRC and ORC estimators perform similarly well. Because the
RRC estimation procedure recalibrates at each risk set, it is
computationally expensive. In view of the results in Xie et al.
(2001), we also develop an ORC estimator for the semipara-
metric joint model, which is much less time consuming than
the RRC estimator.

In the first stage of the ORC estimation procedure, pa-
rameters in model (4) are estimated from a single fit to all

the available longitudinal data for all subjects. Let X
¯ i =

{X(ti1), . . . ,X(tini
)}T denote all the observed longitudinal

measures for subject i. One then fits the SPMM to the longi-
tudinal data X

¯ i. The BLUP estimates of X∗
i(t) at each failure

time are then calculated using (11) and (12) for all the sub-
jects at each failure time. In the second stage, these BLUP
estimates are substituted to the partial likelihood (8) for esti-
mating the regression coefficients in the Cox model (2). Note
that in this procedure, in contrast to the RRC procedure, fu-
ture data are also used to calculate the BLUP estimates X̂∗

i (t)
for each t.

4.3 Comparison of Risk Set Regression Calibration with
Ordinary Regression Calibration

In both the RRC and ORC procedures, the true longitudinal
biomarker values in the partial likelihood function are sub-
stituted by some predicted values. How well these procedures
perform is directly related to the bias and variability of these
predicted biomarker values. In general, we expect the BLUP
subject-specific curve estimates using the RRC procedure to
be less biased but more variant than those using the ORC
procedure.

Because withdrawal from the risk set is related to
the biomarker, subjects at higher risk tend to have less
biomarker measurements. Therefore, if the failure of the
event strongly depends on the longitudinal covariate, the
parameters in model (4) from a single fit to the com-
plete data using the ORC can be biased due to the informative
dropout, and the corresponding Ê(X∗

i (t) |Xi(t),Zi, Yi ≥ t)
and Ê(X∗′

i (t) |Xi(t),Zi, Yi ≥ t) are biased. In contrast, the
RRC estimator is developed to accommodate this change of
risk set over time, and BLUP estimates using the RRC pro-
cedure tend to have less bias than those in the ORC proce-
dure. However, in a finite sample situation, the RRC proce-
dure, which recalibrates X̂∗

i (t) at each risk set, is subject to a
decreasing number of subjects over time. In addition, in the
RRC procedure, X̂∗

i (t) are obtained through extrapolation in
time in each risk set, whereas in the ORC procedure interpo-
lation is used to predict these covariate values for most of the
time points. Therefore, the BLUP estimates using the RRC
procedure are often more variant.

The balance between bias and variation of these BLUP
estimates determines the relative performance of the RRC
and ORC procedures. For instance, when the failure rate is
small and events are rare, the change of the distribution of the
risk set over time might be ignorable. In this case, the non-
parametric BLUP estimates of the individual longitudinal tra-
jectories X̂∗

i (t) and their derivatives X̂∗′
i (t) can approximate

E(X∗
i (t) |Xi(t), Zi, Yi ≥ t) and E(X∗′

i(t) |Xi(t), Zi, Yi ≥ t)
quite well, and the ORC procedure might perform as well as
or even better than the RRC procedure when considering the
bias/variance tradeoff. Because the ORC procedure is much
less time consuming, it is worth studying and comparing the
properties of the relative risk regression coefficient estimates
using these two procedures.

5. Simulation Study
We perform extensive simulation studies to compare the finite
sample size performance of the RRC with the ORC methods
under different scenarios. We considered the effect of (1) the
magnitude of measurement error σ2

ε, (2) the magnitude of the
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risk coefficient α, (3) the censoring rate, and (4) the sam-
pling frequency of longitudinal measurements. Each of these
four simulation studies involves 200 Monte Carlo datasets of
sample size m = 300 each.

Let tknot be a vector of 19 equally spaced time points in
[0, 144]. For each subject i, the true longitudinal trajectory
X∗

i(t) was generated from the following model:

X∗
i (t) = ψ(t) + gi(t), (13)

where ψ(t) = log (5.7 × e−0.19×t + 0.244 × e0.05×t + 1) is the
mean population curve, and gi (t) is a subject-specific cubic
smoothing spline with 19 distinct knots tknot, characterizing
the subject-specific deviation from ψ(t). The values of gi (t)
at the distinct knots tknot are given by 1b0i + tknot b1i + Bai,
where the 19 × 17 matrix B is defined in Section 3.2., b0i ∼
N(0, 0.12), b1i ∼ N(0, 0.022), and ai ∼ N(0, 0.00252I17×17).

For simplicity, to study the influence of the four aforemen-
tioned factors on the properties of α̂ORC and α̂RRC , we con-
sidered the survival model (1), in which the risk depends on
the current value of the longitudinal biomarker. For each sim-
ulation study, we varied one factor. Besides the ORC and
the RRC methods, the “last value carried forward (LVCF)”
method was also used as a comparison. This method simply
pulls forward the nearest preceding value of the marker and
treats it as if it were the current value of the marker at the
failure time. We also considered a fourth method, which uses
the true unobserved X∗

i(t) at each event time and serves as
a benchmark, against which the ORC, RRC, and LVCF can
be compared. The properties examined include the bias or
the relative bias, the empirical standard error (EMP SE), the
estimated standard error (EST SE), the mean squared error
(MSE), and the coverage rate of the nominal 95% confidence
interval (CI).

We first describe the basic setting of the model considered
in our simulation, and then explain the variation of the rele-
vant factors in each of these simulation studies. In the basic
model, measurements of X∗

i(t) were taken to follow a nomi-
nal time schedule of tij = (0,1,2, . . . , 144), that is, every one
time unit from 0 to 144. The missing rate of measurements
was 60% for time <12, and increased at a rate of 5% every
12 time units, and for time ≥60, the missing rate was always
90%. The observed measurements were simulated with a nor-
mal measurement error, εij ∼ N(0, 0.32). For each subject
i, the failure time Ti was generated independently with the
first event from a nonhomogeneous Poisson process with the
intensity function

λi(t) = λ0(t)e
αX∗

i
(t), (14)

where λ0(t) ≡ 0.001 and α = 2.0. The censoring time Ci was
generated independently from a Weibull distribution with the
hazard function λC(t) = λcγc(λct)

γc−1, where λc = 0.008 and
γc = 1.614. If Ti and Ci are both >144, subject i is set to
be censored at t = 144. The marginal censoring probability is
approximately 30%.

In the first simulation study, we investigated the impact of
the measurement error σ2

ε in (3) by comparing the above basic
setting to two other settings, one with a smaller measurement
error σ2

ε = 0.12 and the other with a larger measurement error
σ2
ε = 0.62. As shown in Table 1, all three estimates, LVCF,

ORC, and RRC, are attenuated and the bias becomes more se-

Table 1
Simulation study to examine the impact of the measurement

error on the performance of the risk coefficient estimates using
the four methods: the true longitudinal biomarker (TRUE),

last value carried forward (LVCF), ordinary regression
calibration (ORC), and risk set regression calibration (RRC)

Average Empirical Estimated 95% CI
Method α̂ Bias SE SE MSE coverage

TRUE 2.016 0.016 0.142 0.134 0.020 0.935
σε = 0.1
LVCF 1.840 −0.160 0.123 0.126 0.041 0.740
ORC 1.972 −0.026 0.139 0.131 0.020 0.930
RRC 1.960 −0.040 0.143 0.132 0.022 0.905
σε = 0.3
LVCF 1.491 −0.509 0.105 0.109 0.270 0.005
ORC 1.840 −0.160 0.135 0.126 0.044 0.710
RRC 1.828 −0.172 0.142 0.128 0.050 0.670
σε = 0.6
LVCF 0.937 −1.063 0.079 0.082 1.136 0.000
ORC 1.638 −0.362 0.131 0.122 0.149 0.165
RRC 1.644 −0.356 0.141 0.123 0.146 0.235

vere as the measurement error increases. In general, the ORC
estimator and the RRC estimator perform similarly, and both
correct a lot of the bias in the naive method LVCF. At σ2

ε =
0.12 and σ2

ε = 0.32, the two regression calibration estimators
perform fairly well, and the ORC estimator is slightly better
than the RRC estimator. At σ2

ε = 0.62, all these three esti-
mators have more bias, but the RRC estimator is slightly less
biased and has a slightly higher coverage rate than the ORC
estimator. For both regression calibration estimators, the es-
timated standard errors of the risk coefficient estimates are
in general slightly smaller than their empirical counterparts.
This is because by using the standard error formula for the
Cox proportional hazards model in the second stage, we do
not take account of the variability of the plugged in BLUP es-
timates of the time-varying covariates. Our results show that
the difference is small. Table 1 shows the ratio of the average
estimated SE and the empirical SE ranges from 0.87 to 0.92
for RRC and from 0.93 to 0.94 for ORC. The naive LVCF
method tends to have smaller empirical SEs and estimated
SEs than those of the two regression calibration estimators,
but ORC and RRC have much better performance than LVCF
in terms of MSEs. We also investigated bootstrap method for
estimating SEs of α in the basic setting for the ORC method.
One hundred bootstrap samples were used for each simulated
dataset. The results show that the bootstrap SE is very close
to the empirical SE for the ORC methods (bootstrap SE =
0.131, empirical SE = 0.133, average estimated SE = 0.126).

Table 2 examines the effect of the size of the risk coefficient
α on the performance of the proposed methods. When α =
1 both the two regression calibration estimators behave well.
The ORC estimator is slightly less biased and has a slightly
higher coverage rate than the RRC estimator. As α increases
both regression calibration estimators become more biased,
although the biases are fairly small and are about 7–11%.
However, the RRC estimator seems to be able to correct the
bias better than the ORC estimator when α is large. When
α = 3, the bias of the RRC estimator is 2/3 of the bias of the
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Table 2
Simulation study to examine the impact of magnitude of the
risk coefficient α on the performance of the risk coefficient

estimates using the four methods: the true longitudinal
biomarker (TRUE), last value carried forward (LVCF),

ordinary regression calibration (ORC), and risk set regression
calibration (RRC)

Average Relative Empirical Estimated 95% CI
Method α̂ Bias SE SE MSE coverage

α = 1
TRUE 1.012 0.012 0.066 0.070 0.004 0.960
LVCF 0.899 −0.101 0.056 0.066 0.013 0.680
ORC 0.976 −0.024 0.064 0.068 0.005 0.930
RRC 0.957 −0.033 0.063 0.068 0.006 0.890
α = 2
TRUE 2.009 0.0045 0.130 0.133 0.017 0.940
LVCF 1.498 −0.251 0.098 0.110 0.262 0.005
ORC 1.844 −0.078 0.130 0.127 0.041 0.745
RRC 1.828 −0.086 0.135 0.128 0.048 0.705
α = 3
TRUE 2.980 −0.0067 0.188 0.201 0.036 0.965
LVCF 1.681 −0.440 0.130 0.137 1.757 0.000
ORC 2.637 −0.121 0.200 0.198 0.172 0.480
RRC 2.763 −0.079 0.214 0.209 0.102 0.750

ORC estimator. The RRC estimator also has a much higher
coverage rate, 75% versus 49% of the ORC estimator.

We also studied the effect of censoring rate and frequency
of repeated measurements. As the censoring rate increases
from 8% to 60%, the bias in the naive LVCF estimator be-
comes slightly worse, and the bias in the two regression cali-
bration estimators improves slightly (ORC: 9% to 7%, RRC:
10% to 5%). When the censoring rate is 8%, the ORC estima-
tor is slightly better than the RRC estimator. As the censoring
rate increases, the difference becomes smaller. When censor-
ing rate is 60%, the RRC estimator becomes slightly better
than the ORC estimator. As the median number of covariate
measurements per person increases from 8 to 32, as expected,
the bias in all three estimators decreases (ORC: 12.5% to 5%,
RRC: 12.5% to 5.5%). The two regression calibration estima-
tors behave similarly. Although increasing the sampling fre-
quency decreases bias, in practice one must also consider the
cost of data collection of extra longitudinal measurements.

6. Application to the Prostate Cancer Study
We applied the two proposed regression calibration proce-
dures to the MPCS, a study of cancer recurrence in prostate
cancer patients after radiation therapy (Taylor, Yu, and
Sandler, 2005). A major interest of this study is to estimate
the dependence of the risk of cancer recurrence on the PSA
level and the rate of change of the PSA level. A total of 934
patients were enrolled from July 1987 to February 2000.

Since the start of radiation therapy, posttreatment longi-
tudinal PSA values were measured about every 6 months to
the time of clinical recurrence of cancer, loss of follow-up,
death from nonprostate cancer disease, or censoring at the end
of study. The median follow-up from entry of the study was
44.5 months (range 0.6–144.5 months). Clinical recurrence (lo-
cal recurrence, distant metastasis, or regional recurrence) was
observed in 140 (15.0%) of 934 patients. All other patients

are treated as censored. During the study follow-up, a total
of 59 patients received salvage hormone therapy (HT), among
whom 15 (25.4%) experienced clinical failure. PSA measure-
ments after HT in these patients were not included in the data
analysis. The average number of PSA measurements is 6.6 ±
4.1 (range 1–29). Tumor stage III and above are used as the
reference group against tumor stages I and II. The baseline
covariates include patient age at the entry of the study (age),
baseline PSA (B PSA), tumor stage (T-stage), Gleason score
(GS), and total dose of radiation therapy (dose). The PSA
values measured at the baseline and follow-up were log trans-
formed as LNPSA = ln (PSA+1), B LNPSA = ln (B PSA+1),
to make the normality assumption more plausible.

In the first stage of the analysis we fit the SPMM (4) to
the longitudinal PSA data. The fixed effect covariates vector
Zi include GS, T-stage, and age. The random effects Ui =
(1, tij )

T , and the random stochastic process Wi is the mean
zero IW process. The population longitudinal trajectory ψ(t)
was estimated using a smoothing spline. The two-stage RRC
and ORC methods were used to estimate the subject-specific
curves X̂∗

i (t) and the regression coefficients in the Cox model.
The unit for the rate of change is LNPSA unit per month. A
few randomly selected fitted subject-specific LNPSA curves
using the ORC procedure under the SPMM (4) are shown in
Figure 2. These plots demonstrate that the individual smooth-
ing spline estimates using (4) capture individual profiles very
well.

The Cox proportional hazard models were used to estimate
the dependence of the risk of cancer recurrence on the longitu-
dinal PSA profile and other covariates. We started with model
(2) for the survival data, in which X∗

i(t)=LNPSA, X∗′
i(t) =

LNPSA′ (t), and the time-independent covariates included
GS, T-stage, age, dose, and B LNPSA. HT was included in
the model as a time-dependent covariate, where HT(t) equals
1 if a subject has had the HT at time t, and 0 otherwise. To
check whether the assumed linear relation between the haz-
ard and the rate of change of LNPSA is correct, we did some
exploratory analysis fitting a penalized spline to LNPSA. The
results suggested (not shown here) that log-hazard rate is lin-
ear in the square root of LNPSA′(t). We hence used the square
root of LNPSA′(t) instead of LNPSA′(t) in our final model.
Furthermore, to obtain better standard error estimates for all
the parameters, we used the bootstrap method with 800 boot-
strap samples for the ORC analysis. We did not do bootstrap
for the RRC analysis because the computational time would
be excessive.

The results are shown in Table 3. The regression coefficient
estimates using the two regression calibration methods ORC
and RRC are similar. The LNPSA level and the square root
of the rate of change of LNPSA level are significant predictors
of cancer recurrence. If a patient’s PSA level doubles, the risk
of cancer recurrence increases by 63% and 48% based on the
ORC and RRC estimates, respectively. If the square root of
a patient’s rate of change of LNPSA is increased by 0.1, the
chance that he experiences cancer recurrence is increased by
33% and 70% according to the ORC and RRC model, respec-
tively. If the baseline PSA level doubles, the risk is increased
by 22% (ORC) or 32% (RRC). Salvage HT has been shown
to be able to effectively decrease the risk of cancer recurrence,
at least in the short term. Even with the current PSA level
and the rate of change being adjusted, the baseline PSA level
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Table 3
Regression coefficient estimates in the Cox proportional hazard model for the prostate cancer data

ORC RRC

Standard Hazard Bootstrap Standard Hazard
Parameters Estimate error ratio SE Estimate error ratio

LNPSA(t) 0.705 0.090 2.024 0.113 0.568 0.096 1.766√
LNPSA

′
(t) 2.835 0.787 17.03 0.913 5.335 0.920 207.5

I(T stage = 1) −1.186 0.333 0.305 0.390 −1.381 0.332 0.251
I(T stage = 2) −0.244 0.226 0.783 0.307 −0.390 0.227 0.677
GS 0.443 0.083 1.557 0.094 0.497 0.084 1.644
Dose 0.0756 2.99 1.08 3.33 −0.280 3.025 0.755
Age(10 years) −0.547 0.141 0.579 0.158 −0.522 0.143 0.594
BLNPSA 0.290 0.106 1.336 0.146 0.397 0.106 1.488
HT(t) −1.597 0.424 0.203 0.512 −1.339 0.394 0.262

is still shown to be an important positive predictor. Cancer
T-stage, GS, and age are all found to be significant predictors
for the risk of cancer recurrence. The bootstrap estimated SE
is in general slightly larger than the SE obtained from the
Cox proportional hazard model, the ratios range from 138%
to 111%.

7. Discussions
We have proposed in this article two regression calibration
procedures for jointly modeling survival and longitudinal
data, allowing longitudinal data to have nonlinear popula-
tion and subject-specific trajectories. A SPMM is used to
estimate both the population and nonlinear subject-specific
trajectories nonparametrically using smoothing splines. Our
extensive simulation results show that the ORC estimator and
the RRC estimator are attenuated but generally perform well.
Both methods are able to correct much of the bias present in
the naive LVCF method. Under most circumstances, the two
regression calibration estimators behave very similarly. How-
ever, the ORC estimators tend to have relatively less bias
in the situation of small measurement error and small risk
coefficient. Under the opposite scenarios the RRC estimator
behaves relatively better. The ORC estimators are computa-
tionally much faster compared to the RRC estimators, espe-
cially for large datasets.

An advantage of the two-stage regression calibration ap-
proach is that they can be easily implemented using exist-
ing software for the semiparametric stochastic mixed model
(SPMM SAS macro) and the proportional hazards model
(PROC PHREG). As shown in our simulation studies, the
relative risk estimates α̂ still have downward biases of 7–10%,
as a consequence of the bias and variation in the predicted
marker values X̂∗

i (t). To achieve better regression coefficient
estimators of α, one needs to seek an alternative approach
that takes account of the informative drop-out in the longitu-
dinal model and incorporates the uncertainty of measurement
error into the relative risk model. This can be achieved by
jointly maximizing a penalized likelihood constructed using
both the longitudinal data process and time-to-event data, in
which the survival model can be thought of as the model for
dropout process. Computation of such a joint penalized like-
lihood approach is likely to be much more computationally

intensive compared with the proposed two-stage regression
calibration methods. Future research is needed.
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