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I. INTRODUCTION

The purpose of this report is to present in final form the results of
theoretical research conducted in the period of from 1 November 1956 to 30 No-
vember 1957 on Contract No. AFL9(638)-26.

The report is divided into two main parts, comprising Sections II and III.
The first part is concerned with the calculation of the reflection of radia-
tion from saw-tooth surfaces. The calculations performed for this problem are
based on a variational method which has been previously published. A review of
this method is presented in Section II. The results of the calculations are
given in Figs. 2-13. The computations are restricted to the class of reflec-
tion problems where the propagation vector of the incident plane wave is normal
to the corrugations of the reflectiing surface and where the incident electro-
magnetic wave is polarized with the electric vector parallel to the corruga-
tions. For an acoustic wave this is equivalent to a pressure release surface.

In Section III the problem considered is that of the reflection and trans-
mission of radiation by an infinite system of parallel, circular, equally-
spaced cylinders whose axes lie in a plane. Computations are restricted to the
case where the propagation vector of the incident plane wave is perpendicular to
the axes of the cylinders, and further, to the case where the wave is normally
incident on the plane formed by those axes. The theory of W. von Ignatowsky is
used in making calculations. The results reported here are all for the case
where the radiation wavelength, A, is greater than the spacing of the cylinders,
D. Hence there are no propagating diffracted orders; in this case the sum of
the directly transmitted and reflected intensities must be equal to the incident
intensity.

The calculations were performed on MIDAC, The University of Michigan digi-
tal computer, and on the IBM-650 operated by the Statistical Research Laboratory
of the University. The MIDAC was closed down for lack of funds early in 1957.
Consequently some of the results obtained during the course of this work are
necessarily incomplete. Nevertheless, all the results which were complete
enough to be interesting have been reported here.
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IT. CALCULATION OF THE REFLECTION OF RADIATION FROM PERIODIC
SAW-TOOTH SURFACES USING A VARTATIONAL METHOD

The problem of the reflection of radiation from nonplane surfaces has been
treated by a large number of workers in the past. 1-5 A variational method has
recently been proposed for the treatment of such problems.6 The experiments
which have been performed to check the results of the earlier calculations have
shown encouraging agreement.7’ This method has been applied in this work to
calculate the reflection properties of saw-tooth surfaces for a wider range of
parameters. For convenience the theory will be reviewed here.

A. REVIEW OF THE THEORY

The method may be described as follows. Following Trefftz,9 a linear
combination of known solution to the wave equation is chosen to represent the
reflected field. The coefficients will be chosen here so that they minimize
the square of the error in the boundary condition. (Trefftz chose them so as
to minimize the Rayleigh quotient.) This process of minimizationis egquivalent
to orthogonalizing the set of functions formed by evaluating the trial func-
tions on the boundary. Once this set is orthogonalized, one can easily con-
struct the estimates of the reflection coefficients for the surface involved.

The class of problems to be considered will now be described. It is de-
sired to find a solution @ of the two-dimensional, time-independent wave equa-
tion,

2 4% kA g(x,z) = O (1)
ox2 ox2

in a half-space bounded by a periodic surface {(x) (see Fig.l). Here { is
assumed to depend only on x. In Eq. (1) k = m/c when o is the angular fre-
quency of the radiation source and ¢ is the phase velocity in the homogeneous
medium bounded by Q(X The solution of the time-dependentwave equation is
then given by @e-i®t,

Using the method described herein, one may treat either the first or the
| second boundary value problem., The present calculationsare restricted to the
case

’
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Plx,6(x)] = 0 (2)

It is supposed that the incident radiation consists of a plane wave mak-
ing an angle 6 with the + z-direction; then one can write the total field as
the sum of two components,

g = 85+ 8 (3)

where

$; = exp (ik[x sin 6; + z cos 64) (%)

with exp (x) = %,
The boundary condition given by Eq. (2) is frequently encountered in the

treatment of problems involving acoustic and electromagnetic radiation. For

acoustic problems, the function ¢ may be taken to represent the (time-independ-

ent) velocity potential, with @ defined by
v = = V¢ ) (5)

where v is the particle velocity at an arbitrary field point (x,z). Then the
first boundary value problem, represented by Eq. (2), corresponds to a physical
problem in which g(x) is a pressure release surface. For problems involving
electromagnetic radiation, on the other hand, {(x) is assumed to be a perfectly
conducting surface. Then for an incident plane wave which has its propagation
vector lying in the x-z-plane and which is polarized so that the electric
vector is perpendicular to the x-z-plane, one chooses the boundary condition
given by Eq. (2) where it is supposed that the electric field, which has but a
single Cartesian component, is given by the function d.

To make progress toward a solution of the foregoing class of problems,
Rayleigh and others have chosen to represent the reflected field by an infinite
set of plane-wave solutions of the wave equation., In addition to homogeneous,
one must choose inhomogeneous waves. The waves must be chosen in such a way
that they are either outgoing or exponentially damped as z + - o, Furthermore,
the fact that the boundary is periodic implies that one needs only a discrete
set of such waves. Thus, one is led to expect that the reflected field $ can
be represented by the following type of sumg

00

2, A, exp[- ik sin 6, x - ik cos @y z] , (6)

V==
where
sin @, = vK/k - sin 9;;

[1L - sin® OV]1/2

cos Qv

3
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where K = 2n/D (see Fig. 1), and where the coefficlents, A,, are to be deter-
mined through the use of the boundary condition. The angles 9y of the various
reflected orders are just those obtained from the ordinary grating equation.

Lippmann15 has pointed out that this representation cannot be expected to

be valid in the region {(x) < z < 0, i. e., in the grooves. So long as the an-
gle ¥ of the surface is not too large, there is no difficulty on this point.
The present calculations involve surfaces with § no greater than 15°. Some
other results obtained indicate that for larger angles a refinement of the
method would be necessary to obtain accurate results.

To proceed, upon using Egs. (2), (3), (4), (6), and (7), one finds the

following relation for the determination of the constants A:

exp [ik cos @5 ¢ (x)]
- L A, exp [- 1vKx - ik cos @, §{(x)] = 0 . (8)

V=-0

To render the treatment of Eq. (8) more systematic, let

further let

Fi(x) = exp (0)
Fo(x) = exp (1)
Fa(x) = exp (-1)
Fi(x) = exp (2)
El = Ap
Ao = Ay
, (9)
where, in Eq. (9),
exp(v) = exp [- ivKx - ik cos 9, {(x)] ;
; = ex» [ik cos 85 ¢ (x)1. (10)

Then Eq. (8) becomes,
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ai(x) -kgl Kka(x) = 0. (11)

If the series in Eq. (11) is broken off after the Nth term, as must be
done in many problems, the left side of the equation is not in general equal to
zero. It is proposed that in such a case the constants Ak be chosen in a way
so that the integral over the surface { of the absolute square of the left side
of Eg. (11) is minimized. Since all quantities in that equation are periodic
with period D, it is sufficient to carry the integral from x = 0 to x = D. It
is easily seen that this minimization is equivalent to carrying out the corre-
sponding minimization of the error in the boundary condition. It is not dif-
ficult to show that if one chooses the coefficients Ak so that they satisfy the
set of equations (with £ = 1,2,...,N),

N
Y Ee(Fg,F) = (Fg, B1) , (12)
k=1

when the inner product of two functions, (g,h), is defined by
D
1
(g,h) = 5 f g*hdx, (13)
o}
then the indicated minimization is accomplished.

The problem which remains, once the integrals of the type (g,h) have been
calculated, is the inversion of the linear system given in Eq. (12). This is
actually accomplished on the computer by the use of an orthogonalizing proce-
dure. A new orthonormal set of functions was constructed from the nonortho-
gonal set Fy.

The coefficients A, obtained in this are not plotted directly. By con-
sidering the energy balance within the region of the x-z-plane bounded by
¢(x), x =0, x =D, and z = - C, where C is large and positive, one obtains the
following relation for the exact solution:

cos 81 = X cos 9y]Ay]2 , (1k)
v

where the summation is carried over those values of v for which cos Oy is real.
Guided by this relation, the ratio of the reflected energy in a given order,
cos glev|2: to the incident energy, cos ©i, is the quantity presented in the
graphical results shown in Figs. 2-13.

B. DISCUSSION OF THE COMPUTATIONAL RESULTS

Calculations were made for surfaces with ¥ = 5°, 10°, and 15°, and for
radiation wavelengths ranging variously frmnxzz 1.25 to 5 = 11.00. Most of
the computations are for the surface ¥ = 10°.
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Referring to Figs. 4-11, the effect of increasing the frequency of the incident
radiation is seen. Beginning with low frequencies, Fig. 4, one sees that most
of the reflected energy is in the zeroth-order component. As the frequency is
increased, the energy in the zeroth order is reduced in favor of the plus first
order. As the frequency is still further increased, D = 5,00\, the plus second
order begins to become important. Such strong positive orders are to be ex-
pected from the nature of the reflecting surface. Referring to Fig. 1, it is
seen that for small values of ¥, much of the surface looks like a mirror
slanted to throw the reflected energy to the left; that is, in the direction of
the positive orders. It should be emphasized that even the highest frequencies
used here are not sufficiently high to allow the use of geometrical, or even
physical, optics. Hence the exact strength of the individual orders is still
very much a wave property of the reflection process. This is true despite the
fact, as pointed out above, that the qualitative behavior is as expected from
geometrical opticse. |

The cusps which occur in many of the curves are known experimentally as
Wood anomz:m]_ies.,l)"r As the incident angle is increased, the positive orders will
successively disappear, whereas the negative orders will appear. For example,
this occurs in Fig. 5 for the plus and minus first orders at - 15° and + 15°,
respectively. ©Since this change occurs rapidly, actually in principle with
infinite slope, then if energy is to be conserved, the other orders must show
discontinuous rates of change. These sudden changes in intensity constitute
the Wood anomalies.

Although the results are sketchy for surfaces other than ¥ = 10°, there
is at least one interesting point which can be made concerning the relative re-
flection properties of surfaces with different angles. Upon comparing Fig. 7,
¥ = 10° and D = 2,00\, with Fig. 13, ¥ = 15° and D = 2,00\, it is seen that
increasing the surface angle has the effect of causing the shift of energy from
the zeroth to other orders to occur for angles nearer to grazing. This is the
sort of result which is predicted by Rayleigh's perturbation treatment.

III. TREFILECTION AND TRANSMISSION OF RADIATICN BY PARATIEL CYLINDER SYSTEMS

In this section we shall review the theory of Ignatowsky*5—20 and discuss

the results of calculations based upon that theory.

The problem will now be defined. Consider an infinite system of parallel
equally spaced, perfectly conducting cylinders of radius a separated by the
distance D. A plane electromagnetic wave is incident upon this system with
propagation vector perpendicular to the plane formed by the axes of the cy-
linders. The case where the incident wave is polarized with electric vector
parallel to the axes will be called Case I; electric vector perpendicular to
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the axes will be Case II.¥ The reader is referred to the figure for defini-
tions of the terms.

K:} P

| ® Incident wave
Region II - —w (X

. Region I
qug

A. REVIEW OF THE THEORY OF IGNATOWSKY

Ignatowsky has reported his method very completely in a series of pa-
pers.l5'20 It may help the reader to know that of these papers probably the
most important is Ref. 19. Despite this very complete report of Ignatowsky's
work, it will prove convenient to discuss briefly the major ideas of his me-
thod. The development is carried out for Case I; only the result will be given
for Case II since the development is entirely analogous.

We let Z represent the z-component of the electric field (Case I). This
component satisfies the (time~-independent) wave equation,

(v2+g2%) z = 0, (15)

where g = 2n/h with A equal to the incident wavelength. Since the cylinders
are perfect conductors, Z vanishes on their surface. The incident field is
given by

_ igp cos B
Zinec. = fe

AT (gp) +2 2 i°% J_(gp) cos s & (16)
o s=1 s

*Ignatowsky considered more general problems than the class described here.

T
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The diffracted field can be written (the general solution of the two-dimen-
sional wave equation):

o
Zaipp, = Asgthst (gp) cos sd + G I (gp) cos s 8] (17)

with Dg, Gg unknown constants, and
o (x) = %Héz) x) , (18)

where Hég) is the Hankel function of the second kind of order s. The Jg in Eq.
(17) are Bessel functions. From the boundary condition it follows that the sum
of the incident and diffracted fields must vanish when p = a; then from Egs.
(16) and (17) one finds a relation between Gg and Dg,

D s|D
G, =|=2 -1}; G, = 2|8 -1 1
o [LO ] s i [PS ’ (19)
< s>0
where
B VNP0 of il (20)
Qg (ga) s>0 Qg (ga)

Thus only the Dg remain unknown. These quantities can be determined through
the use of a general relation which existg between the Dg and G4 of Eq. (x7).
To see this relation, we begin by supposing that the cylinders are numbered
running from - o to + o. Then let Zg represent the field diffracted from the
gth cylinder. This field can be defined precisely as follows. The diffracted
field is defined in terms of an integral over the reflecting surface of the
boundary value of the field times a Green's function, as can always be done .19
Then that part of the diffracted field which results from carrying the integral

over the sth cylinder is defined as Zg. Now for points outside the sth cylin-
der we can write
o]
Zy = TEbETQT(gpS) cos T By , (21)

where pg and &y are the polar coordinates about the axis of the éﬂlcylinder.

For normal incidence, the E ;are the same for every cylinder. (It is a simple
matter to modify the phase for ncn-normal incidence.) Further, the total dif-
fracted field is given by

Zdiff. = Z ZS ° (22)

S==00

We wish now to write each Zg in terms of polar coordinates measured from the

0 cylinder, these coordinates to be designated by p and &. This can be done
through the use of the addition formula for Hankel functions.2® The result of
this transformation for Z; is
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S

® STt
Hodo(gp) + 2 {Hs(cos — cos sd - sin 7 sin sd)
s=1

Zq 5

+ Kq(sin %; cos sd + cos %; sin 56)} Js(ep), (23)

where
Hy, = 5 E. cos = Q_ (gD)
T= 2
Hg o cos T
- (-1 2 B (1) 2
T7=0 !
Ks sin 1%
2
X {QS—T (gD) + (%) (-1jTQs+T (gD)} (k)

where the upper quantities in the brackets( ), belong together, as do the
lower quantities. Proceeding in this way, one finds for Eq. (22),

Zdiff_ = siO[ESQS(gp) + Mst(gp)] cos sd P (25)
where
My = 2 io(_lf Eor Sor
T=
Mag = 2 (-1)° ZO (-1)" Eor[Sz(s-1) + Sa(s+r) | (26)
T=
Mog-y = 2 (”l)s Til ('l)T Eora1[Sz(s-1) + Sz2(s+1-1) 1
with o
Sog (%) = ;21 Qos (gDT). (27)

This shows the predicted relation between the coefficients in Eq. (17). Upon
identifying Egs. (17) and (25) and using the boundary-condition relations (19)

we find for Dp
[o8)
[99 - i] = 2 % (-1)"Dar Sor

LO T=0

25 D S T
(1) [ii - lJ (-1)° Eo (1) Dar[S2(s-7) + Sz(s+r) |

9
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(1757 (P22 0| - ((1)° T (c1)Deres So(s-1) + So(s+7) (28)
Log-a T=1

with Lg and Sg defined in Egs. (20) and (27).

It is now convenient to consider the plane-wave representation of the
field. In the region I, one can represent the reflected field for normal in-
cidence by the expansion (aside from the time factor)

ot 2,2, 2\1/2 onn
-3 - Y
Z3ifr. = 21’l§O Nne ig{1-n (}" /D )] X CcOS —D—- (29)
and in region II by
© 2,2, 2\,1/2
Zaiff, = 2n§b Nyeigll-n" (N /D7)] X cos §%$X (3C)

where N, and N, are constants to be determined. It should be emphasized that
this representation is not correct for the region between the cylinders. In
that region more complicated functions are required to represent the field.6

The representation given by Egs. (29) and (30) is now compared with the re-
presentation given by Eq. (17). The plane-wave representation can be considered|
the Fourier transform, in y, of the cylindrical-wave representation of Eq.

(17). 1In this way one can obtain the relationship between the coefficients of
the plane wave and the coefficients D, now determined by Eq. (28). One finds
for region I (the reflected wave),

8

A . S+1 v
N = 3 R Dy (317
A S L5+
n>0 N, = — . ¥ i°* Dg cos s Oy, (32)

gD cos 6, s=0

and for the transmitted wave in region II,

(o]

— S+1 s .
= — i - Z
T = 55 5 (-1)"Ds (33)
>0 N 55 )% e (34)
n = —_-—-—— 1 - CcOs S
n gD cos ©p 5=0 5 n

where ©, 1s the angle made by the diffracted wave with the normal to the plane
of the grating

2
cos Oy = (L-nz?\? 1/2 (35)

10
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2

When nZ2 &5 > 1, the diffracted waves are inhomogeneous and do not carry energy

away from the grating.

Finally, then, the expressions (28)-(34) determine the diffracted field.
This field plus the incident field,

z = hetisX (36)

inc.

gives the total field,

Zeotal = 2aiff. * Zinc. (37)

To obtain the solution to Case II, where the electric field is perpendicular to

the axes of the cylinder, the above results may be used unchanged with one

exception. The equations corresponding to Egs. (28) for Case II are obtained

by replacing Lp of those equations by L'n where
reo- _ Jdes) L

s J4(ga)
5 o=, 5 = - 045 _8 .

_s=" 38
Q;(ga) s >0 Q' (ga) 0)

That is, to determine the Dg for perpendicular polarization, just replace the
Bessel functions by their derivatives.

The functions Spg (p) may be obtained from the functions Tsg (p) of Table
I. The functions S are related to the functions T by

i) IR
Sas (p) = (28)! Taog (p) + 1 N if s =0

| ifs £0
I

(39)

The table gives Tog (p) to eight places for values of 2s, 0(2)30, and values
of p, 1.25 (0.25) 6.75.%

Using the values of the functions Sog tabulated in Table I, one can break
off the system represented by Egs. (28) and obtain the quantities D to an
accuracy dependent on where the system is terminated. This is done by solving
the linear system so formed. The values of D obtained in this way are then
substituted in Egs. (31) and (32) to obtain the coefficients of the diffracted
plane waves. TFor instance, the coefficient of the directly transmitted plane
wave is given by

|

*A table given in Ref. 2 can be used to find S,.

11
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and the coefficient of the reflected wave by

co
A LS4 ’
= A — ' .
7RO 5 szb 1”7 Dg (41)
For A > D, as is the case for the calculations reported here, the directly
transmitted and reflected waves are the only propagating waves which occur. As
pointed out above, to obtain the corresponding result for perpendicular polari-

zation (Case II), replace Lp of Eq. (28) by Lj defined in Egs. (38).

B. DISCUSSION OF THE RESULTS OF THE CALCULATIONS

The calculations were made using coefficients Dy through order n = 5. The

results obtained were checked by using the relation
2 2 2
|zpol™ + |2pol™ = (A7, (42)

which is the requirement for conservation of energy when A > D. In most cases
the check was to four or five places, the limit of accuracy of the calculatiocn,
indicating that the results can be considered exact. For D/a = 2.5 when
h/D = 1.25, the energy checked to only two percent, indicating that in the
region N ® D terms of order higher than Dg are needed when cylinders of larger
radius are considered.

There is a further computational check which can be applied. Suppose the
following diffraction problem is considered: an electromagnetic (or accustic)
wave 1is incident on a grating composed of equally spaced, parallel, conducting
half-cylinders which are placed on a conducting plane. The amplitudes of the
waves diffracted from this system can be calculated from the solution of the
full-cylinder problem by taking the difference of the soluticns to the full
cylinder problem for an incident wave coming from the right and from the left.
Then using the requirement of conservation of energy, cne finds

IZRo - ZTolg = |A]2 . (43)

This check when applied gave agreement to within one or two percent.

In Figs. 14-19 the computations are compared with the experimental results
of Pursley.22 Pursley used a klystron source mounted in a paraboloidal re-
flector for the incident beam. The gratings were constructed of aluminum and
brass rods. A crystal detector mounted at the focus of a paraboloidal reflec-
tor was used as a receiver. For D/a = 4.0, Pursley checked his results using
a small-scale grating and infrared radiation as a source. The results here
checked very well with the microwave results.

The agreement between experiment and theory is in general quite good. It
is seen in Figs. 14, 15, and 17 that when the incident wave is perpendicularly

12
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polarized, Pursley found that there is a region of wavelengths about A = 1.21
which gives rise to good transmission.* In our calculations we find that this
peak should appear at slightly larger wavelengths than found by Pursley; Figs.
14 and 17 show this, although, of course, more computation is needed in this
region to make the case clearer.

In conclusion, it is seen that Ignatowsky's theory gives an exact solution
to the parallel cylinder diffraction problem. The computations which must be
made to obtain transmission and reflection coefficlents are somewhat involved.
To obtain efficiently results from the theory, a digital computer is needed.
Further computations using Ignatowsky's theory would be very valuable, insofar
as the theory constitutes one more complete, exact solution to a diffraction
problem.

*Though a detailed explanation of this phenomenon is not available, it is
evidently a resonance effect.

13
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TABLE I

TABLE OF THE FUNCTION Tog (p) DEFINED IN EQ. (39)

The order 2s 1s shown explicitly only for p=1l.25

.19935161
17361713
-.01116211
-.00119387
-,00010700
-.00001048
-.00000118
- 00000014
- 00000001
00000000
00000000
00000000
00000000
00000000
.00000000
00000000

06593563
08685571
-.01795879
-.00259979
-.00033591
-,0000512%
-.00000879
-.00000160
-, 00000030
-.00000005
-.00000000
. 00000000
.00000000
»00000000
.C0000000
»00000000

p=1.25

p=1.50

21122143

.03255%22
-.02920771
-.00521002
-.00095429
-.00020829
-.00005010
-.00001270
-.00000%32
-.00000089
-,0000002k
-.00000006
-.00000001
-,00000000

.00000000
.00000000

p=1l.75

p=2.00 .31410624 p=2.75 .5202163k4
-.01663377 -. 17698117
- 0L 7h956 -.126L44957
-.00987102 -.,05122495
-.00246138 -. 02625242
-.00072466 -.01531310
-.00023179 -.,00950548
-.00007767 -.00612661
-, 00002683 -.,00L405216
-.00000947 -.00273155
-,00000340 -,00186845
-.0000012% -.00129300
-, 00000045 -.00090327
-.00000016 -.00063597
-.00000005 - =.00045075
~ 00000002 -.00032128
P=2.25 39501555 p=3.00 .571240%5
-, 066 TL401 -.23849820
-.06540139 -.169L2916
-,01781867 -.08227536
-.00582195 -,05102250
-.00221625 -.0%569928
-.00090790 -.02649147
-.0003880L -.02038171
-,00017063% -.01607807
-,00007660 -,0129198C
-,00003493 -.0105%111
-,00001612 -,00868212
~.0000CT75L -.007224%8
-.C0000325% -.00605786
-,000C0167 -.00511285
-,00000CT9 -.004220%3
p=2.50 46230017 p=3.25 61695189
-.11988564 - 30469767
-. 09222737 -.2226605L
-.0%080385 «. 12810617
-.01277118 -.09446313
-.00609147 -.07803668
-.00310629 -.06819923%
-.00164803 -, 06172%96
-.00089824 -.05724109
-.00049931 -.05405229
-.00028178 -.C5176038
-.00016092 -.05012212
-.00009280 -.04898039
-,00005394 -.04822941
-.00003157 - 0L 77957h
-.00001858 -, 04762713

1L




p=3.50

p=3.75

p=4.00

. 65842527
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Fig. 18. Comparison of the calculated transmission for D/a = 10
to the measured transmission for D/a = 8, E parallel in both cases.,
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